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ABSTRACT: 

We study the effect of many-body collisions in simulations of nuclear 
dynamics. First, for elastic three-nucleon processes, the simplest pion­
exchange diagrams are calculated and the ensuing scattering amplitude 
is used in a schematic calculation illustrating the evolution in momen­
tum space. Then the collision integral in the BUU model is generalized 
to include many-body collisions. The number of baryons involved in a 
given collision is determined on the ba,sis of the energy-dependent binary 
interaction range and their energy is sha.red microcanonically. This leads 
to a general treatment of N-body scattering (both elastic and inelastic) 
that can easily be incorporated into existing BUU codes. We study a va­
riety of experimental observables, for the case of Ca+Ca at bombarding 
energies of 200-1000 MeV per nucleon, such as anisotropy, flow angle, side­
wards momentum, and backwards yield. The treatment is subsequently 
extended to include particle production and the production of kaons is 
especially considered. Overall, the results of the standard BUU model are 
affected relatively little by the incorporation of N- body collisions. 
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1 Introduction 

Nuclear reactions at intermediate and high energies constitute a subject of central in­
terest in modern nuclear physics. They offer the possibility for studying the behaviour 
of nuclear matter far from equilibrium, in highly excited and compressed systems. 

Early theoretical descriptions of nucleus-nucleus collisions, such as those based 
on the fireball approximation [1, 2], succeeded in explaining most of the inclusive 
data but, as the experiments moved towards more exclusive measurements, dynam­
ical models were needed in order to account for the observed data. The first fully 
microscopic description was provided by the cascade model [3]. Here each nucleus is 
represented by a collection of point nucleons and the reaction dynamics is determined 
by a sequence of binary collisions between hadrons. However, the absence of a mean 
field and Fermi momentum constituted a fundamental limitation; By combining the 
picture of individual hadronic collisions with a time-dependent effective one-body 

. field, a more consistent description was obtained in terms of transport equations 
for the one-particle phase-space densities. This theory has been implemented under 
a variety of names, such as the Boltzmann-Uehling-Uhlenbeck (BUU) equation [4], 
the Vlasov-Uehling-Uhlenbeck equation [5], or the Landau-Vlasov equation [6]. It 
has formed the basis for a large number of dynamical simulations of high-energy 
nuclear collisions, for the purpose of extracting experimental information about the 
underlying nuclear dynamics and, especially, about the equation of state for nuclear 
matter [7, 8, 9, 10]. Examples are collective flow observables [11, 12], pion and pho­
ton production [13], dilepton emission [14, 15], and subthreshold production of heavy 
particles [9, 16]. 

Concurrent with this development, significant advances have also been made 
within the framework of quasi-classical many-body simulations, often referred to as 
molecular dynamics, and considerable success has been achieved with regard to re­
producing a variety of experimental data; for a recent review, see ref. [17]. 

The formulation of the above mentioned transport theories has been discussed 
extensively in recent reviews [13, 18, 19]. Due to the complex nature of the nu­
clear many-body problem, the derivation of kinetic equations suitable for practical 
purposes requires the use of truncation schemes and cutting rules, thus limiting the 
applicability to specific energy domains. In the low-energy regime (E ~ 10 MeV per 
nucleon), the nuclear mean field and the Coulomb forces determine to a large extent 
the dynamical evolution of the system, since the occurrence of collisions is strongly 
suppressed due to the Pauli exclusion principle. This justifies the utilization of pure 
mean-field approaches, like those based on the TDHFequation or the Vlasov equation, 
its semi-classical analogue. In the intermediate-energy domain (E ~ 10-100 MeV per 
nucleon), the increa~ing availability of the phase space diminishes the effect of the 
Pauli principle and collisions become important. In this case, the global dynamics 
can be described by a BUU-like equa.tion with a.n appropriate interaction as input. 
At higher energies (E ~ 100 MeV per nucleon), the dynamics is mainly dominated by 
the collisions. In addition, the system reaches densities that may considerably exceed 
normal nuclear density. This feature, and the fact that the Pauli principle plays only 
a minor role, suggest that many-body collisions may be important. However, in the 
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applications done so far the dynamical description has been exclusively restricted to 
the level of two-body collisions. 

The importance of involving more than two particles in the basic collision process 
(hereafter referred to as N-body collisions) was considered more than two decades ago 
by Bezzerides and Du Bois [20], who derived corrections beyond two-body scattering 
processes to the Boltzmann equation. The first attempt to include N-body scattering 
processes in a dynamical simulation of a nucleus-nucleus collision was performed 
by Kodama et al. [21] by means of introducing a cluster approach to the cascade 
model. More recently, Bonasera and Gulminelli included three-body collisions in a 
simulation based on a transport equation [22]. Both calculations clearly showed that 
the contributions of non-binary processes are far from be negligible, especially in the 
high-energy domain, which suggests that the associated observables may be affected. 
However, due to the complicated phase-space evolution in a nucleus-nucleus collision, 
the magnitude of the effect is very difficult to estimate a priori. 

From the kinematical point of view, N-body scattering processes contribute to­
wards, populating regions of the phase space that are less accessible through pure 
two-body processes. This feature might be relevant for the experimentally observed 
emission of high-momentum protons in the backward direction. In addition to the 
dynamical modifications of the nuclear phase space, an important probe of the oc­
currence of many-body collisions is the production of particles at energies below the 
free nucleon-nucleon threshold. In the picture of binary collisions the necessary en­
ergy is provided by the Fermi momentum. Additionally, subsequent binary collisions 
may eventually populate extreme regions of the phase space leading to highly ener­
getic collisions. The inclusion of N-body collisions would provide an extra production 
mechanism, since more energy is available in the interaction of several nucleons. 

Our main purpose is to study the effects of N -body collisions on observable quan­
tities that are usually employed in the analysis of nuclear reactions at high energies. 
We begin, in sect. 2, by invoking the pion-exchange model for elastic three-nucleon 
scattering. This simplest example of a many-body collision is employed in a schematic 
study of the evolution in momentum space, considering a spatially uniform system. 
The incorporation the N -body collisions into an actual dynamical simulation is ac­
complished by extending the standard B UU model; this is discussed in sect. 3. The 
extended BUU model is then applied to to Ca-Ca reactions, in sect. 4, and the effect 
on various global observables is analyzed. Subsequently, a simple and general model 
for treating particle production in N-body scattering processes is developed in sect. 
5, and the subthreshold production of kaons is especially considered and analyzed. 
Our general conclusions are made in sect. 6. In appendix A we discuss an approxi­
mate method for picking the momenta associated with the final state of the particles 
involved in a N-body collision. The derivation of the effective particle production 
cross section is presented in the appendix B, a.nd its thermal aspects are discussed in 
appendix C. 
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2 Three-nucleon scattering. 

In this section we consider elastic scattering of three free nucleons, the simplest in­
stance of the N-body scattering processes addressed in the present study. Employing 
a simple pion-exchange model, we calculate an analytical expression for the differen­
tial cross section and use this result in an instructive schematic study of the evolution 
in momentum space. 

2.1 Pion-exchange model 

We have calculated- the two-pion-exchange three-nucleon interaction, because of its 
longest range. Figure 1 shows the pion-exchange diagra~ considered. The blob in 
fig. 1 represents everything which can happen for pion-nucleon scattering. For our 
purposes we study the case where the intermediate particle is either a nucleon or a 
delta. The scattering matrix element for the diagram in fig. 1 is given by 

S b = (-i)' J J J J d'X1 d'X2 d'x~ d"X 3 (E
1 
E2E7;: EjEj )'/2 

eip~Xl e-iPIXl i J d4q . 
X -( ')f ( ) -tq(X2-XJ) 

/ 
U PI U PI / -- . e (271")3 2 (271")3 2 (271")4 q2 - m; + u 

x (1) 

x 

For the sake of clarity we have suppressed the isospin indices in this formula: The 
matrix f describes the coupling of the baryons to the pions and ]{ is the propagator 
for the intermediate particle. 

Since we want to use the above S-matrix element for the description of three­
nucleon scattering in nuclear collisions we must prevent the intermediate nucleon from 
being on the mass shell (which would render the matrix element infinite). Physically, 
the intermediate nucleon can only be on shell if an infinite time elapses between the 
two pion exchanges. Clearly, in the nuclear medium this cannot occur, because the 
intermediate nucleon can oiily tra'vel a finite time, proportional to the mean free path 
6f the nucleon in the medium. To account approximately for this key feature, we 
replace the free mass mN in the nucleon propagator by mN given as 

(2) 

where the width fN is inversely proportional to the mean free path )'N, fN = he/ AN. 

