
'1 '
I
I

.J .

LBL-35439
Preprint

ITlI Lawrence Berkeley Laboratory
11:1 UNIVERSITY OF CALIFORNIA

ENERGY & ENVIRONMENT
DIVISION

Submitted to Energy and Buildings

Symbolic Modeling in Building Energy Simulation

1.-M. Nataf and F. Winkelmann

April 1994

ENERGY & ENVIRONMENT
DIVISION ---

CD
-'
0-

eQ .
(J'I
lSI

I
I CD
-'- I
0-0 ,
, 0 w
QI"C (J'I ,ee: +:> ee: w

N \0

Prepared for the U.S. Department of Energy under Conb·act Number DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-35439

Symbolic Modeling in Building Energy Simulation

Abstract

Jean-Michel Nataf* and Frederick Winkelmann

Simulation Research Group
Building Technologies Program

Energy and Environment Division
Lawrence Berkeley Laboratory

Berkeley, CA 94720

April 1994

We show how symbolic modeling is used in the Simulation Problem Analysis and Research Ker
nel (SPARK) for solving complex problems in building energy simulation. After a brief overview of
SPARK, we describe its symbolic interface, which reads equations that are entered in symbolic form
and automatically generates a program that solves the equations. The application of this method to
solving the partial differential equations for two-dimensional heat flow is illustrated.

1. Introduction
Buildings are extraordinarily complex physical systems. To model even a simple house with any

degree of accuracy requires solving hundreds of equations representing the interacting processes of heat
transfer, operation of heating and cooling equipment, and controls. Of the many computer programs
available for building energy simulation, virtually all use traditional programming techniques in which
subroutines in a computer language such as FORTRAN or C are written by hand to express and to
solve the equations. However, as buildings become even more complex with the introduction of
advanced technologies, and as the demand grows for more accurate simulation to support design of
better buildings, the traditional approach to simulation has become a deterrent The main reason for
this is that computer code is difficult to write and debug. Using traditional coding methods, only about
5% of development time is spent formulating the underlying mathematical equations that represent the
problem to be splved; the remaining 95% is spent on program coding and debugging.

In this paper we describe an alternative to traditional methods. We show how symbolic manipu
lation and computer algebra techniques in the Simulation Problem Analysis and Research Kernel
(SPARK) can simplify and expedite the creation of powerful simulation programs, reducing the
development time and leading to code that can be reused for other applications. Symbolic modeling
allows equations to be entered by typing them in the same form that they would be written on paper.
"Symbolic manipulation" software then interprets the equations, converts them automatically into com
puter code, and packages them as "equation objects~"

* Now at Groupe Infonnatique et Sciences Energetiques. ENPC. La Courtine-Cedex. Noisy Ie Grand. France.

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy. Office of Building Technologies. Building
Systems and Materials Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

- 1 -

But symbolic processing goes further than simply generating equation objects. It can also aggre
gate two or more equations into a "macro" object that can be stored in a library. These macro objects
can then be graphically displayed and connected into networks to fonn entire, customized programs for
simulating building systems of arbitrary complexity. The end result is that the program developer is
freed to concentrate on modeling rather than on writing and debugging thousands of lines of computer
code.

Section 2 gives a brief overview of the SPARK envirorunent Section 3 describes the use of sym
bolic manipulation and computer algebra to generate objects, macro objects, networks of macro objects,
and entire simulation programs. We conclude in Section 4 with an example application in which sym
bolic modeling is used to enter and solve the partial differential equations for two-dimensional heat
flow.

- 2 -

•.

•

2. The SPARK Environment
SPARK is an object-oriented environment for developing customized computer models for simu

lating building energy systems. Given the differential-algebraic equations that represent a physical sys
tem, SPARK generates an efficient solution procedure, then implements that procedure in a program
that it automatically generates in the C language. The overall organization of SPARK is shown in Fig
ure 1 [Anderson 1986, Buhl 1990].

Figure 1:

SPARK
.. -_ ... : .. .

USER CREATES
NEW OBJECTS

OBJECTS IN

AND LINKS
OBJECTS

OBJECTS LINKED
ON COMPUTER
SCREEN

l kernel

l Create
: simulation
l program

. . .
~::::::::::::::::::::::::::::::::::::::: t::::· . ::: 1::::::::::::::::::::::::::::::::i

~~1 1 USER INPUTS
RUN-TIME DATA

USER SELECTS
DISPLAY

· . · . , , , , · . · .

