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Theoretical study of the conformation and energy of supercoiled DNA 

by 

Nathaniel G. Hunt 

Abstract 

The two sugar-phosphate backbones of the DNA molecule wind about each other 

in helical paths. For circular DNA molecules (plasmids), or for linear pieces of DNA 

with the ends anchored, the two strands have a well-defined linking number, Lk. If Lk 

differs from the equilibrium linking number LkO, the molecule is supercoiled. The 

linking difference ~Lk = Lk - Lko is partitioned between torsional defonnation of the 

DNA, or twist (~Tw), and a winding of the DNA axis about itself known as writhe 

(Wr). 

In this dissertation, the confonnation and energy of supercoiled DNA are examined 

by treating DNA as an elastic cylinder. Finite-length and entropic effects are ignored, 

and all extensive quantities (e.g. writhe, bend energy) are treated as linear densities 

(writhe per unit length, bend energy per unit length). Two classes of confonnation are 

considered: the plectonemic or interwound fonn, in which the axis of the DNA double 

helix winds about itself in a double superhelix, and the toroidal shape in which the axis 

is wrapped around a torus. Minimum energy conformations are found. For 

biologically relevant values of specific linking difference, the plectonemic confonnatipn 

is energetically favored over toroidal confonnations. For plectonemic DNA, the 

superhelical pitch angle a is in the range 450 < a:S 900 . For low values of specific 

linking difference 10'1 ( 0' = ~Lk / LkO), most linking difference is in writhe. As 10'1. 

increases, a greater proportion of linking difference is in twist. Interaction between 

DNA strands is treated first as a hard-body excluded volume and then as a screened 

electrostatic repulsion. Ionic strength is found to have a large effect, resulting in 

significantly greater torsional stress in supercoiled DNA at low ionic strength. Results 
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are compared with electron microscopy data and measurements of supercoiling-induced 

DNA conformational transitions. Good agreement with experimental results is found 

for DNA in monovalent salt solutions. 
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I. Introduction: DNA - a physicist's overview 

Of all the remarkable properties of the DNA molecule, this dissertation focuses on a 

small number. These are its topology, its elastic bend and torsion constants, and the 

fact that it is charged. Slightly more detail is included only when considering the 

conformational transitions which result from large torsional stress on the DNA. Using 

this simple model, the conformation and energy of supercoiled DNA are examined. 

For the benefit of readers with a limited biological background, there is a brief 

glossary of biological terms on page 100. 

The biological interest in supercoiling is substantial. Some of the specific 

biological issues related to DNA supercoiling are outlined below, in section I.B. There 

are also more general questions about supercoiling which the work presented here may 

help elucidate. Why is DNA supercoiling such a ubiquitous phenomenon? Does it play 

a regulatory role in DNA expression? Does it serve to store energy to drive DNA 

transcription? The results derived here do not answer these questions, but they provide 

a framework for considering the supercoiling phenomenon. 

Some specific examples of issues which can be understood based on this thesis and 

which previously caused some confusion are whether supercoiled DNA is toroidal or 

plectonemic, the likely shape of supercoiled DNA (i.e. superhelical pitch angle and 

radius), the partitioning of supercoiling-induced deformations between twist and writhe, 

whether the energy of supercoiling is purely a quadratic function of linking difference, 

why B-Z transitions occur in supercoiled DNA at low salt concentration while in linear 

DNA they require high salt, the salt-concentration dependence of supercoiling-induced 

cruciform formation, and the salt-concenu·ation dependence of enzymatically-induced 

supercoiling. 

A. Topology and DNA 
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Any two unknotted, disjoint, closed space curves have a linking number, Lk. 

Roughly speaking, Lk is the number of times the two curves wrap around each other. 

More rigorously, if the two curves are given by paramete11zations r (UI), S (U2), then 

(1.1) 

Lk can be either positive, negative or zero and is an integer. The sign of Lk can be 

determined by assigning orientations to the curves. Such an assignment is implicit in 

the parameterization of the curves in equation (1.1). All other quantities in this thesis 

are independent of parameterization. For the most palt, I will not play close attention to 

the sign of Lk since most results de11ved here are independent of this sign. 

In relating equation (1.1) to DNA, we can stUlt by considering the two sugar­

phosphate backbones of a DNA molecule. They wrap around each other in helical paths 

with a pitch of 10.4 base pairs (b.p.) or 35.4 A. This pitch is commonly called the 

helical repeat, hO. A closed circular piece of DNA (a plasmid) thus has a natural linking 

number, Lko, which is the number of base pairs divided by 10.4. Plasm ids vary greatly 

in size, roughly from 103 to 105 b.p., so that typical values for Lko range from 102 to 

1()4. 

We could also choose the two curves in equation (1.1) to be one of the sugar­

phosphate backbones of the DNA and the other to be the axis of the DNA double helix. 

This choice is preferable, as discussed below. and gives the same value of Lk. 
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In 1969, the mathematician James White (White, 1969) found that Lk can be 

expressed as the sum of two quantities, which Fuller (1971) later named twist (Tw) and 

writhe (Wr): 

Lk = Tw +Wr (1.2) 

Roughly speaking, the twist of a curve A about a curve B (Tw AB) is the number of 

times a vector from B to A goes around B. Tw AB does not in general equal TWBA, and 

twist does not have to be an integer. To define twist rigorously, a correspondence 

between the curves A and B must be deiined, i.e. for each point r (u) on curve A there 

isa corresponding point s (u) on curve B. This correspondence is easiest to visualize if 

the two points are close to each other, but this does not have to be the case. Let the 

vector from s (u) to r (u) be called z (u). For well-behaved curves and choices of the 

correspondence between them, z (u) has a component in the plane perpendicular to the 

tangent to s (u). The unit vector parallel to this planar component of z (u) is v AB. 

TWAB is then 

(1.3) 

where TB is the unit tangent to B. For a more detailed discussion, see the paper by 

White and Bauer (1986). 

Writhe is a property of a single space curve and is given by 

0.4) 
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The resemblance to equation (1.1) is not coincidental. A simple derivation of equations 

(1.2) - (1.4) from equation (1.1) is given by Frank-Kamenetskii and Vologodskii 

(1981). The derivation, which Frank-Kamenetskii and Vologodskii attribute to V.V. 

Anshelevich, depends upon expressing the two curves in equation (1.1) as r (u) and 

r (u) + e a (u) , where a (u) is a unit vector normal to the tangent vector r' (u). The 

parameter e must be small enough that Lk does not change if £ is decreased (i.e. in the 

terminology of differential geometry, r (u) and r (u) + £ a (u) fOlm a ribbon or strip 

(Fuller, 1971)). The region of integration in equation (1.1) can then be divided into two 

parts: a small neighborhood around the line where Ul = U2, and the remaining region of 

integration. It is not difficult to show that, in the tirst region, equation (1.1) reduces to 

equation (1.3), while the contribution from the remaining region yields equation (1.4). 

The paper by Frank-Kamenetskii and Vologodskii (1981) is considerably easier to 

follow than White's original paper, which u·eated generalizations of equations (1.1) and 

(1.2) in many dimensions. 

One property ofWr which can be deduced from equation (1.4) is that the writhe of 

a curve lying in a plane is zero. This can be seen from the numerator of equation (1.4). 

If r (u) lies in a plane, then the tangent vectors lie in the same plane, and the cross­

product is perpendicular to the plane. Therefore the dot product is zero. 

For the most part, the only forms of equation (1.4) used in this disseltation are the 

results for irumite single helices (Figure I) and infinite plectonemic or interwound 

helices (Figure 2). These are, for the single helix, 

Wr = N (1 - sin ex) (1.5) 

while for the plectonemic helix, 

Wr= N sin ex (1.6) 
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where N is the number of helical tums and a is the pitch angle of the helix (Fuller, 

1971). As usual, I pay little attention to the sign of writhe. Unless otherwise stated, 

Wr and a can be assumed positive. It is, however, wOlth noting that the handedness of 

the single helix and the plectonemic helix is opposite - i.e. a right-handed single helix 

has the same sign of writhe as a left-handed plectonemic helix. 

Fuller (1971) derived the expressions for the wlithe of single and plectonemic 

helices, equations (1.5) and (1.6), using geometrical arguments. He did this by 

considering the case in which the two curves are given by r (u) and r (u) + e a (u) (i.e. 

the two curves defme a strip) where r (u) describes either a single or a plectonemic helix 

and a (u) is the principal nonnal to r (u). In this case, the twist of the second curve 

'about the fIrst is known to be equal to the geometlic torsion of the curve. (In the general 

case, the geometric torsion of a curve is not equal to the twist of a pair of curves. Nor 

should the geometric torsion be confused with a physical torsional defonnation. The 

geometric torsion of a space curve is defined in Appendix 1.) The geometric torsion't of. 

a helix with pitch angle a and radius R is given by 

't = sin ex cos ex 
R 

(1.7) 

Each turn of the helix has length 2 1t R / cos ex , the total twist (in tums, rather than 

radians) of N turns of a helical strip is N sin ex . In the case of the single helix, each turn 

of the helix contributes a unit to Lk, whereas in the plectonemic case, the contributions 

to Lk from each strand cancel. Thus, equations (1.5) and (1.6) follow by applying 

equation (1.2). Again, I have not paid attention to aIithmetic signs. 
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Figure 1. Long-length limit of toroidal DNA. a) Helical path of the axis 
of the DNA double helix. R - superhelix radius; ex. - pitch angle of 
superhelix; 2 1t R tan ex. - pitch of superhelix. b) Cross-section showing 
excluded volume radius of the DNA. Rex - excluded volume radius. 
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Figure 2. Finite plectonemic helix with end loops. Each strand 
represents the DNA double helix. a - superhelix pitch angle; Rex -
excluded volume radius; 2 1t Rex tan a - superhelix pitch. 

7 



I have verified equations (1.5) and (1.6) by numerical integration of the general 

writhe expression, equation (1.4), for the cases of single and plectonemic helices (see 

Appendix n. It seems likely that the integration can be canied out analytically, given the 

simplicity of the results, but I have been unable to do this. 

Before applying these topological quantities to DNA, we re-write equation (1.2) in 

a more precise form: 

Lk =TWAB + Wrn (1.8) 

In words, the linking number of two curves A and B is the twist of A about B plus the 

writhe ofB. Alternatively, Lk could be expressed as the sum of TWBA and WrA. In 

applying equation (1.8) to DNA, there are several possible choices for the curves A and 

B. One choice would be to take A and B to be the two sugar-phosphate backbones of 

the DNA double helix. Another choice is to take A to be either one of the sugar­

phosphate backbones and B to be the axis of the DNA double helix. This second 

possibility turns out to be the most convenient choice for considering the energetics and 

conformation of supercoiled DNA. With this choice, a linear or planar piece of DNA 

has no writhe, and the twist of a relaxed piece of DNA, TwO, is just the number of base 

pairs divided by 10.4, i.e. LkO. With these definitions, we write 

~Lk =~Tw +Wr (1.9) 

where &k = Lk - Lko and ~ Tw = Tw - Two. 

A useful quantity is the specific linking difference 0': 

0' = ~Lk/ LkO (1.10) 
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cr is also called the superhelix density, but this is sometimes taken to imply writhe only. 

The term specific linking difference emphasizes that cr is the density of M.k, regardless 

of how it is partitioned into LlTw and Wr. 

An alternative topological descliption of DNA, known as surface linking theory, 

has proved useful for analyzing nuclease digestion of DNA bound in nucleosomes. The 

shortcomings of surface linking theory for plectonemically supercoiled DNA are 

described in section ILE.l. 

B. DNA supercoiling - biological relevance 

Supercoiled DNA was discovered by Vinograd et at. in 1965 (Vinograd et aI., 

·1965). Their work, described in a recent review by Lebowitz (1990), relied largely on 

sedimentation and electron microscopy studies of a plasmid. The pIincipal observations 

were that the same plasmid could have substantially different sedimentation coefficients, 

and that these coefficients were correlated with the appearance of the plasmids on 

electron micrographs. The plasm ids which ran more slowly appeared spread out while 

those which ran more quickly appeared coiled up with themselves, in what is now called 

a branched plectonemic structure. 

Although supercoiling was discovered in plasmids and is often studied in them, 

any piece of DNA which is topologically restricted can become supercoiled. Such 

topological anchoring can be provided by attachment to the nuclear membrane (paulson 

and Laemmli, '1977) or by large protein complexes bound to DNA, such as RNA 

polymerase and associated mRNA and Iibosomes. 

DNA supercoiling has been shown to be relevant to a number of biological 

phenomena. Plasmids isolated from bactelia are supercoiled, typically with specific 

linking difference cr = - 0.06. Liu and Wang (1987) demonstrated that transcription of 

DNA can generate positively and negatively supercoiled domains of DNA on opposite 
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sides of a transcribing RNA polymerase. Baker et al. (1986) showed that an 

intennediate in the replication of a plasmid was highly underwound. Studies by Nash 

(1990) and Bliska and Cozzarelli (1987) have demonstrated the central role supercoiling 

plays in DNA recombination. Sekiguchi and Kmiec (1989) have studied the role of 

DNA supercoiling in detennining the u·anscriptional activity of chromatin. 

The specific observations mentioned in the previous paragraph can be thought of as 

subsidiary to the larger question of the biological role of DNA supercoiling. A 

phenomenon as ubiquitous as DNA supercoiling must serve some essential biological 

purpose or purposes. Supercoiling may serve merely to facilitate DNA packing, as in 

chromatin. In chromatin, it is known that the wrapping of DNA around histone proteins 

gives the DNA net writhe, which can be made to manifest itself as supercoiling when 

the histones are removed. Supercoiling may also serve to regulate genetic expression by 

its influence on the rate of DNA u·anscription. While negative supercoiling 

(underwinding) enhances DNA transcliption in vitro, whether it regulates transcription 

in vivo remains uncertain (D.N. Cook, personal communication). 