The nucleon propagator ]{ is then given by 

T/ ( _ ) __ i _ J d4 PIJ.,IJ. + mN -ip(x-y) 
HN x Y - P . e 

(271")4 p2 - m'Jv + it (3) 
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For an intermediate ~ this problem does not occur since the ~ has a finite lifetime, 
with a measured width f ~ = 115 MeV. Therefore the ~ mass also acqUIres an 
imaginary part, 

- zf m~ = m~ + - ~, 
2 

(4) 

and the ~ propagator is 
. J.L 

( ) Z J d4 PJ.L' + m~ J( ~ x - y = -- P--=-'"----:~-:-
(27l")4 p2 - m~ + if. 

(5) 

X [_gJ.LV + ~,J.L,V _ _ l_(,J.Lpv _ pJ.L,V) + ~pJ.LpVl e-ip(x-y ) . 
3 3m~ 3m~ 

The N N 7l" vertex is given by 

(6) 

where the pseudoscalar coupling has been used for the interaction of the nucleons 
with the pions, while the ~N7l" vertex can be expressed as 

(7) 

To account for the finite sizes of the baryons, form factors are used at all vertices, 

,\2 _ m2 

F(q) =,\2 2
1r

, -q 
(8) 

which is the standard monopole form. 
Integrating (1) yields the familiar momentum space representation of the S-matrix 

element, 

SI' ~ (EIE,Z~;E;E,) 1/' (2~)5 6'(PI + p, + P3 - P; - P; - p;) (9) 

1 1 
x u(p~)fu(pd 2 2 . u(p;)r J((P)fU(P2) 12 2 . u(p;)fU(P3). 

q - m 1r + Zf. q - m 1r + Zf. . 

Here p is the momentum of the intermediate particle and J((p) is the Fourier transform 
of the propagators (3) and (5). After averaging over the initial spin and isospin, and 
summing over the. final spin and isospin by tracing out the matrices, we obtain the 
transition rate, 

w7, = ~ F 9~JN. C' -=-:;)'( ~: -=-;; r (10) 

x 1 2 1 _ 212 (2p;p P2P - P2P; p2 + m'fv { -2p;p - 2P2P +p2 + P2P; + m'fv}) 
P -mN . 
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.,. 

x (11) 

with 

-. 

I 2 I 1 12 2mN I 2 (')2 A = mN q q + -mN pq - -mN q - --q p pq - -- q P 
3 3 3m~ 3m~ 

1 I 2 1 12 I 2 I 1 12 2 I 
+--q pq - --pqq + m~q q + -m~q p - -m~q - --q ppq , 
3m~ 3m~ 3 3 3m~ 

I 2 2 1 12 2 I mN I 
B = q q --mN + -q - --2 q ppq + --q P 

3 3 3m~ 3m~ 

n~N 2 - 1 I 1 
--'--pq - -mNm~ - -q P - -pq . 
3m~ 3 3 3 

Here wf; is the contribution to the transition rate from the diagram with the inter­
mediate nucleon and wt is the term arising from the diagram with the intermediate 
Ll. Finally, to obtain the total transition rate for three nucleons with momenta PI, 
P2, P3 to the final momenta p~, p;, p;, we average over the the possibilities that either 
one of the nucleons 1,2, or 3 is the middle one in diagram in fig. 1. We also have to 
sum over all permutations of the final momenta. 

Here we have ignored the interference terms which generally arise between di­
agrams differing only by a permutation of their final momenta. This simplifying 
approximation can be justified by the fact that these graphs have their maximal con­
tributions in different kinematical regions so that the product of these terms can be 
neglected. We then obtain the result 

1 
wi£tal = "3 (w(l) + w(2) + w(3)) , (12) 

where, for example, 

w(l) = L (W~(P2'PI'P3'P~,pj,pU + wt;(P2'PI'P3'P~,pj,p~)) , (13) 
p 

with L:p denotes the sum over all permutations of the indices i,j, k. Furthermore, 
w(l) represents the contribution for which the nucleon with momentum PI is the 
middle one in fig. 1, and w(2), and w(3) are defined correspondingly. 
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2.2 Schematic studies 

In order to gain some insight into the effect of the three-body scattering, we consider 
the evolution in momentum space for an idealized system of the type considered in 
ref. [23]: a periodic box filled in a spatially uniform manner with nucleons whose 
momenta initially occupy two disjoint Fermi spheres, the relative speed being chosen 
so as to correspond to the beam rapidity of the actual nucleus-nucleus collision of 
interest. In this schematic calculation, we ignore the Pauli blocking.in the final state. 

First we specify the ratio between two-body scattering and three-body scattering. 
According to this ratio we then pick either two or three nucleons randomly and let 
them collide. In case of two-body scattering the final momenta are chosen according 
to the differential cross-section taken from [7]. In case of three-body scattering the 
outgoing momenta are sampled according to the transition rate calculated in sect. 
2.1. This is done as described below. 

First the momenta are boosted into their CM frame, where they form a trian­
gle in momentum space. Due to energy and momentum conservation, the outgoing 
momenta can be described in terms of five independent variables - the well-known 
Jacobi coordinates. These five variables have then to be chosen according to the tran­
sition rate (12). For the various parameters we use the following values, 9NNrr = 13.5, 
fNA1r = 2.13, and )..NN1r = )..NA1r = 1.2 GeV. They were taken from Wellers [24], who 
obtained them by analyzing pion photoproduction from nucleons. Furthermore, the 
7t il coupling constant is determined by the free decay width of the il, and for the 
width of the nucleon we use fN = fA = 115 MeV. 

Because the matrix element is strongly peaked, the von Neumann rejection method 
[25] is not suitable for this task. We therefore use a Metropolis algorithm [261. How­
ever, because the transition rate depends also on the incoming momenta, we need to 
set up a sampling chain for each possible combination of the incoming momenta. This 
can be done with sufficient accuracy by discretizing t.he incoming channel. Thus, we 
consider the discrete values IPi I = niPO for the magnitudes of t.he initial momenta, 
where ni is an integer and Po is a suitably chosen grid spacing. In that way each 
t.riangle is characterized by three integers nl, n2, and n3, and for each of these tri­
angles a separate Metropolis sampling is set up. The algorithm for picking the final 
momenta is designed so t.hat the energy and moment.um is exactly conserved in the 
collision. After the final momenta have been thus selected, they are boosted back 
int.o the original frame. 

In order to compare the angular distribution of particles scattered according to the 
two-body scattering amplitude or the three-body transition rate, we have employed 
an initial distribution consisting of two Fermi spheres, each containing 4000 nucleons. 
The top portion of fig. 2 shows the angular distribution for the three beam energies 
400, 800, and 2000 MeV per nucleon. The angle of the nucleons relative to the beam 
axis, as seen in the CM frame of the two Fermi spheres, is denoted by {). If two 
nucleons scatter, they are selected from two different Fermi spheres, whereas in the 
case of three-body scattering one nucleon is chosen from the projectile sphere and the 
other two from the target sphere; hence the asymmetric distribution for N = 3. The 
differential cross section of two-body scattering exhibits an isotropic distribution at 
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400 MeV and becomes forward peaked at higher energies. The three-body transition 
rate shows a different behavior. Already at 400 MeV small transverse momentum 
transfers are favored, and at higher energies the angular distribution of three-body 
scattering also grows more forward peaked, but this effect is not as strong as for 
two-body scattering. 

One might expect that the three-body scattering might increase the yield of nu­
cleons into backward directions in nuclear collisions. This expectation is based on 
elementary kinematical considerations. For example, a nucleon in the projectile un­
dergoing a three-body elastic collision with two nucleons in the target may be scat­
tered into the backwards direction with as much as two thirds of the beam velocity. 

To examine this feature in more detail, we have follow the time evolution of two 
Fermi spheres in momentum space. As a convenient time scale we have chosen the 
number of collisions per nucleon n c , defined as 

(14) 

where A is the combined number of particles in the target and projectile, N2 is 
the number of two-body collisions, N3 is the number of three-body collisions. We 
record the fraction of nucleons that are scattered backwards into a cone with an 
opening angle of 48° in the laboratory frame. We also require these nucleons to have 
a momentum magnitude larger then the Fermi momentum. Based on a relativistic 
Maxwell-Boltzmann distribution, the equilibrium value for this fraction of nucleons 
can easily be computed, yielding 0.31 % at 400 MeV, 0.30% at 800 MeV, and 0:24% 
at 2000 MeV. 

The middle part of fig. 2 shows the calculated backward yield as a function of the 
elapsed time, expressed in term of collisions per nucleon, for the same three energies. 
One immediately notices that in the case of three-body scattering the backward yield 
rises steeply and then falls off towards the equilibrium value. This is true for all three 
beam energies, although at higher energies it takes the system substantially longer to 
reach the equilibrium value - about 12-15 collisions per nucleon in our calculations. 

