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Abstract 

Recursive Recovery of Markov Transition Probabilities from 
Boundary Value Data 

Sarah Kathryn Patch 

111 

In an effort to mathematically describe the anisotropic diffusion of infrared radia­

tion in biological tissue Griinbaum posed an anisotropic diffusion boundary value problem 

in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spa­

tial domain. The probabilistic interpretation of the diffusion equation is retained; radiation 

is assumed to travel according to a random walk (of sorts). In this random walk the pro ba­

bilities with which photons change direction depend upon their previous as well as present 

location. The forward problem gives boundary value data as a function of the Markov 

transition probabilities. The inverse problem requires finding the transition probabilities 

from boundary value data. 

Problems in the plane are studied carefully in this thesis. Consistency conditions 

amongst the data are derived. These conditions have two effects: they prohibit inversion 

of the forward map but permit smoothing of noisy data. Next, a recursive algorithm 

which yields a family of solutions to the inverse problem is detailed. This algorithm takes .. 
advantage of all independent data and generates a system of highly nonlinear algebraic 

equations. Pliicker-Grafimann relations are instrumental in simplifying the equations. The 

algorithm is used to solve the 4 x 4 problem. Finally, the smallest nontrivial problem in 

three dimensions, the 2 x 2 x 2 problem, is solved. 
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Chapter 1 

Introduction 

Nearly one century has passed since Rontgen took the first radiograph of his wife's 

hand. Since that time many different techniques for noninvasive imaging of human tissue 

have been developed. A concise history of the development of medical imaging can be found 

in [14]. Some of these techniques are direct descendants of Rontgen's radiograph; others 

are completely unrelated. Computerized tomography, for example, is a direct descendant 

of the radiograph. The word "tomography" refers to imaging an object by slices. X rays 

have high energy and travel straight through the body. Both CT and magnetic resonance 

imaging, (MRI), permit recovery of an image from knowledge of slices of the object. Data 

analysis makes use of the Radon transform, which is linear. Ultrasound and impedance 

imaging are examples of imaging techniques which enjoy neither straight travel paths nor 

linear inversion formulas. The oxymoron "diffuse tomography" refers to low energy imag-
( 

ing in which the paths of the radiant energy are not necessarily straight and are unknown. 

Data analysis in diffuse tomography is highly nonlinear and yields a vector valued function. 

Because it is a low energy technique problems in diffuse tomography are highly nonlinear. 
. \ 

Clinical applications such as neonatal imaging and annual mammograms are not amenable 

to high energy techniques which might overexpose the patient to harmful radiation. Exper­

imentalists in optical tomography work with infrared radiation. Motivated by their work, 

Griinbaum posed an anisotropic diffusion boundary value problem in 1989. 
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1.1 Overview of Thesis 

This thesis addresses some of the most basic questions in diffuse tomography. 

Despite the fundamental nature of this work, many of the calulations are quite involved. 

This section attempts to give the reader a brief road map of the rest of the thesis in order 

to prevent the reader from becoming lost in a sea of matrices and minors. 

In Chapter 2 the forward problem is discussed for the smallest nontrivial two 

dimensional problem, for larger problems in the plane, and for problems in d dimensions. 

Chapter 3 concentrates on problems in the plane. It constitutes the bulk of this thesis. 

Before attempting to solve the inverse problem, a thorough understanding of the range 

of the forward map is required. Therefore, consistency conditions amongst the data are 

studied in 3.1. The goal, of course, is an inversion formula or inversion algorithm. Because 

of consistency conditions amongst the data it is impossible to invert the forward map. It 

is possible, however, to find a p-parameter family of solutions where p equals the difference 

between the amount of data and the number of independent consistency conditions. In 

section 3.2 a recusive recovery scheme which takes full advantage of all of the independent 

data is detailed. The base case for this algorithm is solved in section 3.2.1. Grafimannians 

and the Grafimann-Pliicker embedding are studied in subsection 3.2.1.2. They are used to 

simplify the solution to the 2 x 2 problem in section 3.2.1.3. The next level of the recusive 

scheme is handled in section 3.2.3, yielding an analytic solution to the 4 x 4 problem. In 

section 3.2.3.2 the number of parameters in the solution found ,in 3.2.3 is reduced using 

consistency conditions amongst the data. Consistency conditions and Grafimann relations 

are used to eliminate more of the parameters in section 3.2.3.2.2. Elimination of parameters 

continues, in sections 3.2.3.2.3 and 3.2.3.2.4. The reader should be warned that these 

sections are quite technical. Finally, the smallest nontrivial three dimensional problem is 

studied in Chapter 4. 

1.2 Brief Overview of Other Imaging Techniques 

To this day, radiographs are one of the most prevalent imaging methods. They 

are much like photographs, except for the fact tJ1at radiographs use higher energy radiation 

than light to form the image. A radiograph essentially plots an average density function, 

p(x,y) = lp(x,y,Z)dz 
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where p is the density of the tissue being imaged. 

Computerized tomography, (CT), has quickly become one of the mainstays of 

medical imaging. CT images display tissue density. With the help of intravenous contrast 

enhancers, CT is capable of providing useful images of soft tissue. It is able to resolve small 

features extremely well and data collection can be done quickly, reducing blurring due to 

motion of internal organs. 

Positron Emission Tomography, (PET), requires injection of a radioactive label 

(with a short half life!) into the patient. The isotopes emit positrons which are annihilated 

by electrons, creating 'Y rays which are measured trans axially. From these measurements 

the distribution of the label inside the body can be recovered. 

Magnetic resonance imaging provides excellent images contrasting hydrogen con­

centrations and relaxation times of perturbed hydrogen dipoles. MRI is· extremely useful 

for imaging the brain and spinal cord, areas where tissue is soft and CT provides poor 

resolution unless intravenous contrast enhancers are used. 

Real time ultrasound images have become a useful clinical tool, particularly for 

prenatal imaging. Although data analysis is linearized the images obtained are clear enough 

to prove diagnostically useful. 

Radiographs, CT, and PET assume that the radiating energy/ray travels in a 

straight line. Although MRI is a completely different technique, in an idealized setting the 

(Bloch) equations governing the response of hydrogen nuclei are linear. Furthermore, MRI 

data is often collected for a single "slice" of the object being imaged. In ultrasound and 

impedance imaging neither electrical currents nor sound waves are assumed to travel in 

straight lines through the body and in that respect they are somewhat similar to diffuse 

tomography. In this thesis, however, no approximations or truncations are made to linearize 

any of the governing equations. 

1.3 Description of Diffuse Tomography 

Experimentalists in optical tomography are presently working with infrared and 

near infrared radiation as another means of noninvasive imaging. Optical coherence tomog­

raphy, (OCT), makes use of light waves which are reflected. A beam is directed towards the 

tissue being imaged. The light enters the tissue and some of it is reflected backwards. By 

comparing the reflected light to the reference beam, the depth inside the tissue at which 
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the light was reflected can be calculated. Another type of optical tomography motivated 

this work. Another group of experimentalists (Barbour et ai, Benaron, Chance et aI, Delpy 

et aI, Gratton, ... ) use information given by light which passes through tissue. For an in­

troduction to optical imaging see the recent articles [16,17,18,19] and [20] .. More detailed 

research papers can be found in the proceedings [21] and [22]. As photons travel they are 

scattered many times. This scattering complicates the inverse problem. Therefore, most 

experimentalists use only data provided by ballistic photons, those which are scattered the 

least. This thesis gives a det,ailed study of a Markovian model of photon migration in the 

plane and a preliminary look at photon migration in three dimensions. Here we consider 

data generated by all photons, no matter how many scattering events they experience inside 

the imaging object. We begin by describing the transport model in two dimensions. 

Consider an n x n array of pixels in the plane which covers the object to be 

reconstructed. On each of the 4n outer edges there are two devices. One device shoots 

photons across the outside edge into the neighboring pixel; the other device detects photons 

as they leave the system. For each of the 4n outside edges 4n pieces of data may be collected. 

The data is stored as a 4n x 4n matrix, Q, where Qi,j is the conditional probability that a 

photon exits the system at detector j given that it entered the system at source i. Within the 

array, photons travel in four directions: north, south, east, and west. They change direction 

by turning some multiple of 7r /2. They do not interact and may be absorbed within a pixel. 

Photons move according to a two step ,Markov process. The probabilities with which a 

photon moves to a neighboring pixel depend upon its previous, as well as present, location. 

In this two step formulation, the state space consists of locations. The state space may be 

redefined so that photons move according to a one step Markov process. In the new state 

space a single state accounts for a photon's location at the previous time step and its present 

location. There are three different types of these Markov states: incoming, outgoing, and 

hidden. The probabilities with which photons move from one state to another are referred 

to as transition probabilities. The transition matrix, M, is sparse and may be written as 

a block matrix. M's nontrivial subblocks are referred to as Pio, P ih , Pho, and P hh • Pio, for 

example, contains the probabilities with which photons in incoming states move directly to 

outgoing states. Pih contains the probabilities with which photons in incoming states move 

to hidden states. P ho and P hh are the transition matrices for photons starting in hidden 

states travelling to outgoing and hidden states, respectively. Pio and P hh are always square 

matrices. If the Markov states are ordered carefully, all four of these submatrices of M have 

i 
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a nice block structure., 

The data matrix, Q, is 4n x 4n. Qi,j represents the probability that a photon 

which enters the system at source i exits the system at detector j. Notice that Q provides 

no time-of-flight information. The forward map is a function of the transition probabilities 

and equals Q. The goal of diffuse tomographers is to invert this map. Given Q, we want 

to recover the transitio~ probabilities. For a given object the transition probabilities give a 

discretized "image" of the object. In traditional imaging, one recovers a single parameter 

for each pixel. From this information a visual picture of the object is made. In diffuse 

tomography, however, one recovers many parameters per pixel. From this information one 

could make several "pictures" of the object. In both classical and diffuse tomography, fine 

discretizations of the covering array provide clearer "images" than coarse discretizations. 

The clarity of diffuse tomographic "images" will probably never match that of 

CT and MRI. Linear data analysis is certainly preferable to the nonlinear analysis in the 

following chapters. Unfortunately, X rays and supermagnets' are expensive and potentially 

dangerous. Low energy imaging techniques have fewer side effects and are less expensive 

than high energy methods. Ultrasound, for example, is relatively inexpensive and harmless. 

MRI, however, would not be cost effective for annual mammograms; PET and CT are not 

safe for premature infants. It is hoped that optical imaging will become an inexpensive 

and safe imaging technique; it is the author's hope that diffuse tomographic models will aid 

researchers in optical imaging. 
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Chapter 2 

The Direct Problem 

Because a thorough understanding of the simplest nontrivial system in the plane 

is the cornerstone of Chapter 3, a detailed description of the 2 x 2 problem follows. Later 

larger two dimensional systems and as well as d dimensional systems will be discussed. 

Consider the setup for the 2 x 2 problem as shown in figure 2.1. On each of 

the eight outer edges there are two devices. One device shoots photons across the outside 

01 Os 

il Zs 

o 2 Z2 hI hs i1 01 

h2 hd 
h3 h6 ! 

o 3 Z3 h4 hs i6 06 

i4 Zs 

04 05 

Figure 2.1: Incoming, hidden, and outgoing states are labeled with i's,h's, and o's respec­

tively. 
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edge into the neighboring pixel; the other device detects photons as they leave the system. 

Photons change direction by turning an integral multiple of 7r /2. Photons do not interact. 

Another property of this model is that a photon may die within a pixel. 

Photons travelling according to the above rules are simply moving according to 

a two step Markov process whose state space consists of locations. When a photon enters 

pixel i,j from a particular direction it either dies or continues its journey. The.probabilities 

with which the photon moves forward, backwards, left or right are functions of its previous 

as well as present location. To simplify analysis the state space is redefined in order to 

make the process a one step Markov process. In the new state space, the previous as ~ell 

as present location of a photon define its state. Equivalently, the location and direction 

of travel determine a photon's state. There are one "dead" and 24 "living" states. The 

"living" states are listed below 

iI, i2 , •.. , is, hI' h2' ... , hg , and 0b 02, ... , Os 

There are three classes of "living" states: incoming, hidden, and outgoing. See 

figure figure 2.1. The "dead" state and all of the outgoing states are absorbing states. There 

are four states by which a photon may enter a given pixel. Once inside the pixel there are 

. five things the photon may do. It may turn right, turn left, reverse directions, continue 

straight through the pixel, or it may die inside the pixel. The first four transitions are 

referred to as dynamic transitions. Each of these five events occurs with some transition 

probability and the sum of the probabilities is identically one. It is sufficient, therefore, 

to recover only the four dynamic transition probabilities. There are 4 x 4 = 16 dynamic 

transitIon probabilities for each of the four pixels, yielding a total of 64 unknowns. 

The one step Markov transition matrix, M, has a sparse block structure. Ordering 

the Markov states so that the incoming states precede the hidden states, which precede the 

outgoing states, gives M the following block structure: 

.. 

(2.1) 

001 

Mi,j = the probability that a photon in state i moves directly to state j. Pio, Pih , 

Phh , and Pho are one step transition matrices. They are sparse and their nonzero entries are 

the dynamic transition probabilities. For example, Pio[s, t] = the probability of a photon 
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elle 
pixel 1, 2 

ells 

pixel 2,1 pixel 2,2 

Figure 2.2: The probability that the photon will travel east into pixel 1, 1 and continue east 

into pixel 1, 2 is written as eIle. The probability that it will turn right and travel into pixel 

2,1 is written as ells. 

moving from incoming state s directly to outgoing state tj Pih[S, t] = the probability of a 

photon moving from incoming state s directly to hidden state t. The one step transition 
. ' 

matrices for the 2 x 2 problem are shown below. Note the sparse 2 x 2 block structure of 

the sub matrices for the 2 x 2 system and recall the notation as described in figure 2.2. 

0 0 slls 0 0 0 0 slle 

0 0 ells 0 0 0 0 elle 
1 

0 e21n 0 0 e21e 0 0 0 

0 n21n 0 0 n21e 0 0 0 
(2.2) Pih = 

0 0 0 n22w 0 0 n22n 0 

0 0 0 w22w 0 0 w22n 0 

w12w 0 0 0 0 w12s 0 0 

s12w 0 0 0 0 812s 0 0 
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0 .0 wlls 0 0 0 0 wlle 

0 0 nlls 0 0 0 0 nlle 

0 s21n 0 0 s21e 0 0 O· 

0 w21n 0 0 w21e 0 0 0 

(2.3) Phh = 
0 0 0 e22w 0 0 e22n 0 

0 0 0 s22w 0 0 s22n 0 

n12w 0 0 0 0 n12s 0 0 

e12w 0 ·0 0 0 e12s 0 0 

slln sllw 0 0 0 0 0 0 

elln ellw 0 0 0 0 0 0 

0 0 e21w e21s 0 0 0 0 

0 0 n21w n21s 0 0 0 0 

(2.4) Pio = 
0 0 0 0 n22s n22e 0 0 

0 0 0 0 w22s w22e 0 0 

0 0 0 0 0 0 w12e w12n 

0 0 0 0 0 0 s12e s12n 
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wlln wllw' 0 0 0 0 0 0 

nlln nllw 0 0 0 0 0 0 

0 0 821w 8218 0 0 0 0 

0 0 w21w w218 0 0 0 0 
(2.5) Pha = 

0 0 0 0 e228 e22e 0 0 

0 0 0 0 8228 822e 0 0 

0 0 0 0 0 0 n12e n12n 

0 0 0 0 0 0 e12e e12n 

Submatrices for other systems are not always square. For a two dimensional n x n 

system, there are 4n incoming and 4n outgoing states and 4n2 
- 4n hidden states. Hence 

for a n' x n problem, Pia is 4n x 4n, P ih is 4n x 4n(n - 1), P hh is 4n(n - 1) X 4n(n - 1), 

and Pha is 4n{n - 1) x 4n. In three dimensions, there are 6n2 incoming and outgoing states 

and 6n3 
- 6n2 = 6n2 (n - 1) hidden states for a n x n x n system. In this case, Pia is a 

6n2 x 6n2 matrix, while P ih is 6n2 x 6n2 (n - 1), P hh is 6n2 (n - 1) x 6n2 (n - 1), and Pha is 

6n 2 (n - 1) x 6n 2 • More generally, in d dimensions an n x n x ... x n system is made up of n d 

d-dimensional cubes and has 2d large outer faces. Each of these large outer faces contains 

n(d-l) faces of individual cubes. Therefore this system has 2dn(d-l) incoming and 2dn(d-l) 

outgoing states, and 2dnd - 2dn(d-l) = 2dn(d-I)(n - 1) hidden states. Pia for this system is 

2dn(d-l) x 2dn(d-I), ~h is 2dn(d-l) x 2dn(d-I)(n-1), P hh is 2dn(d-I)(n-1) x 2dn(d-I)(n -1), 

and Pha is 2dn(d-I)(n - 1) x 2dn(d-I). 

For kEN, the i, j entry of the kth power of M is the probability that a photon 

starting in state 'i reache~ state j after k Markov steps. 

