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Maximum entropy and the concept of feasibility in 
tomographic image reconstruction 

Jorge Nunez* and Jorge Llacer 
Engineering Division, 

Lawrence Berkeley Laboratory, 
1 Cyclotron Road, Berkeley, California 94720 

ABSTRACT 

LBL-25451 

Feasible images in tomographic image reconstruction are defined as those 
images compatible with the data by consideration of the statistical process 
that governs the physics of the problem. The first part of this paper reviews 
the concept of image feasibility, discusses its theoretical problems and 
practical advantages, and presents an assumption justifying the method and 
some preliminary results supporting it. In the second part of the paper two 
different algorithms for tomographic image reconstruction are developed. The 
first is a Maximum Entropy algorithm and the second is a full Bayesian 
algorithm. Both algorithms are.tested for feasibility of the resulting images 
and we show that the Bayesian method yields feasible reconstructions in 
Positron Emission Tomography. 

.L_ INTRODUCTION 

Over the last two years we have been involved in a detailed study of the 
behavior of solutions to the image reconstruction problem in emission 
tomography (ET), with data generated both by computer simulation and by the 
ECAT-III tomograph at UCLA. In the process of studying the behavior of the 
Maximum Likelihood Estimator (MLE) method of image reconstruction at our 
Laboratory, we became aware, along with other workers, of the need to either 
stop the iterative procedure before the images deteriorate

1
, or to choose the 

solution from a set of smooth images.
2 

As we progressed into the study of this phenomenon
3

, we became aware of the 
fact that the observed deterioration is a direct consequence of the MLE 
criterion itself. By definition, the Maximum Likelihood method tries to find 
an image that would give the experimental data with the highest probability. 
In other words, the Maximum Likelihood criterion favors images whose forward 
projections are as close to the data as possible. This fact is undesirable 
when working with noisy data. If the reconstruction is forced to fit the data 
too closely, it will include features due exclusively to the noise. On the 
other hand, if the reconstruction fits the data too loosely, it would be a 
poor representation of the object. 

In the case of Positron Emission Tomography (PET), it was found
4 

that a 
true radioactive source equal to the reconstructed MLE image at convergence 
could not have yielded the experimental data by a Poisson disintegration 
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process. They observed, however that the images recovered after iterations 
within a certain range could have generated the data. That initial finding 
led them to formulate a stopping rule for the MLE algorithm. Upon further 
investigation, Llacer and Veklerov 5 realized that the stopping rule is 
actually based on the concept of Image Feasibility (called Causality in that 
paper) as discussed below. 

The first part of this paper is concerned with reviewing the concept of 
feasibility in some detail, its application to testing the reconstructions and 
discussing the difficulties in carrying out a correct test for feasibility 
within the framework of hypothesis testing. The second and third part of the 
paper describe the developm~nt of two independent algorithms for image 
reconstruction in Emission Tomography. The first algorithm is a Maximum 
Entropy algorithm and the second is a full Bayesian reconstruction algorithm. 
Finally, the results of both algorithms are tested using the feasibility 
concept. 

~ THE CONCEPT OF FEASIBILITY OF a RECONSTRUCTION 

The concept of feasibility, as presented here, .has been developed by our 
group for the Poisson data case as a result of the study of the image 
deterioration during MLE reconstruction. 

4
-

6 
Sceveral variations of the same 

concept for Gaussian noise have been reported by other authors working mainly 
• 7-9 
~n astronomy. 

Throughout this paper we shall use the following notation: 

a. 
~ 

f .. 
J~ 

h. 
J 

j=l, .... ,D 

i=l, .... B 

B 

I f .. ai 
i=l J ~ 

- the projection data or the number of coincidences 

dete~ted in detector pair (or tube) j; 

- the emission density; 

- the point spread (transition) matrix; 

- the forward projection; 

where B and D are the number of pixels and the number of projections, 
respectively. We shall consider specifically the case of emission tomography 
in which disintegration data follow Poisson statistics. 