One phenomenon related to DNA supercoiling which proves to be a useful test and 

application of the theory developed here is DNA conformational transitions. Whe.n 

DNA is supercoiled to a sufficient degree, it is prone to transitions which relieve the 

resulting stress, which is primarily torsional. The two confonnational transitions which 

we will examine are cruciform fOlmation and B-Z transitions. Both occur for cr < 0, i.e. 

for DNA which is underwound. CrucifOlm fOlmation can occur at DNA sequences 

which are inverted repeats. An example of an inverted repeat and the cruciform 

structure it can fonn is showp in Figure 3. Such a structure adds (N / 10.4) turns to the 

remaining DNA, where N is the number of base pairs in the crucifOlm. This relieves 

stress induced by supercoiling when cr < 0 (i.e. when the DNA is underwound). In the 
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GATTAAAGGATCTTCTTGAGATCCTTTTTTT 
CTAATTTCCTAGAAGAACTCTAGGAAAAAAA 

T 
C T 

T G 
T A 
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G C 
A T 
AT 
A T 

T T 
GAT TTT 
CTA AAA 

A A 
T A 
T A 
T A 
C G 
C G 
T A 
AT 
G C 
AT 

A C 
G A A 

Figure 3. Top: DNA sequence containing an inverted repeat 
(underlined). Bottom: The cruciform structure which can be formed 
by the inverted repeat. 
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B-Z transition, a section of the right-handed DNA double helix flips to form a left 

handed double helix. This adds approximately (N /10.4 + N /12.0) turns to the 

remaining DNA, where 12.0 is the helical repeat of Z DNA (Rich et ai., 1984). As in 

the case of cruciform formation, this process relieves stress induced by supercoiling. 

c. Some experimental techniques 

Of the two techniques used in early studies of DNA supercoiling, sedimentation 

and electron microscopy, the latter is still widely used. Sedimentation has been largely 

superseded by gel electrophoresis, in which DNA, being charged, is pulled through a 

gel by an electric field. As in the case of sedimentation, the rate at which DNA plasmids 

move through the gel is a function of their linking difference. With this technique, 

plasmids which differ only in their values of Lk, known as topoisomers, can be 

separated. 

One important type of experiment has been measurements of thermal distributions 

of topoisomers. In these experiments, plasm ids are put in solution with topoisomerase 

I, an enzyme which relaxes superhelical stress by making and then closing single-strand 

nicks in DNA. The resulting distribution of topoisomers is determined by gel 

electrophoresis and is Gaussian, implying that the free energy of supercoiling is 

quadratic in 0'. The consensus value is 

Esuper = 10 RT N (52 (1.11) 

where R is the gas constant and N the number of base pairs in the plasmid (Depew and 

Wang, 1975; Pulleyblank et ai., 1975). By comparing experimental results with the 

results of Monte Carlo simulations (see section 1.0), it is possible to determine values of 
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the DNA bend and torsion constants, Pbend and Ptwist (Shore and Baldwin, 1983; 

Horowitz and Wang, 1984; Shimada and Yamakawa, 1988). 

A related experiment is the ring-closure technique. Linear pieces of DNA are put in 

solution with DNA ligase, an enzyme which ligates the pieces together. It also makes 

plasmids oU,t of linear pieces of DNA. By examining the relative reaction rates, it is 

possible to determine the energy of supercoiling, as in the topoisomer distribution 

experiment Shimada and Yamakawa (1985, 1984) obtained values of Pbend and 

Ptwist from DNA ligase experiments by comparison with theoretical calculations based 

on the earlier work of Jacobson and Stockmeyer (1950) on the conformational entropy 

of simple polymers with excluded volume. Shimada and Yamakawa's theoretical 

treatment of the writhe of polymer confOlmations involves approximations which are 

only valid for short pieces of DNA and low values of Wr, as they note. 

The analysis presented in this thesis depends upon interactions between DNA 

double helices. Results. are taken from two expe11mental techniques which measure the 

effective DNA radius for interhelical interactions, known as the excluded radius. These 

are osmotic pressure measurements of the second virial coefficient of concentrated DNA 

solutions, and measurements of the sedimentation behavior of short linear pieces of 

DNA. 

In the osmotic pressure measurements (Yarmola et aI., 1985), DNA in solution is 

equilibrated with a DNA-free solution through a membrane which allows exchange of 

solvent and salt The second vilial coefticient is extracted by varying the DNA 

concentration. This coefficient is affected by the fact that the concentrations of the salt 

anions and cations will differ on different sides of the membrane. This is known as the 

Donnan effect and arises because DNA is itself a polyanion. By comparing the second 

virial coefficient with the cluster integral theory developed by McMillan and Mayer, an 

effective excluded radius for the DNA can be defined. The theory is involved, and an 

1 3 



introductory discussion and references can be found in Stigter (1987). A basic 

introduction to the Donnan effect is given in Richards (1980). 

Brian et al. (1981) studied the sedimentation behavior of concentrated DNA 

solutions in an ultracentrifuge. The concentration of DNA as a function of position (and 

hence as a function of pressure) within the ultracentrifuge is determined by measuring 

the absorbance at 302 nm. The theory is similar to that for the osmotic pressure case 

mentioned in the previous paragraph. Brian et al. give an inu·oductory treatment of the 

theory and provide references. 

D. Conformation and energy - previous theoretical work 

Fuller (1971) first applied equation (1.8) to DNA. In his 1971 paper he clearly 

outlined much of the math and physics of supercoiled DNA conformation which is 

given in this dissertation. He de11ved the equations for the writhe of single and 

plectonemic helices, equations (1.5) and (1.6), using the geometric arguments given 

above. Fuller also noted that, for sufficiently large D.Lk, the single helical conformation 

must become energetically favored over the plectonemic fOlm, since it can accommodate 

more writhe per length. This statement is made quantitative in section II.D. 

Benham' (1977, 1978, 1979, 1983) and Le Bret (1978, 1979, 1980, 1984) 

independently investigated the equations of equilibrium for an elastic rod under 

topological constraint. Benham and LeBret both found equilib11um solutions of the 

elastic equations which approximate toroids. However, they were also able to show 

that such conformations are mechanically unstable. The essential problem with this 

approach is the difficulty of incorporating helix-helix interactions (excluded volume 

effects). Benham and LeBret did not attempt to include these effects. This would not 

be a problem if the minimum-energy conformations did not involve excluded volume 

effects. However, plectonemic confonnations can yield arbitrarily large values of 
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writhe for arbitrarily small cost in bending energy if excluded volume effects are ignored 

(Fuller, 1971). This fact, demonstrated in section II.C, shows that excluded volume 

must playa central role in determining minimum-energy conformations. Benham 

(1982) nevertheless outlined the application of supercoiling to DNA conformational 

transitions (see chapter III). Le Bret (1984) developed a nice description of the behavior 

of a closed circle under increasing topological stress and the initial formation of the 

plectonemic conformation. 

The theory of elasticity analysis followed .by Benham and LeBret involved looking 

for solutions to the coupled equations 

.. 
M- -_ A .. dt A 2 AT" 

pbend t X ds + fJtwist rr po w t 

-0 

dM = Fxt 
ds 

(1.12) 

where M is the torsional stress, F is the force in the DNA (F is zero for DNA in the 

absence of excluded volume interactions), pL\Tw is the twist per unit length, t is the unit 

tangent vector, and s is the arc-length. A different but equivalent formulation of the 

problem is to write a static Hamiltonian for the energy per unit length: 

H = J3bend 1(2+ ~twist (2rr)2 (pL\Tw)2 + Hcxcl 
2 2 

(1.13) 

where 1( is the curvature of the DNA backbone and Hexci represents the excluded 

volume interaction. The previous theoretical studies discussed above ignored HexcJ, 

while those discussed below take HexcI to be a hard-body excluded radius of the DNA. 

I use an excluded radius in chapter II, while in chapter III Hexcl is a screened 

electrostatic interaction between DNA su·ands. 
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One conclusion which can be drawn from equations (1.12) or equation (1.13) is 

that minimum-energy or stationary solutions will always have constant twist density 

pATw. This result is left implicit in several of the earlier theoretical studies. 

Three studies previous to my work have focussed on an elastic treatment of the 

p1ectonemic supercoil. Tanaka and Takahashi (1985) published minimum-energy 

conformations for finite-length loops, i.e. plectonemic helices with end loops (Figure 

2). Tsuru and Wadati (Tsuru and Wadati, 1986; Wadati and Tsuru, 1986) did the same, 

with an improved model of the end loops. Neither study examined the resulting 

conformations in detail, and the inclusion of end loops, while clearly of some inherent 

interest, precluded the general conclusions we draw (see chapter II). Camerini - Otero 

and Felsenfeld (1978) considered a section of plectonemic supercoil and ignored end 

effects, but they,committed several elTors in their analysis. They en·oneously equated 
\ 

the results of their model with the empilical quadratic dependence of the energy of 

supercoiling on linking difference. They also inu·oduced a Lagrange multiplier 

c:onstraint which they did not include consistently in their analysis. One result of these 

errors was their conclusion that the pitch angle a of the plectonemic helix lies in the 

range 450 < a. < 540 . In chapter II we show the range to be 450 < a::;; 900 . 

One theoretical approach to DNA supercoiling which has proved useful is Monte 

Carlo simulations. The basic idea of the Monte Carlo technique, as proposed by 

Metropolis et al. (1953) and as applied to DNA supercoiling, is to simulate an ergodic 

walk through phase space, calculating the intemal energy at each conformation 

considered. The (n + l)th confOlmation is generated from the nth conformation by a 

random re-arrangement. If the energy calculated for the (n + 1)th conformation is less 

than that for the nth conformation, the step is allowed. If the energy increases, the step 

is allowed with probability exp[( E (n ) - E (n + 1) ) / kBT] , where E (n + 1) and E (n) 

are the energy of the (n + l)th and nth confOlmation, respectively. The principal 
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advantages of the technique are its flexibility and the fact that entropic effects are 

included. 

The application of the Monte Carlo technique to DNA supercoiling can be thought 

of as a simulation of the topoisomer disttibution expeliment (see section I.C). Random 

closed chains are generated. The internal energy of each confonnation (as opposed to 

the free energy) is taken to be the bend energy. Since the conformations used consist of 

straight segments rather than a continuously t1exible rod, the bend energy is the sum of 

the bend energies at each of the joints. The steps to new conformations usually consist 
, 

of random rotations of a small number of the chain segments. Excluded volume effects 

are enforced by rejecting any steps which would bling any portion of two segments 

within an excluded volume diameter of each other. Effects of twist can be easily 

included, assuming that, for nicked plasmids (i.e. plasmids which are not topologically 

constrained due to nicks in the sugar-phosphate backbones) twist and writhe are 

statistically independent The twist energy for the Monte Carlo study is identical to that 

given in equation (1.13). 

One problem with Monte Carlo simulations had been an inability to examine high­

writhe conformations, since these occur rarely. This problem has recently been 

overcome by biasing the walk through conformation space in favor of high-writhe 

conformations (Klenin et ai., 1991). 

In spite of the recent success of the Monte Carlo treatment, I believe there is still 

plenty of room for the approach outlined in this dissertation. A major drawback of the 

Monte Carlo technique is the amount of computer time required. This in tum limits the 

molecular length and level of supercoiling which can be simulated. For the same 

reason, the treatment of the electt'ostatic interaction has been limited to a simple hard­

body excluded volume. All of these limitations are overcome in the approach developed 

here. There are also subtle numelical and statistical pitfalls in the Monte Carlo 
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technique, so it is helpful to have independent theoretical approaches. A comparison of 

the results of this thesis and the Monte Carlo results is given in section III.D.3. 

E. Entropic Contributions to the Free Energy of Supercoiling 

For the most part, entropic effects are not included in this dissertation. In this 

section, we survey the approaches which have been taken to the conformational entropy 

of supercoiling. 

The problem of conformational degrees of freedom can be thought of formally as 

the evaluation of the partition function (Shimada and Yamakawa, 1985) 

Z (kn• (rl) = f D (;1 exp [ -13 u (f)] (1.14) 

where the integral is a Wiener functional integral (Freed, 1987) over closed chains {r}, 

kn denotes a given family of knotted curves (usually kO, unknotted curves), and U {r} 

is the sum of bend and twist energies for the confolmation {r} and the given linking 

number. In practice, equation (1.14) seems inu·actable when topological constraints and 

excluded volume are included. 

There have been a number of approaches to evaluating entropic contributions to the 

free energy of supercoiling. Most of these are intended to help interpret the results of 

topoisomer distribution and ring-closure experiments (see section I.C). The studies can 

be divided into analytical analyses and Monte Carlo models. 

The most successful analytical model of topoisomer and li.ng-closure data is that of 

Shimada and Yamakwa (Shimada and Yamakwa, 1985, 1984; Yamakawa, 1984). 

Their approach, based on the earlier work of Jacobson and Stockmeyer (1950), was to 

consider only small deviations from equilibli.um confolmations derived from ·the theory 
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of elasticity by LeBret (1984). Since LeBret considered only figure-8 and toroidal 

conformations, Shimada and Yamakawa's analytical results may be questioned for 

Wr ~ 2, but this is the upper limit of the values of Wr which they considered. They did 

in fact revise their conclusions in a later Monte Carlo study (Shimada and Yamakawa, 

1988). 

A recent analytical study is that of Hearst and Hunt (1991). In that paper, the 

plectonemic helix with end-loops is approximated by the leading telms of a spatial 

Fourier transform. Numerical calculations ofWr are canied out for these helices and 

for other combinations of simple sines and cosines. It is found that the plectonemic 

helices have greater writhe per bend energy than other simple space curves. By 

comparing spatial thermal r.m.s. deviations with the dimensions of the lowest energy 

plectonemic conformations, it is concluded that, at sufficiently high 10'1, the en tropic 

degrees of freedom are greatly restricted and the molecule cannot deviate significantly 

from a plectonemic helix. 

The analysis of Hearst and Hunt (1991) has· a closer bearing on the work presented 

in this dissertation than the other treatments of entropy in the literature, since it is 

applicable to the cases of high 10'1 and long molecular length. At a number of points, the 

analysis depends on linear approximations to non-linear expressions, such as the 

expressions for contour length, bend energy and writhe. 