It is also remarkable that the maximum backward yield shifts with increasing 
beam energy towards the earlier stages in the process. At 400 MeV the maximum 
value is reached after about two collisions per nucleon, whereas for 2000 MeV beam 
energy the backward yield peaks at 1.5 collisions per nucleon. If we only consider 
two-body scattering, at 400 MeV the fraction of nucleons in the backward direction 
rises slowly and approaches the equilibrium value. At higher energies we also see 
the same "overshooting" effect as in the case of three- body scattering, however much 
smaller and also much later in time relative to the three-body case. 

We have also made a calculation in which half of all collisions are three-body 
collisions and half are two- body collisions. In this case the maximum of the backward 
yield shifts to later stages in the collision, when compared with the case of full three­
body scattering. Moreover, at 800 and 2000 MeV the maximum fraction of backward 
nucleons is slightly higher than for pure three-body scattering. 

Finally, in order to gain information about the way the system approaches the 
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equilibrium, we have studied the evolution of the anisotropy Q is defined as 

(15) 

where again A is the combined number of nucleons in the system, and PII(II) and 
PJ. (II) is the parallel and perpendicular component of the momentum of particle II, 
respectively. This definition implies that the initial anisotropy approaches one at 
high energy, whereas it vanishes for the equilibrium distribution which has spherical 
symmetry. 

The lower portion of fig. 2 shows the anisotropy Q as a function of the number 
of collisions per nucleon. At all beam energies, the anisotropy falls off faster when 
we allow only three-body scattering, rela.tive to the case of pure binary collisions. 
This is expected, since the three-body collisions give direct access to larger regions of 
phase space than can be reached by binary collisions. One also notices that the effect 
of three-body collisions on the anisotropy increases with increasing beam energy. 
At 2000 MeV the system with only three-body scattering has almost reached its 
equilibrium value. By contrast, the system in which only two-body scattering occurs 
only reaches an anisotropy of 0.4 even after 6 collisions per nucleon. Thus, the 
system is still far from its equilibrium state. This observation is also in accordance 
with what one would expect from the fraction of backward scattered particles in the 
middle portion of the figure. 

2.3 Conclusions from the schematic study 

The schematic study described above shows that the way in which the system ap­
proaches equilibrium depends significantly on the characteristics of the elementary 
scattering mechanism. When three-body scattering is included, the system reaches 
the equilibrium much faster than in the case of pure binary scattering, particularly at 
higher beam energies, as one can easily see in the lower-right panel of fig. 2, the plot of 
the anisotropy at 2000 MeV. Our calculations also show that the yield of nucleons in 
the backward direction shows a different behavior as a function of time (as measured 
by nc) if three-body scattering is included: the number of backward nucleons rises 
steeply and then falls off towards its equilibrium value. However, we also see that 
after 3 - 4 collisions per nucleons this effect has almost vanished. This result suggests 
that in actual nuclear reactions it might be rather difficult to extract information of 
the effects of three-body scattering from the yield of backward emitted nucleons. 

3 Extension of the BUU model 

One of the most common methods used to describe the nucleus-nucleus collision 
dynamics is based on the Boltzmann-Uehling- Uhlenbeck transport equation, the BUU 
method. It includes the two essential ingredients that are necessary in order to account 
for the basic dynamical features: the time-dependent mean field and the nucleon­
nucleon cross section. The central quantity of the model is the one-particle phase-
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space density distribution, f(r,p;t). The time evolution of f(r,p;t) is governed by 
the transport equation 

{:t + ~ . Vr - V rU(r; t). V p } j(r,p; t) = Icoll[fl . (16) 

The left-hand side is the collisionless Vlasov term describing the evolution of the 
phase-space density in the one-body field only, while the right-hand side is the collision 
integral representing the average rate of change of the phase-space density due to the 
occurrence of direct collisions between the constituent hadrons i

. In general, the 
mean-field as well as the collision term depends on the many-body correlations in the 
system. When only the one-particle distribution is followed, one is forced to assume 
that the particles are mutually independent, which amounts to making the standard 
StojJzahlansatz, and the collision integral is then a functional of the single-particle 
phase-space density. 

In the treatments developed so far, only two-body collisions have been considered 
and the collision term is then given by 

where fi = f( r, Pi; t) and l- 1 - f denotes the blocking factor expressing the avail­
ability of a phase-space cell near the specified phase-space location. The collision 
integral has a transparent physical meaning. The first term represents the contribu­
tion for scattering into the phase-space element (r, PI) and is therefore called the gain 
term, while the second term accounts for scattering out of that phase-space element 
and is called the loss term. Both are proportional to the occupation probability of 
the initial state two-particle state and to the probability that the final two-particle 
state is not blocked due to the Pauli exclusion principle. The quantity T(PIP2; p~p~) 
is the transition rate associated with the elementary two-body scattering process. 
Although formal consistency requires that the transition rate and the effective field 
be determined from the same nucleon-nucleon interaction, this is rather impractical 
and, consequently, more approximate treatments are called for. 

3.1 Specific model assumptions 

The temporal evolution of the one-body phase-space distribution depends upon the 
specific assumptions made on the basic input quantities. As we have mentioned above, 
present computational capabilities do not permit the implementation of a treatment 
in which the cross sections and the mean field are fully consistent. Therefore, for 
the time being, it is necessary to express the mean field in terms of some convenient 
parametrization and use the experimentally known free N N cross sections. 

1 Efforts to extend the BUU description to incorporate the effects of the fluctuations inherent in 
the basic nucleon-nucleon collisions are presently underway, see in particular refs. [27, 28] 
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As is usually done, the functional dependence of the one-body field on the one­
body density f is assumed to be given by the Skyrme parametrization, 

U(p) = A!!.... + B (!!....)q . 
Po Po 

(18) 

The coefficients A < 0 and B > 0 are fitted in order to reproduce nuclear ground­
state properties. We have employed the power ()' = 4/3 in the Skyrme energy 
functional (18), corresponding to a nuclear compressibility J( = 238 MeV, while 
A = -219.2 MeV and B = 165.2 MeV. The power ()' is related to the nuclear com­
pressibility. The Skyrme parametrization does not account for the well-established 
momentum dependence of the single-particle potential and occasionally a momentum­
dependent term is added. For simplicity, we will neglect momentum-dependent forces 
and consider only static interactions, i.e. we retain only the above one-body field (18) 
and the Coulomb interaction. 

We have included the following types of hadrons in our present calculations: the 
nucleon N(940) and the baryon resonances ~(1232) and N*(1440), and 7r mesons. 
We keep track of the different hadron isospin states, and use isospin-dependent cross 
sections, except for the elastic channels, where the standard Cugnon parametrization 
is employed [3]. The baryons are propagated according to the effective one-body field 
given by eq. (18), whereas the pions are treated as free particles. 

We have included the following collision processes in the simulation 

BIB2 ~ BIB2 , 
NN --' N~, ..---

NN --' NN* , (19) ..---

~ ~ N7r , 
N* --' N7r . ..---

The decay of the resonances is governed by an exponential decay law and is assumed 
to be isotropic in the rest frame of the resonance. The parametrization of the cross 
sections associated with the processes (19), as well as the widths and life times of the 
resonances have been adopted from the values used by Wolf et al. [14]. 

3.1.1 Numerical solution of the BUU equation 

The numerical problem of solving the BUU equation efficiently has been extensively 
discussed in the literature [7, 13, 14]. In order to establish the framework for describ­
ing how many-particle collisions are incorporated, we first review the main elements of 
the numerical realization of the model for the standard case when only the two-body 
collision term is considered. 

The BUU equation can be solved by discretizing the phase-space density distri­
bution, f( 1', p; t). This is done considering N parallel systems of AT + Ap pseudo­
baryons (and a dynamically determined number of pseudo-mesons), AT and Ap being 
the target and projectile mass numbers, respectively. The associated baryon phase­
space density distribution f(n)( 1', p; t) for a particular system n in the ensemble is 
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then represented as 

AT+Ap 

f(n)(1',p;t) = L: 8(1' _1'~n)(t))8(p - p~n)(t)) , (20) 
i=l 

where (1'~n), p~n)) is the phase-space trajectory of the ith pseudo-baryon in the nth 

system. The one-body density distribution for the system is then obtained as the 
average of the individual distributions for the N parallel systems considered, f = 
Ln f(n) IN. In this manner, the fluctuations exhibited by the individual systems are 
suppressed after each time interval 8t and a single dynamical trajectory f(1',p, t) 
results, representing the approximate solution to the BUU equation (16). 

It is straightforward to verify that, in the absence of collisions, eq. (20) is a solution. 
of the BUU equation provided that the trajectories 1'i and Pi satisfy the following 
hamiltonian equations of motion 

(21) 

Note that the relativistic velocity pc2 IE has been used instead of plm, in order to 
take approximate account of the relativistic kinematics. 