The basic idea of the feasibility concept is that the residuals should be 
distributed in accordance with the Poisson nature of the process. Two 
definitions have been presented:

6 

Definition 1: The reconstruction ai i=l, .... B is said to be strongly 

feasible with respect to data pj j=l, .... D, if and _only if we can accept (not 

reject) the statistical hypothesis that p. j=l, .... D is a Poisson sample with 
J 

respect to the projections h. j=l, ... D. 
J 

2 
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Definition 1 is difficult to implement as a constraint in an optimization 
problem. For that ~eason we have introduced another definition: 

Definition 2: The reconstruction a. i=l, .... B is said to be k-feasible 
~ 

with respect to ,data p. j=l, .... D, if and only if the first k moments of p. 
J J 

j=l, .... Dare consistent with the Poisson hypothesis, namely: 

D 

I 
j=l 

(p. h.) 
J J 
f (h.) 

n J 

n 

D n 1, .... k (1) 

where f (x); n~l, ... k is the expression for· the n-th moment of the Poisson 
n 

distribution with mean x. 

Note that for the case of n=2 (only the second moment is considered) the 
left side of (1) is identical to the expression of the chi-square (/) 
statistic and,, thus, Eq. (1) is reduced to x = D. This equation is precisely 
the constraint used by several authors in the maximum entropy method for the 
Gaussian noise case. The case of k=2 has been called weak feasibility. 

6 

Note also that if k ~ oo a k-feasible reconstruction becomes strongly feasible. 

~ FEASIBILITY TESTS 

Several tests can be derived from the above definitions. The easiest one 
is to test for weak feasibility. It is important to note that this test is 
not a chi-square test of significance but a constraint that should be 
satisfied. A problem arises when we want to determine an upper and a lower 
limit to the constraint, as will be discussed in detail below. A test for 
strong feasibility has been developed

4 
by means of an algorithm that, instead 

of computing the different moments of the distribution, analyzes the shape of 
the histogram of the residuals. The histogram is defined in Ref. 4 with N 
bins of equal probability for a Poisson process and the algorithm computes a 
function called H that is used to test the goodness of fit of the residuals to 
the Poisson hypothesis. A critical discussion of its validity is.also given 
in Llacer, Veklerov and Nunez. 

6 
Let us outline the procedure for testing the 

feasibility. 

We want to test the joint hypothesis that p.(l) is a realization drawn from 
J 

a Poisson distribution with mean h.(l), p.(2) is a realization of h.(2), etc. 
J J J 

A common method to test the hypothesis is the Pearson'~ goodness of fit test. 
The method consists of defining N mutually exclusive classes for the 
residuals, assigning each residual to a class and then comparing the observed 
number of residuals assigned to each class with the expected numbers 
determined by the Poisson hypothesis. The discrepancy between the two is 
measured by the chi-square statistic. If the chi-square statistic exceeds a 
certain threshold, the hypothesis is rejected. This chi-square test should 
not be confused with the weak feasibility test discussed above. In the weak 
feasibility test we are comparing the left side of Eq. (1) (for n=2) with its 
desired value (the number of data points) while here, we are working with the 
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chi-square of the N classes (usually N=20) into which the residuals are 
divided and making a true chi-square test of significance. 

A fundamental objection affecting not only the above procedure but also the 
computation of the upper and lower limits for any k-feasibility test stems 
from the fact that the image against which we are testing has been generated 
by the same set of data that we are testing; i.e., the data and the image are 
not statistically independent. On the other hand, we have observed that 
images generated by the MLE, when stopped according to the rule derived from 
the feasibility test, are visually good, with a useful compromise between edge 
sharpness and low noise in regions of hi~h activity. Results similar to ours 
have been also obtained by Hebert et al. 

0 
Many other researchers (mostly in 

the fields of astrono~y and geophysics) have used several variations of the 
same tests which they proposed to use as constraints for image 

• 
7

-
9

•
11

-
13 Th . 1 f 1 f h f "b"l" b d reconstructi.on. e pract1.ca use u ness o t e eas1. 1. 1-ty- ase 

tests or constraints and the theoretical difficulty stated above are two 
aspects that ought to be reconciled. 