There have been quite a number of Monte Carlo treatments of the free energy of 

supercoiling (Jacobson, 1969; Vologodskii et aI., 1979; LeBret, 1980; Chen, 1981; 

Iwata, 1983; Levene and Crothers, 1986a,b). The most successful of these have been 

the analysis of ring-closure data by Shimada and Yamakawa (1988) and the recent study 

of Klenin et al. (1991). In the latter, the problem of simulating large values of Wr has 

been largely overcome by biasing the Monte Carlo walks to favor high-writhe 

conformations. As noted above and in section III.E, the method still suffers from 
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requirements for large amounts of computer time and consequent limits on the molecular 

length, values of lal, and treatments of inter-strand interactions which can be modelled. 
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II. Elastic Model of Supercoiling with Hard-Body Excluded Volume 

A. Introduction 

In this chapter we present elastic models of plectonemic and toroidal supercoiling. 

The electrostatic interaction is treated as"a hard-body excluded volume. This material is 

mostly covered in the paper by Hunt and Hearst (1991). 

All extensive quantities (e.g. writhe, bend energy) are treated as linear densities 

(writhe per unit length, bend energy per unit length). Minimum energy conformations 

are found. For low values of specific linking difference, most linking difference is in 

writhe. As specific linking difference increases, a greater proportion of linking 

difference is in twist Ionic strength effects are discussed, and it is found that variation 

of excluded volume with ionic strength has a large effect, resulting in significantly 

greater torsional stress on supercoiled DNA at low ionic strength. For biologically 

relevant levels of specific linking difference, the plectonemic conformation is 

energetically favored over the toroidal fOlTIl. 

Many of the results in this chapt;?f can be summarized by two main points. The 

fIrst is that the writhe per unit length, pWr, for a plectonemic helix has a maximum 

value, pWrmax. For low values of specific linking difference 10'1 (0' = ~Lk / LkO), 

most linking difference can be taken up in writhe at very little energetic cost At greater 

values of 10'1, where the writhe density is a substantial fraction of pWrmax, linking 

difference goes increasingly into twist, at greater energetic cost. The energy of 

supercoiling which results is not simply a quadratic function of specific linking 

difference, as has often been assumed based on extrapolations of measurements made 

over limited ranges of specific linking difference (Depew and Wang, 1975; Pulleyblank 

et ai., 1975; Horowitz and Wang, 1984). 

The second main point is the importance of DNA excluded volume. Osmotic 

pressure measurements of Donnan equilihria (YmTIlola et aI., 1985), measurements of 

23 

\ 



the sedimentation behavior of short pieces of DNA (Brian et ai., 1981), and a theoretical 

treatment of the counter-ion atmosphere of DNA (Stigter, 1987) all show that the DNA 

exc1udedvolume radius Rex is a strong function of ionic strength, varying from about 

15A at high ionic strength to over 100A at low ionic strength. pWrmax is 1/(4n: Rex), 

so that six times more linking difference can be taken up by writhe at high ionic strength 

than at low ionic strength. Thus at low ionic strength, linking difference starts going 

into twist at much lower values of lal , resulting in significantly greater torsional stress. 

Since torsional stress can induce DNA conformational transitions (Benham, 1987; Peck 

and Wang, 1983; Gellert et at., 1979; Lilley, 1980; Panayotatos and Wells, 1981; Lee 

and Bauer, 1985; Lyubchenko and Shlyakhtenko, 1988) this effect may account for 

some of the ionic strength dependence of transitions induced under superhelical stress at 

low ionic strength (Singleton et aI., 1982; Nordheim and Rich, 1983; Singleton, 1983; 

Kozyavkin et at., 1990). 

B. Formulation 

1. Bend energy, twist energy, writhe and twist 

Giving a DNA molecule twist or writhe requires energy. In this chapter we 

calculate the bending and twisting energies of two DNA conformations - the interwound 

form, or plectonemic helix (Figure 2); and the toroidal or solenoidal form (Figure 1). In 

both cases we consider the limit of long molecules and ignore end effects. All extensive 

quantities (e.g. writhe, bend energy) are treated as linear densities (wIithe per length, 

bend energy per length, etc.). DNA is treated as an elastic rod characterized by a 

torsional rigidity f3twist, a bending rigidity ~bend , and an excluded volume radius 

Rex. 

Changing the twist from its equilibrium value has an energy cost per unit length 
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(2.1) 

where pEtwist is the twist energy per unit length and p.6. Tw is the deviation from the 

equilibrium twist per unit length. The factor of (2n)2 converts twist from turns to 

radians, as required by the usual definition of Ptwist. 

The axis of a DNA molecule with net writhe curves in three dimensions. The , 

bending energy per unit length, pEbend. of a DNA molecule IS 

= Pbend"..2 
pEbend 2 '" (2.2) 

where Pbend is the bending constant and K is the curvature of the molecular axis. 

Changing the writhe of a DNA molecule changes the bend energy of the molecule, but 

there. is no general relation between wlithe and bend energy such as the relation 

equation (2.1) between twist and twist energy. The energy cost of adding or subtracting 

writhe depends on the molecule's specific geometry and is different for the plectonemic 

and toroidal conformations. 

2. Writhe per unit length 

The writhe of a space curve r(u), where u is some parameterization of the curve, is 

given by equation (1.4) (White, 1969; Vologodskii et al., 1979). Writhe is a global 

property of a curve. If u is the arc-length rather than an arbitrary parameterization, we 

can define a local quantity, the wlithe per unit length, by 
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pWr (uo) = _1_ 
41t 

C' 

du' 

( -( ) _""7 ( '» (d r (u») d 7 (u') 
r Uo IUd x d ' 

u Uo u 

(r (uo) -7 (u,»3 
(2.3) 

For the infinite helices considered in this chapter, p Wr is independent of position on the 

curve, since the helices are spatially homogeneous modulo a translation and rotation, 

neither of which affect the writhe integral. 

The curve r(u) is taken to be the axis of the DNA double helix. For a discussion of 

other possible choices, see section ILE.l. 

The sign of the writhe depends on the handedness of the helix. The writhe of a 

plectonemic helix is positive if the helix is left-handed, while the writhe of a single helix 

is positive if it is right-handed. In this chapter we take a , cr and pWr as positive. The 

results for a < 0 are identical to those for lal, the only difference being the handedness 

of the helix. 

One turn of a helix of radius R has length 2 1t R / cos a . Using equation (1.5) 

and equation (1.6), the writhe per unit length for a plectonemic helix is 

while for a single helix 

pWr = sin a cos a 
21tR 

W 
_ (1 - sin a ) cos a 

p r- 21tR 

(2.4) 

(2.5) 

Equations (2.4) and (2.5) are exact for infinite helices, but only approximate for 

fmite helices. The end effects can be calculated by comparing equations (2.4) and (2.5) 

with the exact results given by equation (2.3). Such a comparison is calTied out in 
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Appendix I. For helices of more than two turns, end effects are negligible. Therefore 

the results of this chapter can be applied to finite helices without altering the expressions 

for pWr. 

c. Energetics of the Plectonemic Helix 

Fuller (1971) pointed out that a plectonemic helix has a high value of writhe per 

bend energy. In fact, the energy cost can be made arbitrarily small if the two strands are 

allowed arbitrarily close - i.e. if excluded volume effects ~and end effects) are ignored 

(see below). The plectonemic helix was therefore a promising candidate for the tertiary 

structure of superhelical DNA. One can also anive at the interwound or plectonemic 

helix as a plausible structure by twisting a stling or piece of tubing (LeBret, 1984). 

For the plectonemic helix, R is taken to be the DNA excluded volume radius, Rex. 

The curvature K of a helix with radius Rex is 

so the bend energy per unit length pEbend is 

pEbcnd = 

Using equation (1.2) in the form 

~OC!1d cos4a 

2 Rcx2 

p~Tw = ..JI. - pWr 
ho 
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where ho is the equilibrium helical repeat (of the DNA double helix, not of the 

superhelix) in units of length, the total energy per unit length, pEtot, is, for the 

plectonemic helix 

Pbend cos
4
a + Ptwist (21t)2 [JL _ sin a cos a] 2 pEtot = pEbend+ pEtwist = -'------

2 Rex 2 2 ho 2 1t Rex 
(2.9) 

pEtot is plotted in Figures 4 - 6 as a function of a for different values of cr and Rex. 

The energy minimum for the plectonemic helix always lies in the pitch angle range 

(2.10) 

where Clopt denotes the pitch angle con·esponding to minimum total energy. This is 

because the writhe per unit length, pWr (given in equation 2.4), has its maximum 

pWrmax = 1/(41t Rex) at a = 450 , whereas the writhe per bend energy 

Wr = pWr = Rex sin a 
Ebend pEbend 1t A cos3rv fJbcnd - u\, 

(2.11) 

becomes infinite as a ~ 900 . For low values of superhelix density cr, aopt will be near 

900 , where writhe is energetically cheap. As cr increases, aopt decreases towards 450 

where writhe is more costly, but pWr is greater. Any conformation with a < 450 

(Torbet and DiCapua, 1989) is not a minimum energy confonnation, since there is then 

a conformation with pitch angle a' = 900 - a which has the same pWr (and therefore 

the same twist energy) but with lower bend energy. 

28 



120 . 
Q. 

,l;). 

<lJ -0 80 e -~ 
p. 

>. 
eL 
So. 40 <lJ --~ 

o 
50 60 70 80 90 

Pitch angle, degrees 

Figl:lre 4. pEbend (x's), pE1Wisl (squares) and pEtot (triangles) as functions of 

superhelix pitch angle. PEtwist is zero when the writhe density pWr equals the linking 

difference per unit length, a / hO. Rex = 30A, a = 0.05, 

~bend = ~lwist = 2 x 10-19 erg-cm. 
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Figure 5. pElOt as a function of pitch angle for different values ofa. Squares - cr = 0; 

+'s - cr = 0.02; triangles - a = 0.04; open circles - a = 0.06; solid circles - cr = 0.08. 

The optimum pitch angle decreases towards the limiting value of 450 as cr increases. 

For all curves, Rex = 30A, I3bend = I3twist = 2 x 10-19 erg-em. 
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Figure 6. pEtot as a function of superhelix pitch angle for different values of the 

excluded volume radius Rex. x's - Rex = 20A; squares - Rex = 40A; +'s - Rex = 60A.; 

triangles - Rex = 80A. For all curves, (j = 0.05, ~bend = ~twist = 2 x 10-19 erg-cm. 
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We can now demonstrate the fact that, in the absence of excluded volume, the 

plectonemic conformation can give unbounded values of writhe for a finite cost in bend 

energy. The bend energy density is given by equation (2.7). If, as R is decreased, <X is 

increased so that cos2<x I R stays constant, then pEbend does not change. In the same 

limit, the writhe density given by equation (2.4) increases without bound. 

The model can be parameterized in telms of pWr in place of the pitch angle <x. 

Using equation (2.4) we have 

(2.12) 

so that, substituting into equation (2.7), 

(2.13) 

Equation (2.13) can be thought of as the energy cost of putting linking difference into 

writhe. Equation (2.13) is plotted with the corresponding expression for twist, equation 

(2.1), in Figure (7). 

Minimum energy confonnations can be found by minimizing the total energy pEtot 

with respect to pitch angle <x. Setting dpEtot I da to zero gives 

21t Rex JL = 2 c cos3a sin a + sin a cos a 
ho sin2a - cos2a 

(2.14) 

where c = f3bend / f3twist. Equation (2.14) is an expression for the pitch angle napt 

which minimizes pEtot for a given Rex and cr. Using equation (2.14), the values of 

pWr, pTw, pWr hO I 0' and pEtot which COlTcspond to aopt are plotted as functions of 

0' in Figures 8 - 10. 
! 
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Figure 7. Energy cost of. writhe (circles) and twist (x's). The twist cost is given by 

equation (2.1). the writhe cost by equation (2.13). The curve for writhe does not go 

beyond the value of maximum writhe density, or hO pWrmax = 0.094 in this case. At 

~he point pVVr = pWrmax, equation (2.13) has a fmite maximum, ~bend/(8 Rex2), but 

the slope of the curve is infinite. This figure should not be confused with Figure 8, 

which gives the distribution of twist and bend energies for energy-minimum 

conformations, or with Figure 9, which gives the distribution of twist and writhe for the 

same conformations. Rex = 30A, ~bend = ~twist = 2 x 10-19 erg-cm. 
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Figure 8. Bend (squares), twist (x's) and total (triangles) energies as functions of cr for 

minimum energy confonnations. As cr increases. a: greater proportion of superhelicity 

goes into twist. and twist. energy dominates. Rex = 30A, ~bend = ~twist = 2 x 10-19 

erg-em. 
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Figure 9. Superhelicity in twist (hO pL\Tw) (squares) and writhe (hO pWr) (x's) as 

functions of 0", for minimum energy conformations. The sum of the two quantities is 0". 

pWr approaches pWrmax as 0" approaches infinity. Rex = 30A, Pbend = Ptwist· 
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Figure 10. Proportion of superhelicity in writhe, hO pWr I cr, as a function of cr, for 

minimum energy confonnations. Rex = 30A, Pbend = Ptwist. 
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If f3bend = f3twist = f3 (c = 1), the expressions above have a simpler form and 

optimum values can be given as explicit functions of cr. For example, the values of 

pEtot, pWr and ex for minimum energy conformations are 

(2.15) 

(2.16) 

ex = 1t _ l Tan·1 [4 1t Rex crJ 
opt 2 2 ho (2.17) 

Equations 2.15 - 2.17 do not differ much qualitatively from optimized values obtained 

using equation (2.14) for c in the range of its expcl;mental values (roughly between 

0.67 and 1.5). They can therefore be used to gel an idea of the approximate behavior of 

pEtot and pWr. 

D. Comparison of plectonemic and toroidal structures 

An alternate structure to the plectonemic helix is a toroidal stl1lcture ~ In the limit of 

infmite length, the toroidal stl1lcture becomes equivalent to a single helix (Figure 1). 

