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ABSTRACT 

It is shown that diffraction from a purely repulsive 

potential can be described by a simple extension of the 

Ford and Wheeler semiclassical analysis. The diffraction 

arises from interference between a "classically allowed" 

and a "classically forbidden" contribution to the scattering 

atDPlitude. A numerical example is presented to show that 

the semiclassical description is quite quantitative~ 
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I. INTRODUCTION 

The semiclassical theory ot elastic scattering--the scattering 

1 . 
of two atoms, for example, at least one of which :is in a S state--

1-'-3 
is one of the outstanding triumphs of molecular collision theory. 

Quantum effects, such as rai~bow structure in the differential 

cross se~tioi and glory oscillatibns iti the energy dependence 

of the total cross section, can be understood simply as interference 

between different classical-like contributions to the scattering 

amplitude. The description of these quantum effects afforded by 

semiclassical theory is, in addition, quantitatively accurate and 

thus a useful aid in analyzing experimental results. 

One quantum phenomenon for which the usual semiclassical 

'treatment
1

' 
2 

fails is diffraction from a monotonically repulsive 

potential. 
' 4 

If the potential V(r) is mo:notonically repulsive, 

then the classical deflection function 0(L) is also monotonic 

and there will thus be only one value of orbital angular momentum 

L which satisfies the classical condition 

0(L) .± e (1.1) 

Figure 1 shows such a monotonic deflection function and indicates 

the graphical solution of Eq. (1.1); In this situation the usual 

. 1 . 1 1 . 1 ' 2 . 1 'b . h . sem1c ass1ca ana ys1s g1ves on y one contr1 ut1on to t e sem1-

classical amplitude and there is thus no interference structure; 

i.e., for this monotonic case the usual analysis gives 

(1. 2) 
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(SC =semiclassical, CL =classical). It is known, however, that 

an interference structure can exist in these cas~s--it is seen 

experimentally5 and appears in a fully quantum mechanical calcula

tion6--and the usual conclusion is that such diffraction effects 

s;i.mply lie outside the realm of semiclassical theory. 

The purpose of this paper is to. show that a straight-forward 

1 2 extension of the usual semiclassical treatment ' accounts for 

these diffraction effects in a completely natural way; it is seen 

that even for the purely repulsive case they arise from interference 

of different classical-like contributions· to t.he scattering· amplitude. 

7 A similar analysis has been carried o~t by Knoll and Schaeffer, 
; 

with particular applicat:i.on to the case of a complex optical 

potential. The main difference between the pr~sent work and that. 

of ref. 7 is that here there is no explicit appearance of complex-

valued classical trajectories (although such are implicit), and 

the emphasis is on the ordinary case of a real potential function. 

The theoretical de~elopment is carried out in Section II, a~d a 

numerical example is presented in Section III to show that the 

description which results is also quite quantitative. 

.t 
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II. SEMICLASSICAL ANALYSIS 

The differential cross section for elastic scattering is given 

by 

o{8) (2.1) 

and the standard quantum mechanical expression for the scattering 

amplitude is 

f(8) 
1 oo 2in1 

(2ik)- L (21+1) (e -1) P 
1 

(cos8) 

1=0 

W. h h 1 . 1 . 1 . . . 1 , 2 
1t t e usua sem1c ass1ca approx1mat1ons: 

00 

.~ +j d1 
Li ' 1 
1=0 --

2 

+ 

WKB 
nl + n1 

sin[*+ (1~)8] 

[ _:!! (1 1) . 8]1/2 
2 2 s1n 

it is easy to show that Eq. (2.2) becomes 

f(8) 

where 

/ 

(2.2) 

(2.3a) 

(2. 3b) 

(2. 3c) 

(2.4) 
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00 

1±(8) = Jd1 L
112 

exp{i[2n(1) + 18]} 

0 

1 . 
and where 1 :: £ + 2 and n(1) is now the WKB phase shift. (The 

approximation in Eq. (2.3b), is valid only for 18 > 1; a semi

classical approximation valid for all 8, 0 < 8 < I is 

+ (si~B r/2 
J (18) 

0 

but this mo.re accurate approximation is not needed for our 

present purpoGes.) 

The next step in the normal development is to evaluate 

the integrals 1~(8) and I_(8) of Eq. (2.5) via the stationary 

(2.5) 

(2.6) 

h 
. . 8 p ase approx1.mat1on. For_ 1+(8) the stationary phase condition 

is 

8(1) 8 (2. 7) 

where 0(1), the classical deflection function, is. related to the . 