From statistics, we know that the hypothesis tests that can be derived from 
the above definitions of feasibility would have complete validity if the 
parameters that determine the Poisson process against which we are testing 
were completely and independently specified. This fact can lead us to a 
useful assumption that, if proven correct, may just~fy our feasibility-based 
testing: · 

We have an image a. i=l, ... B and its projection h. j=l, ... D. We do not 
}_ J 

know if the image was obtained during a reconstruction process or if it was 
generated by the proverbial team of monkeys making images by strewing white 
dots at random, a. being the number that land in the i-th pixel. We have also 

}_ 

a set of data p. j=l, ... D and we are asked to test the hypothesis that that 
J 

image, as if completely specified, could have been the source that geneFated 
the data by a Poisson process. We would then proceed with testing the 
hypothesis by the methods developed or tmplied by the definitions of 
feasibility given above. · 

This assumption gives us also the way to compute the upper and lower limits 
for the 2-feasibility test (x

2 = D) stated above. If we are testing the image 
as if completely specified, the left side of Eq. (1) for n=2 possesses a x2 

distribution with D - 1 degrees of freedom. 
14 

Statistical analysis indicates 
some upper and lower limits which x2 

can plausibly take in a "two tail" 
chi-square test. The margins depend on the desired confidence levels. For f 2 

the largest acceptable value at 99% confidence is about D + 3. 29 (D) 
112

• 
1 

For D=20000 data points that means an upper limit for / of 20465. If 
. normalized to the number of data points, the upper limit for / /D is 1. 023. 
The corresponding lower limit in a "two tail" chi-square test is about 0.977. 
Hebert et al. 

10 
have developed their stopping criterion for the MLE algorithm 

based also on the x2 
test of si~nificance. It is important to keep in mind, 

however, that the expression x =D is a constraint and that the statistical 
theory has been used only to define some confidence interval around the 
desired value D. 

4 
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The above assumption would be justified, in practice, if an analysis of the 
distribution of the statistic H defined by Veklerov and Llacer

4 
or the 

chi-square function values (for Def. 2) for reconstructions of a large number 
of different realizations of a fixed image source distribution were found to 
be chi-square distributed with the expected number of degrees of freedom. We 
have recently initiated such a study by generating 100 different realizations 
of a given source and reconstructing all of them by the MLE method. Although 
the study is not complete, preliminary results indicate that, for the range of 
iteration numbers of interest, where the images appear to be good 
representations of the original source, the function H of Veklerov and 
Llacer

4
, has a chi-square distribution. This finding justifies, in our 

opinion, the feasibility-based tests and stopping criteria developed although 
a theoretical justification is still missing. 

The concept of feasibility has been used by our group to develop the 
stopping rule for the MLE algorithm both in its first version

4
· and in its more 

·robust version
15 

for real data from a tomograph. In the next sections of this 
paper it will be used to test two different reconstruction algorithms, the 
first based on entropy maximization and the second on full Bayesian 
reconstruction. 

~ MAXIMUM ENTROPY RECONSTRUCTION 

Maximum entropy techniques are receiving increasing attention in the field 
of image reconstruction from a set of projections. The maximum entropy 
solution yields the image with the lowest information content compatible with 
the data. Thus, the criterion will give an image which avoids any bias while 
satisfying the constraints. The method consists of maximizing the entropy of 
the image and of the noise subject to constraints. We have used in this work 
the noise model proposed. initially by Frieden

16 
and the Gauss-Seidel-Newton 

iterative solution method described by Gullberg and Tsui. 
16 

The 
Newton-Raphson method used initially by Frieden cannot .be applied to the large 
problems that we are dealing with. We formulate the problem as follows: 

Maximize: 
B a. a. 