While most experimental evidence favors the pleclonemic fOlm for DNA in solution 

(Boles et al., 1990; Spengler et aI., 1985) there have been some repOlts of evidence for 

the toroidal structure (Brady et aI., 1987, 1983). Fuller (1971) noted that, at 
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sufficiently high specific linking difference, the single helix must become energetically 

favored over the plectonemic helix, since p W r has a greater maxim urn value for the 

single helix than for the plectonemic helix. By calculating the energy per unit length of a 

single helix and comparing the results with those obtained above for the plectonemic 

helix, we will show that the plectonemic helix is energetically favored over the single 

helix for realistic values of (j and excluded volume radius Rex. 

For the single helix, R is not equal to the excluded volume radius Rex. We will 

momentarily disregard excluded volume effects while finding the minimum energy 

conformation for the single helix. WithpWr given in equation (2.5), pEbend from 

equation (2.7) (with R in place of Rex), and pEtwist again given by equation (2.1), the 

total energy per unit length, pEtot, for the single helix is 

pEtot 
= I3bend cos4a + I3twist (21t)2 [JL _ (1 - sin a) cos a] 2 

2 R2 2 ho 21t R 

For fixed R, setting dpEtot / da to zero gives 

(j 2 c cos
3
a sin a . 

21t R- = 
ho 

--------. - + cos a - sm a cos a 
2 . . 2 

cos a + sm a - sm a 

Fixing a and setting dpEtot / dR to zero gives 

(j 
21tR- = 

ho 

3 
C cos a 
----+ cos a - sin a cos a 
1 - sin a 

(2.18) 

(2.19) 

(2.20) 

Equations (2.19) and (2.20) give equal values only at the non-physical point a = 900 

and R = O. Therefore no energy minima for both R and a exist inside the interval 

00 < a < 900 , and any such minima must occur at either a = 00 or 900 . At the limit 
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<X ~ 00, equation (2.20) becomes 

R = (1 + c) ho 

21t a 

Substituting this into equation (2.18) at cx = 00 gives 

At <X = 900, all of the linking number difference is in twist, so that 

P Etot = ~twist (21t)2 [.sL] 2 
2 ho 

(2.21) 

(2.22) 

(2.23) 

Equation (2.23) is greater than equation (2.22) for any c> 0, so the global minimum in 

energy is given by equation (2.22) with cx = 00 and R given by equation (2.21). 

For c = 1, the total energy of the single helix without excluded volume, equation 

(2.22), can be easily compared with the total energy of the plectonemic helix, equation 

(2.15). The plectonemic helix has lower total energy until a I ho exceeds 23/2pWrmax, 

generally quite a large value of lal. When excluded volume effects are included, as 

outlined below, the transition to the toroidal fonTI takes place at an even greater value of 

lal. 

The finite excluded volume radius of the DNA double helix puts a lower limit on 

the pitch. The pitch of a helix is defined as the displacement per turn and is 2 1t R tan cx. 

In Figure 2 it is shown that the minimum pitch with an excluded radius Rex is 

2 Rex I cos <x. Setting the two pitch expressions equal gives 
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sin a = Rex. 
1t R ' [ 

R 2 ]1/2 
cos a = 1-~ 

1t2 R2 
(2.24) 

Equations (2.23) can be substituted into equation (2.18) to get the energy at the smallest 

allowable pitch angle when excluded volume is taken into account. The resulting 

expression can be minimized with respect to R to get the global energy minimum. We 

did this numerically and plotted the results in Figure 11, together with the corresponding 

results for the plectonemic case. As Fuller predicted, the toroidal form becomes 

energetically favorable at sufficiently high 10'1, but the values of 10'1 at which this occurs 

are much greater than what is physiologically accessible. 

E. Discussion 

1. Alternate topological descriptions 

Equation (1.7) relates a property of two curves, linking number (or linking 

number difference), to another property of two curves, the twist of one about the other, 

and a property of one of the curves, writhe. White and Bauer pointed out that, in 

applying equation (1.7) to DNA, there are several possible choices for the curves which 

do not give the same values for twist and writhe (White and Bauer, 1986). The usual 

choice is to take one curve to be the axis of the DNA double helix and the other to be 

either of the sugar-phosphate backbones. In this case, the writhe is the wlithe of the 

helix axis and the twist is the twist of the backbone about the axis (which is not the same 

as the twist of the axis about the backbone). White and Bauer (1986) suggested that the 

correct choice for analyzing ring closure expcliments (and, by extension, any study of 

DNA energetics) would be to take the two curves to be the two sugar-phosphate 

backbones of the DNA. While this choice is perfectly self-consistent topologically, it 

does not lead to correct values of twist to apply to equation (2). It is not a convenient 
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Figure 11. Total energies of plectonemic (triangles) and toroidal (squares) 

conformations as functions of 0", for minimum energy conformations. Rex = 100A, 

~bend =~twist = 2 x 1O-1~ erg-cm. For smaller values of Rex, the difference between 

the two curves is greater. The two curves cross at 0"::= 0.15, pEtat ::= 1000] / mole b.p. 
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choice for bend energy and writhe, either. For example, the writhe of a straight piece of 

DNA would be non-zero by this definition, since the backbones are helical. The usual 

choice of the DNA axis and one of the backbones gives the right twist and curvature for 

equations (2) and (3), respectively (Landau and Lifshitz, 1959). 

Another alternative to equation (1.7) was derived by White, Cozzarelli and Bauer 

(1988). In what was later called sUli'ace linking theory (Richardson et al., 1988) linking 

number was expressed as the sum of two quantities, winding number and surface 

linking number. Both of these quantities are defined with respect to a surface which the 

DNA axis lies on. The winding number was shown to be the experimentally measured 

quantity in nuclease studies of helical repeat of DNA bound in nucleosomes. However, 

surface linking theory is not as useful for describing the confonnation of plectonemic 

DNA The surface linking number for plectonemic DNA is zero, so that the winding 

number equals the linking number (White et aI., 1988). Since this is tme for any 

superhelical pitch angle, sUlface linking theory does not distinguish between 

conformations with diffeIing values of twist and writhe. Twist and writhe are the 

relevant quantities for treating elastic energies of DNA, since twist energy is a function 

of twist and bend energy can be related to wli the. 

2. Conformation of supercoiled DNA 

The model of the plectonemic helix presented here makes several quantitative 

predictions about the confOlmation of superhelical DNA. At low specific linking 

difference 10'1, the linking difference is almost entirely in writhe. As lal increases, a 

greater proportion of linking difference is in twist. There is an absolute limit on the 

writhe per unit length, pWrmax, which is 1/(4 1t Rex ); therefore the limit on the amount 

of specific linking difference lal which can be taken up by wlithe is (hO pWrmax). This 

limit is approached as lal approaches infinity; (for biologically relevant values of lal, 
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pWr doesn't exceed 0.7 pWrmax). A compm1son of the plectonemic and toroidal 

structures shows that the plectonemic structure is energetically favored. 

3. Range of superhelical pitch angle differs from an earlier model 

Several previous models of DNA supcrcoiling have included some of the results in 

this chapter, at least implicitly (Wadati and Tsuru. 1986; TsUlu and Wadati, 1986; 

Tanaka and Takahashi, 1985; LeBret, 1979, 1984, 1988; Hao and Olson, 1989a,b; 

Olson and Cicariello, 1986; Benham, 1977. 1979. 1983. 1987). In particular, the paper 

by Camerini-Otero and Felsenfeld (1978) is very similar to this work in that it ignores 

end effects to derive properties of supercoiling in the limit of long pieces of DNA. 

Camerini-Otero and Felsenfeld came to different conclusions from this study, most 

notably in the statement that the superhelical pitch angle lies in the range 450 < a ~ 590 , 

whereas we conclude that the upper limit on a is 900 . The diffeting conclusions stem 

from two related errors in Camerini-Otero and Felsenfeld's work. One is that a 

constraint on two parameters of their model. their equation (7). is mistaken for an 

equation for the torsional constant (at that time unmeasured) and is not applied 

consistently as a constraint. The second en"or is that the free energy expression derived 

in their model is equated with an empil1cal quadratic dependence of free energy on &k. 

While such a relation does hold over a restl1cted range of ~Lk (Depew and Wang, 1975; 

Pulleyblank et aI., 1975; Horowitz and Wang. 1984) it is only consistent with the model 

of Camerini-Otero and Felsenfeld if the torsional constant and/or the superhelical radius 

are made to vary in a non-physical manner. 

A simple physical argument against the upper limit on a given by Camerini-Otero 

and Felsenfeld is that, in the limit where (j' = O. a conformation with a = 900 has zero 

bend and torsional energy, whereas a conformation at any other pitch angle (e.g. 590 ) 

has finite bend and twist energies. This energy is plotted in the (j' = 0 curve of Figure 5. 
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4. Comparison with experimental results 

a. Electron microscopy 

The most basic prediction of this chapter, that supercoiled DNA in solution is 

plectonemic, agrees with the branched plcctonemic structures observed by electron 

microscopy (Boles et ai., 1990; Adrian et aI.., 1990). The most extensive electron 

microscopy study of DNA supercoiling is that of Boles et al .. (1990). Comparison of 

the model of this chapter with their data on a more quantitative level is complicated by 

the fact that the observed superhelical radius is a function of (5, whereas we held the 

superhelix radius constant. 

Two possible extensions to the model presented here might explain the variation of 

superhelical radius with (5. The first would be to replace the hard-body model of the 

DNA excluded volume with a screened electrostatic repulsion. This is carried out in the 

next chapter. Then the two strands of the plectonemic helix approach each other until 

the outward force per length balances the inward force per length caused by 

supercoiling. This results in a superhelix radius which decreases with increasing lal. 

The resulting changes in superhelix radius are on the order of the Debye length (Atkins, 

1990). 

A second modification to the model presented here would be to include entropic 

effects. Since there are more possible confonnations at greater superhelical radius, the 

entropic contribution to free energy would tend to give larger values for superhelical 

radius than what results from the enthalpic contribution alone. As lal increases, the 

dependence of the enthalpy on superhelical radius becomes sharper, resulting again in a 

superhelical radius which decreases with increasing Icrl. This entropic effect on 

superhelical radius would be greater for smalllcri. The justification for ignoring entropic 

effects at large values of lal is presented in the paper by Hearst and Hunt (1991). 
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It is possible that the observed dependence of superhelix radius on a may be partly 

an experimental artifact. If the interaction of the DNA with the polylysine matrix used in 

Boles et al. (1990) results in forces which disturb the solution confonnation of the 

DNA, the resulting distortions would be greater for smaller values of lal, since the bend 

and twist energies vary more slowly with superhelical radius at smaliiai. 

This work, together with data on Rex (Ymmola et aI., 1985; Brian et ai., 1981; 

Stigter, 1987) suggests a strong dependence of superhelical parameters on salt 

concentration. Thus it is surprising that Boles et ai. do not report a difference in results 

for two buffers of substantially different cationic concenu·ations. Adrian et al. (1990), 

using cryo-electron microscopy, report a strong dependence of superhelical diameter on 

salt concentration. Their results for superhelical diameter are somewhat smaller than 

values of the excluded volume obtained by osmotic pressure measurements (Yarmola et 

aI., 1985; Brian et aI., 1981; Stigter, 1987). 

b. Energy of supercoiling 

The energy of supercoiling infen'ed fro"m ethidium binding studies and the 

distribution of linking numbers resulting from ligation of linear pieces of DNA is given 

in equation (1.10). In terms of energy per length it is 

2 n pEtat = 10 RT a / 3.4 A (2.25) 

where 3.4 A is the length of DNA per base-pair. This quantity gives larger energies 

than our model except at very high values of lal, as shown in Figure 12. The lack of 

agreement is not too surprising. since equation (2.25) is based on measurements made 

at low lal, where entropic effects and end effects are large (Depew and Wang, 1975; 

Pulleyblank et ai., 1975; Horowitz and Wang, 1984). 
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c. Salt concentration and conformational transitions 

The model parameters f3bend, f3twist and Rex are all functions of ionic strength . 

While f3bend and f3twist may vruy by as much as a factor of two in the range ImM ::;; 

[Na+] $; 1M (Hagerman, 1988) the excluded volume radius Rex varies by a factor of 

five over the same range. The ionic strength dependence of Rex has effects which are 

generally greater than the effects of the ionic strength dependences of f3bend and 

f3twist. At low ionic strength, Rex is about 100A (Yarmola et a!., 1985; Brian et at., 

1981; Stigter, 1987) which gives (hO pWrmax) = 0.028. Therefore linking difference 

starts going into twist at low values of lal, resulting in large values of twist, twist 

energy, total energy and superhelical stress. Conversely, at high salt concentrations, 

Rex is smaller, pWrmaxis larger and more linking difference goes into writhe, 

resulting in lower twist, twist and total encl:gies, and lower superhelical stress. 

Experimental data on the salt-concentration dependence of conformational 

transitions agrees qualitatively with our work. B-Z transitions (Singleton et ai., 1982; 

Nordheim and Rich, 1983) and crucifOlm formation (Singleton, 1983; Kozyavkin et aI., 

1990) are both induced by lower levels of specific linking difference at low salt 

concentration than at higher salt concentration. 
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Figure 12. Total energy of plectonemic conformations compared with the parabolic 

energy of supercoiling. Eq. (2.24). Triangles -Eq. (2.24); squares - plectonemic helix 

with Rex = 1OoA. ~bend = 2 x 10-19 erg-cm. ~twist = 3 x 10-19 erg-cm; circles­

plectonemic helix with Rex = 30A. ~bend = ~twist = 2 x 10-19 erg-cm. 
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5. Range of validity of the model 

The models presented in this chapter of plectonemic and toroidal supercoiling are 

valid in the limit of long DNA molecules. The axis of a finite toroidal superhelix is 

circular, rather than straight, which results in greater bend energy. A finite plectonemic 

helix has loops at the end which contribute to the bend energy while contributing little to 

the writhe. Since the infinite length models ignore these effects, they are not valid for 

pieces of DNA shorter than a few persistence lengths. 

This work does not entirely rule out toroidal stmctures for all lengths of DNA. It is 

possible that the fmite length effects mentioned above result in a region of DNA length 

and 0' which would favor the toroidal stmcture. 