0 p: p(k-l) 
.h hh 

Qk 

(2.6) Mk= 0 P/:h 
I;k-l pn p 

n=O hh ha 

0 0 I 

where 



11 

k-2 
(2.7) . Qk = Pia + Pih (2:: P;:h) Pha 

n=O 

Q~,j is the probability that a photon which entered the system in incoming state 

i exits the system via outgoing state j during the first k transitions. Because we have no 

time-of-flight information the data we collect is 

00 

(2.8) Q =~i:oo Qk = P;a + Pih (2:: P;:h) Pha = Pia + Pih (I - Phh )-l Pha 
n=O 

It is not difficult to show that the sum converges. Although the bulk of the research 

done to date is on two dimensional models, equation 2.8 holds in any dimension. We say 

that one solves the forward problem when one calculates Q from Pia, Phh , Pha, and Pih . Let 

f denote the forward map given by 2.8, so f(Pia,Pih,Pha,Phh) = Q . For a k-dimensional 

system, there are 4P transition probabilities per voxel since a photon may enter a given 

voxel via anyone of 2k states and may exit the voxel via 2k different states. Therefore, 4k2n k 

of the entries in Pia, Phh , Pha , and P;h are nonzero for a n x n x ... x n system. Although 

this thesis concentrates on the algebraic inverse problem, there are physical constraints 

upon dom(f) and 1m(f). Let db d2, ... , d2k be the preferred directions of travel within the 

system and let a be a multi-index a = (a1,a2,'" ,a2k) where ai = 1,2, ... ,n for each 

i = 1,2, ... ,2k . . Then the domain of the forward map lies in the unit cube in 1R4k2 
n

k 
and 

satisfies 

4k 2 n k 

(2.9) o ~ 2:: diadj ~ 1 Va and i = 1,2, ... ,2k 
j=l 

There are similar restrictions upon the range. For a n x n x ... x n system f maps 

the transition probabilities to the 2kn(k-1) x 2kn(k-1) matrix Q E 1m(j) C MatIR (2kn(k-1)) 

and since Q is a transition matrix the following conditions must hold: 

2kn(k-l) 

(2.10) o ~ 2:: Qi,A ~ 1 . 1 2 2k (k-1) z = , , ... , n 
A=l 

Let Jac denote the Jacobian. Then if rank(Jac(f(x))) < 4k2nk we cannot hope 

to invert f at the point x. If rank(Jac(f)) = r at a generic point, then at best we can 
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express the transition probabilities in terms of the data and 1 independent parameters, 

where 1 = 4k2n k 
- r. We shall do just this for two dimensional problems in the following 

chapter. In Chapter 4 a small problem in three dimensions will be studied. 
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Chapter 3 

Two Dimensional Problems 

We begin with a study of conditions upon the range of the forward map for prob­

lems in the plane. Later we develop an inversion algorithm which respects and takes ad­

vantage of these consistency conditions amongst the data. 

3.1 Consistency Conditions 

Consistency conditions amongst the boundary data have the unfortunate effect of 

reducing the amount of independent data. When working on an inverse problem, we would 

like to have as much data as possible. At best, we may recover as many parameters as inde­

pendent data. In the first part of this chapter consistency conditions amongst the boundary 

data are derived and a few examples are given. In these examples we· study boundary data 

for problems of increasing complexity. It is shown that the number of independent consis­

tency conditions increases faster than the amount of data. Later, the ratio of independent 

consistency conditions to total data is studied as the complexity increases. However, the 

coarsest nontrivial array provides a good starting point for this study of consistency condi­

tions. 

3.1.1 Derivation for the 2 x 2 problem 

During earlier work on inverting the forward map for the 2 x 2 pro~lem, consistency 

conditions amongst the data were found. Since the theory behind these conditions is the 

same for 2 x 2 arrays as m x n arrays, the derivation for the consistency conditions in the 

2 x 2 problem precedes the general derivation. 
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In order to recover the probabilities at least as many independent data are required 

as there are unknowns. Recall the eight detectors positioned around the outer edges of the 

system. When a photon is shot into the system through an outer edge, the photon either 

dies somewhere inside the system or is detected as it leaves the system. By collecting data 

on many photons which enter through the same edge, one may calculate the probability that 

a photon entering the system through edge B will exit through edge t (here B, t"= 1,2, ... ,8). 

The 8 x 8 data matrix, Q, contains 64 pieces of data. 

During early work on this inverse problem the author stumbled upon many zero 

valued 3 x 3 minors of Q. In this section, consistency conditions amongst the data are 

derived. These conditions force the following 4 x 4. submatrices of the 8 x 8 data matrix to 

be of rank:::; 2. 

(3.1) 

(3.2) 

Q3;S Q3,6 Q3,7 Q3,S 

Q4,S Q4,6 Q4,7 Q4,S 

, and 

QS,l QS,2 QS,3 QS,4 

QS,l QS,2 QS,3 QS,4 

QS,7 Qs,s QS,l QS,2 

By taking advantage of the Markovian nature of the model, we may easily prove 

that these matrices are rank deficient. Define 

P"" - probability of going" "directly" from t,J 

incoming state i to hidden state j 

Bi,j = probability of starting in hidden state 

i and ever reaching outgoing state j 
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For the purpose of deriving the rank deficiency of matrix 3.1 a photon is said to 

travel "directly" if its path from incoming state i to hidden state j includes only one crossing 

of the thick vertical barrier as shown in figure 3.4. For example, two of the paths PI,S takes 

into account are shown in figure 3.4. One of the paths which 8s,s represents is shown in 

figure 3.5. Note that PI,S does not include the probability with which a photon travels as 

shown in figure 3.6. 

Referring to figure 2.1 and the definitions given above, some of the Qi,jS may be 

expressed in terms of the Pi,jS and 8i,jS 

QI,S = PI,S 8S,5 + PI,S 85,5 

(3.3) QI,6 = PI,s8s,6' + PI,S 8s,6 

QI,7 = PI,S 8s,7 + PI,S 85,7 

QI,S = PI,S 8s,s + PI,S 85,S 

or, 

(3.4) [QI,S QI,6 QI,7 Ql,S] = [PI,S PI,S] 
[ 

8s,5 8s,6 8s,7 8S,S] 

85,S 8s,6 85,7 85,S 

Notation: QZr denotes the 4 x 4 submatrix of the probabilities with which a photon 

travels from left to right across the system, starting from sources 1, 2, 3 or 4 and ending 

at detectors 5, 6, 7 or 8. Similarly, QrZ denotes the submatrixof probabilities with which 

photons travel from right to left across the system. Qtb and Qbt are 4 x 4 submatrices 
I 

representing the probabilities of travel from bottom to top and top to bottom, respectively. 

The entire Qlr submatrix can be expressed in the same notation: 

QI,5 QI,6 QI,7 QI,S PI,S PI,S 

Q2,S Q2,6 Q2,7 Q2,S P2,S P2,5 [ s, .• 8S,6 8s,7 S,., ] 
(3.5) = 

Q3,5 Q3,6 Q3,7 Q3,S P3,S P3,5' 8s,5 85,6' 85,7 85,8 

Q4,5 Q4,6 Q4,7 Q4,S P4,S P4,5 

Similarly, the Qtb, QrZ' and Qbt submatriees may be written as follows: 
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Q7,a Q7,4 Q7,S Q7,6 P7,a P7,6 

Qs,a QS,4 Qs,s QS,6 Ps,a PS,6 [ 8',3 
8a,4 8a,s 

8,,6 1 
(3.6) = 

Q1,a Q1,4 Q1,S Q1,6 P1,a P1,6 86,a 86,4 86,S 86,6 

Q2,a Q2,4 Q2,S Q2,6 P2,3 P2,6 

QS,1 QS,2 Qs,a QS,4 PS,4 PS,1 

Q6,1 Q6,2 Q6,a Q6,4 P6,4 P6,1 [ S',' 84,2 84,a 8", 1 (3.7) = 

Q7,1 Q7,2 Q7,a Q7,4 P7,4 P7,1 81,1 81,2 81,a 81,4 

QS,1 QS,2 Qs,a QS,4 PS,4 PS,1 

Qa,7 Qa,s Qa,1 Qa,2 Pa,2 Pa,7 

Q4,7 Q4,S Q4,1 Q4,2 P4,2 P4,7 [ S2,' 
82,S 82,1 

S2,' 1 
(3.8) = 

QS,7 Qs,s QS,1 QS,2 PS,2 PS,7 87,7 87,S 87,1 87,2 

Q6,7 Q6,S Q6,1 Q6,2 P6,2 P6,7 

Since each of these 4 x 4 submatrices is the product of a 4 x 2 matrix with a 2 x 4 

matrix, these 4 x 4 submatrices are of rank (at most) 2. 

3.1.2 Derivation for the m x n problem 

Moving on to a general description and existence proof of consistency conditions, 

consider an m x n problem as shown in figure 3.7. Let Qlr be the submatrix representing 

the probabilities of photons which enter the system on the left and exit on the right of the 

thick vertical line. In this case, 
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(3.9) Qlr = 

Qm+2k,m+2k+l Qm+2k,m+2k+2 

where N = 2(m + n). 

Claim: rank (Qlr) ::; m. 

Proof: For any Qi,i in Qlr, 

(3.10)Qlr = 

Pl,l Pl,2 Pl,m Sl,m+2k+l Sl,m+2k+2 Sl,N 

P2,1 P2,2 P2,m S2,m+2k+l S2,m+2k+2 . S2,N 

Pm+2k,1 Pm+2k,2 Pm+2k,m Sm,N 

Since Qlr is the product of a (m + 2k) x m matrix with a m x (2( n - k) + m) matrix 

the rank of Qlr is at most m. The same argument holds for Qrl, Qtb, and Qbb (although 

the ranks of Qtb and Qbt are no greater than n). 

Now consider an even more general left-right transition submatrix. Qlr represents 

the probabilities of photons which start out on the left of the barrier and exit the system 

on the right of the barrier shown in figure 3.8. 

Without loss of generality assume that 1 ::; I < k < n. Then 
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QI,M+I QN-l+I,M+2 

Q2,M+I QN-l+2,M+2 
(3.11) Qlr = 

QM,M+I QN,M+2 

where N = 2(m + n) and M = m + k + 1. For any Qi,j in Qlr 

Q 
",m+k-I . 

i,j = L..,a=l Pi,a Sa,j, l.e., 

so in this case Qlr equals 

(3.12) 

PI,1 Pl,2 P2m+271.-I+I,m+k-1 

P2,1 P2,2 P2m+271.-1+2,m+k-1 

PM,1 PM,2 PM,m+k-1 Sm+k-I,M+I Sm+k-I,M+2 Sm+k-I,N 

Qlr is the product of an (1 + m + k) x (m + k -1) matrix with an (m + k -1) x 

(2n + m - 1 - k) matrix. Hence, rank ( Qlr) :S (m + k -1). The same sort of argument holds 

for the other rank deficient submatrices. For the barrier in figure 3.8, rank ( Qrl) :S m + k - 1. 

3.1.3 Data subject to Conditions 

For a n x n system, there are 16n2 pieces of data. These data are not all inde­

pendent, however. Data which are part of some rank deficient submatrix are subject to 

consistency conditions. In fact, only the data corresponding to nonzero entries of Pio are 

independent of all consistency conditions. 



19 

It is not difficult to see that the nonzero entries of ~o correspond to "independent" 

data. Notice that these entries are precisely those representing the probability that a 

photon may travel directly from an incoming state to an outgoing state. In other words, 

if ~o[i,j] i= 0 then it is possible for a photon to travel from source i to detector j without 

ever visiting a hidden state. Such a pho~on enters only one pixel during its lifetime, and 

so never has the opportunity to cross any of the barriers which were used to derive the 

consistency conditions. Hence, Pio[i,j] i= 0 implies Qi,j is free of the consistency conditions 

derived in section 3.1.2. 

Furthermore, only these data are free of the consistency conditions derived in 

section 3.1.2. Consider any piece of data Qk,/ where Pio[k, l] = 0 and suppose Qk,/ is not 

part of any rank deficient rank n submatrix. Then there exists no right-left, left-right, 

top-bottom, or bottom-top barrier between source k and detector l. Consider the barriers 

which immediately surround source k. See figure 3.9. (There are three such barriers unless 

source k shoots photons into a corner pixel. In that case there are only two surrounding 

barriers.) The barriers do not separate source k from detector l, so there is some path from 

k to 1 which does not cross any of these barriers. Such a path contains no hidden states, 

which implies that Pio[k, l] i= o. But Pio[k, l] = 0, a contradiction. Hence Qk,/ is part of 

some rank deficient, rank n submatrix. 

3.1.4 ~xamples for square systems 

Before looking for an asymptotic limit to the number of independent consistency 

conditions as a function of n, consider a few more examples. When n = 1 the array is a 

single pixel, and there are no consistency conditions analogous to those derived above. For 

a single pixel there are 16 independent parameters per pixel. For larger arrays, however, 

there are fewer independent parameters per pixel. See figure 3.10. 
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3.1.4.1 2 x 2 problem 

For the 2 x 2 problem, there are four rank deficient submatrices of the data. 

There is one left-right, one right-left, one top-bottom, and one bottom-top submatrix. 

Each submatrix is 4 x 4 and rank two. Although the submatrices overlap, each yields 

four .independent consistency conditions amongst the 64 pieces of data. The consistency 

conditions leave at most 64 - 4 * 4 = 48 independent pieces of data. See figure 3.11. In this 

relatively small case, both Maple and Macsyma are capable of computing the Jacobian of 

the forward map. At a generic point the rank of the Jacobian is 48. Since the rank of the 

forward map is generically 48, there are at no other consistency conditions. 

3.1.4.2 4 x 4 problem 

As shown in section 3.1.2, there are three rank four Qlr submatrices; three rank four 

Qrl submatrices; three rank four Qtb submatrices and three rank four Qbt submatrices. The 

Qlr submatrices all overlap with each other, as do the other sets of rank four submatrices. 

None of the Qlr submatrices overlap with any of the Qrl submatrices. Similarly, the Qtb 

and Qbt submatrices are separated. 

The Qlr and Qrl sub matrices overlap with the Qtb and Qbt submatrices, however. 

Recall that these submatrices and the entries of Pio cover the data matrix, Q. We would like 

to know how many of the data are independent. The rank four submatrices can easily be 

used to show that there are at most 160 independent pieces of data (amongst the 256). From 

the forward map we may recover at most ten independent parameters per pixel, (assuming 

that it is possible to recover the same number of parameters per pixel). Clearly, the data 

which occupies the same positions as nonzero entries in Pio are independent. But what of 

the othe~ data? Consider first the 8 x 8 rank four .submatrices. Just as in the 2 x 2 case, 

a 4 x 4 block from each submatrix may be written off as redundant. See figure 3.12. This 

takes full advantage of the fact that the submatrices are of rank four and accounts for all 

of the data in the submatrix. Consider next the data which are part of one of the 10 x 6 

rank four submatrices. Most of this data has aheady been accounted for because it is part 

of one of the 8 x 8 submatrices. Only the first and last rows contain unaccounted for data. 

Three entries in each of the end rows are assumed known because they. lie in neighboring 

8 x 8 rank deficient submatrix. 
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We need know only one more piece of data in order to calculate the two unknown 

pieces of data in each end row. Analogous reasoning applies to the 6 x 10 rank deficient 

submatrices. Therefore, we may write off as redundant additional data within the 4 x 4 

subblocks along the diagonal, as shown in fig 3.12. 

3.1.4.3 8 x 8 problem 

In this case there are seven rank eight submatrices of each stripe: left-right, right­

left, top-bottom, and bottom-top. Once again all of the left-right submatrices are disjoint 

from the right-left subID:atrices, but do overlap with the top-bottom and bottom-top sub­

matrices. (Also, the top-bottom submatrices do not intersect any bottom-top submatrices.) 

And the union of all of the rank deficient, rank eight submatrices and the entries of Pio cover 

the data matrix. Below it is shown that for n = 8 we may recover at mos,t nine independent 

parameters per pixel from the forward map alone. 

Once again begin by considering the 16 x 16 rank eight submatrices. They contain 

8*8=64 redundant pieces of data each. Writing off one 8 x 8 block per submatrix takes all of 

these consistency conditions into account. Now all data within these submatrices is assumed 

to be known. Next; consider the data which is part of an 18 x 14 rank eight submatrix. 

As before, most of the data is already accounted for. Only the first and last rows lack 

accounted for data. In both the first and last row, seven pieces of data are assumed known, 

since they are part of some 16 x 16 rank eight submatrix. If in both rows one more piece 

of data is assumed known, then the six remaining pieces of data may be calculated. The 

same reasoning applies to the first and last columns of the 14 x 18 rank eight submatrices. 

Similar reasoning applies to the end rows and columns of the 20 x 12 and 12 x 20 rank eight 

submatrices. Finally, we write off data in the end rows and columns of the 22 x 10 and 

10 x 22 rank eight submatrices. See figure 3.13. 
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independent 

n data/pixel 

1 16 

2 12 

4 10 

8 9 

3.1.5 For n a power of 2 

For coarse grids, (n ::; 8), the maximum number of independent data per pixel 

decreases as n increases. In this section the method by which redundant data was found in 

the examples is generalized. The chart below shows the number of ind~pendent data per 

pixel for n x n systems. 

Further, notice that for n > 2 the rectangular (not square) rank deficient sub­

matrices account for the increase in the ratio of redundant data to total data. The data 

rendered redundant by these rectangular submatrice~ may be chosen inside n x n blocks 

along the diagonal. Therefore, the n x n blocks of along the diagonal are studied below. 

Notice that in the examples, the only necessary data in the blocks along the 

diagonal form an 'X'. All other data within these blocks is redundant. The reason is not 

too hard to see, even for general n = 2k, kEN. The redundant data belongs to some 

rectangular rank deficient submatrix. Such submatrices, however, are mostly accounted for 

by the data in the corresponding square rank n submatrix. There are at least 2n rows 

(or columns) common to the square and rectangular submatrices. Consider first one of 

the (2n - 2) x (2n + 2) submatrices. Only one column protrudes from either side of the 

corresponding 2n x 2n submatrix. For each of these columns, n - 1 of the data are accounted 

for because they are part of an overlapping 2n x 2n submatrix. Hence, we need only add 

one piece of data to each column in order to calculated the rest of the column. If we choose 

to add the piece of data in the corner of the n x n block along the diagonal, then the 

(2n - 2) x (2n + 2) submatrix corresponding to the first square submatrix now has n pieces 

of data in the protruding columns, and so the rest of the (2n - 2) x (2n + 2) submatrix can 
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be calculated. Furthermore, one of the protruding rows of a neighboring (2n + 2) x (2n - 2) 

rank n submatrix now has n pieces of accounted for data. So we may also calculate the 

n - 2 remaining pieces of data in that row. By adding one piece of data to one protruding 

column, we gain 2(n - 2) pieces of data. Adding o~e piece of data to each protruding 

column allows the calculation of the unaccounted for data,in both the (2n - 2) x (2n + 2) 

and (2n + 2) x (2n - 2) rank deficient submatrices. Similarly, the judicious addition of one 

piece Of data to each end column of the (2n - 4) x (2n + 4) rank eight submatrices permits 

us to calculate the rest of the unaccounted for data in all of the (2n - 4) x (2n + 4) and 

(2n + 4) x (2n - 4) rank deficient submatrices. We may continue this process until reaching 

the center of the n x n block along the diagonal. The data in the center of the block are 

independent entries since they correspond to nonzero entries of Pio' Only 2n pieces of data 

within each of the diagonal n x n blocks need be known. The other n 2 
- 2n pieces of data 

are redundant. And among each of the rank n, 2n x 2n submatrices exactly n 2 pieces of 

,data are redundant. Since the redundant data may be choosen independently, there are at 

least 4((n2 - 2n) + n2
) = 8n(n - 1) pieces of redundant data, leaving at most 8n(n + 1) 

pieces of independ~nt data. The fraction of independent data decreases as the number of 

pixels increases. 