- l: -~- log 
~ 

. 1 N N 
~= 

where 
B 

N I a.; N 
i=l ~ n 

subject to: 
B 

I f .. a. + n. 
J~ ~ J i=l 

D 
- p l: 

j=l 

D 
=In.; 
j=l J 

- n = pj m 

n. 
_l_ 

N 
n 

n. 
log _l_ 

N 

a. ~ 0; 
~ 

n 

n. ~ 0 
J 

j=l, .... D 

(2) 

(3) 

In the formulation (2) we use the Shannon form of entropy which was first 
used by Frieden

16 
in image reconstruction. Parameter p Js the weight 

quantifying the relative importance of the entropy of the noise vs. that of 
the image. The noise, computed as the difference between the data and the 
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forward projections, can be represented as nj - nm, where nj is a biased 

. (always positive) noise term and nm is a constant noise bias which insures the 

positivity of n.. To be consistent with the Poisson nature of the data, we 
J 

.have chosen: 

nm = max [ 2 ~ ] 
and 

I D O· 
' 

d=l, .... D 

N 
m 

D 
L n. = D 

j=l J 
n 

m 

The parameter p effectively controls the smoothness of the solution. The 
larger the constant, the less smooth.an image will result for the given data .. 
If the data contains very little noise, p can be made very high thus obtaining 
high sharpness. The bias n also controls the smoothness of the image. In this 

m 
case the larger the bias, the smoother the image, with a resulting higher 
background. Note that in this model, the noise n. is a variable in the 

J 
optimization problem and the solution gives unbiased estimates of both the 
image and the noise. However, the model does not contain prior information 
about the Poisson nature of the data. It seems well suited to handle 
situations of little or .no noise but we cannot expect it to be an accurate 
model for the case of Poisson noise. 

In order to maximize (2) with the constraints (3), we introduce the 
Lagrangian function and solve the unconstrained problem of maximizing: 

B a. a. D n. n. 
L = I 1 

log 
1 I _,]_ log _,]_ - ~ p 

N N N N 
i=l j=l n n 

D B 

ai ] 
1 - I A. [ p. - n. + n I f .. N 

j=l J J J m i=l J 1 

where A. j=l,... D are Lagrange multipliers. To compute the maximum of the 
J 

function L we set the partial derivatives of L with respect to ai, nj and Aj 

i=l, ... B; j=l, ... D equal to zero, with the following solution: 

D 
a.= N exp(-1) ~ exp(f .. AJ.) 

1 j=l . J1 

(4) 

where the Lagrange multipliers are determined by the system of D nonlinear 
equations: 

6 



J ,, 

B 
N exp ( - 1) I f .. 

i=l J ~ 

D 
r-J exp(f .. A.)+ N exp(-1) exp(~.N/pN) -
· 1 J~ J n J n J= 

n + p. = 0 
m J 

j=l, .... D 

The solution of this system of D nonlinear equations for the Lagrange 
multipliers is obtained by using the Gauss-Seidel-Newton non-linear iterative 
algorithm described, for example, in Ortega and Rheinboldt. 

18 
Once the 

algorithm converges, the resulting Lagrange mtlltipliers are subtituted in 
(4) and the solution is obtained. As the iterative algorithm for obtaining the 
Lagrange multipliers progresses, we can substitute the multipliers in (4) and 
monitor the formation of the image as well as its various statistics. 

4.1 Results 

To test the algorithm we have u,sed the computer generated brain-like 
phantom with one million counts shown in Fig. la). Figure lb) shows the 
maximum entropy reconstruction of the brain phantom in the absence of noise , 
at convergence after 10 it;erations, with p =; 50. The image plane contains 
128xl28 pixels and the projection data are obtained by simulating the 512 
detector ECAT-III of UCLA. 

1 
Note that the reconstruction is nearly perfect. 

This shows that the algorithm works very well in the case of no noise in which 
it is possible t;o use large values of p. In the presence of Poisson noise , 
the images obtained by the above algorithm ~re not satisfactory. Nevertheless, 
we have obtaine\i reasonable results by adjusting p to a suitable value and 
smoothing the final image. 