I f\ 1\ f\ 'I GRAPHICAL DISPLAY I V v v OF RESULTS

:Run
1 simulation
1 program

Configuration of the Simulation Problem Analysis and Research Kernel (SPARK).
Shaded boxes are programs; unshaded boxes are files. Ovals show user actions.

- 3 -

The user interacts with SPARK in four basic ways: (1) defIning objects (which represent the
equations of a physical system), (2) linking objects together to defIne the simulation problem to be
solved, (3) specifying run-time data (parameters and time-varying input data), and (4) specifying
desired output. The objects are defIned in text fIles, either as mathematical equations or as component
models in Neutral Model Format [Sowell 1989]. These fIles are processed symbolically producing C
language functions and objects that are stored in libraries.

Problems are defIned by interconnecting objects using the graphical user interface, producing a
problem specifIcation fIle in the Network Specification Language (NSL)[Anderson 1986]. From the
NSL deSCription, SPARK generates internal data structures based on graphs. Matching and reduction
algorithms are used with these graphs to automatically devise an efficient solution algorithm, producing
an executable program for. each particular problem. This program reads constant and time-varying input
data and solves the problem for each time step using Newton-Raphson iteration The output processor
reads the results file and generates graphical displays according to interactive user requests.

SPARK has been successfully used for solving problems encountered in building energy simula
tion, including air conditioning systems [Buhl 1990], desiccant dehumidification [Nataf 1991],
HV AC/lighting interactions [Sowell 1990), coupled natural convection and conduction [Buhl 1990},
and in-room convection [Nataf 1993}.

3. The Symbolic Interface
An elementary object in SPARK is an algebraic or differential equation (Figure 2). The

equation's variables can be thought of as links that can be given values or can be associated with vari
ables in other equations. Linking two objects means that one or more variables are shared by the equa
tions, as illustrated in Figure 3. Thus, SPARK needs to be told what the variables of each equation are
and how they are linked with the variables of the other equations. This information is supplied in
"object files" that encapsulate all information about each equation

The SPARK solution method requires functions, in the C language, that solve each equation in
terms of each of its variables. For an equation of the form

f(x,y,z, ...)=0,

this means that SPARK requires the inverse functions g, h, etc., such that

x=g(y,z, ...), y=h(x,z, ...), etc.

Although SPARK users can write the C code for the object and function fIles by hand, the pro
cess is tedious, error prone and time consuming. For example, for an equation with n explicit variables,
there are, in general, n C-functions to supply, plus a SPARK object fIle that tells which functions are
associated with which variables. An object corresponding to a physical process or component is usu
ally described by several equations, each of them having an associated object file and retinue of func
tion fIles.

- 4 -

Figure 2:

Figure 3:

An elementary SPARK object, which represents a single equation. The links of the
object are the equation variables.

--. , , , ,
, I

I xl ,
, I

xl xl
r-- ~

YI = Xl2 + cos x2 xI=log x2 + 1/x3 x2 x2
r-- -
x3 yl

E1 E2

x3 x2 yl

-------------- ---- ----- -------------
M 1

x3 I x2 I yl

E3 x3 =Zl(X2 - YI)

zl

I zl

, ,
I
I , , , , , , , , ,
I , , ,

---'

Linking elementary objects to represent a system of equations. In this example, ele
mentary objects E1 and E2 are linked to form a macro object, M1, which is then linked
to E3, another elementary object. The links are the variables that are shared among the
equations.

- 5 -

A system of equations is a set of elementary objects linked together, as shown in Figure 3.
Describing such an object requires creating all of the elementary objects and their associated C
functions and linking the elementary objects into a "macro" object

To automate the process of defining and linking objects we have developed a symbolic interface
to SPARK that is based on MACSYMA, a symbolic manipulation program [MIT 1983]. With this
interface, you need only type in the equations for the system that you want to model. The interface
consists of a 'set of commands, whose arguments are the equations. The commands invoke
MACSYMA, which in turn creates the appropriate SPARK fIles.

In the following, we describe how the interface is used to create an elementary object (which
corresponds to a single equation), a macro object (which corresponds to a system of equations), a
dynamic object (which corresponds to a differential equation), a dynamic macro object (which
represents a system of differential equations), and a complete simulation.

3.1 Generating elementary objects
The simplest object, called an elementary object, is a single algebraic or transcendental equation

with no time derivative. It is created with the following command:

makespark (eq, name, badlist)

where eq is the equation in symbolic fonn and name is the name of the object Badlist is a list of bad
inverses, i.e., a list of variables that you do not want the equation to be solved for because the vari
ables will be input parameters or will exhibit bad numerical properties as iteration variables.