We simulate the time evolution of the phase-space density distribution using a 
sample of N = 700 parallel systems of pseudo-particles. The density is calculated 
considering a time interval 8t=0.5 fm/c after which the new positions and momenta 
of the pseudo-particles are computed according to the equations of motion (21) .. In 
order to reduce the numerical noise due to the finite size of the sample, we use a 
gaussian smearing procedure to achieve smooth densities and reliable Pauli-blocking 
factors, as described in ref. [13]. Furthermore, to speed up the computations, only 
a subset of the systems are employed for the calculation of the spatial density p( 1'). 
Due to the gaussian smearing, a subset of 100 systems already provides a reliable 
estimation of the density. In addition, the Pauli-blocking factors j(1',p) have been 
estimated in a similar way, but using a subset of only 30 systems. We found that an 
increase in these sample sizes does not yield a significant improvement in the accuracy 
of the calculation and, therefore, increases the computing time unnecessarily. 

The initial phase-space distribution of the pseudo-particles is obtained by assign­
ing random positions according to a Woods-Saxon density distribution. The momenta 
are chosen randomly within a Fermi sphere whose radius is estimated locally in the 
Thomas-Fermi approximation. Then a boost is performed to ensure that the total 
momentum vanish and the resulting individual momenta are Lorentz boosted to the 
appropriate initial velocity of the nucleus. The values of the parameters used in the 
initialization procedure have been taken from ref. [13]. They reproduce ground-state 
properties and general nuclear stability with good accuracy. 

3.1.2 Treatment of the collision term 

In the model, the scattering of two baryons, BIB2 -+ B~ B~, is treated as a stochastic 
process involving four points in phase space. 
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In order to simulate the collision integral we have followed the prescription pre­
sented in ref. [14]. According to this prescription, the two particles may interact at 
their point of closest approach, provided this distance, d12 , is less than a predefined 

value dmax = VUmax/7r, where CTmax = 55 mb is the maximum ofthe.energy-dependent 
nucleon-nucleon cross section. In order to minimize the effect due to the non­
invariance of this collision criterion, we have used the covariant form of d12 • Moreover, 
the point in time at which the collision takes place has also been estimated relativisti­
cally, according to the convention of ref. [21]. Whether the particles actually interact 
is then decided randomly according to the probability CTB1B2-+B1B2(E12)/Umax' When 
different channels are available in the final state, the specific collision channel is se­
lected randomly according to the appropriate branching ratio CTB1B2-+B~B~(EI2)/CTmax' 
The tentative final momenta are also assigned at random according to the correspond­
ing differential cross section. Finally, whether such a tentative collision is actually 
realized is determined statistically on the basis of the blocking factor nJ~ associated 
with the final two-particle state. 

We stress that, consistent with the picture of N parallel systems, collisions occur 
only between pseudo-particles belonging to the same system. 

3.2 Incorporation of N-body collisions 

It has been shown [20, 19], that the scattering rates in a many-body system can be 
expanded in the number of interacting particles. Accordingly, the collision integral 
can be written as 

(22) 

Since an N-body scattering process relates N points of the phase space in the initial 
state with N points in the final state, the generalization of eq. (17) to the N -body 
case is straightforward, 

(N) [ ] 
Icoll il = ~! J dp2· .. dpNdp~ ... dp'tv T(Pl"'PN;P~ .. ·P'tv) 

x (fi i:h - IT id:) , 
,=1 ,=1 

(23) 

where T(PI ... PN; p~ ... p~) denotes the associated N -body transition rate. Eq. (23) 
constitutes an extension of the results of ref. [20] to fermionic systems. 

Although the above derivation is rather intuitive, it should be noted that the 
formalism follows from quantum many-body theory [19]. Although less rigorous, our 
presentation has the advantage of being conceptually simple and thus well suited for 
illustrating the physical contents of the theory. 

In order to incorporate N-body collisions into this type of treatment we divide the 
problem into two parts: 1) the characterization of the N-body clusters that interact, 
and 2) the result of such an N-body interaction. With regard to the first aspect, 
we rely on basic dynamical picture provided by the BUU simulation. Thus assume 
that two baryons, Bl and B2 , are about to interact, according to the standard BUU 

12 

.. ' 



model described above. They are referred to as the primary baryons in that particu­
lar collision. We then examine the environment of the two primary baryons in order 
to determine which other baryons are located nearby, using the respective energy­
dependent interaction ranges. This procedure may identify a number of neighboring 
baryons, B3 , ... , BN , which are assumed to also take part in the particular collision. 
Specifically, any pseudo-baryon Bj that belongs to the same system and whose dis-

tance to either one the primary baryons is less than a-J3itB~ (Eij) j 1r, for i = 1,2, is 
considered to be a part of the interacting N-body cluster. This simple prescription 
provides a well-defined mean of classifying the collision events according to their clus­
ter size N. If there are no neighbors, we retain the usual binary scattering situation, 
but otherwise the additional members of the cluster may exchange energy and mo­
mentum with each other as well as with the primary baryons. Inelastic processes 
may occur only between Bl and B2 , according to the prescription explained in the 
previous section. Therefore, the additional N - 2 baryons are assumed to keep their 
identity during the collision process. Finally, as indicated in eq. (23), the effect of 
the Pauli exclusion principle is taken into account by considering the blocking factors 
associated to each particle in the final state of the N -body cluster. 

Clearly, the calculation of all the relevant differential cross sections represents a 
formidable task which is beyond the scope of our present investigation. Rather, we 
adopt a conceptually simple and very general model for the outcome of the various 
N-body scattering processes. Specifically, for any given final channel, we assume 
that the available energy is distributed among the final particles according to the 
appropriate microcanonical distribution. Thus, apart from the constraints imposed 
by the conservation of energy and momentum, the outcome is assumed to be entirely 
statistical and the associated probability density is given by 

(24) 

where E = L:i p; j2mi and P = L:i Pi are the initial energy and momentum of the 
N particles, respectively. This is presumably an extreme assumption that will tend 
to overestimate the amount of energy-momentum exchange occurring between the 
primary particles and those in the proximity. Therefore, this treatment should provide 
a useful upper bound on the effect of incorporating N-body collisions. In Appendix 
A we describe an efficient approximate method for picking the final momenta. 

We stress the following features of the adopted treatment: 1) the identification of 
N-body collisions is based on the two-body collisions calculated in the standard BUU 
model, 2) the many-body scattering is not based on microscopic matrix elements but 
on the simple but general principle of equipartition (implying, for example, isotropic 
angular distributions), and 3) possible in-medium effects on the cross sections have not 
been taken into account. Therefore, the model is expected to represent an extreme 
picture that must be considered as merely a useful starting point for investigating 
the manner in which the incorporation of many-body interactions could affect the 
observables extracted from dynamical simulations of nucleus-nucleus collisions. 
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4 Dynamical simulations 

The model described in the preceding has been employed for the reaction 40Ca+ 40Ca 
at bombarding energies of 200, 600, and 1000 MeV per nucleon. In addition, we have 
performed the analysis for several values of the impact parameter in order to cover 
the complete range of events, from central to peripheral ones. Furthermore, we have 
included N-body collision processes involving clusters consisting of up to 10 baryons. 
The dynamical quantities calculated have also been compared with the standard BUU 
simulation that includes only binary collisions. 

4.1 Number of collisions 

,Before we estimate the effect of N -body collision processes on the global dynamical 
quantities, it is interesting to consider the number of collisions that actually occurs 
in the simulation. Figure 3 shows the number of N-body collisions occurring in 
the course of a central event (b=O) as a function of the bombarding energy. The 
curves represent interpolations based on the values obtained at the above mentioned 
energies. The model shows that a significant fraction of the collision processes involves 
more than two baryons, particularly at bombarding energies larger than 600 MeV 
per nucleon. The relative frequency of N-body collisions increases with bombarding 
energy, as expected since higher densities are reached. Our results are in agreement 
with the calculations done by Bonasera and Gulminelli[22] for three-body collisions. 

In fig. 4 we display the time dependence of the collision rate. The dashed his­
tograms show the collision rate when only binary process are taken into account, while 
the results corresponding to binary, ternary, and quaternary processes are shown by 
the solid line histograms in decreasing order, respectively. The calculations indicate 
that multiple collisions predominantly occur during the high-density stage of the re­
action. 

In addition, we note that the number of binary collision clusters is significantly 
reduced when the possibility of N-body scattering is included, because collisions that 
were formerly treated as binary may now be considered as N-body processes. How­
ever, the total number of collisions changes by less than 3%. This is not surprising, 
since the occurrence of N-body collisions is closely tied to the occurrence of collisions 
between the primary baryons, according to our specific prescription. (Of course, the 
introduction of N-body collisions does change the dynamical evolution somewhat, but 
this has little effect on the total number of collisions occurring during the reaction.) 