The images in Figs. 7a) and 2b) sh~w the maximum entropy reconstructions of 
the brain phantom la) with Poisson data corresponding to 1 m~llion counts, 
using p = 8. Image 2a) is after twenty iterations, at convergence. Image 2b) 
is obtained by filtering image 2a) by convolution with a Gaussian kernel with 
a= 0.75 pixels, which improves its appearance . Note that the structures of 
the phantom are clearly visible in reconstructions 2a) and 2b) but the 
application of the feasibility concepts developed in Sects. 2 and 3 shows that 
none of the images pass the tests of weak feasibility nor the Veklerov and 
Llacer test . 

4 
In our opinion, the two main reasons for the failure of the 

algorithm to pass the feasibility tests are the lack of an adequate nois e 
model (Poisson) in the algorithm and that the Lagraqgian method requires the 
fitting of all the individual constraints (Eq. 3) separately, which results in 
a large number of Lagrange multipliers (one per tube). The ~olution is then 
very sensitive to any occasional abnormally large errors. 

11 

There are several ways to reformulate the problem in an improved manner but 
the introduction of an appropri~te Poisson data model will result in the 
addition of even more constraints to the model. However, the concept of 
maximum entropy proved useful as a prior probability function in a full 
Bayesian framework. 

~ FULL BAYESIAN IMAGE RECONSTRUCTION 

A natural mechanism for incorporating prior knowledge is through Bayesian 
theory. A Bayesian reconstruction seeks an image that maximizes the 

7 



a 

a 

b 

XBB 880-11781 XBB 880-11782 

Figure 1 - a) Mathematical brain-like phantom with 1 million counts. b) 
Reconstruction by maximum entropy with constraints for the case with no 
noise in the process of assigning counts to projections . 

XBB 880-11783 XBB 880-11784 

Figure 2 - a) ME reconstruction for the case of assignment of counts to 
the projection data according to a probability matrix f. b) After slight 
filtering. Neither of the two images are feasible. 

8 
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probability of that image given the measurement data, If we consider the case 
of an image source ~. an imaging instrument that transforms tha~ source by a 
matrix f into a measurement vector p, then a Bayesian approach to 
reconstruction will seek an esti~ate of~. such that the probability P(alp) is 
maximized. By Bayes rule, 

P(alp) = P(pla) P(a) / P(p) (5) 

The maximization of P(alp) is done by max1m1z1ng the product P(pla) P(a). 
The first·term of the product is precisely the likelihood function. Since P(p) 
is constant, the main difference between the Bayesian approaqh and the MLE is 
the inclusion of the pr'i,.o;r pr~qability P(a) function for the image. The 
conditional probability P(pla) describes the projection noise and its possible' 
object dependence. It is fully specified in the statement of the problem as 
the likelihood. We use the Poisson assumption and we generalize an important 
concept originally i~troduced by Frie~en and Wells:

20 
A Poisson image 

projection consists of a number of counts in e.ach detector unit, implyi~g the 
existence of a smallest intensity increment ~p. associated with each detector 

·, . J 
to register one count. Frieden and Wells use a constant value ~p independent 
of the detector, but we introduce the detector dependence because, in re9-l ET 
cases, the intensity increment can depend on the detector (for example, when 
detectors have different gains or there is attenuation in the emitting 
object). Under the previous assumptions, the conditiona+ probability is: 

D 

P(pla) n exp(·hj) 
j=l 

where 

h~ 
J 

B 
( \'f.. a. )/~p. 
i~ 1 J 1 1 J 

PJ·/.f:.PJ· 
(h ~) 

(p./~p.)! 
J J 

j 1, ... D 

(6) 

(7) 

The prior probability J;'(a) is a propability distribution function for the 
image we are seeking. For each pixel, P(a) contains the probability that it 
takes a· particular set of values. In general, and particularly in medical 
imaging, P(a) is not known with any degree ·of accuracy. Faced with that 
situation, Bayesian reconstructions have aimed at using a function for P(a) 
that corresponds to some general truth about the object being imaged. One 
prior knowledge function that has received substantial attention for more than 
30 . h f . 16,20-23 Th . 1 . . . h years 1s t e entropy unct1on. e pract1ca 1nter~st 1n us1ng t e 
entropy as a prio;r (and m~ximizing it in Bayes' framework) is that the 
resulting reconstruction has minimal configurational information, so there 
must be evidence in the qata for any structure. which is seen. 