As an example of makes park, consider the equation for infrared radiation exchange between two
surfaces of temperature T and To:

where e(8,cp) is the emissivity of the surface as a function of the direction that the radiation leaves the
surface. The following command makes this into an object called my Jad.obj (Figure 4) that requires
the variables 8 and cp to be input parameters, but retains the ability to calculate the temperatures T and
To, or the flux, q12:

makespark (q12=eps(th,phi)*(TA 4-TOA4), "my rad", [th,phi])

Here, eps is an external function invoked by the generated C code. After the object my _rad.obj is
created it is automatically stored in a library for later use as part of larger simulation problems.

As an another example of makespark - for the case of a piecewise-defined equation - consider
the above equation for radiation exchange, but with a linear approximation for small temperature differ
ences:

q12=e(8,cI»(r-T0
4

) if 1 T -T 01 >~T

Q12=heq (8,cI»(T-To) if 1 T-Tol ~T

where heq (8,cp) is the equivalent heat transfer coefficient in case of radiative linearization. The com
mand for the creating the new object is:

makespark ([[q12=eps(th,phi)*(TA4-TOA 4) , (T -TOr2>delta~],
[q12=heq(th,phi)*(T -TO), (T -TOr2<=delta~]], "my Jad2", [th,phi,delta])

- 6 -

\,

Here. heq and eps are external C functions present in the function library. Note that delta is in the
"badlist" since it would not be solved for but would be an input parameter to any problem using this
equation.

Figure 4:

r--,
: my Jad cony :
1 1
1 1
I 1

tll'l
q12 = E (9, q» (T~ - r:) C- = h 12 (Tz-T1)

dt

q> I 9 I q12 I TO I T2 T2 I Tl I c I h121 dt I Tldot I T_hist

-- ----1----
J I I

---1-------------------- -- -+- -- ---- --

1
1
1
1
I
1
1
1
1
1
1 __ ..J

SPARK macro object representing coupled radiative and convective heat transfer.
Conv is a dynamic object, which corresponds to a single ordinary differential equation.

3.2 Generating macro objects
A macro object is a system of equations. Macro objects are useful for representing complex phy

sical components. For example. a typical HV AC component, such as a heat exchanger, will have
several conservation laws to satisfy plus some constitutive behavioral equations. The number of equa
tions depends on how detailed the model is. Describing an entity as a macro object allows the user to
treat the entity as a whole - to instantiate it and link it to other objects - without having to worry
about its internal details.

The following command creates a macro object along with its subobjects (the elementary objects
corresponding to the individual equations) and associated C-Ianguage functions:

writemacro (sys,name, Iistofbadlist)

Here. sys is the equation system in symbolic form, name is the name of the macro object, and lis
tojbadlist is a list of bad inverses for each equation in the system.

The effect of writemacro is to put an equation system in network form. This command scans the
equations for common variables. states the links between equations with common variables, and gen-

'. erates all the elementary objects associated with the individual equations, along with the C functions
that solve the equations for particular variables.

For example, consider the equation system

- 7 -

qI2=E(O,cp)(r-To 4)

QI2+Q=O

The following command will generate a macro object named big rad.obj that corresponds to this sys
tem:

writemacro ([[[q12=eps(th,phi)*(T"4-TOA4)]], [[q12+q=O]]],
["big_rad", "my Jad", ["minus" ,[q12=in,q=outll], [[th,phi],[]])

Here we have specified that 0 and cp are bad inverses for the first equation; we have specified no bad
inverses for the second equation.

3.3 Generating elementary dynamic objects
An elementary dynamic object corresponds to a single ordinary differential equation (ODE). The

corresponding SPARK representation actually consists of two equations: the ODE itself (with the
derivative given a variable name, for example xdot) and the integrator equations, which state that xdot
is the derivative of x, ydot is the derivative of y, and so on. Thus the SPARK object will actually be a
macro object with two subobjects and associated C functions. The command for creating an elemen
tary dynamic object is

makedynspark (eq, name, badlist, dynlist)

where the first three arguments are the same as those in makes park and the last argument, dynlist, is a
list of pairs {[x,xdot],fy,ydot], ...] indicating that xdot is the derivative of x, etc.