The effect of the Pauli-blocking can be readily appreciated from fig. 5. Note 
the sensitive decrease of the effect of the Pauli-blocking when the energy increases. 
In addition, we observe that the curves associated to different cluster size N scale 
approximately as 1 - fN, where f can be interpreted as an average occupation prob­
ability. 

It is important to note that the relative contributions of the different N-body 
processes may depend on the equation of state employed (or equivalently, on the 
power (j in eq. (18)). At the same bombarding energy, a stiff equation of state 
would reduce the number of many-body collisions since the maximum nuclear density 
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reached by the system during the compressed phase is lower than in the present case. 
Conversely, a soft equation of state would enhance the number of N-body collisions. 

4.2 Collective flow 

We now discuss a number of global observables that are commonly employed in· the 
analysis of relativistic nuclear collision events. 

4.2.1 Thermalization and flow angles 

The kinetic flow tensor analysis was adopted for the analysis of nuclear reactions 
for the purpose of elucidating the collective (fluid-dynamic) behaviour. A major 
motivation was the hope that such exclusive variables may offer a chance to extract 
experimentally the nuclear equation of state [29]. 

The flow patt~rn can be analyzed by constructing the kinetic flow tensor [30], 

(25) 

where m(v) is the mass of the particle v and Pi(V) are the components of the corre­
sponding three momenta. The symmetric tensor F specifies an ellipsoid in momentum 
space. The radii of the ellipsoid are related to the eigenvalues ft, 12 and is obtained 

. by diagonalizing F, while the associated eigenvectors el, e2 and e3 define the direc­
tion of the principal axis. Let us order the eigenvalues so that 11 > 12 > h. In this 
way el corresponds to the direction of maximum kinetic flow. The polar angle with 
respect to the beam direction is called the flow angle OF' 

The shape of the global flow pattern can be conveniently characterized in terms 
of the anisotropy parameter 

(26) 

Is important to note that this parameter ,constitutes a measure of the degree of re­
laxation of the system, since a completely equilibrated system has an isotropic mo­
mentum distribution: 11 = 12 = is yielding Q = O. Therefore, the smaller the value 
of Q, the more thermalized is the system. 

In order to perform the flow analysis we have proceeded as follows. For each 
system in our sample, we have constructed and diagonalized the kinetic flow tensor 
associated with the momentum distribution of the baryons at the end of the reaction. 
The resulting values of OF and Q are then binned in order to generate the correspond­
ing probability distributions. Before showing the results it is important to make the 
following remark. In an ideal calculation, the flow vector lies always in the plane de­
fined by the direction of the impact parameter and the beam axis - the impact plane. 
In practice, however, the reaction plane (as defined by the flow direction) generally 
deviates from the impact plane, due to the numerical fluctuations as well as to the 
violation of the conservation of angular momentum in the simulation of the collision 
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term. Nevertheless, these spurious effects average out and the mean flow vector lies 
approximately in the impact plane. However, the tilting angle ¢F associated with a 
particular system can deviate significantly from the ensemble average value [31]. In 
order to illustrate the magnitude of this effect, the calculated probability distributions 
of the tilting angle ¢F are shown in fig. 6. At b=1.5 fm, the typical standard deviation 
is 50° and decreases to 35° at b=3 fm. Naturally, the largest deviations happen at 
a beam energy of 200 MeV per nucleon. It is important to keep this in mind when 
comparing the calculated flow angle OF with those obtained from experimental data. 

Figure 7 shows the resulting probability distributions of flow angles OF obtained 
when only binary collisions are considered (upper figures) and with the inclusion of 
N-body collisions (lower figures), for b=1.5 fm at the various bombarding energies. At 
200 MeV per nucleon, the two different sets of calculation display similar flow angle 
distributions. However, at higher energies the inclusion of multiparticle collisions 
slightly increases the occurrence of larger flow angles, as compared to those obtained 
considering pure binary collisions. This behaviour is consistent with the fact that 
N-body collisions have an isotropic angular distribution while, at high energies, the 
angular distribution associated to binary scattering is forward-backward peaked. The 
corresponding mean value of the flow angle, (OF), is listed in table 1. Due to the 
decreasing number of participant nucleons, the averaged flow angle decreases at larger 
impact parameters. As a function of the beam energy, it drops off at both low and 
high energies. This behaviour has been noted previously by Das Gupta [12] in the 
collision Nb+Nb, also using a BUU calculation. We observe that the inclusion of 
N-body collisions increases the value of the flow angle, except at low energies where 
binary collisions generate the larger flow. 

The probability distributions for the, anisotropy parameter Q are displayed in fig. 
S. There are only slight differences betweeh the two distributions at low energy. At 
higher energies the calculation corresponding to N-body collisions shows somewhat 
smaller values of Q, as compared with the standard two-body calculation. The mag­
nitude of this effect can be more clearly appreciated from the average anisotropy (Q), 
which is listed in table 2. The resulting va.lues of (Q) indicate that thermalization is 
more easily achieved through N-body collisions. 

4.2.2 Transverse momentum and stopping power 

Another observable that is sensitive to the collective flow is the average transverse 
momentum in the reaction plane, considered as a function of the rapidity [29]. This 
quantity is displayed in fig. 9. The curves have been obtained by smoothing the cor­
responding histograms. It has been found by Blattel et al. [11], using a relativistic 
version of the BUU method, that the origin of the transverse momentum depends on 
the particular rapidity region considered. In comparison with the standard BUU cal­
culation based on binary collisions (dashed lines), our results show that the inclusion 
of N -body collisions (solid line) increases by up to 30% the transverse momentum in 
the participant rapidity region at 1 GeV per nucleon. At lower bombarding energies, 
however, the differences appear to be very small, while the fluctuations associated 
with the numerical calculations are rather large. 

16 



In addition, in fig. 10 we show the.resulting rapidity density distributions. At high 
energies, the inclusion of N-body collisions tends to produce an enhancement in the 
number of particles scattered into themidrapidity region, thus increasing the stopping 
power. However, the effect is less than 20%. As before, the numerical fluctuations 
are large and tend to obscure the tiny differences that may appear at low energies. 

4.3 Backward scattering 

As can be observed from the results of fig. 10, the N-body collisions have no notice­
able effect at the edges of the rapidity spectra. This suggests that N-body collisions 
would not affect the backward particle spectra. Nevertheless, backward proton spec­
tra have been reasonably described by means of multiparticle interactions in p-nucleus 
collisions [32]. It is important to mention, however, that the sampling statistics asso­
ciated with this region of the phase space is very poor in the simulation. In fact, the 
results shown in the lower-right panel of fig. 2 indicate that the fraction of particles 
scattered backward after two collisions per nucleon (which corresponds approximately 
to the time-scale of a Ca-Ca reaction at 1000 MeV per nucleon) is 0.7% and 0.4%, for 
a 50% mixture of two- body and three-body collisions and pure two-body collisions, 
respecti vely. 

A possible explanation for the absence of an effect in the dynamical simulation 
may be the subsequent rescattering of the nucleons that have experienced N-body 
collisions. As we have found, N-body collisions occur predominantly during the 
compressed phase of the reaction while the expansion phase is dominated by binary 
interactions. Therefore, the backward yield arising from N-body collisions could 
disappear due to the rescattering taking place during the expansion of the system. 
This effect was already noted in connection with the schematic study made in sect. 2, 
although evolving on a slower time scale. In the realistic simulation, however, dynam­
ical effects may alter the time scale and lea.d t'o a faster equilibration in phase space. 
Furthermore, we have employed a.n isotropic angular distribution for the outcome of 
the N-body collisions which certainly reduces the backward yield. 

4.4 Conclusions 

The analysis of the various observables has shown that N-body collisions have lit­
tle influence on the collective flow and that, consequently, the global dynamics is 
adequately described in terms of binary correlations only. 

\Ve again stress that our model constitutes a first approximation. The quantum­
mechanical N-body scattering amplitudes differs from' the micro canonical approxi­
mation that we have employed here. As we indeed found using the one-pion exchange 
model, the amplitude for three-body scattering leads to an anisotropic distribution. In 
addition, it is not clear whether the standard Skyrme parametrization of the effective 
field, eq. (18), which is based on a two-body interaction, is adequate for describing a 
simulation that includes N -body interactions. 

With the exception of the study performed by Bonasera and Gulminelli[22], the 
role of the nuclear equation of state in connection with N-body collisions has not 
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been investigated before. It is reasonable to expect that a change in the nuclear 
compressibility would be reflected in a change of the ratio of N-body to two-body 
collisions. However, due to the smallness of the effect of N-body collisions on the 
global observables, it seems unlikely that the use of a different equation of state could 
significantly change our present conclusions. 