For most imaging methods, quality improves as pixel size decreases. Large pixels 

yield grainy images. The more pixels used to image an object, the clearer the image. For 

n = 2k, the fraction of independent data approaches 1/2 as k approaches infinity. For 

n 2:: 16, the forward map generates at most eight independent data per pixel. Additional 

information about the system is needed in order to recover diagnostically relvant information 

from the data. Some a priori knowledge of photon transport is needed to close the system 

of governing equations derived in the next section. 
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3.2 Recursive Inversion Algorithm 

Although it is not possible to invert the direct map because of the consistency 

conditions amongst the data, it is possible to recover as much information as there are 

independent data. For an n x n system the forward map takes 16n2 transition probabilities 

and maps them to the 4n x 4n matrix Q. The domain of the forward map lies in the unit 

cube in ffi.16n
2

• The domain is defined by the equations 

(3.13) 

eije + eijw + eijn + eijs ~ 1 

wije+wijw+wijn+wijs~1 

nije + nijw + nijn + nijs ::; 1 

sije + sijw + sijn + sijs ~ 1 

for i, j = 1,2, .. : ,n. Because Q is a transition matrix acceptable solutions lie in jR16n
2 

and 

satisfy 

4n 

(3.14) o ~ LQ[i,A] ~ 1 i = 1,2, ... ,4n 
),=1 

Since the rank of the forward map is less than 16n2 we cannot hope to invert it. If 

the rank of its Jacobian is generically r, then at most we can recover r pieces of information. 

Although we cannot explicitly solve for transition probabilities in terms of the data, we can 

express them in terms of the data and k independent parameters, where k = 16n2 - r. In 

this section a recursive algorithm for finding the k ~arameter family of solutions is detailed. 

3.2.1 Base Case (2 x 2 problem) 

3.2.1.1 Solving the Governing Equations 

By making several nonlinear changes of variables, we may remove the nonlinearities 

from 2.8, (or "move" them to the changes of variables). First define, (assuming that Pho is 

invertible), 

(3.15) 

Equation 2.8 may be rewritten as 



, 
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(3.16) 

where e is a matrix of zeros. () will denote a vector of zeros. A few more changes 

of variables are required to make 3.16 linear: 

(3.17) 

We can recover P hh , Pio, and P ih in terms of A if we knowW, X, and Y. Under 

these substitutions, the matrix equation 3.16 becomes 

(3.18) Q(A - W) - (X - Y) = e 

Recall that Q is the data, so 3.18 is linear in the unknown matrices A, W, X, 

and Y. Furthermore, the new matrices have special block structures. A has the same 

diagonal block structure as Pho . X is also block diagonal. Finally, Wand Y have the 

same off diagonal block structure as Phh and Pih • The variables for each system/column of 

equations contains three each of the Ai,is, Wi,is, Xi,is, and ¥i,is. The Wi,is,Xi,is, and ¥i,is 

are functions of Ai,is which correspond to other columns. Although the variables differ from, 

column to column (exactly 64 variables total-no repeats between columns), the columns 

are only artificially decoupled. 
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(3.19) A-W= 

A1,1 A 1,2 -W1,3 0 0 0 0 -W1,s 

A2 ,1 A 2 ,2 -W2 ,3 0 0 0 0 -W2 ,s 

0 -W3 ,2 A3 ,3 A3 ,4 -W3,s 0 0 0 

0 -W4 ,2 A4 ,3 A4 ,4 -W4 ,s 0 0 0 

0 0 0 -WS ,4 As,s As,s -WS,7 0 

0 0 0 -WS ,4 As,s As,s 
, 

-WS,7 0 

-W7,1 0 0 0 0 -W7,s A7,7 A7,s 

-WS,l 0 0 0 0 -Ws,s AS,7 As,s 



(3.21) 

Ql,S Ql,6 Ql,7 Ql,S 0 0 0 

Q2,S Q2,6 Q2,7 Q2,S 0 0 0 

Q3jS . Q3,6 Q3,7 Q3,S 0 0 0 

Q4,S Q4,6 Q4,7 Q4,S 0 0 0 

Qs,s QS,6 QS,7 Qs,s 1 0 0 

Q6,S Q6,6Q6,7 Q6,S 0 1 0 

o 

o 

o 

o 

o 

o 

As,6 

A6 ,6 

-W7 ,6 

-WS,6 

X S,6 

Q7,S Q7,6 Q7,7 Q7,S 0 0 -1 0 Y7,6 

Qs,s QS,6 QS,7 Qs,s 0 0 0 -1 Ys,6 
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=() 

We can do the same for the other columns in 3.18. To each column in 3.18 

there corresponds a system of eight linear equations in the variables which appear in the 

corresponding columns of 3.19 and 3.20. Note that as far as their zero structures are 

concerned, the columns of 3.19 and 3.20 come in pairs. The roles of the Ai,js and Wi,jS 

are reversed in the first and eighth columns of 3.19 as are the roles of the Xi,jS and Yi,jS 

in the first and eighth columns of 3.20. Hence, we must solve the "same" matrix equation 

for the first and eighth columns of 3.18. Similarly, the linear systems corresponding to the 

second and third columns of 3.18 are given by a single matrix equation; the fourth and fifth 

columns by a third matrix equation; and the sixth and seventh columns by a fourth matrix 

equation. We are left with four sets of homogeneous linear equations, i.e., four 8 x 8 matrices 

which satisfy the homogeneous equation Qx = (). Since the trivial solution would not be 

interesting enough to write about we may safely assume that there must be other solutions. 

This is indeed the case since the upper left 4 x 4 submatrix found in equation 3.21, 

Ql,S Ql,6 Ql,7 Ql,S 

(3.22) 
Q2,S Q2,6 Q2,7 Q2,S 

Q3,S Q3,6 Q3,7 Q3,S 

Q4,S Q4,6 Q4,7 Q4,8 

representing travel from left to right across the system is rank deficient. As noted in 

section 3.1 the submatrix above is of rank two or less. So we may solve 3.21 for at most six 

of the eight unknowns in terms of the other two. 
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The variables for each system of equations contains two each of the Ai,is, Wi,is, 

Xi,is, and }'i,is, Do not forget, however, that the Wi,is, Xi,is, and }'i,is are functions of 

Ai,is which correspond to other columns. Although the variables differ from column to 

column (exactly 64 variables total-no repeats between columns), the columns are only 

artificially decoupled. Recall that only six equations per column of 2.8 are independent. 

Since the Wi,is, Xi,is, and }'i,is are already functions of Ai,is, it seems natural to solve 

for them in terms of the Ai,is, Following this procedure for all eight columns reduces the 

number of unknowns from 64 to 16. 

To solve 3.21 for the Wi,is, Xi,is, and }'i,is in terms of the Ai,is, we need only 

solve: 

Q3,7 Q3,S 0 o 0 0 

o 0 0 W S ,6 

(3.23) 
[ 

AS,6] 

A6 ,6 

Q . Q -1 0 0 0 5,7 S,S X S ,6 Qs;s QS,6 
= 

Q Q. 0 -1 0 0 6,7 6,S 

o 1 0 

QS,7 Qs,s 0 o 0 1 YS ,6 Qs,s QS,6 

For the sake of simplicity the first two rows of the matrix equation 3.21 were 

omitted and the equation was rewritten with the unknown Wi,is, Xi,is, and }'i,is on the 

lefthand side. The determinant of the left hand matrix in 3.23 is dQ[3,4],[7,S]' 3.23 has'a 

unique solution if and only if dQ[3,4],[7,S] # O. A similar requirement holds for each of th.e 

other columns of 3.20. In order to solve each column of equations for the Wi,is, Xi,is, and 

}'i,is in terms of the Ai,is it is s~ufficient that the following minors be nonzero. 

(3.24) dQ[3,4],[7,S] , dQ[7,S],[3,4] , dQ[S,6],[1,2] , dQ[1,2],[S,6] 

If the data satisfy these requirements then we can solve the 48 independent equa­

tions in 64 variables linearly for the nonzero entries in W, X, and Y in terms of the 16 

variables in A = p;:;,l, Unfortunately, that exhausts the supply of equations for the original 

model. Example solutions from each of the four one step transition submatrices are shown 

below: 



(3.25) 

(3.26) 

and 

(3.27) 

, A12 
wllw= - dA ' 

. [1,2],[1,2] 

where wllw is an entry in Pho . One of Ph,;'s nonzero entries is 

w21e = (dQ[I,2],[3,5]A5,5A 3,3 + dQ[I,2],[3,6]A6,5A3,3+ 

dQ[1,2],[4,5]A5,5A4,3 + dQ[1,2],[4,6]A6,5A4,3) / 

dQ dA· [1,2],[3,4] [3,4],[3,4] 

dQ A A dQ A A 21 = [1,2,4],[4,5,6] 3,3 4,4 _ [4,5,6],[1,2,4] 4,3 3,4 
n 8. dQ dA dQ·dA + [1,2],[5,6] [3,4],[3,4] [5,6],[1,2] [3,4],[3,4] 

( dQ[5,6],[1,2]dQ[1,2,4],[3,5,6] - dQ[1,2];[5,6]dQ[4,5,6],[1,2,3]) A3 ,3 A3,4 

dQ[1,2],[5,6]dQ[5,6],[1,2]dA[3,4],[3;4] 

is an entry of Pio. Finally, one of the nonzero entries of Pih is 

8128 = ( -dQ[5,6],[l,2] (dQ[1,2],[5,6]dQ[I,2,S],[6,7,S] - dQ[1,2],[6,7]dQ[I,2,S],[5,6,S]) 

-dQ[1,2],[6,S]dQ[1,2],[5,6]dQ[5,6,S],[1,2,7]) A 6,6A7,sAs,7 

+ (dQ[5,6],[1,2] (dQ[1,2],[6,S]dQ[1,2,S],[5,6,7] + dQ[I,2],[5,6]dQ[I,2,S],[6,7,S]) 

-dQ[I,2],[6,7]dQ[1,2],[5,6]dQ[5,6,S],[1,2,S]) A7,7A 6,6 AS,g 

- ( -dQ[5,6],[1,2] ( dQ[I,2],[5,6]dQ[1,2,S],[5,7,S] - dQ[1,2],[5,7]dQ[I,2,S],[5,6,S]) 

-dQ dQ dQ ) A A A [1,2],[5,S] [1,2],[5,6] [5,6,S],[1,2,7] 5,6 S,7 7,S 

+ (dQ[5,6],[1,2] ( dQ[I,2],[5,6]dQ[1,2,S],[5,7,S] + dQ[1,2],[5,S]dQ[I,2,S],[5,6,7]) 

(3 28) -dQ dQ . dQ ) A A A . [1,2],[5,7] [1,2],[5,6] [5,6,S],[1,2,S] 5,6 S,S 7,7 

+AS,7 A S,S (dQ[I,2],[6,S]A6,6 + dQ[1,2],[5,S]A5,6) 

( -dQ[5,6,S],[1,2,S]dQ[1,2],[5,6] + dQ[5,6],[1,2]dQ[I,2,S],[5,6,S]) 

+A7 ,sA7,7 (dQ[1,2],[6,7]A6,6 + dQ[1,2],[5,7]A5,6) 

( dQ[5,6J,[1,2]dQ[I,2,S],[5,6;7] - dQ[1,2],[5,6]dQ[5,6,S],[1,2,7]) ) / 

dA[7 ,S] ,[7 ,S] d Q[1,2] ,[7 ,S] d Q[1,2] ,[5,6] d Q[5,6] :[1 ,2] 

29 

.. 

Solutions for variables from a transition submatrix are all of the same form. For 

example, all of the transition probabilities in Pho are equal to an entry of A divided by a 

2 x 2 minor of A. 
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3.2.1.2 GraBmannians and the GraBmann-Pliicker Embedding 

Since equation 3.23 is a lin~ar system of six equations in eight unknowns, it is 

not surprising that Graf3mannians and the Graf3mann-Pliicker embedding come into play. 

Graf3mannians and the identities which embed them in projective space will be used in the 

following section to simplify solutions for incoming-hidden transition probabilities like that 

shown in 3.28. 

3.2.1.2.1 GraBmannians Given integers k and n, where k < n, G(k, n) is defined as 

the set of all k-dimensionallinear spaces in en. Let A be an element of G(k, n). Then there 

exists a set of k 1 x n spanning vectors of A. Represent A as a k x n matrix whose rows are 

these spanning vectors. Because the choice of spanning vectors is not unique, a family of 

matrices represent A. Given any gin GL(k), define A' = gAo In the following sections both 
.-

the point A E G(k, n)- and a k x n matrix representing A will be denoted by A. Hopefully, 

context will make the author's meaning clear. The rows of A' span the same space as the 

rows of A, so we identify A' and A. 

Under these identifications, it is easy to construct a bijection between a dense, 

open subset of G(k, n) and ek(n-k). Let 0 be the set of all points in G(k, n) which may be 

represented by a k x n matrix whose first k columns are independent. 0 is a dense open set 

in G(k, n). Given any representation for A in 0, we can easily find the matrix representation 

A for A such that the first k columns of A are the identity matrix. (Simply take g-1 to 

be the first k columns of A. The rows of A are independent so g-1 is invertible. Define 

A = gA.) Only the entries of the rightmost k x (n - k) submatrix of A are unconstrained. 

More generally, let I = (i1' i2, i3, ... , ik) index k independent columns of the orig­

inal representation for A. Then given any A, we can define the map (/>J such that (/>J(A) 

satisfies the following: column i j of (/>J(A) = ej, where i j is the jth index in I and ej is the 

jth canonical vector. In order to define <PI, first set g-1 equal to the matrix with columns 

i 1 , i 2 , i 3 , ••• ,ik of A. Generically, g-1 is of rank k so 9 exists. Then A = gA is has column 

i j equal to ej. The inverse of ifJI is always uniquely defined. 
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Let I' denote another set of linearly independent columns. Define AI = cPI{A) and 

AI' = cPI'{A). Then AI and AI' satisfy AI = gA and Ai' = g'A for some g,g' in GL{k). 

Then AI' = hAl for some matrix h in GL{k). A moment's reflection reveals that h must 

be the inverse of the matrix composed of the columns of AI which are indexed by I'. Note 

that the entries of hare analytic functions of the entries of AI, so G{k, n) has the structure 

of a complex manifold. 

3.2.1.2.2 The Pliicker Embedding Any Grafimannian, G{k, n), may be embedded 

into JED(;;)-l. JEDN is N dimensional projective space over the complex numbers; we can think 

of JEDN as an N dimensional sphere lying in N + 1 dimensional space with antipodal points 

identified. A point, P, in JEDN may denoted by (PO,Pl,P2, ... ,PN). This point is identified 

with all other points a x (PO,Pl,P2, ••. ,PN) for any nonzero scalar a. 

In the simplest case, G{l, n), any point of the Grafimannian is represented by a 

single row vector. Since we may multiply each element of the Grafimannian by a nonzero 

scalar, we may canonically identify JEDn-l and G{l, n). Every element, A, of a G(k, n) defines 

a k dimensional linear space in C'. The Plucker coordinates of a Grafimannian A are by 

definition the determinants of all k x k minors of any representation A of an element in 

G (k, n). The dual space corresponding to A is A 1., the (n - k) dimensional linear space in 

en orthogonal to A. There is a 1 - 1 correspondence between the Plucker coordinates of 

A and A 1. . Since the set of (n - 1) dimensional spaces in C' is isomorphic to the space 

of one dimensional spaces, we can identify any A in G(n - 1, n) with its dual, AJ.. Hence 

G(n - 1, n) and JEDn-l are identified. 

When 1 < k < (n - 1) more complicated relations are required to embed G (k, n) in 

some projective space. It is easy to check that Plucker coordinates are projectively invariant 

under representation of A. Let A and A' be equivalent representations for the same element 

of G{k,n). Then A = gA' for some 9 in GL{k). Let I be any index of k columns. The 

sub matrix taken from the I columns of A equals 9 times the submatrix taken from the I 

columns of A'. By the rules of determinants, IABI = IAIIBI, and so the determinant of the 

Ith minor of A equals the determinant of 9 times the determinant of the Ith minor of A'. 

This holds for all I, and so if the (~)-tuple P"are the Plucker coordinates of A then Igl~ 

are the Plucker coordinates of A'. Since there are (~) k x k minors of a k x n matrix, the 

Plucker map takes G(k,n) into JED(G)-l). (Note that the Plucker map is not ont~.) 
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We can check that for 1 < k < n, G:) - 1 ~ k( n - k). In order for the Plucker map 

to be an embedding, there must be some (i.e., ((1:) - 1 - k (n - k))) independent relations 

amongst the Pluck~r coordinates of a point A in G(k, n). For G(2, n) these are the Plucker 

relations. For general G(k, n) they are called Grafimann relations. In either case the 

relations are quadratic in the Plucker coordinates for A. The Grafimann relations are easily 

derived. 

3.2.1.2.3 Derivation of Grafimann-Pliicker Relations Let A be any rectangu­

lar matrix with k rows and n columns where k < n - 1 and A = (a)ij. Let I = 

(i17 i2,i3, ... ,i(k-l)) index (k -1) distinct columns of A. Let J = (jl,h,ja, ... ,j(k+1)) 

index (k + 1) distinct columns of A. Consider the sum, 

al,il al,i2 ... al,ik_l al,j>. k+l 
2) _1)>.+1 
,\=1 

ak,i1 ak,ik_l ak,j>. 

(3.29) 

To simplify 3.29, expand the first determinant along the last column as shown 

below 

al,i1 al,i2 ... al,ik_l al,j>. 
k 

(3.30) = LaJ.',j>.CFJ.' 