11 

Let us now describe an additional concept following Frieden. 
16 

Suppose that 
N is the total number of counts in the object and that there is an intensity 
increment ~a describing the finest known intensity jumps that are possible in 
the object. Now the values ai/~a i=l, ... B are dimensionless numbers since ~a 

contains the unit of radiance. It is now possible to define the prior 
probability of an image as proport;io~al to the number of ways in which that 



image can occur.
24 

The logarithm of the prior probability is then the entropy 
of the image: 

B 
log p(a) = - L (a./fia) log(a./fia) + const. terms. 

. 1 ~ ~ 
~= 

We have, then, formulated a problem with only one Lagrange multiplier (~) 
that constrains the solution to a fixed number of counts N in the image. After 
taking the log of the product entropy and likelihood, the function to be 
maximized is: 

B D B 
BY - L (a./fia) log(a./fia) + L ( -h~ + (p./fip.) log(h~) ) - ~( La. - N ) 

i=l ~ ~ j=l J J J J i=l ~ 
(8) 

with h~ as defined in (7). Parameters fia and fip. j=l, .... D, defined above, 
J J 

control the relative weight of the entropy vs. likelihood functions. 

Parameter fia can be either computed theoretically or adjusted. If the 
unknown image source were known to have 30 distinct levels of activity, for 
example, fia should be set to the finest jump in the image or, approximately fia 
= m/30, where m is the maximum intensity in the image. Alternatively, 
parameter fia can also be used to adjust the contrast of the resulting image, 
and, in particular, it can be set to a value that results in convergent, 
feasible solutions, according to our criterion. Theoretical work is still 
needed to fully understand the relationship between the interpretation of the 
values of fia and fip. proposed by Frieden and Wells 2 0 and our experimental 

J 
findings. 

The problem of max~m~z~ng Eq. (8) has been solved by the direct 
maximization algorithm. 8 Taking the partial derivatives of BY, Eq. (8), with 
respect to a. and setting them equal to zero we obtain, for each of the pixels 

~ 

i=l,2, ... ,B one equation of the form 

a BY 
a a. 

~ 

-(1/fia) log(ai/fia) - 1/fia + 

D 
+I r -f../fip. + <p./fip.) (1/h~) <fJ·;/fipJ.) 1 - ~ 
j=l J ~ J J J J ... 

0 (9) 

Exponentiating Eq .. (9) and placing a. from the first term into the left . ~ . 

side, we obtain an expression . that can be used to derive an ;iterative 
formula. 25 Taking into account the definition of h~, the resulting pixel 

. . J . ' 
values for iteration k+l are obtained in terms of the values of 'the k-th 
iteration and the data by 

10 

r 
( 



~I 

k+l 
a. 

l 
(1 - a) a~ + a K exp [ 

D 

b.a I [ 
j=l 

B k J f .. (1/t.p . ) (p. 1 I f .. a. - 1) l 
J l J J i=l J l l 

(10) 

where K is a normalization constant that is recomputed at the end of each 
iteration to keep the total number of counts equal to N, and is equivalent t o 
obtaining the Lagrange multiplier p. of Eq . (8) . Note that 'the parameters b.p. 

J 
allow us to account for the absorption and detector gain corrections for 
reconstruction from real data . Eq. 10 contains a new parameter a . The 
correction computed by each iterat i on is the result of the exponentiation in 
that equation . These corrections correspond to a vector in a multidimensional 
space with the right direction but with too large a magnitude because of an 
instability introduced by the e xponential function .

8 
Only a small fraction of 

the correction, which is determined by the par ameter a, must be used at e ach 
iteration in order to insure conv ergence. 