5 Particle production 

For practical reasons, the available data related to particle production is limited to 
processes containing at most two particles in the initial state. The description of 
particle production processes involving more than two initial particles must therefore 
rely on theoretical assumptions. As a first step in this direction, we develop below 
a general model for incorporating particle production in N-body collision processes, 
based on a statistical picture. 

5.1 Microcanonical model for particle production 

In our present treatment we shall assume that when the two primary baryons Bl and 
B2 collide, the baryons B 3 , B 4 ,... in their environment act as an energy reservoir 
similarly to the statistical picture adopted in the preceeding section. Thus, the initial 
baryons are assumed to share their energy micro canonically, before the two primary 
baryons Bl and B2 produce a particle .. 

In the present exposition, we shall use non-relativistic kinematics which is simpler 
to treat. However, by employing suitable transformations, it is possible to extend 
the treatment to the relativistic regime as well. This aspect is further discussed in 
Appendix A. 

For the development of this picture it is useful to define the following functional, 

J 
N N p2 

I;p[J] = dpl···dpN f(Pll ···,PN) 8(P - ~Pi) 8(E - ~ 21~i) . (27) 

Here E and P are total kinetic energy and total linear momentum of the N baryons, 
respecti vely, while f(Pl' ... ' P N) is a function of the N baryon momenta. The mi­
crocanonical average of the function f is then given by (f) = I[J]/I[l]. Here the 
denominator is recognized as the microcanonical momentum space integral and can 
be evaluated analytically [33], 

(28) 

where MN = Li mi is the sum of the N individual baryon masses. 
Let us now consider the production of a particle a, for example a kaon. The el­

ementary production process is assumed to be of the form BIB2 -+ a + X and the 
associated elementary cross section is given O"B

1
B

2
-+a( (12), where E12 is the kinetic en­

ergy of the two initial baryons Bl and B2 in their eM system. However, in contrast to 
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the pure binary production mechanism, in an N-body collision the available energy 
E12 is no longer well defined since the primary baryons, Bl and B 2 , may exchange 
energy with the baryons in the environment. Therefore, the associated effective pro­
duction cross section must be obtained by averaging the elementary cross section over 
all possible momentum configurations of the N-body system. Thus, since we assume 
that the total energy E is shared microcanonically between the emerging particles, 
we have for the effective cross section 

The integrand depends only on the relative energy of the two primary baryons, 
E12. Therefore, it is possible to carry out the integral over the momentum of the 
baryons in the environment, P3" .. ,PN, as well as over the total momentum of the 
two primary baryons, P = PI + P2' exploiting the above result for the micro canonical 
integral (28) (see Appendix A). The 3N-dimensional integral can thus be reduced to 
one dimension, 

(30) 

where E* is the total kinetic energy in the eM of the N-body cluster, and the lower 
limit of the integral, Eo, denotes the production threshold. 

If the elementary cross section can be expressed in terms of a power series in E12, 

k max 

(JB1 B 2 -+a( (12) = L akE~2 , 

k=O 
(31) 

the integral appearing in (30) can be evaluated by elementary means, and the effective 
cross section can be written as 

where Bx is the incomplete beta function and .7: = 1 - EO/ E*. Note that the factor 
in front of the summation can be written in terms of the complete beta function as 
1/ B(~N - ~,~). 

5.2 Elementary kaon cross section 

The knowledge of the relevant particle production mechanisms at the elementary 
level, as well as their associated cross sections, is essential in a model calculation. 
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However, due to the lack of theoretical description of the particle production vertices, 
the elementary cross sections are often given as a parametrization of the available 
experimental data. 

In our present study we are especially interested in the effect of N-body collisions 
on subthreshold kaon production and so we may employ the simple parametrization 
proposed by Schiirmann and Zwermann [34], 

Pmax 
[ ]

4 

U NN _ K+ = 800 (GeV Ic) J.lb, (33) 

where Pmax is the maximum possible kao~ momentum given by 

Here Vi is the invariant energy and mN, mA, and m[( are the masses of the nucleon, 
the A-particle, and the kaon, respectively. This parametrization arises from phase­
space considerations near threshold and has been fitted to the limited data available 
for the inclusive cross section pp -t J(+ + X [35]. Close to the threshold, eq. (33) has 
the same functional dependence that arises from the one-pion exchange model, but 
it grows very inaccurate for large values of Pmax.We stress that so far no data are 
available in the vicinity of the threshold. In the earlier parametrization proposed by 
Randrup and Ko [36], the cross section is proportional to Pmax, which gives a much 
better description at large Pmax but probably overestimates the cross section at small 
Pmax' The parametrization suggested recently by Wu and Ko [9], resulting from a 
calculation based in the one-pion exchange model, includes terms up to the fourth 
order in Pm ax and has a quartic behavior near threshold while resembling the linear 
parametrization at higher energies. 

The contribution to the kaon cross section arising from the different baryonic 
channels are related to the N N channel as suggested in ref. [36], 

UNN_K for NN 

UB1B2-K ~ 
3 
4UNN - K for N~ (35) 

1 
20"NN-K for ~~ 

where no distinction is made 'between Nand N*, except for the difference in mass. 
In order to utilize any of the above described parametrizations in our model, 

we need to express them in the form of eq. (31). Since we are interested in the 
subthreshold regime, we expand P;'ax in powers of E12 around the threshold energy 
Eo. To order Ei2' the result is 

P~ax = a( E12 - Eo)( E12 + /3EO) , (36) 
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with 
to = 

a= 
1- 3mK(Mo - mK) 

MJ ' 
(37) 

j3= 
2mKMO(Mo - mK) _ 1 

to[MJ - 3mK(Mo - mK)] , 

Mo = mN + mA + mK . 

The coefficients ak appearing in eq. (29) can then be obtained by inserting eq. (36) 
into the desired parametrization of the elementary cross section. We have adopted 
the parametrization given in eq. (33), since we believe it represents a reasonable 
and simple description of f{+ -production in the relevant energy regime close to the 
threshold, although it is not entirely accurate. 

The resulting N-body f{+ cross section, (JB
1

B2 ... B N-K+, as a function of the total 
kinetic energy of the N-body system, for different values of N, is shown in fig. 11 
by the solid lines. In addition, we have also shown the effective N-body f{+ -cross 
section as resulting from the parametrization (JNN_K+ = 0.25 mb/GeV (t12 - to) 
(dashed lines), which gives a good fit to the experimental data but overestimates 
the expected cross section in the neighbourhood of the threshold. The behaviour of 
the cross section for different values of N reflects the energy balance imposed by the 
microcarionical approximation between the primary and the environment baryons. In 
fig. 12 we show the average relative kinetic energy of those pairs of primary baryons 
that produce a kaon, (t12), as a function of the total kinetic energy in the collision 
cluster, E*. Although the addition of more particles to the initial state increases 
the overall amount of kinetic energy available, the assumption of a statistical sharing 
of the energy gives (t12) - to ~ (E* - to)/N. In other words, on the average the 
available energy for particle production is equal to the available kinetic energy per 
nucleon in the incoming channel. It implies that, if the primary baryons do not have 
enough energy to produce a kaon the environment may provide it but, conversely, 
they may also absorb any energy excess carried by the primary baryons decreasing 
or even suppressing the production. 

5.3 Nucleus-nucleus collisions 

In addition to the details of the elementary cross section, the production of particles in 
a nucleus-nucleus model calculation depends on how many individual baryon-baryon 
collisions carrying enough energy occur in the simulation. Therefore, we first analyze 
the energy spectrum of the different clusters. The calculated spectra, corresponding 
to the simulation of the system 40Ca+ 40Ca at various bombarding energies and impact 
parameters, are indicated in fig. 13 as a function of the kinetic energy in the center­
of-mass of the cluster, E*. We only show the parts of the spectra that are relevant 
for the production of heavy particles. The curves have been obtained by means of 
smoothing the resulting histogi·ams. We observe that N-body processes (solid lines) 
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become dominant at energies above the kaon threshold, when compared with binary 
processes. Furthermore, the tail of the distributions extends to rather high kinetic 
energies, as the cluster size N increases. There is, however, a reduction of about a 
50% in the number of two-body clusters with respect to those obtained in a pure 
binary simulation, which have been indicated by the dashed lines. 