J.'=1 

ak,il ak,ik _ 1 ak,j>. 

where CFJ.' is the cofactor of the matrix on the left-hand side of 3.30 about the {J.L, k)th 

entry. Then 3.29 becomes 
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k+l k al,j>._l al,j>'+l 

:L) -;-1)>.+1 L ap.,j>. CFp. 
>.=1 p.=1 

ak,j>'_l ak,j>'+l 

o o ap.,j>. 0 o 
al,j>. al,j>'+l 

k k+l 

- LCFp.L 
p.=1 >'=1 

aP.,j1 ap.,2 

(3.31) 
k o,l,j1 al,h 

= LCFp. 
p.=1 

ak,h ak,h 

k 

= LCFp. ·0 
p.=1 

0 

Denote by 7r[ the determinant of the minor whose columns are indexed by the 

multi-index I. Then 

(3.32) 

Equation 3.32 defines the GraBmann relations. In the following paragraphs a few 

simple examples are given. 

3.2.1.2.3.1 Examples of Grafimann-Pliicker Relations - G(2,4) First 

we consider G(2,4). Since G(2,4) is isomorphic to a dense, open subset of «:::4, and the 

PlUcker map~akes G(2,4) into JP>5, only one nontrivial GraB mann relation is required to 

embed G(2, 4) int() JP>5. Consider the representation for A E G(2,4) 

(3.33) 

and consider 
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(3.34) 

Al,l A l ,2 A l ,3 A l ,4 Al,l Al ,3 A l ,2 A l ,4 Al,l A l ,4 A l ,2 A l ,3 
+ 

A 2,l A 2,2 A 2,3 A 2,4 A 2,l A 2,3 A 2,2 A 2,4 A 2,l A 2,4 A 2,2 A 2,3 

since 

Al,l A l ,2 
(3.35) - Al,2A2,l + A 2;2A l,l 

A 2,l A 2,2 

Al,l A l ,3 
(3.36) -Al,3A2,l + A 2,3 A l,l 

A 2,l A 2,3 

Al,l A l ,4 
(3.37) = -Al,4A2,l + A 2,4A l,l 

A 2,l A 2,4 

equation 3.34 can be rewritten as follows 

A l ,3 A l ,4 A l ,2 A l ,4 
(-Al,2A2,l + A 2,2A l,d - (-Al,3A2,l + A 2,3 A l,l) 

A 2,3 A 2,4 A 2,2 A 2,4 

A l ,2 A l ,3 
(3.38) + (-Al,4A2,l + A 2,4A l,d 

A 2,2 A 2,3 

which equals 

equation 3.39 can be rewritten again 
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A2 ,2 0 0 0 A2 ,3 0 0 0 A2 ,4 

A1,1 A 1 ,2 A1 ,3 A 1 ,4 + A1 ,2 A1 ,3 A1 ,4 + A1 ,2 A 1 ,3 A1 ,4 

A2 ,2 A2 ,3 A2 ,4 A2 ,2 A2 ,3 A2,4 A2 ,2 A2 ,3 A2 ,4 

A 1 ,2. 0 0 0 A1 ,3 0 0 0 A 1 ,4 

(3.40) - A2 ,1 A 1 ,2 A1 ,3 A 1,4 + A 1,2 A 1 ,3 A 1 ,4 + A 1 ,2 A 1 ,3 A1 ,4 

A 2 ,2 A2 ,3 A2 ,4 A2,2 A2 ,3 A2,4 A2 ;2 A2 ,3 A2 ,4 

which in turn equals 

A2 ,2 A2 ,3 A2,4 A1,2 A1,3 .AI,4 

(3041) A1,1 A1 ,2 A 1 ,3 A1 ,4 - A2 ,1 A1 ,2 A 1,3 A1 ,4 = A1,1 * 0 - A2 ,1 * 0 = 0 

A2 ,2 A 2 ,3 A2 ,4 A2,2 A2 ,3 A2 ,4 

Therefore, equation 3.34 is identically zero. In the "7r" notation this means that 

(3.42) 

Equation 3.42 was generated from equation 3.32 by setting I = (1) and J = 

(2,3,4). It is an easy excercise to see that the result is the same for any other I and J as 

long as In J = 0. If, however, In J i= 0, where I = (i) and J = (i, i2, i3) then the resulting 

identity is trivial: 

(3.43) 

3.2.1.2.3.2 Examples of Grafimann-Pliicker Relations - G(2,S) G(2,5), 

however, is slightly more complicated. G(2,5) is isomorphic to a dense subset of ([6, and 

we shall see that there are (~) = 5 nontrivial Plucker relations. But the Plucker map takes 

G(2,5) into JP>9, so must be three independent Plucker relations corresponding to A where 
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(3.44) 

As long as we choose four different columns of 3.44 it does not matter how the 

four columns are assigned to I and J. There are (~) = 5 ways to choose the columns 

11 = (1) J1 = (2,3,4) 

12 = (1) J2 =(2,3,5) 

(3.45) 13 = (1) J3 = (2,4,5) 

14 = (1) J4 = (3,4,5) 

15 = (2) J5 = (3,4,5) 

corresponding to the five Plucker relations: 

11"1,211"3,4 - 11"1,311"2,4 + 11"1,411"2,3 = 0 

11"1,211"3,5 - 11"1,311"2,5 + 11"1,511"2,3 = 0 

(3.46) 11"1,211"4,5 - 11"1,411"2,5 + 11"1,511"2,4 - 0 

11"1,311"4,5 - 11"1,411"3,5 + 11"1,511"3,4 = 0 

11"2,311"4,5 - 11"2,411"3,5 + 11"2,511"3,4 = 0 

3.2.1.2.3.3 More General Grafimanri-Pliicker Relations For there to be 

a nontrivial Grafimann relation, at least three of the "is" must be distinct from the "is" 

and one of the "is" must be distinct from the "is". One can check that there may only 

be an even number of nonrepeated indices. Suppose for any k < (n - 1) and A in G(k, n), 

there are exactly four indices, 11, 12, 13, and 14, which are not repeated. Without loss of 

generality assume that I = (i1,i2, ... "i(k-2),11) and J = (i1,i2, ... ,i(k-2),12,13,14). The 

Plucker-Grafimann relation generated by I and J is similar to the relation generated by an 

element of G(2,4) where 1= (ld, J = (l2,13,14). The other indices don't "matter" because 

they contribute only zero terms to equation 3.32. 
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If we consider G(k, n) for k > 2 there are many identities given by 3.32. Some 

of these identitites have terms which are identically zero. (Whenever j). E iI, i 2, ... ,ik- 1, 

for example.) Suppose A represents an element of G(k,n) and some of the columns of A 

are repeated. If there are only six different columns in A we can calculate the number of 

nontrivial Pliicker-Grafimann relations as though we were working in G(3,6). In G(3,6), 

I and J have two and four components, respectively. So there are (n = 15 ways to pick 

I and J so that I has two indices and J has four indices. Hence there are 15 nontrivial 

Pliicker-Grafimann relations. Note, however, that G(3,6) is isomorphic to a dense subset 

of ((:3(6-3) = ((? and that the Pliicker-Grafimann map takes G(3,6) into JID(~)-1 = JlD19. 

Hence, among the 15 Pliicker-Grafimann relations, ten are independent. Pliicker-Grafimann 

relations will first be used to simplify the solutions to the nonzero entries of Pih which were 

calculated in section 3.2.1.1. 

3.2.1.3 Simplifying solutions to Pih by adding Grafimann identities 

Notice that in 3.28 several of the coefficients in the numerator contain factors 

which are quadratic in minors of Q. Some of the identities used to embed G(3, 7) in JlDG}-1 

are useful in simplifying 3.28. Consider the matrix: 

(3.47) 

QS,5 QS,6 QS,7 Qs,s 0 0 1 

The quadratic factors appearing in 3.28 are written below as they appear in 3.28 

and in the 7r notation used in section 3.2.1.2.3. 

dQ[I,21,[5,61dQ[I,2,S1,[6,7,S1 - dQ[I,21,[6,71 dQ[I,2,S1,[5,6,S1 

dQ[I,21,[5,61dQ[I,2,S1,[5,7,S1 + dQ[I,21,[5,s1dQ[I,2,S1,[5,6,71 

(3 48) dQ dQ - dQ dQ . [1,21,[5,61 [1,2,S1,[5,7,S1 [1,2],[5,7]· [1,2,S],[5,6,S] 

dQ dQ +dQ dQ [1,21,[6,S1 [1,2,S],[5,6,71 [1,2],[5,61 [1,2,S],[6,7,S] 

7rl,2,77rl,3,4 + 7rl,4,77rl,2,3 

The following Grafimann identities may be used to simplify the equations above: 
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71"1,2,771"2,3,4 71"1,2,271"7,3,4 + 71"1,2,371"7,2,4 71"1,2,471"7,2,3 0 

71"1,2,771"1,3,4 71"1,2,171"7,3,4 + 71"1,2,371"7,1,4 71"1,2,471"7,1,3 = 0 

(3.49) 71"1,2,771"1,3,4 71"1,2,171"7,3,4 + ~1,2,371"7,1,4 71"1,2,471"7,1,3 = 0 

71"2,4,771"1,2,3 71"2,4,171"7,2,3 + 71"2,4,271"7,1,3 71"2,4,371"7,1,2 = 0 

So we can simplify the right hand sides of the quadratic clusters in 3.48 as follows 

71"1,2,771"2,3,4 - 71"2,3,771"1,2,4 = -71"2,4,771"1,2,3 

71"1,2,771"1,3,4 +-71"1,4,771"1,2,3 = 71"1,2,471"1,3,7 

(3.50) 71"1,2,771"1,3,4 - 71"1,3,771"1,2,4 = -71"1,4,771"1,2,3 

71"2,4,771"1,2,3 + 71"1,2,771"2,3,4 = 71"2,3,771"1,2,4 

The Gra:6mann relations in 3.50 allow us to make the following substitutions: 

dQ dQ -dQ dQ [1,2],[5,6] [1,2,S],[6,7,S] [1,2],[6,7] [1,2,S],[5,6,S] = dQ dQ - [1,2],[6,S] [1,2,S],[5,6,7] 

dQ dQ +dQ dQ [1,2],[5,6] [I,2,S],[5,7,S] [1,2],[5,S] [1,2,S],[5,6,7] = dQ[1,2],[5,7]dQ[I,2,S],[5,6,S] 

(3.51) dQ dQ - dQ dQ [1,2],[5,6] [1,2,S],[5, 7 ,S] [1,2],[5,7] [1,2,S],[5,6,S] dQ dQ - [1,2],[5,S] [1,2,S],[S,6,7] 

dQ dQ +dQ dQ [1,2] ,[6,S] [1,2,S],[5,6,7] [1,2],[5,6] [1,2,S],[6,7,S] = dQ[I,2],[6,7]dQ[I,2,S],[S,6,S] 

When 3.51 are substituted into the solution in 3.28 the resulting solution looks 

much simpler: 

8128 = (As ,7 A s,s ( dQ[I,2],[6,S]A6,6 +, dQ[1,2],[s,s]As ,6) 

(3.52) ( -dQ[S,6,SJ,[1,2,S]dQ[I,2],[5,6] + dQ[5,6],[1,2]dQ[I,2,S],[5,6,S]) + / 

dQ[I,2],[6,S] ( dQ[S,6],[1,2]dQ[I,2,S],[S,6,7] - dQ[I,2],[S,6]dQ[S,6,S],[1,2,7]) A6,6A7,sAs,7 + 

dQ[1,2],[6,7] ( -dQ[S,6,S],[1,2,S]dQ[1,2],[S,6] + dQ[S,6],[1,2]dQ[I,2,S],[S,6,S]) A7,7A 6,6 A s,s + 

dQ[1,2],[S,S] (dQ[S,6],[1,2] dQ[1,2,S],[S,6,7] - dQ[1,2],[S,6] dQ[S,6,8],[I,2,7]) As,6 A s,7 A 7,s + 

dQ[1,2],[5,7] ( -dQ[5,6,S],[1,2,S]dQ[I,2],[S,6] + dQ[5,6],[I,2]dQ[1,2,S],[5,6,S]) As,6A s,sA7,7 + 

A7,sA7,7 ( dQ[I,2],[6,7]A6,6 + dQ[1,2],[s,7]A5,6 ) 

( dQ[5,6],[1,2]dQ[I,2,S],[5,6,7] - dQ[1,2],[S,6]dQ[S,6,S],[1,2,7])) / 

dA[7 ,8] ,[7,8] d Q[1 ,2] ,[7,8] dQ[I,2] ,[s,6]d Q[S,6] ,[1,2] 

which factors to become 



(3.53) 

s12s =( (As,~dQ[S,6),[l,2)dQ[1,2,S),[S,6,S) - A7,sdQ[1,2),[~,6)dQ[S,6,S),[1,2,7)­
A s ,sdQ[S,6,S),[1,2,S)dQ[1,2),[5,6) + A 7,sdQ[S,6),[1,2)dQ[1,2,S),[S,6,7)) 

(dQ[1,2),[6,S)A6,6 A S,7 + dQ[l,2),[S,S)AS,6 A S,7 

+dQ[1,2),[6,7)A7,7 A 6,6 + dQ[1,2],[S,7)AS,6 A 7,7) ) / 

dA[7,8],[7,8]dQ[1,2],[7,S]dQ[1,2),[S,6]dQ[S,6],[1,2) 
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All of the sixteen solutions for the entries in Pih in terms of the entries of A factor 

once they have been simplified using Pliicker-GraBmann relations. 

3.2.1.4 A "special" model with a closed system of equations 

Motivated by the observation that the rank of the direct map is generically 48, we 

looked for a model which has 48 independent parameters, distributed evenly among the four 

pixels. In order to reduce the number of independent parameters we made the following 

identifications: 

(3.54) eije = wijw, sijs = nijn, sijn = nijs, eijw= wije for all i,j. 

The first two constraints are fairly natural. They represent instances of the prin­

ciple of "microscopic reversibility". Notice that the other two conditions are a bit less 

natural; they represent a certain type of "mirror symmetry". Experimentalists often make 

use of physically plausible constraints. Unfortunately, these constraints do not always s~m­

plify the mathematical problem. For example, imposing microscopic reversibility on the 

system would lead to less than twelve free parameters per pixel. Data matrices generated 

by microscopically reversible n x n models are symmetric. This symmetry renders half of 

the otherwise independent consistency conditions redundant. Unfortunately, it also renders 

n(n - 1)/2 of the data redundant. In the 2 ~ 2 case this reduces the rank of the direct map 

to 28. Finally notice that we have not made the assumption that the probability of being 

killed in a pixel is independent of the direction from which the photon entered the pixel. 
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Once the above identifications are made, the problem has the following features: 

the rank of the forward map remains 48, the main diagonals of Pio and P hh are common, 

and the off diagonals of Pho and P ih are common. 

3.2.1.4.1 Cubics and Quadratics In section 3.2.1.1 we had freedom to choose sixteen 

of the 32 equations in the matrix equation 3.16 which were functions only of A and Phh • More 

precisely, in each of the eight columns of equations in 3.16 we were free to choose two of the 

four equations which were independent of Pio, and Pih • Experimentation with a few of the 

(~)8 = 1,679,616 possibilities showed that some choices of equations are better than others. 

Thanks to a different choice of equations the results presented below are somewhat simpler 

than those in [5, 6J and [7J. In this section, the solutions for the transition probabilities 

were obtained by disregarding the equations in 2.8 corresponding to the 'x's in the matrix 

below: 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

x 0 0 0 0 x x x 

x 0 0 0 0 x x x 
(3.55) 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 x x x x 0 0 0 

0 x x x x 0 0 0 

When substituting the solutions found in section 3.2.1.1 into 3.54 the equations 

corresponding to travel straight through a pixel yield eight quadratic identities. Many of 

the equations which follow are identically zero and the "= 0" has been omitted. 

dQ (dQ dQ A A - dQ dQ· A A [5,6),[7,8) [1,2),[5,6) [5,6,7),[1,2,7) 8,7 7,8 [5,6),[1,2) [1,2,7),[5,6,7) 7,7 8,8 

+ ( dQ[1,2),[5,6]dQ[5,6,7],[1,2,8] - dQ[5,6],[1,2)dQ[1,2,7),[5,6,8)) AS,7AS,S) 

(3.56) -dQ dQ· (dQ A A + dQ A A [1,2),[5,6) [5,6),[1,2) [5,6),[2,7) 2,1 7,7 [5,6),[2,8) S,7 2,1 

+dQ[5,6),[1,7)A1,lA7,7 + dQ[5,6),[1,s)As,7A 1,1) , 



dQ[5,6],[l,2] (dQ[5,6],[7,S]dQ[2,5,6],[2,3,4]A2,2 A l,1 - dQ[5,6],[3,4]dQ[2,5,6],[2,7,S]A1,2 A 2,1 

- ( -dQ[5,6],[3,4j dQ[2,5,6],[l,7,8] + dQ[2,5,6],[l,3,4]dQ[5,6],[7,S]) A 1,lA1,2) 

(3.57) +dQ[5,6],[7,8]dQ[5,6],[3,4] (dQ[5,6],[l,S]As ,sA1,2 + dQ[5,6],[2,7]A7,sA2,2 

+dQ[5,6],[l,7]A7,sA1;2 + dQ[5,6],[2,S]As ,sA2,2) , 

dQ[l,2],[5,6] (dQ[l,2],[7,S]dQ[l,2,5],[3,4,5]A6,6 A 5,5 - dQ[l,2],[3,4]dQ[l,2,5],[5,7,S]A6,5 A 5,6 

- ( -dQ[l,2j,[3,4]dQ[l,2,5],[6,7,8] + dQ[l,2,5],[3,4,6]dQ[l,2],[7,S]) A 6,6 A 6,5) 

(3.58) -dQ[l,2],[3,4]dQ[l,2],[7,S] (dQ[l,2],[5,7]A7,7 A 5,5 + dQ[l,2],[5,S]As ,7A 5,5 

+dQ[l,2],[6,7]A7,7 A 6,5 + dQ[l,2]:[6,S]As ,7A 6,5) , 

dQ[l,2],[3,4] (dQ[l,2],[5,6]dQ[3,5,6],[l,2,3]A3,3 A 4,4 ....,. dQ[5,6],[l,2]dQ[l,2,3],[3,5,6]A4,3 A 3,4 

- ( -dQ[5,6],[l,2]dQ[l,2,3],[4,5,6] + dQ[3,5,6],[l,2,4]dQ[l,2],[5,6]) A 4,4 A 4,3 ) 

(3.59) -dQ[l,2],[5,6]dQ[5,6],[l,2] (dQ[l,2],[4,5]A 5,5 A 4,3 + A 4,3 A 6,5 d Q[l,2],[4,6] 