As noted above, these models do not take en tropic effects into account (Hearst and 

Hunt, 1991). In general, entropic effects are of greatest impOltance when the structure 

is loose, i.e. when pEtot varies relatively slowly with R and <X. This is the case for 

small values of 10'1. A more exact statement on the range of 0' for which entropic effects 

are significant would require calculating a partition function for all confonnations near 

the enthalpy-minimum ones obtained above, which is beyond the scope of this chapter. 

Empirically, one can say that the model is valid for 10'1 values high enough that 

interwound structures are observed experimentally. 

F. Future work 

Several aspects of the present model and its differences with experimental data 

suggest that a more detailed treatment of electrostatic interaction between strands, as 

given in the next chapter, is needed (Hunt, Klein and Hearst, in preparation). The 

energy of supercoiling is then raised by including this energy, bringing the total energy 

into better agreement with Eq. (2.24). An electrostatic telm in the total energy also 
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results in the superhelical radius being a function of 10'1, as observed in electron 

microscopy data. Finally, the sensitivity of the results of the model to the value of Rex 

suggests that electrostatic repulsion between and within DNA strands could have 

significant effects. 
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Ill. Elastic and Electrostatic Model of Supercoiling 

A. Introduction 

The approach taken in this chapter is an extension of the work of the previous 

chapter and a recent publication (Hunt and Hearst, 1991 - referred to as paper 1). DNA 

is modelled as an elastic cylinder with torsion and bending constants derived from 

experimental data. In chapter n, the electrostatic interaction between DNA strands was 

only taken into account indirectly, by treating DNA as a cylinder with a hard-body 

excluded volume. Here we model DNA as a unifonnly charged cylinder and explicitly 

include the electrostatic interaction. This improvement allows us to predict the excluded 

volume, radius of the DNA from fIrst principles and the properties of the model. 

The treatment outlined here does not take entropy into account, as do Monte Carlo 

studies in which free energies are calculated. However, the computational requirements 

are much less. This allows us to explicitly include the electrostatic interaction, which 

would signifIcantly increase the computational requirements in a Monte Carlo study, and 

facilitates comparison with experimental data on confonnational transitions. Unlike 

Monte Carlo models, the present treatment presents no diffIculties in the limits of long 

DNA length and large linking difference. 

B. Previous work 

The treatment of DNA energy and confonnation is identical to that used in chapter 

n with the addition of the electrostatic interaction. Here we briefly outline the approach 

of chapter II and list the major conclusions. 

DNA was modelled as an elastic cylinder characterized by a bending constant 

~bend, a torsional constant ~twist, and an excluded volume radius Rex. End effects 

were ignored and two types of confonnation were considered - a plectonemic or 
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interwound fonn, and a toroidal fonn (which, in the limit of no end effects or infmite 

length, is a single helix). All extensive quantities (e.g. bend energy, writhe) were 
, , 

treated as linear densities (bend energy per unit length, writhe per unit length). 

Mter finding the confonnations which minimize the sum of bend and twist energies 

for a given superhelix density and excluded volume radius, the following main 

conclusions were reached: 

(1) The plectonemic confonnation is energetically favored over the toroidal 

confonnation for biologically relevant levels of supercoiling. 

(2) The writhe per unit length, pWr, has a maximum value for the plectonemic 

confonnation, pWrmax, which is inversely proportional to Rex: 

pWrmax = 11 (41tReX). For low values of specific linking difference IGI 

(IGI = 1M.k1lLko) , supercoiling is accommodated in writhe at little energetic cost. As 101 

increases and pWr becomes a significant fraction of pWrmax, an increasing proportion 

of supercoiling goes into twist, at increasing energetic cost. 

(3) The excluded volume radius Rex, obtained from theory (Stigter, 1987), 

osmotic pressure measurements (Yarmola et aI., 1985) and sedimentation data (Brian et 

ai., 1981) is a strong function of ionic strength, varying from as little as 15A at ionic 

strength, I, of 1 M to over 100A at Iof 1 mM. Therefore pWrmax also varies by 

more than a factor of six over this range of ionic strength. Thus at low ionic strength, 

where Rex is large and pWrmax small, little linking difference can be put into writhe. 

Linking difference goes into twist at low values of IGI, resulting in greater torsional 

stress on supercoiled DNA at low ionic strength. This prediction of the model is in 

qualitative agreement with experiments measuring the ionic strength dependence of 

secondary structure transitions in supercoiled DNA (Kozyavkin et ai., 1990; Singleton, 

1983; Singleton et aI., 1982). 
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The importance of the excluded volume parameter in chapter II prompted us to treat 

the electrostatic repulsion between double helical DNA strands in greater detail. The use 

of a hard-body model assumes that a close approach of DNA strands entails no energetic 

cost, except indirectly by limiting the fraction of Ial which can be accommodated in 

writhe. It is clear, however, that electrostatic repulsion between duplex strands does 

lead to some energetic cost as the molecule becomes compacted. In our current model, 

there is no longer an infmitely stiff excluded volume radius Rex which defines the 

superhelix radius, but the above conclusions still hold qualitatively when the 

electrostatic interaction is included and are a useful basis for thinking about the energy 

and conformation of supercoiled DNA. Entropic effects change this picture somewhat 

at low values of I~I, as discussed in section m.E. 

c. Methods of Calculation 

1. Electrostatic energy 

We followed the procedure developed by Stigter (1975, 1987), with modifications 

for the geometry of the plectonemic and toroidal conformations. DNA is modelled as a 

uniformly charged cylinder of radius 12A in an ionic atmosphere. The potential as a 

function of distance from the DNA is calculated using the Poisson-Boltzmann (P-B) 

equation in cylindrical coordinates, which is solved numerically for given concentrations 

of ions in solution. In the limit of small electrical potential, the P-B equation reduces to 

the simpler Debye-Hiickel (D-H) equation~ Since the D-H equation is more tractable 

than the P-B equation (in particular, the D-H equation is linear), the D-H solution 

which matches the numerical P-B solution in the region of low potential is found. This 

D-H solution can be thought of as the D-H potential generated by a line charge with 

some charge per unit length v located at the axis of the cylindrical coordinates. v may be 

less than or greater than the charge per length of the charged cylinder, depending on the 
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, solution concentrations of ions. Once v is found, the electrostatic interaction per unit 

length between the two strands is approximated by 

p _ ~1°O exp [- r (s) / rn] ds 
P~lectro - E r (s) 

-00 

(3.1) 

where the integration is carried out over one of the strands of the plectonemic helix, 

r (s) is the distance from a fIxed point on one strand to the point corresponding to s on 

-the other strand, ro is the Debye length for the given ionic strel1.gth, and E is the 

dielectric constant of water. 

The point of these mathematical gymnastics is that the two strands of the 

plectonemic helix are a few Debye lengths apart, i.e. they are well into the region where 

the P-B equation reduces to the D-H equation. This prediction of the model is 

supported by electron microscopy measurements of supercoiled DNA, so we do not 

have to worry that our reasoning is circular. Since the D-H equation is linear, summing 

the potential contribution from each differential element of the opposing strand 

(integrating as in equation (3.1» should be a good approximation to the full non-linear 

P-B treatment of the interaction between the two strands. For each conformation 

considered, the electrostatic interaction can be calculated from the well-behaved one­

dimensional integral, equation (3.1), rather than by solving the non-linear P-B equation 

in three dimensions. 

The electrostatic energy calculation is somewhat different for the toroidal or helical 

conformation. In the toroidal conformation, it was shown in chapter II that the most 

favorable conformation is a superhelix of low pitch angle and radius given 

approximately by 

R = (1 + c) ho 
21t0' 
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where c is ~bend I J3twist and 110 is the helical repeat of DNA in units of length (35.4 

A). The exact value of the optimum radius depends on excluded volume effects (see 

chapter ll). Whereas in the plectonemic case, the electrostatic interaction is between two 

double helical DNA strands, in the toroidal case the electrostatic interaction is primarily 

between a given point and the points one full tum in either direction. One could 

calculate the electrostatic interaction of a point with points in the immediate vicinity and 

subtract the same quantity for a straight segment, but we assume that this local 

contribution is included in the bend constant In no case did points two or more turns 

away from each other contribute significantly to the electrostatic energy. 

2. Minimum energy conformations 

For each value of C1 and each ionic strength considered, the superhelix pitch angle 

ex and radius R are varied to find minimum energy conformations. The total energy per 

unit length, pEtot, is the sum 

pEtot = pEelectro + pEbend + PEtwist (3.3) 

where PEelectro, the electrostatic energy per unit length, is given by equation (3.1). 

pEbend and pEtwist, the bend and twist energies per unit length, were derived in 

chapter IT and are 

E _ ~bend cos 4ex 
p bend - 2 R2 (3.4) 

plectonemic: PEtwist = ~ist (2 1t)2 [JI.. _ sin ex cos ex ] 2 
2 ho 21tR 

(3.5) 
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toroidal: J3twist (2 1t)2 [..0:.. _ (1 - sin a ) cos a ] 2 
PEtwist = 2 ho 2 1t R (3.6) 

In this paper we use the values J3bend = 2.8 x 10-19 erg-cm and J3twist = 3.1 x 10-19 

erg-cm. These are the values obtained by Shimada and Yamakawa (1988) from their 

analysis of the topoisomer distribution data of Shore and Baldwin (1983) and of 

Horowitz and Wang (1984). 

3. Calculation of fraction of topoisomers with cruciform 

For each value of Mlc, the energy of supercoiling for the pA03 plasmid is 

calculated for forms with and without the cruciform. The cruciform increases (towards 

zero) the effective·linking difference by its length divided by the helical repeat End 

effects are ignored and the energy is taken as the length of the plasmid multiplied by the 

energy per unit length for the given specific linking difference and ionic concentrations. 

The calculated fraction of plasmids with cruciforms, p+, is then 

p+ = 
exp [ - (Htuper + AHeruc) /R T] 

(3.7) 

exp [ - Hguper /R T] + exp [ - (Htuper + AHeruc) /R T] 

where H+ super and IfOsuper are the calculated supercoiling energy of the plasmid with 

and without the cruciform, respectively. AHeruc is the energy cost of forming a 

cruciform and is obtained from the best fit to the experimental data. This procedure is 

carried out both using supercoiling energies derived from our model and using the usual 

quadratic expression (Depew and Wang, 1975; PuUeyblank et al., 1975; Horowitz and 

Wang, 1984) 
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Hsuper = 10 RT N a2 (3.8) 

where N is the number of base pairs. 

D. Results 

1. Plectonemic helix 

The bend, twist, electrostatic and total energies per mole b.p. for the plectonemic 

conformation are shown in Figure 13 for I = 150 mM uniunivalent salt. The bend 

energy is dominant in the range of physiological interest, although twist energy 

dominates for a ~ 0.13. The contribution of the electrostatic interaction is mostly 

indirect - the electrostatic repulsion between strands holds them apart and limits the 

amount of linking difference which goes into writhe. 

The effect of varying salt concentration is shown in Figures 14 - 16. The energies 

and superhelical radii are both strong functions of salt concentration. At low salt 

concentrations the strands are held farther apart by the electrostatic interaction between 

strands, which is not shielded as much as it is at higher salt concentrations. As lal 

increases, R and a decrease, increasing the writhe per length. 

. All linking difference is in writhe in the limit IcrI-> 0, as shown in Figure 16. The 

proportion of linking difference in writhe, ho pWr / lal, decreases with increasing lal as 

the energy costs of bending the DNA and pushing against the repulsion between strands 

increase. At lower salt concentrations, the proportion in writhe drops more rapidly, 

58 



100 

80 
0. 

..0 
Q) - 60 0 
E -~ 
~ 40 
CD 
""' Q) 
I: 

UJ 20 

o 
o 0.02 0.04 0.06 0.08 0.1 0.12 

Specific linking difference, lal 

Figure 13. Energies per mole b.p. for optimum plectnemic helix. 1= 150 mM. 

+'s - pElOt; squares - pEbend; triangles - PEtwisl; circles - PEelectro 

59 



200 

0.. 160 
.0 
a) -0 120 
E --. 
~ 

>. 80 on 
1-0 
a) 
:::: 

u.J 
40 

o 
o 

/ 
./ 

--

/ 

I 
/ 

/ 
/ 

0.02 0.04 0.06 0.08 0.1 

Specific linking difference, 101 
0.12 

Figure 14. Total energies at different ionic strengths and the quadratic expression, 

equation 3.8. Dashed curve - equation (3.8); solid curves, from top to bottom: 

I = 50 mM, I = 150 mM, I = 500 mM. 

60 



60 

0« 
50 

cr. 
:= 40 .-'"0 
~ 
;... 

>( 30 .--Q) 
..c ;... 

20 Q) 
0.. 
:= 

Cf) 

10 

0 

0.01 0.04 0.07 0.1 

Specific linking difference, lal 

Figure 15. Superhelix radius at different salt concentrations. Curves, from highest to 

lowest: I = 50 mM, I = 150 mM, I = 500 mM. 

61 



1 

\:: .-
0.0 -
\:: b 0.9 .-- -.-0 '-
u ~ ~ 
Q) C-o. 
::l 0 0.8 
v.: ..c: 

= (l) 0 ..c: .-t: --.-
0 '- 0.7 0. ~ 
C 
'-

0.. 

0.6 

o· 0.02 0.04 0.06 0.08 0.1 0.12 

Specific linking difference, lal 

Figure 16. Proportion of linking difference in writhe, ho pWr /10'1. Curves, from 

highest to lowest: I = 500 mM, I = 150 mM, I = 50 mM. 

62 
/' 



since the strands are held farther apart. The confonnational entropy of the DNA 

evidently alters this behavior at low 1m (see section m.E.). 