In order to explore the possibility that N -body collisions modify the yield of 
particles in a nucleus-nucleus collisions we have calculated the associated kaon mul­
tiplicities using the model developed in the preceeding sections. Let us briefly recall 
the method [13]. In a BUU-type simulation the production of particles in the sub­
threshold regime is assumed to be a perturbative process, i. e. it does not affect the 
global dynamical evolution. The total kaon multiplicity, l/[{(b) , for a given impact 
parameter b is given by 

(38) 

where the total cross section has been approximated by 

(39) 

The contribution to the f{+ multiplicity arising from the different cluster sizes 
N are shown in fig. 14, in the case of a central 4

0Ca+40Ca collision. Although N­
body collisions are more frequent than two-body collisions and carry more energy, the 
strong reduction in the elementary cross section plays an important role in suppress­
ing the production of particles for increasing N. Furthermore, the decrease in the 
contribution arising from binary collisions due to the inclusion of non-binary processes 
is compensated by the extra yield coming from collisions with N 2:: 3. We found that 
the total f{+ multiplicity, as calculated with the extended method, differs from the 
standard two-body calculation by 17% and 8% at 600 and 1000 Me V per nucleon, 
respectively. Therefore, the net result is that the total yield remains essentially un­
changed when N-body processes are included. This result is not surprising, in view of 
our assumption of energy shal'ing - the production yield then depends essentially on 
the available energy per nucleon. This feature is analyzed in more detail in Appendix 
C. 

6 Concluding remarks 

A t the densities reached in nuclear collisions at high energies the standard assumption 
of isolated two-body scattering is not well justified. Therefore, we have developed a 
treatment that incorporates many-body scattering processes in a dynamical BUU­
type simulation of a nucleus-nucleus collision. 

We have first made a detailed study of the simplest case, namely elastic scattering 
of three nucleons. The corresponding differential distribution has been calculated 
on the basis of a simple pion-exchange graph, with an off-shell intermediate baryon 
between two sequential pion exchanges. As a function of the energy, the angular 
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distribution always presents an anisotropic pattern, in contrast to the two-body scat­
tering which is isotropic up to energies of about 400 MeV per nucleon. At higher 
energies, the three-body scattering becomes more forward peaked, although the ef­
fect is smaller than what is observed in the two-body case. 

For a spatially uniform system, we have studied the evolution in momentum space 
for initial distributions describing interstreaming gases corresponding to the kinemat­
ics of high-energy nuclear collisions. Particular attention has been paid to the yield 
in the backward direction, because of speculations that N-body scattering may lead 
to an enhancement. Using three-nucleon scattering in the idealized scenario, we have 
found that the backward region is indeed more favored, but only early on in the 
reaction; subsequent collisions drive the momentum distribution towards the equilib­
rium distribution, which is independent of the specific collision mechanisms employed. 
However, equilibrium is achieved much faster than in the case of pure two-body col­
lisions, particularly at high energies. 

The inclusion of N-body collisions in a realistic dynamical simulation has been 
based on a BUU transport equation with an extended collision integral, into which the 
non-binary scattering processes can be included rather naturally. We have examined 
the role of the baryons situated in the proximity of two primary collision partners. Us­
ing the energy-dependent interaction distance between two baryons, as obtained from 
their energy-dependent free scattering cross section, we have established a criterion 
for determining how many baryons in the environment may affect a given two-body . . . 
collision, thus obtaining a means for classifying each collision event according to its 
cluster size N. Then, invoking the assumption of complete statistical sharing be­
tween the particles in a collision cluster, we have formulated a general treatment of 
the. N-body scattering for any value of N. On this basis, we have examined the effect 

. of N-body collisions for the collision. of two calcium nuclei at a range of relativistic 
energies. Overall, there is little effect in the commonly employed global observables, 
such as the flow tensor and the transverse momentum distribution, even though about 
half the collision clusters contain more than two particles. It must be emphasized, 
however, that some observables that may be more strongly affected by the inclu­
sion of N-body scattering (like the backward yield) have rather poor statistics in the 
simulation, which makes it difficult to reach more detailed conclusions. 

We have given .special consideration to the effect of the N-body scattering on 
the subthreshold production of particles, since one might expect that such processes 
would be enhanced because of the larger amount of energy present of a N-body clus­
ter, relative to the ordinary binary situation. We generalized the statistical model to 
particle production, assuming that the additional particles in a given cluster share 
their energy statistically with the two primary particles .responsible fo~ the produc­
tion. This leads to a relatively simple and general model, and we have applied it to 
kaon production in Ca-Ca collisions. Despite the fact that about half the kaons are 
produced from clusters with N > 2, the net effect is remarkably small. This can be 
qualitatively understood by realizing that the additional particles in a given cluster 
act as a reservoir that may not only contribute energy but also drain energy away 
from the producing particle pair. The determining feature is then the effective tem­
perature of the clusters and this quantity is not very dependent on the cluster size 
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N, since all the clusters are drawn from the same system. 
In conclusion, then, we find that the results of the standard BUU dynamical 

simulations are not appreciably affected by the incorporation of N-body collisions. 
This simplifying feature supports the BUU model as a quantitatively useful tool 
for nuclear reactions at relativistic energies. It should be emphasized, though, that 
our present studies are carried out with a number of simplifying assumptions, such as 
equipartition within a collision cluster, and that in-medium effects in the cross sections 
are absent. There is still a need for making more elaborate studies, in particular for 
calculating and employing the relevant N-body collision diagrams. 

This work was supported by the Director, Office of Energy Research, Office of High 
Energy and Nuclear Physics, Nuclear Physics Division of the U.S. Department of 
Energy under Contract No. DE-AC03-76SF00098. We wish to acknowledge useful 
discussions with Ulrich Mosel, who stimulated us to consider this problem. One of us 
(T.V.) thanks the Deutsche Akademische Austauschdienst (DAAD) for a fellowship 
supporting his stay at LBL. 

A Microcanonical selection of momenta 

In our numerical simulations of N-body scattering it is necessary to pick the momenta 
of N particles according to the corresponding microcanonical distribution. When non­
relativistic kinematics suffices, this task can be accomplished quickly and efficiently by 
a recently developed exact sampling method [37]. However, at the energies considered 
in the present study, where the kinetic energies are not negligible relative to the 
particle masses, relativistic kinematics must be used, and the sampling problem is 
then considerably harder to treat. We have therefore developed a simple approximate 
sampling method. It is based on the non-relativistic method, but the magnitudes of 
the sampled momenta are reduced so as to conform with the conservation of the 
relativistic four-momentum. 

In the present context, we are faced with the task of reassigning relativistic mo­
menta to the N particles in a given collision cluster. Let their initial momenta be 
pi,i = 1, ... ,N, let their masses be mi,i = 1, ... ,N. The total four-momentum is 
then known, so that the total relativistic energy in the CM frame, ER = VS, can be 
calculated. 

\i\Torking in the CM frame, we first choose a set of tentative momenta Pi' i = 
1, ... , N according to the non-relativistic distribution, using the method in ref. [37]. 
These momenta then satisfy the energy constraint ' 

(A.l) 

where ENR is the available non-relativistic energy. In order to obtain momenta that 
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satisfy the relativistic ~nergy constraint, 

N 

L (p~ + mn1
/

2 = ER , (A.2) 
i=l 

we then rescale the tentative momenta of the N particles, 

Pi ---7 p/ = Pi vr:tX . (A.3) 

A first-order approximation for the shrinking parameter x can be obtained by inserting 
p/ into eq. (A.2) and expanding the square root, 

(A.4) 

which implies that 

(A.5) 

With the knowledge of x, the p/ can be determined. The shrinking procedure can then 
be repeated until the desired accuracy in the energy conservation is achieved. We have 
found that the algorithm converges and the difference between ER and Li(P7+mn1/2 
becomes negligible after only a few iterations. Finally, the momenta are Lorentz 
boosted appropriately, so that the specified total four-momentum is obtained. 

It is clear that although this method yields momenta that satisfy the relativistic 
four-momentum constraint, the distribution generated is somewhat distorted - with 
respect to the magnitude distribution as well as the relative directions. In order to 
test performance of the method, we have considered the case of three-body scattering, 
because for three momenta the relativistic sampling can also be done directly by 
introducing the Jacobi variables. They enable us to write the phase-space distribution 
for the outgoing particles in terms of five independent variables, which can then be 
sampled by a von Neumann rejection method [25]. 

We have compared our "shrinking" method with the exact relativistic sampling 
for the following quantities, 

folding angle: (A.6) 

momentum squared: (A.7) 

\ 

and the associated variances. As a typical example, we have considered a sample 
of 30000 momentum triplets, each with a eM energy of 5.33 GeV, and required 
an energy tolerance of 0.1 Me V in the iteration. The results are summarized in 
table 3. Furthermore, fig. 15 shows the comparison of the momentum and energy 
distribution for the two methods. The method appears to provide a quite reasonable 
approximation - certainly adequate for our present exploratory purposes. 
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B Effective production cross section 

We here simplify the expression (29) for the effective cross section for the production 
of a particle a when two primary baryons Bl and B2 collide in the presence of N - 2 
additional baryons B 3 , ... , B N . 