+dQ[l,2],[3,6]A6,5 A 3,3 + dQ[l,2],[3,5]A5,5 A 3,3) , 

dQ[5,6],[3,4] ( ( dQ[S,6],[l,2]dQ[l,2,4],[3,S,6]- dQ[l,2],[S,6]dQ[4,S,6],[l,2,3]) A 3',4 A 3,3 

-dQ[l,2],[S,6]dQ[4,S,6],[l,2,4]A4,3 A 3,4 + dQ[S,6],[l,2]dQ[l,2,4],[4,S,6]A3,3 A 4,4) -

(3.60) dQ[l,2],[S,6]dQ[S,6],[l,2] (dQ[S,6],[1,4]A4,4 A l,2 + dQ[S,6],[2,4]A4,4 A 2,2+ 

dQ[S,6],[l,3]A1,2 A 3,4 + dQ[S,6],[2,3]A2,2 A 3,4) 

dQ[1,2],[5,6] (-dQ[l,2],[3,4]dQ[l,2,6],[6,7,S]A6,6 A S,S + dQ[l,2],[7,S]dQ[l,2,6],[3,4,6]A6,sAs ,6 

+ (dQ[1,2,6],[3,4,S]dQ[l,2],[7,S] - dQ[l,2],[3,4]dQ[l,2,6],[5,7,8]) A S,6 A S,5) 

(3.61) +dQ[l,2],[3,4]dQ[l,2],[7,S] (A4,4 A 6,6 d Q[l,2],[4,6] + dQ[1,2],[4,~]A4,4As,6 
+dQ[l,2],[3,6]A6,6 A 3,4 + dQ[1,2],[3,S]A3,4 A 5,6) , 
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dQ (-dQ dQ A A + A A dQ dQ [5,6],[1,2] [5,6],[3,4] [1,5,6],[1,7,8) 2,2 1,1 2,1 1,2 [1,5,6),[1,3,4) [5,6),[7,8) 

.(3.62) 

+ (dQ[5,6],[7,8)dQ[l,5,6),[2,3,4) - dQ[l,5,6),[2,7,S)dQ[5,6),[3,4)) A2,IA2,2) 

+dQ[5,6],[7,S)dQ[5,6],[3,4] (dQ[5,6),[2,4]A4 ,3A 2,l + dQ[5,6],[2,3)A3 ,3 A 2,1 

+dQ[5,6),[I,4]A4 ,3A l,1 + dQ[5,6),[l,3]A3,3 A l,l) , 

and finally 

dQ[l,2],[7,S] (dQ[5,6],[l,2]dQ[l,2,S],[5,6,S]AS,7 A 7,S - dQ[l,2],[5,6]dQ[5,6,S],[l,2,8]A7,7A S,S 

+ (dQ[5,6],[l,2]dQ[l,2,8],[5,6,7] - dQ[l,2],[5,6]dQ[5,6,8],[l,2,7]) A7,7A7,S) 

(3.63) +dQ[l,2],[5,6]dQ[5,6],[l,2] (dQ[l,2],[5,8]As,sA5,6 + dQ[l,2],[6,7]A6,6 A7,S 

+dQ[l,2].[5,7]A5,6A7,S -+:- dQ[l,2],[6,S]As,sA6,6) 

The identifications corresponding to reversing direction inside a pixel yield eight 

cubic equations: 

(3.64) - A 2 ,l dQ[5,6],[l,2]dQ[5,6],[7,S]dQ[5,6],[3,4] -

dQ[5,6],[2,3] (dQ[l,5,6],[l,3,4]dQ[5,6],[7,8] - dQ[l,5,6],[l,7,8]dQ[5,6],[3,4]) A3,3A 2,2 A l,l -

dQ[5,6],[2,4] (dQ[l,5,6],[l,3,4]dQ[5,6],[7,S] - dQ[l,5,6],[1,7,S]dQ[5,6],[3,4]) A4 ,3A2,2 A l,l -

dQ[5,6J,[1,3] (dQ[l,5,6],[l,3,4]dQ[5,6],[7,8] - dQ[l,5,6],[l,7,8]dQ[5,6],[3,4]) A 1 ,2A l,lA3,3 -

dQ[5,6],[l,4] (dQ[l,5,6],[l,3,4]dQ[5,6],[7,S] - dQ[l,5,6],[1,7,8]dQ[5,6];[3,4]) A1 ,2A4,3 Al,l -

dQ[5,6],[2,3] (dQ[5,6],[7,8]dQ[l,5,6],[2,3,4] - dQ[l,5,6],[2,7,8]dQ[5,6],[3,4]) A2,lA3,3 A 2,2 -

dQ[5,6],[2,4] (dQ[5,6].[7,S]dQ[l,5,6],[2,3,4] - dQ[l,5,6],[2,7,8]dQ[5,6],[3,4]) A4 ,3A 2,lA2,2 -

dQ[5,6],[l,4] ( dQ[5,6],[7,S]dQ[l,5,6],[2,3,4] - dQ[l,5,6],[2,7,S]dQ[5,6],[3,4]) A 1,2A 4,3 A 2,l 

( dQ[5,6],[7,8]dQ[5,6],[3,4]dQ[l,5,6],[l,2,3] - dQ[5,6],[2,3]dQ[l,5,6],[l,3,4]dQ[5,6],[7,S]+ 

dQ[5,6],[l,3]dQ[5,6],[3,4]dQ[l,5,6],[2,7,8]) A 1,2 A2,lA3,3l 



(3.65) A 6,sdQ[l,2],[S,6)dQ[l,2],[3,4]dQ[l,2],[7,S] 

+dQ[l,2],[S,S] ( - dQ[l,2,S],[3,4,S]dQ[l,2],[7,S] + dQ[l,2),[3,4)dQ[l,2,S),[S,7,S]) AS,6 A S,7 A S,S 

+ (dQ[l,2],[3,4)dQ[l,2],[7,S)dQ[l,2,5],[S,6,S] - dQ[l,2),[6,S]dQ[l,2],[7,S]dQ[l,2,S],[3,4,S]+ 

dQ[l,2],[S,s]dQ[l,2],[3,4]dQ[l,2,S],[6,7,S]) A S,7A 6,6 A S,5 

+dQ[l,2],[6,S] (dQ[l,2],[3,4]dQ[l,2,5],[6,7,S] - dQ[l,2,5],[3,4,6]dQ[1,2],[7,S]) A6,sAs,7 A 6,6 

+dQ[l,2],[S,S] ( dQ[l,2],[3,4]dQ [l,2,S],[6,7,S] - dQ[l,2,S],[3,4,6] dQ[l,2],[7,S]) A6,sAs,6 A S,7. 

+ dQ[l,2],[6,7] ( -dQ[l,2,S],[3,4,S]dQ[l,2],[7,S] + dQ[l,2],[3,4]dQ[l,2,S],[S,7,S]) A7,7A 6,6 A S,5 

+dQ[l,2],[S,7] ( -dQ[l,2,S],[3,4,S]dQ[1,2],[7,S] + dQ[1,2],[3,4]dQ[l,2,S],[5,7,S]) A S ,6A 7,7 A S,5 

+dQ[l,2],[6,7] ( dQ[l,2],[3,4]dQ[l,2,S],[6,7,S]- dQ[l,2,S],[3,4,6]dQ[l,2],[7,S]) A6,sA6,6A 7,7 

- (dQ[l,2],[3,4]dQ[l,2],[7,S]dQ[1,2,S],[S,6,7] + dQ[l,2],[S,7]dQ[l,2],[7,S]dQ[l,2,S],[3,4,6]-

dQ[l,2],[6,7]dQ[l,2],[3,4]dQ[1,2,S],[S,7,S]) A 6 ,sAs,6 A7,7, 

(3.66) -AS,6dQ[l,2],[5,6]dQ[1,2],[3,4]dQ[l,2],[7,S] 

+dQ[1,2],[3,S] ( -dQ[l,2,6],[3,4,S]dQ [l,2],[7,S] + dQ[1,2],[3,4]dQ[1,2,6],[S,7,S]) A3,4A S,sAs,6 

+dQ[1,2],[4,6] ( -dQ[l,2,6],[3,4,S]dQ[l,2],[7,S] + dQ[1,2],[3,4]dQ[l,2,6],[S,7,S]) A4,4A S,6 A 6,S 

+dQ[1,2],[4,6] (-dQ[l,2,6],[3,4,6]dQ[l,2],[7,S] + dQ[l,2],[3,4]dQ[l,2,6],[6,7,S])A6,6 A 4,4 A 6,S 

+dQ[1,2],[4,S] ( - dQ[l,2,6],[3,4,S]dQ[l,2],[7,S) + dQ[l,2],[3,4]dQ[l,2,6],[S,7,S]) As,sA4,4 AS,6 

+dQ[l,2],[3,6] ( -dQ[1,2,6],[3,4,6)dQ[l,2],[7,S) + dQ[l,2],[3,4]dQ[l,2,6],[6,7,S]) A6,6 A 3,4 A 6,S 

- ( dQ[l,2),[3,4]dQ[l,2],[7,S] dQ[1,2,6),[4,5,6] - dQ[l,2J,[4,S) dQ[1,2],[3,4]dQ[1,2,6],[6,7,8]+ 

dQ dQ dQ ) A A A . [1,2],[4,6] [1,2],[7,S] [1,2,6),[3,4,S] 4,4 6,6 S,5 

+ (dQ dQ []dQ + dQ dQ dQ -[1,2) ,[3,4] [1,2], 7,S [1,2,6) ,[3,5,6) [1,2) ,[3,6) [1,2) ,[3,4) [1,2,6] ,Is, 7 ,S) 

d Q[1,2] ,[3,5) d Q[l,2] ,[7 ,S] d Q[l,2,6] ,[3,4,6)) A6 ,s A 5 ,6 A 3 ,4 

- (dQ[I,2],[3,4) dQ[l,2),[7,8]dQ[l,2,6],[3,S,6] - dQ[I,2],[3,S]dQ[I,2),[3,4] dQ[1,2,6],[6,7,8)+ 

dQ[I,2),[3,6)dQ[l,2),[7,8]dQ[I,2,6),[3,4,S]) A3,4 A6,6 AS,5, 
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(367) -A dQ dQ dQ • 7,S [1,2],[7,S] [1,2],[5,6] [5,6],[1,2] 

-dQ[I,2],[6,7] (dQ[5,6],[1,2]dQ[I,2,S],[5,6,7] - dQ[I,2],[5,6]dQ[5,6,S],[1,2,7]) A 7,7A 6,6 A 7,S 

- dQ[I,2],[6,S] ( -dQ[5,6,S],[1,2,S]dQ[I,2],[5,6] + dQ[5,6],[1,2]dQ[I,2,S],[5,6,S]) As,sA6,6 A S,7 

-dQ[I,2],[5,S] ( -dQ[5,6,S],[1,2,S]dQ[I,2],[5,6] + dQ[5,6],[1,2]dQ[I,2,S],[5,6,S]) A5,6 A S,7 A S,S 

-dQ[I,2],[5,S] ( dQ[5,6],[1,2]dQ[I,2,S],[5,6,7] - dQ[I,2],[5,6]dQ[5,6,S],[1,2,7]) A 5,6 A S,7 A 7,S 

-dQ[I,2],[6,~] (dQ[5,6],[1,2]dQ[I,2,S],[5,6,7] - dQ[I,2],[5,6]dQ[5,6,S],[1,2,7]) A 6,6 A 7,sAs,7 

-dQ[I,2],[6,7] ( -dQ[5,6,S],[1,2,S] dQ[I,2],[5,6] + dQ[5,6],[1,2] dQ[I,2,S],[5,6,S]) A 7,7 A 6,6 A S,S 

-dQ[1,2],[5,7] (dQ[5,6],[1,2]dQ[I,2,S],[5,6,7] - dQ[I,2],[5,6]dQ[5,6,S],[1,2,7]) A 5,6 A 7,sA7,7 

-dQ[I,2],[5,7] ( -dQ[5,6,S],[1,2,S]dQ[I,2],[5,6] + dQ[5,6],[1,2]dQ[I,2,S],[5,6,S]) A 5,6 A S,sA7,7, 

(3.68) A4,3dQ[I,2],[3,4]dQ[I,2],[5,6]dQ[5,6],[1,2] 

+dQ[I,2],[3,5] ( dQ[5,6],[1,2]dQ[I,2,3],[3,5,6] - dQ[3,5,6],[1,2,3]dQ [1,2],[5,6]) A 5,5 A 3,4 A 3,3 

+dQ [1,2],[3,5] (dQ[5,6],[1,2] dQ[I,2,3],[4,5,6] - dQ[3,5,6],[1,2,4]dQ[I,2],[5,6]) A 4,3 A5,5 A 3,4 

+dQ[I,2]~[3,6] (dQ[5,6],[1,2]dQ[I,2,3],[3,5,6] - dQ[3,5,6],[1,2,3]dQ[I,2],[5,6]) A3,4A6,5 A3,3 

+dQ[I,2],[4,6] (dQ [5,6],[1,2]dQ[I,2,3],[3,5,6] - d Q [3,5,6],[1,2,3]dQ[I,2]:[5,6]) A 4;4 A 3,3 A 6,5 

+dQ[I,2],[4,6] (dQ[5,6],[1,2]dQ[I,2,3],[4,5,6] - dQ[3,5,6],[1,2,4]dQ[I,2],[5,6]) A 6,5 A4,4 A 4,3 

+dQ[I,2],[4,5] ( dQ[5,6],[1,2]dQ[I,2,3],[4,5,6] - dQ[3,5,6],[1,2,4]dQ [1,2],[5,6]) A 5,5 A 4,4 A4,3 

+ ( dQ[5,6],[1,2]dQ[I,2],[5,6] dQ[I,2,3],[3,4,5] - dQ[I,2],[4,5]dQ[I,2],[5,6]dQ[3,5,6],[1,2,3]+ 

dQ[I,2],[3,5]dQ[5,6],[1,2]dQ[I,2,3],[4,5,6]) A 5,5 A 3,3 A 4,4 

-(dQ dQ dQ +dQ dQ dQ [5,6],[1,2] [1,2],[5,6] [1,2,3],[3,4,6] [1,2],[3,6] [1,2],[5,6] [3,5,6],[1,2,4] 

-dQ[I,2],[4,6]dQ[5,6],[1,2]dQ[I,2,3],[3,5,6]) A 4,3 A3,4 A 6,5, 
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(3.69) Aa,4dQ[5,6],[a,4]dQ[1,2],[5,6]dQ[5,6],[1,2] 

-dQ[5,6],[2,a] (dQ[5,6],[1,2]dQ[1,2,4],[4,5,6] - dQ[1,2],[5,6]dQ[4,5,6],[1,2,4]) A 2,2 A a,a A 4,4 

-dQ[5,6],[2,4] (dQ [5,6],[1,2]dQ[1,2,4],[4,5,6] - dQ[1,2],[5,6]dQ[4,5,6],[1,2,4]) A 4,a A 4,4 A 2,2 

+ ( dQ[5,6],[1,2]dQ[1,2],[5,6]dQ[4,5,6],[1,a,4] - dQ[5,6],[1,a]dQ[5,6],[1,2]dQ[1,2,4],[4,5,6] 

+d Q[5,6],[1,4]d Q[1,2] ,[5 ,6] d Q[4,5,6] ,[1,2,3])· Al ,2A 4,4 Aa,a 

-dQ[5,6],[1,4] (dQ[5,6],[1,2]dQ[1,2,4],[4,5,6] - dQ[1,2],[5,6]dQ[4,5,6],[1,2,4]) A4,a A l,2 A 4,4 

-dQ[5,6],[2,a] (dQ[5,6],[1,2]dQ[1,2,4],[a,5,6] - dQ[1,2],[5,6]dQ[4,5,6],[1,2,3]) A a,4A 2,2 A a,3 

- ( dQ[5,6],[1,2]dQ[1,2],[5,6]dQ[4,5,6],[2,a,4] - dQ[5,6],[2,a]dQ[1,2],[5,6]dQ[4,5,6],[1,2,4] 

+dQ[5,6],[2,4]dQ[5,6],[l,2]dQ[1,2,4],[3,5,6]) A4,a A a,4 A 2,2 

-dQ[5,6],[1,a] ( dQ[5,6],[l,2]dQ[1,2,4];[a,5,6] - dQ[l,2],[5,6]dQ[4,5,6],[1,2,a]) A l ,2 A a,4 A a,a 

-dQ[5,6],[1,4] (dQ[5,6],[1,2]dQ[l,2,4],[a,5,6] - dQ[l,2],[5,6]dQ[4,5,6],[l,2,a]) A4,aA l,2 A a,4, 

(3.70) -AS,1dQ[5,6],[1,S]dQ[5,6],[1,2]dQ[1,2],[5,6] 

and 

+ (dQ[5,6],[1,2]dQ[1,2],[5,6]dQ[5,6,1],[l,1,S] - dQ[5,6],[1,1]dQ[5,6],[1,2]dQ[l,2,1],[5,6,S]+ 

dQ [5,6],[l,S]dQ[1,2],[5,6]dQ[5,6,1],[1,2,1]) A l ,lA1 ,sAs,1 

- dQ[5,6],[1,S] (dQ[5,6],[1,2] dQ[1,2,1],[5,6,S] - dQ[1,2],[5,6]dQ[5,6,1],[1,2,S]) A s ,sA1,lAs ,1 

-dQ[5,6],[l,1] ( -dQ[1,2],[5,6]dQ[5,6,1],[1,2,1] + dQ[5,6],[l,2]dQ[1,2,1],[5,6,1]) A 1 ,1 A l,lA1 ,s 

- (dQ[5,6],[1,2] dQ[l,2],[5,6]dQ[5,6,1],[1,1,8] - dQ[5,6],[l,1]dQ[l,2],[5,6] dQ[5,6,1],[1,2,8] 

+dQ[5,6],[1,S]dQ[5,6],[1,2]dQ[1,2,1],[5,6,1]) A s,sA1 ,1 A l,1 

-dQ[5,6],[2,1] (dQ[5,6],[1,2]dQ[1,2,1],[5,6,S] - dQ[1,2],[5,6]dQ[5,6,1],[1,2,S]) A 2,lA1,sAs ,1 