2. Comparison between plectonemic and toroidal conformations 

The total energies for the plectonemic and toroidal confonnations are shown in 

Figure 17 for I = 50 mM. In all cases considered, the plectonemic confonnation is 

energetically favored over the toroidal confonnation for biologically relevant values of 

Ia!. In contrast to the plectonemic case, the energy of the toroidal confonnation is not a 

strong function of salt concentration. The present study therefore does not completely 

rule out the possibility of a toroidal confonnation at very low ionic strength and high 

levels of supercoiling. The treatment of the electrostatic interaction presented here does 

not work well at ionic strengths below about IOmM, so we have not thoroughly 

investigated the low ionic strength region. At sufficiently high 10'1, the toroidal 

confonnation becomes energetically favored, since it can attain higher values of p Wr 

than the plectonemic confonnation. However, large values of Icrl and low ionic strength 

are conditions which put maximal torsional stress on DNA, inducing confonnational 

transitions such as B-Z transistions and crucifonn fonnation. We conclude that toroidal 

confonnations are not likely to occur. 

Perhaps the best evidence for the toroidal confonnation is small-angle x-ray 

scattering data (Brady et al., 1987, 1983). We note that most of the toroidal shapes 

proposed to fit this data seem unlikely when the elastic energy of supercoiling is 

considered. As shown in paper I, minimum energy toroidal confonnations have small 

pitch angles and radii which decrease with increasing IcrL The optimal radius for the 

toroidal confonnation at 50 mM ionic strength (see Figure 17) and Icrl = 0.05 is 223A, 

while the optimal pitch angle is 4.90 • The values proposed to fit the x-ray scattering 
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data vary with ionic strength, from 150 to 550 for the pitch angle and from 67 A to 146A 

for the radius. 

Another way of making a similar point is to compare the twist energy of the 

proposed toroidal conformations with expressions for the total energy of supercoiling. 

If two-thirds of linking difference goes into twist, the smallest proportion proposed for 

the toroidal conformations, the twist energy alone is nearly twice the usual quadratic 

expression, equation (3.8), itself probably an overestimate for lal ~ 0.02. 

3. Comparison with results from chapter II and a Monte Carlo study 

In order to compare the results of developed in this chapter with models which use 

a hard-body excluded volume for DNA, a value for the hard-body excluded radius must 

be chosen to compare with the soft-body electrostatic results for a given salt 

concentration. The comparison is somewhat arbitrary since, for the electrostatic 

treatment, the superhelix radius varies as a function of a, as shown in Figure 15. 

Nevertheless, a logical correspondence between excluded radius and salt concentration 

is the effective excluded radius of the DNA for the given salt concentration. The 

experimental techniques which yield values of the effective excluded radius are outlined. 

in section I.C. Stigter's theoretical treatment (1987) yields similar values. 

Figures 18 an 19 compare the results of the Monte Carlo study of Klenin et al. 

(1991) with the electrostatic model of this chapter and the hard-body excluded volume 

model of chapter ll. The Monte Carlo results shown are for the longest plasmid 

simulated by Klenin et al., 2650 base pairs. 

Two principal conclusions can be reached by examining Figures 18 and 19. In 

comparing the hard-body results of chapter II with the soft-body results of this chapter, 

Figure 19 shows that the soft-body model results in significantly lower energy than the 
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hard-body model at physiological 10'1 ( 10'1 = 0.06 corresponds to Mlc = 15 for a 2650 

base pair plasmid) and physiological salt concentration (roughly 150 mM). As shown 

in Figure 18, the difference between the two models is much less at lower salt 

concentrations where the electrostatic interaction between DNA strands is not so 

thoroughly shielded. 

The second principal conclusion is that the difference between the Monte Carlo 

model and our results is significant at low lsi, but much less so at physiological levels of 

supercoiling (Mlc = 15). This result is in agreement with the fact that our models do 

not take entropy or end effects into account. Both loss of conformational entropy and 

finite length effects should make their greatest contributions to the free energy of 

supercoiling at low 10'1, as discussed in section II.E.4.a. 

The relevant quantity for supercoiling-induced conformational transitions is the 

derivative of the energy with respect to ALk, (i.e. the supercoiling-induced stress). 

This quantity is plotted in Figures 20 and 21. These figures make more apparent the 

relatively close agreement of the chapter IT results and the Monte Carlo results. 

Work extending the results of this thesis to include fmite-length effects is 

underway. A rough estimate of the magnitude of the end effects for the relatively short 

plasmid simulated by Klenin et al. can be made as follows. The end loops of the 

plectonemic helix (see Figure 2) are approximated as semi-circles. The writhe 

contributions of the end-loops are ignored. The length of the end loops is subtracted 

from the total molecular length to yield the length of the plectonemic region. In effect, 

the specific linking difference of the plasmid is increased roughly as 

r
ho p wr] Ltot 

O'eff = 0' 
0' Ltot - Lends 

(3.9) 

where O'eff is the effective specific linking difference of the plasmid with end loops, 
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ho p Wr I cr is the proportion of linking difference in writhe (usually about 0.7), Ltot is 

the total length of the plasmid, and Lends is the length of the end loops. A fIrst order 

. approximation for the end effects equates the increase in energy caused by the increase 

in effective specific linking difference with the bend energy of the end loops: 

2 7t
2 f3bend 

<4ot - Lends) pErot (creff) ::::: Ltot pErot (cr) + -L--'-'-==-
ends 

(3.10) 

where pEtot (cr) and pEtot (creff) are the energy densities as given by equation (3.3) at 

specific linking differences cr and creff, respectively; and the last term is the bend energy 

of the end loops. For a 2650 base pair plasmid at a L\Lk of 15, equation (3.10) is 

approximately satisfied by Lends = Ltot I 20. This yields a bend energy for the end 

caps of about 20 kT, a substantial fraction of the difference between the hard-body 

model of chapter II and the Monte Carlo result Therefore, until a model incorp9rating 

end effects is developed; one cannot say with certainty what fraction of the difference 

between the chapter II and Monte Carlo results is due to entropic effects as opposed to 

fmite-Iength effects for this small plasmid. 

4. Electron microscopy data 

The most extensive electron microscopy study of DNA supercoiling is that of Boles 

et al. (1990). Values for the superhelical radius of plectonemically supercoiled DNA 

were obtained from electron micrographs by two methods - either by measuring the area 

of the plectonemic superhelix or by counting the number of superhelical branches and 

nodes. Plasm ids in either TE solution (10 mM-Tris·HCl (pH 8.0), 1 mM-EDTA) or 

Mg solution (20 mM-Tris·HCI (pH 8.0), 50 mM-NaCI, 10 mM-MgCI2) were spread on 

a polylysine-coated grid, They were then washed in a solution of 0.1 M-ammonium 
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acetate, stained with 5% (w/v) uranyl acetate and washed again with 0.01 M-ammonium 

acetate. Comparisons of the data with the calculated values of super helix radius for each 

spreading solution are shown in Figures 22 and 23. 

A recent cryo-electron microscopy study (Adrian et al., 1990) gives superbelix 

radii at two different ionic strengths, also shown in Figures 18 and 19. This technique 

does not suffer from possible complications introduced by electrostatic interactions with 

a charged grid or exposure of the DNA to solutions of differing ionic concentrations. 

The experiinentally observed values for solutions without Mg2+ are in reasonable 

agreement with our model. In the case of the data of~oles et at., however. this may be 

partly coincidental. The fact that their superhelical radii are basically independent of the 

ionic strength of the spreading solution suggests that the observed DNA conformations 

reflect some combination of the staining solution, wash solution, and interaction with 

the charged grid. The disagreement between our results and the high-salt point of Adrian 

et aL probably reflects a failure of our P~B treatment for solutions of DNA and Mg2+. 

as discussed in section III.E. 

s. Ionic strength dependence of cruciform formation 

The electrostatic repulsion between strands is a strong function of ionic strength. 

As discussed above and shown in Figures 14 - 16, this causes the energy of 

supercoiling to be significantly greater at low ionic strength, mainly by decreasing the 

proportion of linking difference which goes into writhe. The superbelical stress on the 

DNA, which is dpEtot I dial, is also greater at low ionic strength. Conformational 

transitions such as cruciform formation and B-Z transitions relieve stress induced by 

supercoiling. Therefore conformational transitions induced by superhelical stress 

should occur at lower values of lal at low ionic strength. Such a dependence on ionic 
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strength is observed in supercoiling-induced B to Z transitions (Wells et al., 1982) and 

crucifonn fonnation (Singleton, 1983; Kozyavkin et aI., 1990). 

Kozyavk:in et aI. (1990) carried out a systematic study of the dependence of 

crucifonn fonnation in the pA03 plasmid on linking difference at different ionic 

concentrations. A comparison of some of their results with the model presented here 

and with the usual quadratic expression for the energy of supercoiling is shown in 

Figure 24. As Kozyavkin et al. noted, the width of transitions deduced from the 

quadratic expression (equation (3.9)) and equation (3.8) is roughly constant. Our 

treatment gives sharper transitions at low ionic strength, in agreement with the 

experimental data. The energy cost offonning a crucifonn,'AHcruc, is derived from 

fitting the data. The best-fit values using equation (3.8) are AHeruc = 6.6 x 104 J I 

mole at ionic strength I = 20mM and AHeruc = 8.11 x 104 J I mole at I = 87mM. The 

corresponding values using our model are 6.7 x 104 J I mole and 5.7 x 104 J I mole, 

respectively. 

Kozyavkin et al. also published data for higher ionic strengths. Neither our model 

nor equation (3.8) could be made to fit this data. As in the electron microscopy case, 

we believe this is because the solutions contained Mg2+. 

E. Discussion 

The model we present here allows calculations of the energy and confonnation of 

supercoiling in tenns of bend, twist and electrostatic energy. Good agreement is found 

with experimental data for DNA in monovalent salt solutions. 

One of two areas of disagreement with experiment we have found is for DNA 

solutions containing Mg2+. The cryo-electron microscopy data of Adrian et aL show 

the two strands of plectonemically supercoiled DNA within 40A of each other, about 
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half the distance predicted by the P-B treatment we used. The data of Kozyavkin et al .• 

for solutions containing Mg2+ (not shown) is also roughly consistent with the two 

strands coming much closer than our model predicts, raising the writhe per length and 

lowering the energy of supercoiling. 

We conclude that the P-B treatment used here is inadequate to describe the 

interaction of Mg2+ with DNA The P-B treatment outlined here does not allow for 

specific binding of cations to DNA Such binding, even if weak, can have significant 

effects for divalent cations since the cationic concentration at the DNA surface is quite 

high (Anderson & Record, 1982) This suggests that Mg2+ has a greater affmity for 

DNA than the P-B treatment outlined here predicts. 

The other area of disagreement with experiment is at low values of lal. For Ial S; 

0.02 the energy of supercoiling given by equation (3.8) is several times greater than the 

energies given by our model, although the absolute difference is not so large. There is 

little reason to doubt the validity of equation (3.8) at low Irn. Equation (3.8) was 

derived from thermal distributions of topoisomers, which only includes the low lal 

region. The Monte Carlo study of Klenin et ale (1991) faithfully reproduces equation 

(3.8) at low lal. 

A related discrepancy is the proportion of linking difference in writhe, ho pWr I a, 

at low lal. As shown in Figure 16, our model puts all the linking difference into writhe 

as lal-> 0, with the proportion monotonically decreasing with increasing lal. Both the 

Monte Carlo study of Klenin et ale . and the electron microscopy data of Boles et ale give 

a figure of about 0.7 for hO pWr I a, roughly independent of lal. 

Two factors left out of our model which might explain these discrepancies are 

finite-length effects and entropic effects. Simple calculations as outlined in section 

III.D.3 show that for moderate length plasmids (e.g. 1()4 b.p. or longer), the energy of 

forming end loops on a plectonemic supercoil can be made quite small. Thus we believe 

entropic effects must be responsible for the discrepancies with electron microscopy data 
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and with equation (3.8), while end effects also contribute for the short plasmid 

simulated by Klenin et al. The picture which emerges is of a relatively large loss of 

conformational entropy at low 1m as a loose plectonemic superbelix forms. At higher 

10'1, as the superhelix adds turns and its radius shrinks, the loss of entropy is less 

significant. This agrees with a recent study which shows that entropic effects should be 

small at physiological levels of supercoiling (Hearst and Hunt, 1991). 

Since our model excludes entropic effects, we expect and fmd it to be more 

accurate with increasing 1m. The high-IO'I regime is beyond the range from which 

equation (3.8) was derived and still presents some difficulties for Monte Carlo studies. 

While comparison with equation (3.8) and the Monte Carlo model of Klenin et al. at low 

10'1 let us infer the behavior of the entropy loss of supercoiling, at high 10'1 and for large 

molecules our model has advantages over the Monte Carlo approach. The longest 

molecule studied by Klenin et al. was 2650 b.p., and the largest value of 10'1 used was 

0.06. Our model gives behavior in the long-length limit and high 10'1 presents no 

difficulties. At sufficiently high 10'1, the approach outlined here shows that the 

proportion of linking difference in writhe must start to decrease, behavior which did not 

clearly emerge from the Monte Carlo study. 

Another advantage is that the explicit treatment of electrostatic effects should give 

more accurate results than using an ionic-strength dependent excluded volume, the 

approach taken in chapter II and the study of Klenin et al.. As noted in section II.D.3 

and shown in Figure 19, the soft-body electrostatic interaction between strands gives 

significantly different results from a hard-body model at physiological levels of lsi and 

salt concentration. Modelling such effects with Monte Carlo calculations would take 

orders of magnitude more computer time (or computer speed) than the calculations 

already carried out We expect the two approaches will continue to play complementary 

roles. 
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Perhaps the most promising application of this approach to DNA supercoiling is to . 

supercoiling-induced confonnational transitions. Since these transitiops involve 

molecules at relatively high lal, entropic effects should playa small role, as may be 

inferred from Figures 20 and 21. 
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IV. Conclusion and Future Work 

A. Conclusion 

The approach to the energy and conformation of supercoiled DNA presented in this 

dissertation has proven to be useful. By ignoring end effects and conformational 

entropy and by treating extensive quantities (e.g. writhe, bend energy) as linear 

densities (writhe per unit length, bend energy per unit length) we are able to reach 

several conclusions of biological interest Among them are: 

1. The plectonemic superhelix is energetically favored over toroidal conformations 

for biologically relevant values of 0'. The pitch angle of the plectonemic superhelix 

approaches 900 in the limit 1m -> 0 and approaches 450 as 10'1 approaches infmity. 