1 2 WKB phase shift in the usual way: ' 

8(1) 2n' (1) (2. 8) 

For the case of a monotonically repulsive deflection function, as 

shown in Figure 1, it is clear that Eq. (2.7) has one andonly one 

root; let 1
1 

(8) denote this root. The stationary phase approximatio~ 

then gives 1+(8) as 

·, 
' 

, .. 
• :• •• L 

···~ 
I 

I 
I 

i 
I 
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I+(8) "' [
2
ni

11 
] 

112 

exp{i(2n(L1 ) - 1
1

81) 
8' (11) 

The stationary phase condition for the integral I (8) is 

8(1) -8 

for which there are clearly no roots in the case of a purely 

(2.9) 

(2 .10) 

repulsive potential; within the stationary phase approximation 

one thus has 

I (8) "' 0 

and the net amplitude of·· Eq. (2. 4) is simply 

f(8) 

where 

£1 (8) 
-1 

k 

(2.11) 

(2.12) 

This is the usual result for the case of a monotonic deflection 

function,
4 

and the eros~ section which result~ is the purely 

classical expression, 

o(G) - oC1 (8) 
k

2 
sin8 IG' (L ) I 

1 

and thus shows no interference structure. 

(2.14) 
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The necessary extension of this standard analysis is to note 

that although Eq. (2.10), the stationary phase condition for I_(8), 

has no real roots, there will in general be complex values of L 

which satisfy Eq. (2.10), the mathematical meaning of which is the 

following. Finding no real points of stationary phase for the 

integral I (8), one analytically continues the integrand and looks 

for complex points o£ stationary phase, i.e., complex roots to 

Eq. (2.10); finding such a root, call it L
2

, the integral over L 

is deformed into a contour integral in the complex·L-plane which 

passes through L
2 

(which is also called a "saddle point"). The 

saddle point method, or method of deepest descent 9 is then applied 

to this contour integral, all of which gives the following asymptotic 

approximation to I (8): 

I (8) (2.15) 

L2 ~ L
2

(8) being the (complex) root of Eq. (2.10). One notes that 

the result for the asymptotic approximation to I (8), Eq~·(2.15), 

has exactly the same form as that for I+(8), Eq. (2.9), with L1 and 
i 

L2 being the roots of Eq. (2.7) and (2.10), respectively. 

In the language of Miller's "classical S-matrix" theory10 of 

molecular collisions one says that I+(8) has a "classically allowed" 

contribution--i.e., there is a real-valued classical trajectory for 

which the .final scattering angle is +8--and that I (8) has only a 

"classically forbidden" contribution--.i.e., no real-valued classical. 

trajectory has a scattering angle -8, but there are complex-valued 

·. ~~ 
._·,. 

·, 

1 
i 
'\ 
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ones which do so. If there is more than one complex root to Eq. 

(2.10), then one chooses the one for which the imaginary part 

of the phase (the classical action) in Eq. (2.15) is the smallest. 

(The imaginary part of the phase must always be positive; if 1
2 

is 

* a root of Eq. (2.10), then it. is clear that 12 , its complex 

conjugate, is al,so a root. If the classical '-action for the root 

. * 1
2 

has a negative imaginary part, then that .for 1
2 

will clearly 

be pos1tive and thus the desired choice of the two roots 1
2 

and 

With the asymptotic approximation to I (8) in Eq. (2.15), the 

scattering amplitude is now given by 

f(8) (2.16) 

with f 1 (8) given by Eq. (2.13), and with 

-1 l 2 

[ 

-1 ] 1/2 

-k . sin8 8'(1
2

) 

(Note again that the classically allo~ed term, f
1 

(8), and class~cally 

forbidden term, f
2

(8), hav:e essentially the same structure in 

terms of. their respective stationary phase points 1
1 

and 1
2
.) 

It is now clear that interference effects can appear in the 

cross section, 

(2.18) 
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and this is the origin of the diffraction effects discussed 

above. For highly classical-like systems one will have 

. (2.19) 

and the classically forbidden contribution will be negligible 

and diffraction thus absent. For light atoms and sufficiently 

low energy, however, it will survive. 

In concluding the Section it is_ interesting to show 

qualitatively that Eq. (2.10) will indeed have complex roots 

for typical atom-atom potential functions. The classical 

deflection function 0(1) has essentially the same algebraic 

behavior as the potential function V(r). If, for example, 

the potential is exponentially repulsive, then one will 

approximately have 

-1/L . 
0 

0(1) "" A e (2. 20) 

The roots of Eq. (2.10) in this case are given by 

- 1
0 

'X-n(-8/A) 

1
0 

'X-n(A/8) + in1
0 

(2n + 1) (2. 21) 

n = 0, ± 1, ± 2, ± 3, ... , the one for which the imaginary part 

of the action is positive and smallest corresponds to choosing 

n = 0. 