-dQ[5,6],[2,S] (dQ[5,6],[l,2] dQ[1,2,1],[5,6,S] - dQ[1,2],[5,6] dQ[5,6,1],[1,2,S]) A s,sA2,lAs,1 

-dQ[5,6],[2,1] ( -dQ[1,2],[5,6]dQ[5,6,1],[1,2,1] + dQ[5,6],[1,2]dQ[1,2,1],[5,6,1]) A 1,1A 2,lA1 ,s 

~ (dQ[5,6],[1,2]dQ [l,2],[5,6]dQ[5,6,1],[2,1,8] - dQ[5,6],[2,1]dQ[1,2],[5,6] dQ[5,6,1],[1,2,S] 

+dQ[5,6],[2,S] dQ[5,6],[1,2]dQ[1,2,1],[5,6,1]) A s ,sA1,1 A 2,1, 
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(3.71) A1,2dQ[5,6],[l,2]dQ[5,6J,[7,8JdQ[5,6J,[3,4J 

+ ( d Q[5,6],[7 ,8] d Q[5,6J ,[3,4J dQ[2,5,6J ,[1,2, 7J + d Q[5,6],[l, 7J dQ[5,6J ,[7 ,8J d Q[2,5,6J ,[2,3,4J 

-dQ[5,6J,[2,7Jd Q[5,6J,[3,4J d Q[2,5,6],[l,7,8J) A';',8A 2,2 A l,l 

+dQ ( (- dQ dQ + dQ dQ ) A A A [5,6J,[l,7] [5,6J,[3,4J [2,5,6],[l,7,8J [2,5,6J,[l,3,4J [5,6J,[7,8J 1,2 1,1 7,8 

+ (dQ[5,6J,[7,8J d Q[5,6],[3,4]dQ[2,5,6J,[l,2,SJ + dQ[5,6J,[l,SJ d Q[5,6J,[7,SJ d Q[2,5,6J,[2,3;4]­

dQ[5,6J,[2,SJ d Q[5,6J,[3,4Jd Q[2,5,6J,[l,7,SJ) As,sA2,2A l,l 

+dQ[5,6],[l,SJ ( -dQ[5,6J,[3,4J dQ[2,5,6J,[l,7,SJ + dQ[2,5,6J,[l,3,4J d Q[5,6J,[7,SJ) A 1,2 A l,l A S,S 

+dQ (dQ dQ - dQ dQ· ) A A A [5,6J,[2,7J [5,6J,[7,SJ [2,5,6],[2,3,4] [5,6J,[3,4J [2,5,6J,[2,7,SJ 2,1 7,S 2,2 

+ (dQ[5,6J,[2,;J d Q [2,5,6J,[l,3,4J d Q[5,6J,[7,SJ - dQ[5,6J,[l,7]dQ[5,6J,[3,4J dQ[2,5,6J,[2,7,SJ 

- d Q[5,6J ,[7 ,S] dQ[5,6J ,[3,4J d Q[2,5,6J ,[1,2, 7J) A 1,2 A2,l A7,s 

+dQ[5,6J,[2,SJ (dQ[5,6J,[7,SJ d Q[2,5,6],[2,3,4] - dQ[5,6J,[3,4J d Q[2,5,6],[2,7,SJ) A 2,l A S,sA2,2 

+dQ[5,6J,[2,SJ ( -dQ[5,6J,[3,4J d Q [2,5,6],[l,7,8J + dQ[2,5,6J,[l,3,4J dQ[5,6J,[7,S]) A1,2 A2,l AS,S 
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3.2.1.4.2 Simplifying cubics by adding GraBmann identities Grafimann-Pliicker 

relations allow us to simplify one of the coefficients in 3.64. Note that 

dQ[5,6J,[7,SJ d Q[5,6J,[3,4J d Q[l,5,6J,[l,2,3J - dQ[5,6J,[2,3]dQ[l,5,6];[l,3,4J d Q[5,6J,[7,S]+ 

(3.72) dQ[5,6],[l,3]d Q[5,6],[3,4J d Q[l,5,6],[2, 7,S] = 

dQ[5,6J,[7,s] (dQ[5,6],[3,4]dQ[l,5,6],[l,2,3J - dQ[5,6J,[;:3]dQ[l,5,6],[l,3,4]) + 

dQ[5,6],[l,3]dQ[5,6],[3,4]dQ[l,5,6J,[2,7,SJ 

If we consider the element of G(3, 7), 

Ql,l Ql,2 Ql,3 Ql,4 1 0 0 

(3.73) Q5,l Q5,2 Q5,3 Q5,4 0 1 0 

Q6,l Q6,2 Q6,3 Q6,4 0 0 1 

then we can write 

(3.74) dQ[5,6],[3,4]dQ[l,5,6],[l,2,3] - dQ[5,6J,[2,3J d Q[l,5,6J,[l,3,4] = 71"3,4,571"1,2,3 - 71"2,3,571"1,3,4 

but if we use the Grafimann relation 



(3.75) 71"3,4,571"1,2,3 - 71"3,4,171"5,2,3 + 71"3,4,271"5,1,3 - 7I"3,4,371"5,i,2 = 0 

we can simplify the right hand side of equation 3.72 

(3.76) dQ[5,6],[3,4]dQ[1,5,6],[1,2,3] - dQ[5,6],[2,3]dQ[1,5,6],[1,3,4] = -dQ[5,6],[1,3]dQ[1,5,6],[2,3,4] 

when we substitute this into the only "complicated" coefficient in 3.64 we get 

dQ[5,6],[7,8]dQ[5,6],[3,4]dQ[1,5,6],[1,2,3] - dQ[5,6],[2,3]dQ[1,5,6],[1,3,4]dQ[5,6],[7,8]+ 

(3.77) dQ[5,6],[1,3]dQ[5,6],[3,4]dQ[1,5,6],[2,7,8] = 

-dQ[5,6],[1,3] (dQ[5,6],[7,8]dQ[1,5,6],[2,3,4] -' dQ[1,S,6],[2,7,8] dQ[S,6],[3,4]) 

when we substitute this into equation 3.64 we get 

-A dQ dQ dQ 2,1 [S,6],[1,2] [S,6],[7,8] [S,6],[3,4] 

-dQ[S,6],[2,3] (dQ[1,S,6],[1,3,4]dQ[S,6],[7,8] ~ dQ[1,S,6],[1,7,8]dQ[S,6],[3,4]) A 3,3 A 2,2 A 1,1 

-dQ (dQ dQ - dQ dQ ) A A A [S,6],[2,4] . [1,S,6],[1,3,4] [S,6],[7,8] [1,S,6],[1,7,8] [S,6],[3,4] 4,3 2,2 1,1 

-dQ[S,6],[1,3] (dQ[1,S,6],[1,3,4]dQ[S,6],[7,8] - dQ[1,S,6],[1,7,8]dQ[S,6],[3,4]) A 1,2 A 1,l A 3,3 

-dQ[S,6],[1,4] (dQ[1,S,6],[1,3,4]dQ[S,6],[7,8] - dQ[1,S,6],[1,7,8]dQ[S,6],[3,4]) A 1,2 A 4,3 A 1,1 

(3.78) -dQ[S,6],[2,3] (dQ[S,6],[7,8]dQ[1,S,6],[2,3,4] - dQ[1,S,6],[2,7,8]dQ[S,6],[3,4]) A 2,l A 3,3 A 2,2 

-dQ[S,6],[2,4] (dQ[S,6],[7,8]dQ[1,5,6],[2,3,4] - dQ[1,S,6],[2,7,8]dQ[S,6],[3,4]) A 4,3 A 2,l A 2,2 

-dQ[S,6],[1,3] (dQ[S,6],[7,8]dQ[1,S,6],[2,3,4] - dQ[1,S,6],[2,7,8]dQ[S,6],[3,4]) A 1,2 A 2,I A 3,3 

-dQ[5,6],[1,4] (dQ[S,6],[7,8]dQ[1,S,6],[2,3,4] - dQ[1,5,6],[2,7,8]dQ[S,6],[3,4]) A 1,2 A 4,3 A 2,1 

And this simplified cubic equation factors neatly: 

- ( dQ[S,6],[2,3]A3,3 A 2,2 + dQ[S,6],[2,4]A4,3 A 2,2+ 

(3.79) dQ[S,6],[1,3]A1,2 A 3,3 + dQ[S,6],[1,4]A1,2 A 4,3) 

( - A 2,1 dQ[1,S,6],[2,7,8]dQ[S,6j,[3,4] + A2 ,1 dQ[S,6],[7,8]dQ[1,S,6],[2,3,4] + 

A 1,1 dQ[1,S,6],[1,3,4]dQ[S,6],[7,8]- A 1,1 dQ[1,S,6],[1,7,8]dQ[5,6],[3,4]) -

A dQ dQ dQ 2,1 [S,6],[1,2] [S,6],[7,8] [S,6],[3,4] 
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After simplification with Graf3mann-Pliicker relations the rest of the cubic equa­

tions factor similarly: 

(3.80) 

(3.81) 

(3.82) 

( dQ[l,2],[6,S]A6,6A~,7 + dQ[l,2],[6,7]A7,7A 6,6+ 

dQ[l,2],[S,s]As ,6A S,7 + dQ[l,2],[S,7]A s ,6 A 7,7) 

(As ,sdQ[S,6,S],[l,2,S]dQ[l,2],[S,6] - A s ,sdQ[S,6],[l,2]dQ[l,2,S],[S,6,S]-

A dQ dQ + A dQ dQ ) -7,S [S,6],[l,2] [l,2,S],[S,6,7] 7,S. [l,2],[S,6] [S,6,S],[l,2,7] 

A dQ dQ dQ 7,S [l,2],[7,S] [l,2],[S,6] [S,6],[l,2] 

(A 2,lA S,sdQ[S,6],[2,S] + dQ[S,6],[l,7]A 1,lA 7,S+ 

A 7,sA2,l dQ[S,6],[2,7] + A 1,lA S,sdQ[S,6],[l,S]) 

( A dQ dQ - As 7dQ dQ + S,7 [l,2],[S,6] [S,6,7],[l,2,S] , [S,6],[l,2] [l,2,7],[S,6,S] 

A 7,7d Q[l,2],[S,6]dQ[S,6,7],[l,2,7] - dQ[S,6]'[l,2]dQ[l,2'7],[S,6,~]A7,7) -

A dQ dQ dQ S,7 [S,6],[7,S] [S,6],[l,2] [l,2],[S,6] 

(dQ[l,2],[6,S]A6,6 A S,7 + dQ[l,2],[6,7]A7,7 A 6,6+ 

dQ[l,2],[S,s]As ,6 A S,7 + dQ[l,2],[S,7]As ,6 A 7,7) 

( A dQ dQ -dQ dQ A6S+ 6,S [1,2],[3,4] [l,2,S],[6,7,S] [l,2],[7,S] [l,2,S],[3,4,6] , 

A dQ dQ - As sdQ dQ ) + S,S [1,2],[3,4] [l,2,S],[S,7,S] , [l,2],[7,S] [l,2,S],[3,4,S] 

A dQ dQ dQ 6,S [l,2],[S,6] [1,2],[3,4] [l,2],[7,S] 

- ( -A1,2d Q[2,S,6],[l,3,4]dQ[S,6],[7,S] + A 1,2d Q[S,6],[3,4]dQ[2,S,6],[l,7,S]­

A 2,2 d Q[S,6],[7,S]dQ[2,s,6],[2,3,4] + A 2,2d Q[S,6],[3,4]dQ[2,S,6],[2,7,S]) 

(A2,l A S,sdQ[S,6],[2,S] + dQ[S,6],[l,7]A 1,l A 7,S + A 7,sA2,ld Q[S,6],[2,7]+ 

(3.83) A 1,l A S,sdQ[S,6],[l,S]) + A1,2dQ[S,6],[l,2]dQ[S,6],[7,S]dQ[S,6],[3,4] 



( dQ[S,6],[2,3]A3,3 A 2,2 + dQ[S,6],[2,4]A4,3 A 2,2+ 

dQ[S,6],[1,3]A1,2 A 3,3 + dQ[S,6],[1,4]A1,2 A 4,3) 

(-A 4,4d Q[S,6],[1,2]dQ[1,2,4],[4,S,6] - A 3,4d Q[S:6],[1,2]dQ[1,2,4],[3,S,6]+ 

A 3,4 d Q[1,2],[S,6]dQ[4,S,6],[1,2,3] + A 4,4d Q[1,2],[S,6]dQ[4,S,6],[1,2,4]) + 

(3.84) A3,4dQ[S,6],[3,4]dQ[1,2],[S,6]dQ[S,6],[1,2] 

- (A6,sA3,4 d Q[1,2],[3,6] + dQ[1,2],[3,S]As,sA3,4+ 

. dQ[1,2],[4,S]As ,sA4,4 + dQ[1,2],[4,6]A6,sA4,4) 

(dQ[1,2],[S,6]dQ[3,S,6],[1,2,4]A4,3 - dQ[1,2,3],[4,S,6]dQ[S,6],[1,2]A4,3-

A 3,3d Q[S,6],[1,2]dQ[1,2,3],[3,S,6] + A 3,3d Q[1,2],[S,6]dQ[3,S,6],[1,2,3]) + 

(3.85) A4,3dQ[1,2],[3,4]dQ[1,2],[S,6]dQ[S,6],[1,2] 

(AS,6d Q[1,2],[3,4]dQ[1,2,6],[S,7,8] - A 6,6 d Q[1,2,6],[3,4,6]dQ[1,2],[7,8]+ 

A 6,6d Q[1,2],[3,4]dQ[1,2,6],[6,7,8] - A S,6d Q[1,2,6],[3,4,S]dQ[1,2],[7,8]) 

(A6,sA~,4dQ[1'2],[3,6] + dQ[1,2],[3,S]As ,sA3,4 + 

dQ[1,2],[4,S]As ,sA4,4 + dQ[1,2],[4,6]A6,sA4,4) -

(3.86) AS,6dQ[1,2],[S,6]dQ[1,2],[3,4]dQ[1,2],[7,8] 
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3.2.1.4.3 Solving the Equations The variables in these equations appear in a very 

systematic form. Each equation is a polynomial in six variables: four from one of the 2 x 2 

subblocks of A, the other two from one of the neighboring subblocks of A. Furthermore, for 

each cubic there exists a quadratic which is a function of the same six Ai,j's. Finally, each 

of the equations is linear in the Ai,j's from the neighboring sub block. The following table 

shows the pairings of variables of the quadratics and the cubics: 
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equation linear variable pair of two four variables 

pair linear variables 

1 A2,1 A3,3,A4 ,3 AI,I, A I ,2, A2,1, A2,2 

2 A7,s A6,6,A7,6 A7,7, A7,s, AS,7, Ag,s 

3 AS ,7 AI,I, A 2 ,1 A7,7, A7,s, AS,7, As,s 

4 A6,s A7,7,As,7 As,s, AS,6, A6,s, A6,6 

5 A I ,2 A7,s,As,s AI,I, A I ,2, A2,1, A2,2 

6 A3,4 A I ,2,A2 ,2 A3,3, A3,4, A4 ,3, A4 ,4 

7 A4 ,3 As,s, A 6,s A3,3, A3,4, A4 ,3, A4 ,4 

8 AS ,6 A3,4, A4 ,4 As,s, AS,6, A6,s, A6 ,6 
(Note that the first column applies only to the cubics.) 

From the above chart, we can see that we may either solve pairs 2,3,6, and 7 for 

the subblocks of A containing AI,I, A I ,2, A2,1, A2,2, As,s, AS,6, A6 ,s, and A6 ,6, (or vice-versa). 

After making these linear solves we get solutions of the form 



A 1,2 = dQ[5,6],[3,4] ( - dQ[I,2],[5,6]dQ[5,6],[1,2] ( dQ[5,6],[2,3]A~,4 + dQ[5,6],[2,4]A4,4A 3,4) 

+dQ (dQ dQ - dQ dQ )2 A2 A2 [5,6],[2,3] [1,2,4],[3,5,6] [5,6],[1,2] [1,2],[5,6] [4,5,6],[1,2,3] 3,4 3,3 

+ (dQ dQ2 dQ2 [5,6],[2,3] [1,2],[5,6] [4,5,6],[1,2,4] 

+2dQ dQ2. dQ dQ [5,6],[2,4] [5,6],[1,2] [1,2,4],[4,5,6] [1,2,4],[3,5,6] 

-dQ[5,6],[2,3]dQ[I,2],[5,6]dQ[4,5,6],[1,2,4]dQ[5,6],[1,2]dQ[I,2,4],[4,5,6] 

'~dQ dQ dQ dQ dQ [5,6],[2,4] [5,6],[1,2] [1,2,4],[3,5,6] [1,2],[5,6] [4,5,6],[1,2,4] 

+dQ[5,6],[2,4]dQ[I,2],[5,6]dQ[4,5,6],[1,2,3]dQ[4,5,6],[1,2,4] 

- 2 dQ dQ dQ dQ dQ ) A A A A [5,6],[2,4] [5,6],[1,2] [1,2,4],[4,5,6] [1,2],[5,6) [4,5,6],[1,2,3] 3,4 4,3 4,4 3,3 

+ (dQ[5,6],[1,2]dQ[I,2,4],[4,5,6] - dQ[I,2],[5,6]dQ[4,5,6],[1,2,4]) 

dQ dQ dQ A2 A2 [5,6],[1,2] [5,6],[2,3] [1,2,4],[4,5,6] 4,4 3,3 

+dQ[5,6],[2,3] (-dQ[I,2],[5,6]dQ[4,5,6],[1,2,4] + 2 dQ[5,6],[1,2]dQ[I,2,4],[4,5,61) 

( dQ dQ - dQ dQ ) A A A2 [1,2,4],[3,5,6] [5,6]'[1,2] [1,2),[5,6] [4,5,6),[1,2,3) 3,4 4,4 3,3 

~ ( dQ[5,6],[1,2]dQ[I,2,4],[4,5,6] - dQ[I,2],[5,6]dQ[4,5,6],[1,2,4]) 

dQ dQ dQ A A A2 [5,6],[2,4) [1,2],[5,6] [4,5,6],[1,2,4] 3,4 4,4 4,3 

+ (dQ[5,6],[1,2]dQ[I,2,4],[4,5,6] - dQ[I,2],[5,6]dQ[4,5,6],[1,2,4]) 