Optimal conformations for the single helix are described and have low pitch angles, 

limited by exclud~ volume (or electrostatic repulsion). 

2. Since the electrostatic repulsion between strands is a strong function of ionic 

strength, the electrostatic energy and the writhe per unit length are also strong functions 

of ionic strength. At low ionic strength, the strands are held farther apart, resulting in a 

greater fraction of linking difference in twist and higher energy of supercoiling. 

3. The ionic strength dependence of the energy of supercoiling implies that the 

stress on a supercoiled DNA molecule is also a strong function of ionic strength. 

Therefore conformational transitions which relieve stress caused by supercoiling should 

occur at lower values of 1m at low io~c strength. Such a pattern is observed for 

cruciform formation (Singleton, 1983; Kozyavkin et al., 1990), B-Z transitions 

(Singleton et al., 1982) and DNA melting (Lyubchenko and Shlyakhtenko, 1988). 

4. By comparing the predictions of the model presented here with a Monte Carlo 

study (Klenin et al., 1991), we infer that there is a relatively large loss of entropy 

associated with the initial fonnation of a loose plectonemic helix at low 1m. As 1m 

increases, the superhelix adds turns and its radius shrinks. and the loss of entropy 
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becomes smaller. This is in accord with the study of Hearst and Hunt (1991), where 

this result was derived based on the polymer dynamics model of Harris and Hearst 

(1966). It follows that the effects of ignoring entropy should be particularly small for 

molecules under large superhelical stress, as in the case of supercoiling-induced 

conformational transitions. 

5. The predictions of this model are in agreement with electron microscopy data 

on the conformation of supercoiled DNA for DNA in monovalent salt solutions. The 

model also agrees well with data on supercoiling-induced cruciform formation for DNA 

in monovalent salt solutions. 

B. Future work 

The three main areas which seem most promising for furth~r work are a more 

detailed examination of the energies of supercoiling-induced conformational transitions, 

a refmement of the treatment of electrostatic interactions, and application of the ideas 

developed here to chromatin structure. Preliminary thoughts on these three areas are 

outlined below. 

/1. Conformational transitions 

The initial work presented in chapter ill modelling the data of Kozyavkin et al. 

illustrates the potential of the model to extract values of the energy of conformational 

transitions from experimental data. There is quite a bit of this data published, and re­

examining it using this model should provide revised values for the energy of cruciform 

formation. The same type of modelling should be possible for B-Z transitions, 

although we have not yet tried this. 
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2. Refinement of the treatment of the electrostatic interaction 

The treatment of the electrostatic interaction outlined in chapter m seems to be 

adequate for ionic strengths greater than 10 mM. Below 10 mM, problems with the 

behavior of the numerical solutions appear. These problems must be examined in detail 

if the theory is to be applied in this region of very low ionic strength. 

One can question the approximation used for the electrostatic interaction between 

strands, equation (3.1). The D-H equation is valid in the region where the potential q, 

is small, i.e. where e q, I kB T «1 (where e is the electron charge)~ In this region, the 

non-linear P-B equation reduces to the linear D-H equation. Since the two strands of 

the plectonemic helix are sufficiently far apart that each is in the D-H region of the 

other's potential field, equation (3.1) is plausible. But it remains to be demonstrated 

rigorously that equation (3.1) is a good approximation to the full three-dimensional P-B 

equation for the geometry of the superhelices examined. 

Preliminary work on a full P-B treatment has started, in collaboration with Robert 

Van Buskirk. By expressing the problem in helical coordinates we have taken 

advantage of the helical symmetry of the problem to reduce it to two dimensions. If 

various numerical difficulties can be overcome, we should be able to check the validity 

of equation (3.1). 

The results obtained in chapter m using equation. 3.1 seem to be fairly robust 

against changes in the potential. This can be understood by considering the exponential 

nature of the screened electrostatic potentials. If the potential between two strands is 

changed by a factor of e, the two strands move roughly one Debye length closer 

together, which does not alter the results that much, since the strands are several Debye 

lengths apart. In contrast, changing the ionic conditions changes the Debye length, 

which can alter the separation between strands and the energy of supercoiling 

significantly. 
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An adequate treatment of the electrostatic interaction for solutions containing Mg2+ 

is desirable, both for comparison with experimental results and because Mg2+ is present 

in vivo. The P-B treatment outlined here is not very stable numerically for solutions 

containing Mg2+. A closer examination of the numerical behavior of the P-B treatment 

may yield some ideas for possible modifications. 

One possible modification to the P-B treatment used would be to allow for specific 

binding of Mg2+ to the DNA At the high concentrations of Mg2+ near the DNA 

predicted by the P-B equation, even weak binding can have significant effects 

(Anderson and Record, 1982). 

It is possible that the failure of the P-B treatment is due to correlations between 

Mg2+ cations. Such an effect has been examined by Oosawa (1971) and more recently 

by Guldbrand et al. (1986). Their work may offer a basis for treating the effects of 

such correlations. Yet another possibility is a cluster expansion treatment of the type 

developed by Mayer (1950). Such an approach to DNA solutions has been developed 

by Manning (1978). 

3. Possible applications to chromatin structure 

DNA in eukaryotic cells is wrapped around proteins known as histones. The 

complex of the histone proteins and the strand of DNA wrapped around them twice is 

known called a nucleosome. Nucleosomes in tum form a higher order structure known 

as the 30 nm fiber. The geometry of the 30 nm fiber is not certain, but the. leading 

model has the nucleosomes wrapped in a solenoid. 

There have been some theoretical studies of the writhe of DNA in nucleosomes 

(Zivanovic et at., 1988; LeBret, 1988). I believe there is more to be said.on this 

subject based on numerical calculations of the writhe integral (see Appendix) using the 

geometry of the nucleosome~ Calculations of writhe using the proposed geometry of 
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the 30 nm fiber would also be of interest. A related calculation of interest would be a 

comparison of the energy of supercoiling of a plectonemic helix of DNA with the 

energy of supercoiling of DNA in nuc1eosomes and in the 30 nm fiber. 
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Appendix A: Evaluation of Wr 

1. Convergence and numerical considerations 

The writhe integral 

Wr =_1-1 du'du" 47t 

C', C" 

[
+ ( ') _ .. ( ")] • [d r (u') d r (u")] 
r u r u du' x du" 

1 r (u') - r (u") 13 
(A. I) 

Ccp1 be evaluated using standard numerical integration routines for any given space curve 

r (u). The only complication in carrying out this integration occurs on the diagonal 

where u' = U ". At these points, the denominator of the integrand in equation (A. I) goes 

to zero. The integrand itself is well-behaved on the diagonal and goes to zero for curves 

with continuous derivatives. To show this, we introduce the formulas of Frenel A 

nice introduction to them can be found in Stroik (1988). 

A space curve r (s) parametrized by the arc-length s defmes a local coordinate 

system at any point r (so). The axes of this coordinate system are the unit tangent 

vectort: 

t = dr/ds, (A.2) 

the unit normal n : 

... 
n = (A.3) 

where K is the curvature, and the unit binormal b : 

- . ... 
b = t X n (A.4) 

86 



These three unit vectors and their derivatives are related by the fonnulas of Frenet: 

. 
dt = K Ii 
ds 
,.1= • -+ 
lW.=-Kt+'tb 

. ds 

db = _ 't Ii 
ds 

where 't is the torsion of the curve, given by 

't = I ~~I 

(A.S) 

(A6) 

In general, the geometric torsion 't of a curve has no relation to the physical torsion on 

DNA discussed in this dissertation. 

With the fonnulas of Frenet, (AS), the integrand in equation (A.I) can be Taylor 

expanded about the diagonal. For example, r (s + h) is 

.. 2?:! 3 3" 4 4" r (s+ h) = r (s) + h dr + lL.4::r. + lL d r + 1L d r + 0 (h5) 
ds 2 ds2 6 ds3 24 ds4 

.. • h2 - h3 [2· - -] = r (s) + ht + T K n + 6 - K t + rib + K' n + 

~; [-3KK't - K3ii - K't2ii + K''ii + 2 K''tb + K't'b] + 0 (h5) 

where I and " denote first and second derivatives with respect to s, respectively. 

Expanding the integrand in this manner and keeping lowest order tenns gives 

(A.8) 

Therefore the integrand goes to zero linearly with h .. 
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Although the integrand is well-behaved mathematically, it is troublesome from a 

numerical standpoint. Finite-precision calculations of the integrand behave erratically 

near the diagonal. I chose to get around this problem by excising a narrow strip 

surrounding the diagonal from the region of integration. Given knowledge about the 

values of 1C and 't and their derivatives, equation (A.8) can be used to estimate the error 

introduced by excising the strip around the diagonal. The h2 term is the lowest order 

error term, since the term proportional to h makes equal and opposite cOntributions on 

each side of the excised diagonal. 

2. Evaluation of ~Wr for finite single and plectonemic helices 

A helix of radius R and pitch angle a can be parametrized as 

x (u) = R cos u 
Y (u) = R sin u 
z (u) = Rutan a 

Substituting into equation (1.4) gives, for a single helix, 

(A.9) 

(A. 10) 

Since the integrand is simply a function of the difference U2 - Ul , equation (A. 10) can 

be re-written as a one-dimensional integral: 

Wr = tan a du 2 - 2 cos u - u sin u [umax - u] l
umax 

21t 0 [2 - 2 cos u + u2 tan2a] 3/2 
(A. 11) 
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This exact result for the finite single helix is plotted in Figure 25, along with the infmite­

length result, equation (1.5). The diagonal has become an integrable singularity at 

u=O. 

The plectonemic helix can be treated in a similar way with the addition of a cross­

term between strands. This gives 

Wr = tan a. (Umax 
du 2 _. 2 cos u - u sin u [u

max 
_ u] _ 

21t Jo [2 - 2 cos u + u2 tan2a.P/2 
(A. 12) 

2 + 2 cos u + u sin u [umax - uJ 

[2 + 2 cos u + u2 tan2a.] 3/2 

Equation (A12) is plotted in Figure 26, along with the infinite-length result, equation 

(1.6). 
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Figure 26. Writhe of a finite plectonemic helix with pitch angle 650. Dashed curve -

infinite length expression. equation (1.6); solid curve - exact result. equation (A. 12). 

The difference between the two curves is about 0.02. 
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Appendix B: Fortran Code for Plectonemic Helix 

The following fortran program calculates optimum plectonemic configurations as 

outlined in chapter ill. 

c program pscrn.for 
c fmds optimum plectonemic configurations for 
c given salt concentrations and for sigma between 0 and 0.2. 
c calculates potential from a helical dna 
c molecule by numerical integration 
c of the P-B equation and then matching 
c boundary conditions with the modified 
c Bessel function solution to the Debye-Huckel 
c equation 
c must be linked with the imsllibrary, e.g. $ link pscrn, imsl/lib 

integer mxparm, neq, interv, nout, maxsub 
parameter (mxparm=50,neq=2,maxsub=1 (00) 
integer ido, neval, nsubin, n, iparam(7),maxfcn 
real*8 pi,esq,kt,epsilon,na,kappa,xzero,dydxzero 
real*8 kOxz,klxz,z,y(neq),zend,tol,param(mxparm) 
real*8 diff, zinit,dydxzout, diffold, dz; xend 
real*8 eperl, r, xinit, klxi, kOxi, kOxe, bessend 
real*8 beta, kone, kzero, gamma, const, fcn 
real*8 qfperlsq, alpha, integral, msd, fz 
real*8 bound, errabs, errel, errest, f, result 
real * 8 alist(maxsub ),blist(maxsub ),rlist(maxsub) 
real*8 elist(maxsub), iord(maxsub) 
real*8 sigma, ebend, etwist, eelect, etot 
real*8 bbend, btwist, hO, arg, xguess(2), xscale(2) 
real*8 fscale, rparam(7), x(2), gvalue, g, grtn 
real*8 etwonly, wrperl, wrperhO, twperl, twperhO 
real*8 prcntwr, prcnttw, delta, mg, ion 
real*8 ftol, s, fr, diffb, qp, kr 
real*8 above, below, dabove, dbelow 
integer seed 

common alpha, kappa, r, sigma, qfperlsq, bbend 
common btwist, hO, pi 
common mg, ion, na, epsilon 

external dbskl, dbskO, fcn, sset, divpbs, f, dq2agi 
external grtn, dumpol 

open(lO,file='screen.dat',status = 'new') 
open(ll,flle='sigma.dat',status = 'new') 
open(l2,file='r.dat',status = 'new') 
open(13,flle='alpha.dat',status = 'new') 
open(l4,flle='etot.dat',status = 'new') 
open( 1 5 ,file='eelect.dat' ,status = 'new') 