Let us first define the total' momentum of the two primary baryons, P12 = PI +P2' 
their relative velocity V12 = Pl/ml + P2/m2, and their relative momentum P12 = 
J-L12 V12, where J-L12 is their reduced mass. Using non-relativistic kinematics, as IS 

justified near threshold, ~he energy of the two baryons, can then be written as 

Pl2 
E12 = El + E2 = (12 + 2M12 ' (B.1) 

where M12 = ml + m2. The first term, (12 = pi2/2J-L12' is the intrinsic kinetic energy, 
while the second term represents the energy associated with the translational motion 
of the center of mass of the two-baryon system. The integral appearing in eq. (29) 
can be recast in terms of P12 and P12' 

The integral between brackets is recognized as the momentum-space integral corre­
sponding to N~l particles with masses 1V[12 , m3) ... ) mN and momenta P I2 )P3)··· ,PN) 
respectively. Replacing this integral by its explicit expression, eq.(28), and expressing 
the remaining integration in terms of (12, we arrive at 

(B.3) 

which is a relatively simple one-dimensional integral that can be tabulated as a func­
tion of E*, once the elementary cross section (J'B

1
B

2
+-a is given. 

C Cluster temperature 

Here we show that the baryons in the interacting cluster can be considered as a 
thermal reservoir. 

It is possible to rewrite the above expression (B.3) for the effective production 
cross section in an instructive manner by noting that the power can be approximated 
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\ 

by an exponential (1 - x)P ~ exp(px), 

(C.I) 

Here we have made the replacement r(~N - ~)/r(~ - 3) ~ ~N - 4, so that the 
temperature parameter is given by T = E/(~N - 4). This approximation is not 
optimally accurate (particularly at low N), but serves to ensure that the result be 
normalized correctly, i. e. if the elementary cross section is constant, then the effective 
cross section must have the same value. The above result shows that the other 
baryons in the cluster act approximately as a standard thermal reservoir, with an 
effective temperature given by 

E* 
T=3N . - -4 

2 

(C.2) 

The same feature can be found by observing that the probability for producing 
the given particle with a specified momentum p and energy E = p2/2J.l is given by the 
size of the correspondingly constrained momentum-space integral I:.-_\,p[I] (see the 
general definition in eq. (27)), relative to the unconstrained integral I~. 0[1], because , 
of our assumption of energy equipartition. Using the same approximation as above, 
we then find the following differential particle production probability, 

(C.3) 

We have seen from eq. (29) that the relative energy of the two primary baryons, E12, 

is governed by a beta distribution. Hence the first energy moment of the modulation 
factor in the integrand in eq. (B.3) is given by (EI2) ~ I/(N - 1), whereas the 
above approximate expression would yield (El2) ~ I/(N - ~). Therefore, if one 
adjusts the temperature parameter in the above Boltzmann distribution (C. 1) to be 
T = E/(N - 1), then the first moment of the modulation function is reproduced 
correctly as well. 
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b=1.5 fm b=3 fm 
E (A MeV) Binary N-body Binary N-body 

200 14.23 12.11 7.14 6.32 
400 14.64 16.66 7.90 7.89 
600 13.62 16.25 7.35 8.00 
1000 11.63 15.92 6.08 7.59 

Table 1: Flow angle. 
The averagefiow angle OF in Ca-Ca reactions at various beam energies E and 

impact parameters b, with either the standard BUU model in which only binary 
collisions are considered, or with our extension to N-body collisions. 

b=O b=1.5 fm b=3 fm 
E (A MeV) Binary N-body Binary N-body Binary N-body 

200 0.195 0.196 0.294 0.301 0.461 0.465 
400 0.184 0.166 0.294 0.279 0.521 0.505 
600 . 0.188 0.158 0.318 0.256 0.554 0.521 
1000 0.227 0.156 0.350 0.280 0.587 0.528 

Table 2: Anisotropy. 
The average anisotropy (Q) for Ca-Ca reactions, as in table 1. 

Method 
Momentum shrinking: -0.4362 0.2492 2.405 

Exact relativistic: -0.4298 0.2749 2.418 

Table 3: Momentum shrinking method. 

1.505 
1.648 

Comparison of our approximate sampling method with an exact relativistic sampling 
for a three-nucleon system with a eM energy of 5.33 GeV. The displayed quantities 
are: the average folding angle (A.6)' its variance, the average momentum squared 
(A.7), and its variance, for a sample size of 30000 momentum triplets. 

Figure 1: Pion-exchange diagram. 
The pion-exchange diagram considered. Initially the three nucleons have the four­
momenta PI, P2, P3, and the corresponding final values are p~, p~, p;. The pion 
exchanged between nucleons 1 and 2 has the four-momentum q, and the one subse­
quently exchanged between between 2 and 3 has the four-momentum q'. The inter­
mediate nucleon or delta has the four-momentum p. 
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Figure 2: Backwards scattering. 
The three columns refer to beam energies of 400, 800,.and 2000 MeV, respectively. 
The top row shows the angular distribution of the nucleons in the CM frame of 
two Fermi spheres for beam energies of 400, 800 and 2000 MeV. The quantity '!9 
denotes the angle of the nucleons with the beam axis, in the CM frame of the two 
Fermi spheres. The solid line represents the distribution of the three-body scattering 
process, in which we choose one particle from the projectile sphere and two from the 
target sphere. The dashed line represents the case of binary scattering. Here we 
choose one particle from each of the two Fermi spheres. The differential cross section 
for two-body scattering was taken from [7]. 
The middle row shows the fraction of nucleons scattered into a cone with an opening 
angle of 48° in the backward direction, as seen in the lab frame, and with a momentum 
larger than the Fermi momentum. The solid line (100%) refers to the case when all 
the collisions involve three nucleons, while c the dash-dotted line (50%) is obtained 
when half of the collisions are three-body collisions and half are two-body collisions. 
The dashed line (0%) again represents the case of pure binary scattering. 
The bottom row shows the anisotropy Q as a function of the elapsed average number 
of collisions per nucleon. The line styles are defined as in the middle row. 

Figure 3: Number of N-body collisions. 
Beam energy dependence of the number of effective N-body collisions in the simula­
tion of 40Ca+ 40Ca at b = O. The smooth curves represent interpolations of the values 
calculated at beam energies of 200, 600 and 1000 MeV per nucleon. 

Figure 4: N -body collision rate. 
Rate of effective collisions as a function of the reaction time. . The dashed curves 
correspond to a simulation including only binary collisions. The solid curves denote 
the contributions due to two-body (highest curve), three-body (middle curve) and 
four- body collisions (lowest curve). 

Figure 5: Blocking. 
Percentage of blocked N-body collisions as a function of the beam energy. The curves 
represent interpolations of calculated values at 200, 600 and 1000 A MeV. 

Figure 6: Out-of-plane flow. 
The probability distribution of the tilting angle, <PF, for different energies and impact 
parameters. The impact plane corresponds to <PF = O. Smooth curves have been 
generated from histograms with a bin size of go. 

Figure 7: Flow angle. 
Probability distribution of flow angles OF in 40Ca+ 40Ca for b=1.5 fm, at different 
bombarding energies. 
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Figure 8: Anisotropy;-
Probability distribution of the anisotropy parameterQ in 4

0Ca+40Ca for b=1.5 fm, 
at different bombarding energies. 

Figure 9: Transverse momentum. 
Aver~ge transverse momentum per particle projected into the impact plane, for dif­
ferent bombarding energies and impact parameters. The abscissa is the rapidity y, 
divided by the midrapidity Yo (equal to half the rapidity difference between the two 
Fermi spheres). The smooth curves have been obtained from histograms. The dashed 
lines correspond to the standard two-body calculation while the solid lines indicates 
the results obtained including N-body collisions. 

Figure 10: Rapidity density. 
Rapidity density of the baryons, dv/dy, as a function of the reduced rapidity y/Yo, 
for different bombarding energies and impact parameters. The curves are marked as 
in fig. 9. 

Figure 11: Ka.on yieid. 
Elementary kaon yield as a function of the kinetic energy available in the N -body 
cluster, for various cluster sizes N. The experimental points have been taken from 
ref. [35]. 

Figure 12: Relative kinetic energy. 
The average relative kinetic energy of those pairs of primary baryons that produce 
a kaon, as a function of the available kinetic energy in the N-body cluster in which 
they are produced. 

Figure 13: Energy spectra of the collision clusters. 
Energy spectra of the clusters, dlJN / dE*, occurring in a Ca-Ca reaction at several im­
pact parameters and bombarding energies. The numbers at the solid curves indicate 
the various cluster sizes N. For reference, the dashes curves show the results obtained 
with the standard BUU model where only pure two-body collisions are considered. 

Figure 14: Ka.on multiplicity. 
The contribution to the f(+ multiplicity, IJK, arising fromN-body collisions of various 
cluster size N. 

Figure 15: Microcanonical momentum distribution. 
The momentum and energy spectra obtained with our approximate picking procedure 
(solid), as compared with the exact relativistic result (dashed) for three nucleons with 
a total energy of Vs = 5.33 GeV. 
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