\ 

dQ dQ dQ A A2 A [5,6],[1,2] [5,6],[2,4] [1,2,4],[4,5,6] 3,3 4,4 4,3 

- (dQ[I,2,4],[3,5,6]dQ[5,6],[1,2] - dQ[I,2],[5,6]dQ[4,5,6],[1,2,3]) 

dQ' . dQ dQ A 2 A2 [5,6],[2,4) [1,2),[5,6) [4,5,6),[1,2,4] 3,4 4,3 

+ (dQ[I,2,4],[3,5,6]dQ[5,6],[1,2] - dQ[I,2],[5,6]dQ[4,5,6],[1,2,3]) 

(dQ[5,6],[2,4] dQ[I,2,4],[3,5,6]dQ[5,6],[1,2] - dQ[5,6],[2,4]dQ[I,2],[5,6]dQ[4,5,6],[1,2,3]-

dQ dQ' dQ ) A A 2 A / [5,6],[2,3] [1,2],[5,6] [4,5,6],[1,2,4] 3,3 3,4 4,3 

dQ[I,2],[5,6]dQ[5,6],[1,2]dA[3,4],[3,4] (A4,4 d Q[5,6],[1,2]dQ[I,2,4],[4,5,6] 

- A4,4d Q[I,2],[5,6]dQ[4,5,6],[1,2,4] + 
A dQ dQ - A dQ dQ ) 3,4 [5,6],[1,2] [1,2,4],[3,5,6] 3,4 [1,2],[5,6] [4,5,6],[1,2,3] 

( -dQ[5,6],[2,4] dQ[5,6],[1,3] + dQ[5,6],[1,4j dQ[5,6],[2,3]) 

The denominator may be simplified (a little) with the Grafimann relation 

(3.87) -dQ[5,6],[2,3]dQ[5,6],[1,4] + dQ[5,6],[2,4]dQ[5,6],[1,3] = dQ[5,6],[1,2]dQ[5,6],[3,4] 
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The result is 

A - ( - dQ2 dQ2 (dQ A 2 + dQ A A ) 1,2 - [1,2],[5,6] [5,6],[1,2] [5,6],[2,3] 3,4 [5,6],[2,4] 4,4 3,4 

+dQ (dQ dQ - dQ dQ )2 A2 A2 [5,6],[2,3] [1,2,4],[3,5,6] [5,6],[1,2] [1,2],[5,6] [4,5,6],[1,2,3] 3,4 3,3 

+ (dQ dQ2 dQ2 [5,6],[2,3] [1,2],[5,6] [4,5,6],[1,2,4] 

+2dQ dQ2 dQ dQ [5,6],[2,4] [5,6],[1,2] [1,2,4],[4,5,6] [1,2,4],[3,5,6] 

-dQ dQ dQ dQ dQ . [5,6],[2,3] [1,2],[5,6] [4,5,6],[1,2,4] [5,6],[1,2] [1,2,4],[4,5,6] 

-dQ[5,6],[2,4] dQ[5,6],[1,2]dQ[1,2,4],[3,5,6] dQ[1,2],[5,6]dQ[4,5,6],[1,2,4] 

+dQ dQ2 dQ dQ [5,6],[2,4] [1,2],[5,6] [4,5,6],[1,2,3] [4,5,6],[1,2,4] 

- 2 dQ . dQ dQ dQ I dQ ) A A A A [5,6],[2,4] [5,6],[1,2] [1,2,4],[4,5,6] [1,2],[5,6] [4,5,6J,[1,2,3J 3,4 4,3 4,4 3,3 

+ (dQ[5,6J,[1,2]dQ[1,2,4J,[4,5,6] - dQ[1,2J,[5,6]dQ[4,5,6J,[1,2,4J) 

dQ dQ dQ A2 A2 [5,6J,[1,2J [5,6],[2,3J [1,2,4],[4,5,6] 4,4 3,3 

+dQ[5,6],[2,3] ( -dQ[1,2J,[5,6J d Q[4,5,6],[1,2,4J + 2 dQ[5,6],[1,2J d Q[1,2,4],[4,5,6J) 

( dQ dQ - dQ dQ ) A A A2 [1,2,4],[3,5,6J . [5,6],[1,2J [1,2J,[5,6J [4,5,6J,[1,2,3J 3,4 4,4 3,3 

- (dQ[5,6],[1,2]dQ[1,2,4J,[4,5,6J - dQ[1,2J,[5,6J d Q[4,5,6J,[1,2,4]) 

. dQ[5,6],[2,4]dQ[1,2J,[5,6JdQ[4,5,6J,[1,2,4]A3,4A4,4A~,3 

+ (dQ[5,6],[1,2]dQ[1,2,4],[4,5,6] - dQ[1,2J,[5,6J d Q[4,5,6J,[1,2,4]) 

dQ[5,6],[1,2JdQ[5,6J,[2,4JdQ[1,2,4J,[4,5,6JA3,3A~,4A4,3 

- (dQ[1,2,4],[3,5,6]dQ[5,6J,[1,2J - dQ[1,2],[5,6J d Q[4,5,6],[1,2,3]) 

dQ dQ dQ A2 A2 [5,6J,[2,4J [1,2J,[5,6] [4,5,6],[1,2,4J 3,4 4,3 

+ ( dQ[1,2,4],[3,5,6]dQ[5,6],[1,2] - dQ[1,2J,[5,6J d Q[4,5,6J,[1,2,3]) 

(dQ[5,6J,[2,4] dQ[1,2,4J,[3,5,6J d Q[5,6],[1,2J - dQ[5,6J,[2,4J d Q[1,2J,[5,6]dQ[4,5,6J,[1,2,3]­

dQ[5,6J,[2,3]dQ[1,2],[5,6J d Q[4,5,6],[1,2,4]) A 3,3 A;,4 A4,3/ 

d Q[1 ,2] ,[5,6]d Q[5,6] ,[1 ,2J dA[3,4] ,[3,4] (A4,4 d Q[5,6J ,[1 ,2J d Q[1,2,4J ,[4,5,6J 

-A dQ dQ] [ J + 4,4 [1,2],[5,6J [4,5,6 , 1,2,4 

A dQ dQ - A dQ dQ ) dQ 3,4 [5,6J,[1,2] [1,2,4J,[3,5,6] 3,4 [1,2]'[5,6J [4,5,6J,[1,2,3J [5,6],[1,2J 
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Once solutions of this form are substituted into equation pairs 1, 4, 5 and 8, we 

are left with eight messy equations. The equations which were once cubic now have twenty 

terms; the equations which were once quadratic have one hundred terms. All eight equations 
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share one important feature: the remaining Ai,j's appear in pairs. To solve the last eight 

equations we make the substitutions 

(3.88) .' 

One of the four (previously) cubic equations is shown below. 

A 2 
( dQ dQ + dQ . dQ ) -q1 3,4 - [3,5,6],[1,2,4] [1,2],[5,6] [1,2,3],[4,5,6] [5,6],[1,2] 

( ( -dQ[5,6,S],[l,2,7]dQ[l,2],[4,5]dQ[l,2],[5,6] + dQ[5,6],[l,2]dQ[l,2],[4,5]dQ[l,2,S],[5,6,7]+ 

dQ[l,2,5],[4,7,S]dQ[5,6],[l,2]dQ[l,2],[5,6]) 

(dQ[5,6],[1,2]dQ[1,2,3],[3,5,6] - 2 dQ[3,5,6],[l,2,3]dQ[1,2],[5,6]) q22 

+ (dQ2 dQ dQ dQ + [5,6],[1,2] [1,2,3],[4,5,6] [1,2],[3,5] [1,2,S],[5,6,7] 

dQ2 dQ· dQ dQ . [5,6],[1,2] [1,2],[4,5] [1,2,3],[3,5,6] [1,2,S],[5,6,7] 

+dQ2 dQ dQ dQ [5,6],[1,2] [1,2,3],[3,5,6] [1,2],[5,6] [1,2,5],[4,7,S] 

-dQ[l,2],[5,6] dQ[5,6],[1,2]dQ[1,2],[4,5] dQ[l,2,3],[3,5,6]dQ[5,6,S],[l,2,7] 

-dQ . dQ dQ· dQ dQ [1,2],[5,6] [5,6],[1,2] [1,2],[3,5] [3,5,6],[1,2,4] [1,2,S],[5,6,7] 

-dQ[l,2],[5,6]dQ[5,6],[1,2]dQ[1,2],[3,5]dQ[5,6,S],[l,2,'TjdQ[l,2,3],[4,5,6] 

+dQ2 dQ (dQ dQ [1,2],[5,6] [1,2],[3,5] [3,5,6],[1,2,4] [5,6,S],[1,2,7] 

_dQ2 dQ dQ dQ [1,2],[5,6] [5,6],[1,2] [3,5,6],[1,2,4] [1,2,5],[3,7,8] 

+dQ[5,6],[1,2]dQ[1,2,3],[4,5,6]dQ[1,2],[5,6]dQ[1,2,5],[3,7,S]) q1 q2 

(3.89) +dQ[5,6],[1,2]dQ[1,2],[3,5]dQ[1,2,3],[3,5,6] 

( dQ[1;2,S],[5,6,S]dQ[5,6],[l,2] - dQ[5,6,S],[l,2,S]dQ[1,2],[5,6]) q4 q1 

+dQ[l,2],[4,5] ( dQ[l,2,S],[5,6,S]dQ[5,6],[1,2] - dQ[5,6,S],[1,2,S]dQ[1,2],[5,6]) 

( dQ[5,6],[l'2]dQ[i,~,3],[3,5,6] - 2 dQ[3,5,6],[1,2,3]dQ[1,2],[5,6]) q4 q2
2 

+ ( dQ[l,2,S],[5,6,S]dQ[5,6],[1,2] - dQ[5,6,S],[l,2,S]dQ[1,2],[5,6]) 

(dQ[5,6],[1,2] dQ[1,2],[3,5]dQ[l,2,3],[4,5,6] + dQ[5,6],[1,2]dQ[l,2],[4,5]dQ[l,2,3],[3,5,6] 

-dQ[l,2],[5,6]dQ[l,2],[3,5]dQ[3,5,6],[1,2,4]) q4 q2 q1 . 

+dQ[5,6],[1,2]dQ[1,2,3],[3,5,6] ( -dQ[5,6,S],[l,2,7]dQ[1,2],[3,5]dQ[1,2],[5,6] 

+dQ[5,6],[l,2]dQ[l,2],[3,5]dQ[l,2;S],[5,6;7] + dQ[5,6],[l,2]dQ[1,2],[5,6]dQ[l,2,5],[3,7,8]) q1) 
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+ (dQ2 dQ2 ( dQ dQ dQ ql [5,6],[1,2] [1,2],[5,6] - [5,6,S],[1,2,7] [1,2],[3,5] [1,2],[5,6] 

+dQ[5,6],[1,2]dQ[~,2],[3,5]dQ[I,2,S],[5,6,7] + dQ[S,6],[1,2]dQ[I,2],[S,6]dQ[I,2,S],[3,7,S]) 

+dQ2 dQ dQ2 [S,6],[1,2] [1,2],[4,5] [1,2],[S,6] 

( dQ[I,2,S],[S,6,S]dQ[S,6],[1,2] '- dQ[5,6,S],[1,2,S]dQ[I,2],[S,6]) q4 ql 

- ( -dQ[3,S,6],[1,2,4]dQ[I,2],[S,6] + dQ[I,2,3],[4,5,6]dQ[5,6],[1,2]) 2 

( -dQ[S,6,S],[1,2, 7]dQ[I,2] ,[4,S]dQ[I,2] ,[S,6] + dQ[5,6],[1,2]dQ[I,2],[4,5]dQ[I,2,S] ,[5,6, 7j + 

dQ dQ dQ ) A2 q 2q [1,2,5],[4,7,S] [5,6],[1,2] [1,2],[5,6] 3,4 2 1 

( dl\2 dQ dQ2 dQ dQ - - ""[S,6],[1,2] [1,2,3],[3,5,6] [1,2],[S,6] [3,S,6],[1,2,4] [1,2,5],[3,7,S] 

-2 dQ dQ dQ dQ2 dQ dQ [1,2],[5,6] [1,2],[3,5] [1,2,3] ,[4,S,6] [5,6],[1,2] [3,5,6],[1,2,3] [1,2,S],[5,6,7] 

+dQ2 dQ dQ dQ dQ dQ . [1,2),[S,6) [1,2),[4,5) [3,5,6),[1,2,3) [1,2,3),[3,5,6] [5,6) ,[1,2) [5,6,S],[1,2,7] 

+2dQ2 dQ dQ dQ dQ dQ' [1,2),[5,6] [1,2),[3,5) [3,S,6],[1,2,4] [3,S,6],[1,2,3] [5,6],[1,2) [1,2,S],[5,6,7] 

+dQ2 dQ, dQ dQ dQ' dQ [1,2],[5,6] [1,2],[3,5] [5,6],[1,2] [1,2,3],[3,5,6] [3,5,6],[1,2,4] [5,6,8],[1,2,7] 

+dQ3 dQ dQ dQ dQ [S,6] ,[1,2) [1,2),[3,5) [1,2,3],[3,5,6] [1,2,3],[4,5,6] [1,2,S],[5,6,7] 

-dQ[I,2],[S,6] dQ[5,6),[1,2)dQ[I,2),[3,5]dQ[I,2,3],[3,5,6]dQ[3,5,6],[1,2,4]dQ[I,2,S],[5,6,7] 

+2dQ2 dQ dQ dQ dQ dQ [1,2],[5,6) [1,2],[3,S] [1,2,3),[4,5,6] [5,6),[1,2] [3,5,6),[1,2,3] [5,6,S],[1,2,7) 

+dQ dQ3 dQ2 dQ [1,2],[4,5) [5,6],[1,2] [1,2,3],[3,5,6] [1,2,S],[5,6,7] 

dQ dQ dQ2 dQ2 dQ - [1,2),[5,6] [1,2),[4,5] [5,6],[1,2] [1,2,3],[3,5,6] [5,6,S),[1,2,7] 

-2dQ dQ dQ dQ. dQ3 [1,2],[3,5] [3,5,6],[1,2,4] [3,5,6);[1,2,3] [5,6,S],[1,2,7] [1,2],[5,6] 

-dQ[I,2],[5,6)dQ[I,2],[4,5)dQ[3,5,6],[1,2,3]dQ[I,2,3],[3,5,6]dQ[5,6],[1,2]dQ[I,2,S],[5,6,7] 

-dQ dQ2 dQ dQ dQ dQ . [1,2],[5,6] [5,6],[1,2] [1,2],[3,5] [1,2,3],[3,5,6] [1,2,3],[4,5,6] [5,6,S],[1,2,7] 

+dQ3 dQ dQ dQ, dQ [5,6],[1,2] [1,2,3],[3,5,6] [1,2,3],[4,5,6] [1,2],[5,6] [1,2,5],[3,7 ,S] 

2dQ2 dQ2 dQ dQ dQ' - [1,2],[5,6] [5,6],[1,2] [3,5,6],[1,2,3] [1,2,3],[4,5,6] [l,2,5],[3,7,S] 

dQ2 dQ dQ2 dQ dQ - [1,2],[5,6] [3,5,6],[1,2,3] [5,6],[1,2] [1,2,3],[3,5,6] [1,2,5],[4,7,S] 

+dQ3 dQ dQ2 dQ [5,6] ,[1,2] [1,2] ,[5,6] [1,2,3],[3,5,6] [1,2,5],[4,7,8] 

+2 dQ[5,6],[1,2] dQ[I,2],[5,6]dQ[3,5,6],[1,2,3]dQ[3,5,6],[1,2,4]dQ[I,2,5],[3,7,S]) q2 A;,4 



- (-dQ[3,S,6],[1,2,3]dQ[1,2],[S,6] + dQ[S,6],[1,2]dQ[1,2,3],[3,S,6]) A~,4 . 