92 



c 

open( 16,fUe='etwistdat' ,status = 'new') 
open(17 ,fUe='ebend.dat' ,status = 'new') 
open( 18,fUe='wrperl.dat' ,status = 'new') 
open(19,fUe='wrperhO.dat',status = 'new') 
open(20,fUe='twperl.dat' ,status = 'new') 
open(21,fUe='twperhO.dat',status = 'new') 
open(22,fUe='prcntwr.dat',status = 'new') 
open(23,fUe='prcnttw.dat',status = 'new') 

seed = 654721 
pi = 3.1415926535 

c esq is the electron charge squared, in erg-cm 
c kt is in ergs 
c epsilon is the dielectric constant of water 
c 

c 

esq = 2.3e-19 
kt = 4.0Se-14 
epsilon = SO. 
bbend = 2.Se-19 
btwist = 3.le-19 
hO = 3.S4e-7 

c na is salt concentration in MIl 
c mg is divalent cation concentration 
c ion is ionic strength 
c and is used to calculate the Debye length, l/kappa 
c 

c 

na= O.S 
mg=O.O 
ion = na + 3. * mg 
kappa = (S. * pi * esq * ion * l.e-3 * 6.e23/(epsilon * kt» 
kappa = dsqrt(kappa) 

c xzero is kappa times the dna radius, 12 Angstroms 
c dydxzero is the desired slope at xzero from Gauss' 
c law and qp * e per phosphate residue 
c 

c 

xzero = kappa * 1.2e-7 
qp = 0.73 
dydxzero = -4. * qp * esq/(3.4e-8 * xzero * epsilon * kt) 
zend = dlog(xzero) 

c kOxz is KO(xzero), the zeroeth order modified Bessel 
c function evaluated at xzero 
c klxz is KI (xzero), the first order modified 
c Bessel function evaluated at xzero 
c 

kOxz = dbskO(xzero) 
k1xz = dbskl(xzero) 

call sset(mxpann, 0.0, param, I) 
param(10) = 0.0 
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tol = l.e-4 

write(10, 1(0) 
100 fonnat(' zinit xzero dydxzero dydxout yxzout diff) 

c 
c set initial conditions 
c 

z= 2.319 - 0.4 * ion**2 
if (z .gt 2.310) z = 2.310 
if (ion .It. 0.05) z = 2.293 + 0.5 * ion 
if (ion .It 0.02) z = 2.34919 - 7.47e-3/dsqrt(ion) 
if (ion.It 0.009) z = 2.2214 + 0.552 * dsqrt(ion) 
if (ion .It 0.(07)z=2.39718 + 2.62111e-2 * d10g(ion) 
if (ion .It. 0.004)z=2.38313+2.34826e-2 * dlog(ion) 
if (mg .ne. 0.) z = z - 0.044 - 3.* mg/2. 
zinit = z 
xinit = dexp(zinit) 
klxi = dbskl(xinit) 
kOxi = dbskO(xinit) 
. y(1) = l.e-4 
y(2) = -1.e-4 * xinit * klxilkOxi 
ido= 1 
above = 3. 
below =0. 
dabove = 10. * dydxzero 
dbelow = -10. * dydxzero 
call divpbs(ido,neq,fcn,z,zend,tol,param,y) 
dydxzout = y(2) * xzero 
diff = dydxzout - dydxzero 
if (diff .It 0.) then 
if (diff .gt. dabove) then 
dabove = diff 
above = zinit 
end if 

else 
if (diff .It. dbelow) then 
dbelow = diff 
below = zinit 

end if 
end if 

dz =0.001 
if (ion .It. 0.02) dz = l.e-4 
zinit = zinit + dz 
z = zinit 
ido = 3 . 
call divpbs(ido,neq,fcn,z,zend,tol,param,y) 
do 200 i=I,200 
xinit = dexp(zinit) 
klxi = dbskl(xinit) 
kOxi = dbskO(xinit) 
y(1) = l.e-4 
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y(2) = -1.e-4 * xinit * klxilkOXi 
ido= I 
call divpbs(ido,neq,fcn,z,zend,tol,param,y) 
dydxzout = y(2) * xzero 
write( 10, II O)zinit,xzero,dydxzero,dydxzout,y( I ),diff 

110 fonnat(' ',f12.3,f12.3,f12.3,f12.3,eI2.3,eI2.3) 
diffold = diff 
diff = dydxzout - dydxzero 
delta = dabs( diffold - diff) 
if (diff .It. I.e-13) go to 201 
if (delta.It. I.e-14) go to 201 
dz = 0.5 * diff * dzl(diffold - dift) 
if (i .It. 5) dz = dzl4. 
if (dz .gt. I.e-I) dz = I.e-I 
if (ion .It. 0.02) then 
if (dz .gt. I.e-2) dz = I.e-2 

end if 
if (ion .It. 0.005) then 
if (dz .gt. 5.e-4) dz = 5.e-4 
if (dz .It. -5.e-4) dz = -5.e-4 

end "if 
if (mg .ne. 0.) dz = dzl5. 

if (diff .It 0.) then 
if (diff .gt. dabove) then 
dabove = diff 
above = zinit 

end if 
else 
if (diff .It. dbelow) then 
dbelow = diff 
below = zinit 

end if 
end if 
diffb = above - below 
zinit = zinit + dz 
if (above .eq. 3.) go to 195 
if (below .eq. 0.) go to 195 
if (zinit .gt above) then 
fr = ran(seed) 
zinit = above * fr + below * (1. - fr) 

end if 
if (zinit .It below) then 
fr = ran (seed) 
zinit = above * fr + below * (1. - fr) 

end if 
195 z= Zlmt 

ido =3 
call divpbs(ido,neq,fcn,z,zend,tol,param,y) 

200 continue 
c 
c now we have the solution characterized by 
c zinit and the y's at z=zinit 
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c now generate the potential as a f(x) in 
c Ilmole b.p. based on this solution 
c or, alternatively, we can calculate Stigter's 
c parameters beta and gamma to get an effective 
c charge, less than the actual charge, to generate 
c the Debye-Huckel potential in the far-field region 
c 
201 xinit = dexp(zinit) 

kzero = dbskO(xzero) 
kone = dbskl(xzero) 
beta = -1. * y(2) * kzero I (y(l) * kone) 
kOxi = dbskO(xinit) 
const = 1.e-4lkOxi 
gamma = y(I)/(const * kzero) 
write(10,240) 
qfperlsq = 2. * 0.73/(3.4e-8 * beta * gamma * xzero * kone) 
qfperlsq = qfperlsq**2 * esq 

240 format(, ') 
c 
c now fmd optimum configurations 
c start by using a guess for r and the optimal 
c alpha corresponding to this r and the given sigma 
c 
c 
c scale kappa by l.e-8 to make integration and minimization 
c routines work better (kappa now in inverse' Angstroms) 
c put r in Angstroms· 
c 

kappa = kappa * 1.e-8 

do 1000 i=I,40 
sigma = i * 0.005 
r = 23. + 1.85/dsqrt(ion*sigma) 
r = r - mg * sigma * 1500. 
arg = 4. * pi * r * 1.e-8 * sigma/hO 
alpha = pi/2. - (datan(arg»/2. 
alpha = 180. * alpha/pi 
xguess(l) = r 
xguess(2) = alpha 
n=2 

c xscale(l) = 1.0 
c xscale(2) = 1.0 
c fscale = 1.0 
c iparam(l) = 0 

s =0.025 
ftol = 1.e-8 
maxfcn = 2000 
call dumpol (grtn, n, xguess, s, ftol, maxfcn, 

& x, gvalue) 
r = x(l) 
alpha = x(2) 
etot = gvalue 
interv = 1 
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errabs = O. 
errel = Le-3 
call dq2agi (f, bound, interv, errabs, errel, result, 

& errest, maxsub, neval, nsubin, alist, blist, rlist, 
& elist, iord) 

integral = result 
eelect = qfperlsq * integral/epsilon 
eelect = eelect * 3.4 * 6.02e8 
ebend = bbend * dcosd(alpha)**4/(2. * (r * l.e-8)**2) 
ebend = ebend * 3.4 * 6.02e8 
etwist = «sigmalhO) - dsind(alpha) * dcosd(alpha)/(2.*pi*r*Le-8)) 
etwist = (etwist * 2. * pi)**2 * btwistl2. 
etwist = etwist * 3.4 * 6.02e8 
etotchk = eelect + etwist + ebend 
etwonly = (2. *pi*sigmalhO)**2 
etwonly = etwonly*btwistl2 
etwonly = etwonly * 3.4 * 6.02e8 
wrperl = dsind(alpha)*dcosd(alpha)/(2. *pi*r* Le-8) 
twperl = sigmalhO - wrperl 
wrperhO = wrperl * hO 
twperhO = twperl * hO 
prcntwr = wrperhO/sigma 
prcnttw = twperhO/sigma 
kr=kappa * r 
write(10,494)xguess(l),r,xguess(2),alpha 

494 format(, rg ',eI2.3,' r ',eI2.3,' ag ',eI2.3,' a ',eI2.3) 
write( 1 0,49S)etwonly ,etotchk,s 

49S format(, etwonly = 'eI2.3,' etotchk = ',eI2.3,' s = ',eI2.3) 
write( 1 O,SI O)sigma,etot,kr 

SlO format(, sigma ',eI2.3,' etot ',eI2.3,' kr ',eI2.3) 
write(10,SII)eelect,etwist,ebend 

Sl1 format(, eelect ',eI2.3,' etwist ',eI2.3,' ebend ',eI2.3) 
write(lO,SI2) 

S12 format(, ') 
write( 11 ,6oo)sigma 
write(l2,6oo)r 
write(13,6oo)alpha 
write( 14,6oo)etot 
write(IS,6oo)eelect 
write( 16,6oo)etwist 
write( 17 ,6oo)ebend 
write(l8,6oo)wrperl 
write(l9,6oo)wrperhO 
write(20,600)twperl 
write(21,6oo)twperhO 
write(22,6oo)prcntwr 
write(23,6oo)prcnttw 

600 format(, ',eI2.4) 

1000 continue 
end 
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subroutine grtn (n, x, g) 

external f, dq2agi 
common alpha, kappa, r, sigma, qfperlsq, bbend 
common btwist, hO, pi 
common mg, ion, na, epsilon 
real*8 alpha, kappa, r, sigma, qfperlsq, bbend 
real*8 btwist, hO, pi 
real*8 mg, ion, na, epsilon 
integer n, interv, maxsub, neval, nsubin 
parameter (maxsub=I000) 
integeriord(maxsub) 
real*8 bound, x(2), g, errabs, errel 
real*8 f, result, errest, alist(maxsub) 
real*8 blist(maxsub), rlist(maxsub), elist(maxsub) 
real*8 integral, eelect, ebend, etwist 

interv = 1 
bound = O. 
errabs = O. 
errel = 1.e-3 
r = x(l) 
alpha = x(2) 
call dq2agi (f, bound, interv, errabs, errel, result, 

& errest, maxsub, neval, nsubin, alist, blist, rlist, 
& elist, iord) 

integral = result 
eelect = qfperlsq * integraVepsilon 
eelect = eelect * 3.4 * 6.02e8 
ebend = bbend * dcosd(alpha)**4/(2. * (r * 1.e-8)**2) 
ebend = ebend * 3.4 * 6.02e8 
etwist = «sigma/hO) - dsind(alpha) * dcosd(alpha)/(2.e-8*pi*r» 
etwist = (etwist * 2. * pi)**2 * btwistl2. 
etwist = etwist * 3.4 * 6.02e8 
g = eelect + etwist + ebend 

return 
end 

subroutine fcn (neq, Z, y, yprime) 
integer neq 
real*8 z, y(neq), yprime(neq) 
common alpha, kappa, r, sigma, qfperlsq, bbend 
common btwist, hO, pi 
common mg, ion, na, epsilon 
real*8 alpha, kappa, r, sigma, qfperlsq, bbend 
real*8 btwist, hO, pi 
real*8 mg, ion, na, epsilon 

yprime(2) = O. 
yprime(1) = y(2) 
if (mg .eq. 0.) go to 15 
yprime(2) = (mg/ion)* (dexp(2. *y(l»-dexp( -1. *y(l») 
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15 yprime(2) = yprime(2) + (nalion) * dsinh(y(1» 
yprime(2) = dexp(2. *z) * yprime(2) 
return 
end 

real*8 function f (s) 
real*8 s, angle, rad 
real*8 alpha, kappa, r, sigma, qfperlsq, bbend 
real*8 btwist, hO, pi, mg, ion, na, epsilon 
common alpha, kappa, r, sigma, qfperlsq, bbend 
common btwist, hO, pi 
common mg, ion, na, epsilon 

angle = s * dcosd(alpha)/r 
rad = dsqrt(2.*r**2 * (1. + dcos(angle» + s**2 * (dsind(alpha»**2) 
f = dexp( -1. * kappa * rad)/rad 

return 
end 
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Glossary 

Base-pair: a pair of nucleotide bases in DNA, e.g. A-Tor G-C. The spacing between 

base pairs is 3.4 A in B-DNA. Abbreviated as b.p. 

B-DNA: the usual form of double-helical DNA found in solution. The double helix is 

right-handed with a pitch or helical repeat of 10.5 base-pairs, or 3.4A. 

Chromatin: the complex of DNA and associated proteins which makes up 

chromosomes. 

Cruciform: a section of DNA in which each strand of the double-helix forms base-pairs 

with itself rather than with the opposing strand (see Figure 3). This can only occur 

for sequences of DNA which contain inverted repeats. 

DNA ligase: an enzyme which covalently joins the ends of double-stranded DNA 

molecules. 

DNA recombination: a process in which one strand in a double-stranded DNA molecule 

is exchanged with a third strand of single-stranded DNA. 

Helical repeat: the pitch of the DNA double-helix, abbreviated as hO. Helical repeat is 

expressed either in terms of base-pairs (10.5 for B-DNA) or in telms of length 

(35.4 A for B-DNA). 

mRNA: messenger RNA, the molecule which is created during the process of DNA 

transcription. The sequence of the mRNA molecule created during transcription is 

complementary to the sequence of the transcribed DNA. 

Nuclease: an enzyme which cleaves the sugar-phosphate backbone of DNA. 

Nucleosome: the basic structural unit of chromatin. A complex of about 150 base-pairs 

of DNA wrapped twice around proteins known as histones. 

Plasmid: a covalently closed circular molecule of double-stranded DNA. 
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Plectonemic: having an interwound shape, as shown in Figure 2. 

Ribosome: a complex of proteins and nucleic acids which translates the sequence of an 

mRNA molecule by synthesizing a protein molecule with the corresponding 

sequence. 

RNA polymerase: a large enzyme which translates DNA to mRNA by polymerising and 

mRNA molecule with a sequence complementary to the DNA molecule. 

Topoisomer: a plasmid characterized by a set value of the linking number, Lk. 

Topoisomers are plasmids which may differ from each other only by their values of 

Lk. 

Topoisomerase: an enzyme which changes the linking number of a plasmid or of any 

topologically constrained piece of DNA. 

Z-DNA: a form of double-stranded DNA which has a left-handed double helix instead 

of the usual right-handed one. Z-DNA has been observed under conditions of 

superhelical stress and also in very high salt solutions. 
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