Another repu1~ive potential function commonly used is an 

l I 

j 

I 
! 
I 

J 
.I 

I 

J .·1 
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inverse power potential, 

V(r) '\.. 1/rs (2.22) 

the deflection function in this case will behave approximately 

as 

(2.23) 

for 1 not too small. The roots to Eq. (2.10) in this case are 

given by 

(2n + 1) 
(2.24). 

n = 0, ±'1, ± 2, •.. , the dominant contribution again corresponding 

to the choice 1 n = 0;/thus 

..;,1/s · 
1 0 8 cos(TI/s) (2.25a) 

1
0 

8-l/s sin(TI/s) (2. 25b)· 

It is interesting to· observe that for the Coulomb case, s = 1, 

Eq. (2.25) shows that 1
2 

is real and negative, i.e., there are no 

complex roots to Eq. (2.10). This is as it should be, of course, 

for it is well-known that the classical cross section happens to 

agree exactly with the quantum result for a Coulomb potential, and 

there is thus no diffraction in this case; fortunately, this extended 
\ 

semiclassical theory predicts none. Only for s > 2 does Eq. (2.25) 

give a complex value of 1
2 

with Re 1
2 

> 0. This simply says that 
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diffraction occurs only if the repul~ive wall of the potential 

is sufficiently "ha-rd". ,· 

\ 
' 
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III. NUMERICAL EXAMPLE 

To give a numerical illustration of the theory developed 

in the preceeding section we have chosen a monotonic.classical 

deflection function which shows prominent diffraction: 

8(1) 

where L0 is a constant. The particular repulgive potential 

function to which this corresponds can be determined11 but 

(3.1) 

it is irrelevant1 for our present purposes. The one parameter 

in the model, .L0 , is a measure of how quantum-like the system 

is, small (large) L
0 

corresponding to a quantum (classical)-like 

system; roughly speaking, L 0 is the number of partial waves 

which contribute significantly to the partial wave sum in Eq. 

(2.2). 

With the deflection function of Eq. (3 .1) one can compare 

the classical cross section (which is also the usual semiclassical 

result for this monotonic situation), our semiclassical cross 

section, and a completely quantum cross section. The phase 

shift is determined from the deflection function by integrating 

Eq. ( 2 . 8) , i.e . , 

2n(L) -f dL' G(L') 

L 

and for the deflection function in Eq. (3.1) this gives 

(3. 2) 



-12-

2Tl(L) (3. 3) 

-, 
The quantum cross section can then be computed from the 

partial wave expression, Eq. (2.2). 

The two points of stationary phase L
1 

and L
2

, the roots 

of Eq. (2. 7) and (2 .10), are easily found to be 

(3. 4a) 

.. , (3.4b) 

the clas~ical and semiclassical cross sections can then be 

computed from Eq. -(2.14) and Eqs. (2.13), (2.17)-(2.18),, 

respectively. 

Figure 2 shows the classical, semiclassical, and quantum 

mechanical cross sections for this model problem for L0 = 20. 

The diffraction effects are prominent for this case but the 

semiclassical theory describes them quite well. The classical 

result, of course, shows no interference structure. One can 

conclude, therefore, that the physical origin of diffraction 

is the interference between the two clasSical-like contributions 

to, the scattering amplitude discussed io Section II. 
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IV. CONCLUDING REMARKS 

~ One thus sees that diffraction is also accurately described 

... by semiclassical th~ory provided one includes the classically 

forbidden contribution to the scattering amplitude in addition 

to the usual classically allowed term. The analysis presented 

in Section .II is a simple example of the niore general classical 

10 
S-matrix theory in which one includes complex and real-valued 

classical trajectories which obey the appropriate boundary 

conditions. 

One usually assumes that classically forbidden contributions 

are negligible in comparison to classically allowed ones; even 

though the classically allowed contribution is indeed larger for 

the example treated in Section lit, the classically forbidden 

contribution is not entirely negligible. One may very well expect 

this also to be the case in applications of classical S-matrix 

theory to more complicated collision processes. 
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Figure 1. A typica~ classical defleccion function £or a purely 
~ 

repulsive potenti~l; the soltition of ,the equatiort 

1 
I 
1 
' 

G(L) = 8 is indicated. 

: ~ 

.J 

1 
l 
l 
j 

Figure 2. The classical (dotted line), semiclassical (dashed 

line), and quaritum mechanical (full line) cross 

sections corresponding to the classical deflection 

function in Eq. (3.1) with L
0 

= 20. : 

,, 



.. 

® (L} 

6 4 6 

-17-

~.-------------------------------------~ 

8--·---~--

L I 

Fig. 1 

L 
XBL 7412-7809 



.. .. 
•• •• 

•• •• 
• 

I'() 

0 

-18-

C\J 
0 

0 
lO 

0 
·~ 

0 
.rt') 

0 
C\J 

0 

0 

0 

•' 

-(/) 
Q) 
Q) 
'-
0' 
Q) 

"'0 -
Q) 

0 -00 
r-. 
eo:, 

""' r-. 
..J 
= ·><: 

N .. 
00 .... 
rz. 

·-~ 

;.it~ 

"'"!·_ 

.·l 

I 
.ll 

.;._ 

•: I~ 

·.··1 

··~. 

.r. 

·• 

", ... 
. ·•. 

'I _::~ 

~~l.' 
.. 

·' 



r-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 



":~ '. ,' ;;_£: 

TECHNICAL INFORMATION DIVISION 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

,, 
~' ~ 