5.1 Results 

Simulated data: Figure 3a) shows the reconstruction of the phantom la) 
carried out with the Bayesian method at convergence with slight post-filtering 
with a Gaussian kernel of 0 . 4 pixels standard deviation. Since the data are 
simulated, b.p.=l for all j was chosen. From previous analy sis we know that the 

J 
maximum of the image is approx imately 200 counts in one pixel and the number 
of levels is 4. Thus, b.a = 200/4 = 50 was chosen . Note that the reconstruction 
is visually better than the one obtained with the max imum entropy method, 
figures 2a) and 2b). The reconstruction passes the feasibility tests described 
earlier . 

a b 

XBB 880-11785 XBB 880-11786 
Figure. 3 a) Bayesian reconstruction with entropy prior and slight 
post-filtering of the simulated brain phantom . b) Bayesian reconstruction 
of a Hoffman brain phantom set of data with 1 million counts, with slight 
post-filtering . 

11 



Real data: Figure 3b) shows the results of our reconstruction with the 
above method for the UCLA ECAT- III Hoffman brain phantom with 1 million 
counts, at convergence. We know from previous computations that the maximum 
intensity of the image is approximately 3000 counts and that the number of 
activity levels is 5. Parameter ba was, therefore, set to ba = 3000/5 = 600 . 
Since this is a case with real data, absorption and detector gain corrections 
have to be applied . The data p. were multiplied by factors g .. One count 

J J 
received by a detector pair j corresponds to an increment of g. counts . Thus 

J 
parameters bp. should be set to the values bp. g .. The resulting 

J J J 
reconstruction passes the feasibility test described by Llacer and Veklerov

15 

for real data. The image of Fig. 3b), has been filtered slightly with a 
Gaussian kernel of a = 0.6 pixels, which improves the appearance of the image , 
while ' keeping the image feasible. 

In both the reconstructions presented, parameters ba and bp. have been 
J 

computed theoretically and the results fit the feasibility theory . We do not 
have at this time, however, the theoretical knowledge to insure that this will 
always be the case. A practical adjustment of ba for a given class of images 
could be carried out by starting with a guess for ba (we suppose bp. known 

J 
from the absorption and gain corrections), carrying out the reconstructions 
and monitoring the moments of the distribution of the residuals or the 
parameter H of Veklerov and Llacer

4 
during the iterations. If the resulting 

images are not feasible , the ba parameter should be modified. 

The quality of the images of Figs. 3a) and 3b) appears quite comparable to 
the best of the MLE solutions, and clearly superior to the Filtered 
Backprojection reconstructions that we have used for comparison. The merit of 
our preliminary Bayesian work can be summarized, in our view, in the following 
two points: 

1) If the choice of parameter ba is made so that the final results are 
feasible , the iterative procedure converges to stable images which are 
visually good in a reasonable number of iterations (50 to 100). 

2) The method of solution shown offers a methodology for emission tomography 
image reconstruction from Bayesian functions. The method is not limited to 
entropy prior distributions and can become the basis for successful future 
work. 

.§_,_ CONCLUSIONS 

In this paper we have reviewed the concept of image feasibility and its 
applicability to image reconstruction in Emission Tomography. We conclude that 
the feasibility based stopping criteria and residual analysis are powerful 
tools, but more theoretical study is needed to fully understand their basis. 

We have developed two different reconstruction algorithms. The first one, 
based on Max imum Entropy, works well in cases of no noise but, in presence of 
Poisson noise, its reconstructions are inadequate due to the lack of an 
appropriate noise model. The second algorithm developed is a full Bayesian 

12 

r 



method in which we have incorporated a fundamental "sharpness" parameter !:!.a 
that can be computed theoretically or adjusted experimentally for feasibility, 
obtaining high quality reconstructions in presence of Poisson noise. Our new 
Bayesian reconstruction algorithm, defined by Eq. (10), ·has been applied to 
simulated and real data resulting in an iterative procedure which converg~s 

with excellent image stability. We are presently working on an improved 
algorithm ·to. maximize (8) that does not require the exponentiation step or 
parameter a of Eq. (10). 
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