Typically, a dynamic object would be a first-order nonlinear differential equation. For example,
the following command creates a dynamic object, conv.obj (see Figure 4), for the heat transfer equation

dT l
C Tt=h l2(T 2-T I)

for the case that the heat capacity, C, is always an input parameter:

makedynspark (C*Tldot=h12*(T2-Tl), "conv", [C], [Tl,TldotD

Here TIdot is the time derivative of Tl.

3.4 Generating dynamic macro objects
A dynamic macro object represents a system of differential-algebraic equations. The command for

creating this kind of object is

writedynmacro (sys, name, listotbadlist, dynlist)

where the first three arguments are the same as for writemacro, and the fourth argument is a list of
lists of the same type as dynlist in makedynspark.

Most components encountered in building thermal modeling are of this kind; an example is tran
sient heat conduction through a wall discretized into several nodes:

- 8 -

3.5 Generating macro-object networks
Some equation systems have a particularly simple and repetitive form. In heat transfer, for exam

ple, the electrical analogy for conductive, convective and radiative transfer leads to equation systems of
a simple form:

N

Ck= Laikbi
i=1

where b is any expression with index i (a vector) and a is any expression with two indices (a matrix).
This approach can be used, for example, for conveniently expressing the equations for the radiative
interaction between plane surfaces for which the shape factors have two indices and the flux has one
index.

The command for generating macro-Object networks is

writegenericnetmacro (n, name, objname, exprl, expr2, badinvlist)

where n is the number of equations, name is the macro name, and objname is the name of the elemen
tary object describing the equations. These equations have the form

n

expr I = L expr2
j=l

where expr 1 depends on index k and expr2 depends on indices k and j.

3.6 Generating a simulation
If the user does not intend to link any objects together by hand in the overall simulation file, and

wants everything to be created automatically, then the following syntax can be used:

writesimul (eq, name)

where eq is the overall equation system, including the equations that give the values of the inputs, and
name is the name assigned to the overall simulation fIle. The writesimul command creates everything
that is needed for a SPARK simulation to be ready to run, including the simulation and input files.

3.7 Generating a simulation containing two-dimensional PDE's
SPARK handles systems of algebraic and ordinary differential equations, but has no built-in way

to treat partial differential equations (POE's). Two approaches to handling POE's in SPARK are illus
trated in Figure 5. One approach is to resort to approximate closed-form solutions of the POE, as
determined, for example, by a variational method. The resulting equation is then used to create a
SPARK object using the symbolic interface, as described above.

A second approach is to observe that a fmite-difference representation of a problem yields a sys
tem of differential-algebraic equations that is well suited to treatment with the SPARK object-oriented
methods. In the 2-0 finite-difference discretization, each elementary bulk domain rectangle can be

'. described by the same object (Figure 6). Furthermore, there are only a few possible configurations for
the boundary elements (primarily comers and flat boundaries), which means that only a few types of
objects are needed to represent all possible boundary conditions (Figure 6).

- 9 -

The second approach has been implemented in SPARK. It handles second-order PDE's with
first-order boundary conditions on 2-D domains of any shape that is regular enough.

For steady state, the command is

writefindiff2Dsimul (name, objname, bcname, ditTeq, domain, constraint, dx,dy, badlist)

where name is the name of the overall simulation file, objname is the name of the bulk cell object,
bcname is the suffix for the name of the boundary condition object (prefixed with x _, y _ or xy_
depending on whether it is a left/right, top/down or comer boundary), diffeq is the PDE, constraint
specifies the boundary conditions, and domain is a 2-D function that is negative inside of the domain
and zero at the boundary. The quantities dx and dy are the spatial discretization steps in the x and y
dimensions, respectively, and badlist is the list of variables that we do not want to solve for.

SPARK can therefore handle problems as complex as natural convection in· two dimensional
enclosures, for example. You need only enter the PDE in symbolic fonn, together with the boundary
conditions and domain geometry. The C code needed to simulate the problem is then automatically
generated. An example of using writefindiff2Dsimul for generating a simulation of 2-D heat conduc
tion in a disk is given in the next section.

- 10 -

Figure 5:

Figure 6:

Variational
closed-form

solution

Partial differential
equation

Symbolic
interface

Finite difference
formulation and

boundary conditions

SPARK objects

and simulation

Two approaches for handling partial differential equations in SPARK.

Tc

Boundary Te Boundary _x,y
Tw Tew element element

x,y
Tns

Tns
Tc Tn

Tc

x,y

Tw Te Boundary
Twe element Tc

x,y

Ts

Ts

Finite difference objects in SPARK.

- 11 -

4. Example of Symbolic Modeling: 2-D Conduction
We consider the simulation of heat conduction in a disk. We take the disk to be a section through

an infInitely long rod. so that the heat conduction is in the two dimensions perpendicular to the axis of
the rod. The disk has a heat production tenn in the bulk domain and a Newtonian convection boun
dary condition. The conduction equation to be solved is

where T is the temperature. q is the bulk heat generation rate. k is the thennal conductivity. p is the
density. and cp is the specific heat capacity.

The boundary condition on the perimeter of the disk is

efT
-k-=h(T-To)

dn

where h is the heat transfer coefficient. To is the (constant) ambient temperature. and efT is the nonnal
dn

derivative of the temperature at the boundary.

The commands for generating the simulation for this problem are as follows for a disk with a
radius of l.Orn and a discretiza~ion of O.1m in x and y:

I*Disk with uniform heat generation, Newtonian convection 10ss*1
rO: 1.0;
circlel(x,y) := x"2+yA2_rOA2;
ett: [[-k/rO*(difT(temp,x)*x(x,y)+difT(temp,y)*y(x,y» = h*(temp(x,y)-tempO)]];
eqdif: [[k*(diff(temp,x,2)+difT(temp,y,2»+q = rho*ep*diff(temp,t)]];
writefindiff2Dsimul ("p2dyn", "p2dynelt", "bep2dynelt", eqdif, circlet,

ctt, 0.1, 0.1, [tempO,rho,ep,k,q]);
closefileO;

The SPARK solution for the disk temperature distribution at O. 1. 23 and 10 sec is shown in Fig
ure 7 for the following parameters: k=O.032 W/(mK). q=IOOOO W/m , h=400 W/(m2K), p=1020
kg/m3

, cp =0.24 J/(kg-K), initial disk temperature = 24C, and ambient temperature = 20C. The simula
tion that is automatically generated has 1741 objects or links, and 285 iteration variables.

- 12 -

' ... '

,-...
U
'-"

~
~
~
~
Q)
p.
8
~

,-...
U
'-"

~
~
~
~
Q)
p.
8
~

Figure 7:

100

80

t = 0 sec t = 1 sec
60

40

20 20

0 0

100
t = 2 sec t = 10 sec

80

40

20 20

0 0

SPARK solution for the x-y temperature distribution of a disk with 10,000 W/m3 of
internal heat generation. The ambient temperature is 20C. Initially the disk temperature
is a uniform 24C.

Conclusion
Symbolic modeling in SPARK allows the equations describing physical systems to be entered in

a natural form, relieving the model developer from having to write and debug computer code. Sym
bolic processing reduces model building time, generates component libraries for later reuse, and per
mits automatic generation of solutions to complex problems, even those involving partial differential
equations.

- 13 -

References

Anderson, J. L. 1986. A Network Definition and Solution of Simulation Problems, Lawrence Berkeley
Laboratory report no. LBL-21522.

Buhl, W.F. et al. 1990. Advances in SPARK, Proc. Third International Conference on System Simula
tion in Buildings, Liege, Belgium.

MIT 1983. MACSYMA Reference Manual, version 10, Mathlab Group, Laboratory for Computer Sci
ence, Massachusetts Institute of Technology, Cambridge, MA.

Nataf, J.-M. 1987. Automatic Modeling of Thermal Systems, Dissertation, Mechanical Engineering
Department, Univ. of California, Berkeley.

Nataf, J.-M. and F. Winkelmann 1991. Dynamic Simulation of a Liquid Desiccant Cooling System
using the Energy Kernel System, Lawrence Berkeley Laboratory report no. LBL-2961O.

Nataf, J.-M. and E. Wurtz 1993. Application of the SPARK Environment to 3D Air Flow Problems,
Proc. Building Simulation '93, Adelaide.

Sowell, E.F., and P. Sahlin 1989. Neutral Format and Automatic Translation for Building Simulation
Submodels, Proc. Building Simulation '89, Vancouver.

Sowell, E.F. and J.-M. Nataf 1990. Radiant Transfer due to Lighting: an Example of Symbolic Model
Generation for SPANK, Proc. Society for Computer Simulation Western Multiconference, San Diego,
and Lawrence Berkeley Laboratory report no. LBL-28273.

- 14 -

Ll--- ~ ._~.

LA~NCEBERKELEYLABORATORY
UNIVERSITY OF CALIFORNIA

TECHNICAL INFORMATION DEPARTMENT
BERKELEY, CALIFORNIA 94720

,'-- ._--