+ ( -dQ[3,S,6],[1,2,3]dQ[1,2],[S,6] ( -dQ[S,6,8],[1,2,1]dQ[1,2],[4,S]dQ[1,2],[S,6] 

+dQ[ ] [ ]dQ[ ] [ ]dQ + dQ . dQ dQ ) q 2 5,6,1,2 1,2,4,5 [1,2,8],[5,6,1] [1,2,S],[4,1,8] [5,6],[1,2] [1,2],[5,6] 2 

+ (dQ[1,2,8],[5,6,8]dQ[5,6],[1,2] - dQ[5,6,8],[1,2,8]dQ[1,2],[S,6]) 

(dQ[5,6W,2]dQ[1,2],[3,S]dQ[1,2,3],[3,5,6]q4 q1 - dQ[3,S,6],[1,2,3]dQ[1,2],[S,6]dQ[1,2],[4,5]q4 q22 

-dQ[1,2],[3,5]dQ[3,5,6],[1,2,3]dQ[1,2],[5,6]q4 q2) 

+dQ[5,6],[1,2]dQ[1,2,3],[3,5,6] ( -dQ[5,6,8],[1,2,1]dQ[1,2],[3,S]dQ[1,2],[S,6]+ 

d Q[S,6] ,[1 ,2] d Q[l ,2] ,[3,S] dQ[l ,2,8] ,[5,6,1] + dQ[S,6],[l,2] d Q[l,2],[S,6] dQ[1,2,5] ,[3,1,8]) q1 

-dQ[3,5,6],[l,2,3]dQ[l,2],[S,6] (-dQ[5,6,8],[1,2,1]dQ[1,2],[3,S]dQ[1,2],[5,6] 

+dQ[5,6],[1,2]dQ[l,2],[3,5]dQ[1,2,8],[S,6,1] + dQ[5,6],[1,2]dQ[1,2],[5,6]dQ[1,2,S],[3,1,8]) q2) 

-dQ[1,2],[4,5] ( -dQ[3,S,6],[l,2,4]dQ[1,2],[5,6] + dQ[1,2,3],[4,S,6]dQ[S,6],[1,2]) 2 

( dQ dQ dQ dQ.) 2 A 2 
. [1,2,8],[5,6,8] [5,6],[1,2] - [5,6,8],[1,2,8] [1,2],[S,6] q1 q2 3,4q4 

- (dQ[1,2,8],[5,6,8]dQ[S,6],[1,2] - dQ[S,6,8],[1,2,8]dQ[l,2],[S,6]) 

( dQ2 dQ dQ dQ + dQ2 dQ2 dQ [S,6],[1,2] [1,2],[3,S] [1,2,3],[4,S,6] [1,2,3],[3,S,6] [S,6],[1,2] [1,2,3],[3,5,6] [1,2],[4,5] 

-dQ[5,6],[1,2]dQ[1,2],[3,S]dQ[1,2,3],[3,5,6]dQ[3,S,6],[l,2,4]dQ[1,2],[S,6] 

- 2 d Q[S~6],[1,2] d Q[l,2],[3,5] . d Q[l ,2,3] ,[4,5,6] dQ[l,2] ,[5,6] d Q[3,5,6],[l,2,3] 

-dQ[5,6],[1,2]dQ[1,2],[4,5]dQ[l,2],[5,6]dQ[3,5,6],[1,2,3]dQ[1,2,3],[3,5,6] 

+2dQ dQ2 dQ dQ ) A2 [1,2],[3,5] [1,2],[S,6] [3,5,6],[1,2,4] [3,S,~],[l,2,3] q2 3,4q4 

+dQ2 dQ2 ( dQ dQ dQ [5,6],[1,2] [l,2],[S,6] - [5,6,8],[1,2,1] [1,2],[4,5] [1,2],[S,6] 

+d Q[5,6] ,[1 ,2] d Q[1,2],[4,5] d Q[l,2,8] ,[S,6, 1] + dQ[1,2,5],[4,1,8] d Q[5,6],[l,2] d Q[1,2],[S ,6]) q1 

dQ[5,6],[1,2]dQ[l,2],[3,5]dQ[l,2],[S,6] (dQ[l,2,8],[S,6,8]dQ[S,6],[1,2] - dQ[S,6,8],[1,2,8]dQ[1,2],[S,6]) q4) 
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Notice that 3.89 is a function of q1, Q2, Q4, A; 4 and the data. We say that 3.89 is , 

a general equation because its coefficients are functions of a general data matrix, Q. Later, 

we shall work with data from a phantom. A phantom is the solution to the forward problem 

for a given set of transition probabilities. Data from a phantom are real numbers, whereas 

general data are variables, Qi,j. We can solve 3.89 for A~,4 in terms of Q1, Q2, Q4 and the 

data. Similarly, we can solve the three other former cubic equations for A~,3' A~,1' and 
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A~ s. Each of these solutions is a function of three of the qiS and the data. Substituting . 
these solutions into the four (previously) quadratic equations we get four highly nonlinear 

equations in ql, q2, qa, q4. Because the coefficients in these equations are so cumbersome 

only caricatures are shown below 

(3.90) 

(3.91) 

(3.92) 

(3.93) 

qa (a2 + qa aa) (q4 a4 + qa) (q2 as + a6) (q2 al9 + a20 + ql a21) (ql + q2 a4) al 

(qa 2q2 a7 + q2 q/q4 as + qa q2 a9 + q2 qa q4 alO + q2 all + q2 q4 al2+ 

qa a13 + qlal4 + alS + qaq4 al6 + q4 al7 + qa2q4 alS) 

qa (a2 + qa aa) (qa q4 a24 + qa a2S + q4 a26) (q4 a4 + qa) (q2 as + a6) (ql + q2 a4) a2a 

(q2 2ql a27 + ql q2 qa a2S + ql q2 a29 + ql qa aao + ql aal + q22ql qa aa2+ 

q22qa aaa + aa4 + q3 q2 a3S + q22a36 + q2 a37 + q3 a3S) 

ql (q4 a40 + a4l) (q4 a42 + a43 + q3 a44) (q4 a4 + q3) (a4S + ql a46) (ql + q2 a4) a39 

(q4 q/q2 a47 + ql2q4 a4S + ql2q2 a49 + ql2aso + ql q4 aSl + q4 ql q2 aS2+ 

ql q2 aS3 + ql aS4 + q2 q4 ass + aS6 + q2 aS7 + q4 ass) 

ql aS9 (q4 a40 + a4l) (q4 a4 + q3) (a4S + ql a46) (ql q2 a46 + ql a72 + q2 a73) 

(ql + q2 a4) (ql a60 t ql q4 a6l + ql q3 a62 + ql q42a63 + ql q3 q4 a64+ 

ql q3 q42a6S + a66 + q4 a67 + q3 a6S + q3 q4 a69 + q3 q42a70 + q42a71) 

where each of the aiS is a polynomial in minors of the general data matrix, Q, and 

the "relevant" term is the last one. The zero valued, or relevant, terms of each of these four 

equations is a twelve term polynomial, involves only three of the qiS, and is linear in one of 

the qiS. The roles of the four qiS occur cyclically. Solving for two of the variables (linearly) 

and replacing the result into the remaining two equations we get two nonlinear equations of 

35 terms each. All of this can be done with the general equations!! Solving equations 3.90 

and 3.91 for ql and q2 and subsituting into 3.92 and 3.93 yields 



(3.94) 

and 

b2S + q3 b3 + q3 2bl + q3
3

b19 + q3 4b20 + q35b34 + q36b35+ 

q2 b2 + q2 q3 b5 + q2 q3
2 

b4 + q2 q3 
3 

b21 + q2 q3
4 

b22 + q2 q3 
5 

b28 + q2 q3
6 

b6 + 

q2
2

b13 + q2 2q3 b14 + q22q32b12 + q22q33b23 + q22q34b24 + q22q35b27 + q22q36b9 + 

q23bll + q2 3q3 b17 + q23q32b18 + q23q33b32 + q23q34b26 + q23q35b29 + q23q36b7 + 

4b +. 4 b + 4 2b 4 3b 4 4b 4 5b· 4 6b q2 10 q2 q3 16 q2 q3 15 + q2 q3 33 + q2 q3 30 + q2 q3 31 + q2 q3 8 

b65 + q2 b37 + q2 2b44 + q2 3b42 + q24b41 + q25b58 + q26b69+ 

q3 b38 + q2 q3 b40 + q2
2

q3 b46 + q2
3

q3 b49 + q2
4

q3 b48 + q2
5

q3 b66 + q2
6

q3 b70 + 

(3.95) 'q32b36 + q3 2q2 b39 + q22q32b43 + q3 2q2 3b50 + q32q24b47 + q32q25b57 + q32q26b68 + 

3b 3 b + 3 2b 3 3b 3 5b 3 4b . 3 6b q3 51 + q3 q2 53 q3 q2 55 + q3 q2 63 + q3 q2 59 + q3 q2 64 + q3 q2 67 + 
q34b52 + q3 4q2 bS4 + q34q22b56 + q3 4q2 3b61 + q3 4qZ 4b62 + q3 4q2 5b45 + q3 4q2 6b60 
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where the biS are polynomials in minors of the data matrix. Thus far, our data 

have been the symbols Qi,j, where i,j = 1, ... ,8. The size of the polynomials (or rather 

the coefficients) in the above equations prohibits further computation with a general data 

set. During preliminary work on this problem, the author implemented this algorithm on 

several phantoms. The author used a very general phantom: MAPLE's random number 

generator was used to assign numerical values to transition probabilities. These values did 

not necessarily satisfy conditions 3.13 and 3.14. 

Taking the resultant of 3.94 and 3.95 yields 3.96, a huge polynomial equation in 

one variable. In our numerical tests we have always observed that 3.96 factors to have 

the same form, regardless of the variable with which we take the resultant. The following 

caricature of an equa..tion shows the form of the resultants. 



(3.96) 

Cl (q32C40 + q3 C4l + C42)2 (q32C43 + q3 C44 + C4S)2 (q32C46 + q3 C47 + C4S)2 

(q3 2C49 + q3 CSO + CSl)2 (q3 C2 + C3) 
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where the CiS are complicated functions of the data and the relevant term is the only linear 

term in q3' 

The author completed this computation on several phantoms and in each case 

the relevant factor was linear (q3 C2 + C3) and gave the solution q3 = - C3/C2' Once q3 is 

computed, it is possible to compute q2 ~y substituting the solution for q3 into 3.94 or 3.95 

Next we can substitute the values of q2 and q3 into the solutions for ql and q4 obtained 

from 3.90 and 3.91. Once the values for the qiS are found, A~,4' A~,3' A~,7' and A~,s can 

be computed from 3.89 and its counterparts. Therefore, we have A3,4, A3,3, A7,7, and A7,s 

modulo signs. We can use this to solve 3.88 for A4,4, A4,3, A S,7, and As,s up to signs. 

In order to assign the proper signs to A3,3, A3,4, A4,3, and A4,4 recall that since 

A = phal and A is a block matrix, 

(3.97) -A-3-,3-A-4-'4-~-A-3'-4-A-4-., [ _~~~,. -A:~;' ] = [ 

e21w e21S] 

n21w n21s 

For a solution to be physically viable all of the transition probabilities must be positive. 

For example, we know that 

.. 
(3.98) sgn(A:i,3A4,4 -.:. A3,4A4,3) = sgn(A3,3) = sgn(A4,4) = -sgn(A4,3) = -sgn(A3,4) 

We can use 3.98 to compute the signs of A3,3, A4,4, A3,4, and A4,3' 
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3.2.2 Writing the equations for general n 

For n > 2 the problem becomes worse even though the governing matrix equa­

tion, 2.8, looks the same. Although there are always 4n incoming and outgoing states for a 

larger n x n sy~tem, there are many more hidden states. Including incoining states, there 

are four states per pixel (plus 4n outgoing states). Since there are n 2 pixels there are 4n2 

incoming and hidden states. That leaves 4n2 
- 4n hidden states. See figure 3.14. Only 

when n = 2 is the number of hidden states equal to· the number of incoming and outgoing 

states. For a n x n system Pio is a 4n x 4n matrix and Phh is a (4n 2 - 4n) x (4n 2 - 4n) 

matrix. Pih is a 4n x (4n2 
- 4n) matrix and Pho is a (4n2 

- 4n) x 4n matrix. For n 2: 4 

the governing equations are so horribly large and nonlinear that MAPLE cannot even solve 

the forward problem analytically. (Inverting (I - Phh ) is too much for MAPLE.) In order 

to begin work on the inverse problem one must somehow cut this monstrosity down to size. 

Even if MAPLE were able to handle the equations for any large n x n system the 

algorithm described in section 3.2 . .1 is doomed to failure. Pho is not invertible since it is 

not even square. One would like to preserve the "squareness" of the transition submatrices 

. as well as reduce the complexity of the problem. A recursive approach allowing only one 

layer of hidden states at any recursion level achieves both goals. The recursive algorithm 

described below decomposes the system into subsystems which are subsequently decomposed 

into subsystems of their own. A system is broken into subsystems by ignoring most of its 

hidden states. No matter how one decomposes the system, the new system must adhere to 

the consistency conditions discussed in section 3.l. 

For any square system, notice that if we choose one horizontal and one vertical 

barrier there are exactly 4n hidden states associated with these barriers. (Each of the 

barriers is associated with two rank deficient submatrices of rank n. The vertical barrier 

is associated with a right-left as well as a left-right submatrix; the horizontal barrier is 

associated with a top-bottom as well as a bottom-top sub matrix) Recall that there are 

exactly 4n incoming and 4n outgoing states. 
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Consider the example in figure 3.15. The 4 x 4 array of pixels has been divided into 

four subarrays, labeled 11, 12, 21, and 22. There are 16 incoming states and 16 outgoing 

states. There are 16 relevant hidden states, those associated with the barriers. The incoming 

states which send photons into a subarray are considered to be adjacent only to hidden and 

outgoing states which send photons out of that subarray .. Similarly, hidden states which 

send photons from one subarray into a second subarray are adjacent only to hidden states 

which send photons from the second subarray into any other subarray. Finally, hidden 

states which send photons into a subarray are adjacent only to those outgoing states which 

send photons out of that subarray. As in the base case, it is assumed that photons can only 

travel directly from one state to adjacent states. 

The governing matrix equation may be rewritten as the following: 

(3.99) 

where Q is the data matrix and Pio, P ih , P ho , and P hh are probability transition 

matrices for this modified system and A = p;:"l. Although 3.99 looks the same as in the 2 x 2 

example, the transition matrices are very different. They have nonzero entries wherever it 

is possible to travel from one state· to another without leaving the subarray in which the 

first state puts the photon. The shortest possible path between states in this modified 

system may require that the photon travel several steps in the original system. The most 

important thing to notice is that these modified transition probabilities are the data for the 

subarrays. Once again, the transition matrices P ho and Pio share block diagonal structures 

and P hh and P ih share off diagonal block structures. In fact, replacing nonzero entries in 

the transition matrices for the 2 x 2 system with dense n/2 x n/2 blocks and zeros in the 

2 x 2 system with sparse n/2 x n/2 blocks gives the structure of the modified transition 

matrices. Also, A has the same structure as Pho and the same changes of variables which 

were used to solve the 2 x 2 problem may be used here. 
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(3.100) 

Finally, notice that X has the same zero structure as P ha and Pio and that Y and 

W have identical zero structures as P ih and Phh . The governing equation may be rewritten 

as 

(3.101) Q(A - W) - (X - Y) = e 

Just as in the 2 x 2 problem, there are redundant equations in the governing matrix 

equation and the columns of 3.101 are decoupled homogeneous systems of linear equations. 

As before, one may solve for the Wi,js, Xi,jS, and Yi,jS in terms of the Ai,js, From these 

solutions, one can write down the transition probabilities for the modified 4 x 4 system in 

terms of the Ai,js, This exhausts the supply of equations given by the governing matrix 

equation for the modified system. 

Let the data matrices for the subarrays be denoted as Qll, Q12, Q21, Q22. The 

entries of the transition matrices Pi~' P ih , P hh , and Pho may be written as functions of the 

entries of A and are the data in Qll, Q12, Q21, and Q22. Once we recover these data 

matrices we can tackle each subarray separately. There are consistency conditions amongst 

the data foreach ofthe subarrays. These conditions provide some highly nonlinear equations 

which can be used to solve for some of the Ai,j's in terms of the remaining Ai,j's. We cannot 

hope to recover all 16 * 42 parameters. Some extra conditions must be found, somewhere. 

Once the data for each of the four subsystems is found the procedure is repeated on each of 

the four subsystems. This recursion continues until the 2 x 2 "base case" is reached. The 

algorithm described in section 3.2.1 is then used to glean as much useful information from 

the base case as is possible. Notice that there has been no mention of any identifications in 

this section. This method of solving the equations is absolutely general. 
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3.2.3 4 x 4 problem 

The recursive algorithm described above is developed in detail for a 4 x 4 system. 

The algorithm for solving the 4 x 4 problem described below requires only one 

level of recursion and gives a completely general solution. In other words, the author 

makes no assumptions about the physical properties of the system; no identifications of the . 
form 3.54 are made. There are 16 * 16 = 256 unknown transition probabilities and (as we 

saw in section 3.1) only 160 independent data. In sections 3.2.3.1 and 3.2.3.2 we find a 96 

parameter family of solutions to the 4 x.4 problem. 

We staEt by labeling the states for the 4 x 4 system as in figure 3.15, and all of 

the 2 x 2 subsystems as in figure 2.1. The transition matrices for the modified system are 

sparse block matrices. These matrices are larger tha~ their 2 x 2 counterparts, but have 

similar block structures. The nonzero subblocks of the transition matrices are shown below, 

starting withPih , which has an off diagonal block structure. 

Pih1,s Pih1 ,6 Pih1 ,lS Pih1,16 Pihs,3 Pihs,4 Pihs,9 Pihs,lO 

Pih2,s Pih2 ,6 Pih2,lS Pih2,16 Pih6 ,3 Pih6,4 Pih6 ,9 Pih6 ,10 

Pih3,s Pih3 ,6 Pih3 ,lS Pih3 ,16 Pih7 ,3 Pih7 ,4 Pih7 ,9 Pih7 ,10 

Pih4,s Pih4 ,6 Pih4 ,lS Pih4 ,16 Pihs,3 Pihs,4 Pihs,9 Pihs,10 

Pih9 ,7 Pih9,8 Pih9 ,13 Pih9 ,14 

Pih10 ,7 Pih10,s PihlO ,13 PihlO ,14 

,and 
Pihll ,7 Pihll,s Pihll ,13 Pihll ,14 

Pih12 ,7 Pih12 ,S Pih12 ,13 Pih12 ,14 

Pih13 ,1 Pih13,2 Pih13 ,1l Pih13 ,12 

Pih14 ,l Pih14,2 Pih14 ,1l Pih14,12 

Pih1S ,1 Pih1S ,2 Pih1S ,1l Pih1S,12 

Pih16 ,1 Pih16 ,2 Pih16 ,1l Pih16 ,12 



Phh has the same block structure as ~h' 

Phh9 ,7 Phh9,s Phh9,l3 Phh9,l4 Phhl3 ,l Phhl3 ,2 Phhl3 ,ll Phhl3 ,l2 

PhhlO ,7 PhhlO,s Phh lO ,l3 Phh lO ,l4 Phhl4 ,l Phhl4 ,2 Phhl4 ,ll Phhl4 ,l2 

Phhll ,7 Phhll,s Phhll ,l3 Phhll ,l4 Phhl5 ,l Phhl5 ,2 Phhl5 ,ll Phhl5 ,l2 

Phhl2 ,7 Phhl2 ,S Phhl2 ,l3 Phh12 ,14 Phhl6 ,l Phh16 ,2· Phhl6,ll Phhl6 ,l2 

Phhl ,5 Phhl ,6 ,Phhl ,15 Phhl ,l6 

Phh2 ,5 Phh2 ,6 ,Phh2,15 Phh2,l6 

Phh3,5 ,Phh3,6 Phh3,l5 Phh3,l6 

Phh4,5 Phh4,6 Phh4,l5 Phh4,l6 

.,and 

Phh5,3 Phh5,4 Phh5,9 Phh5,10 

Phh6,3 Phh6,4 Phh6,9 Phh6,lO 

Phh7,3 Phh7,4 Phh7 ,9 Phh7 ,10 

Phhs,3 Phhs,4 Phhs,9 Phhs,lO 

Pio, however, is block diagonal, 

PiOl,1 PiOl ,2 PiOl ,3 PiOl ,4 

Pi02 ,l Pi02,2 Pi02 ,3 Pi02 ,4 

Pi03,l Pi03,2 Pi03,3 Pi03,4 

Pi04,l Pi04,2 Pi04,3 Pi04,4 

Pi05,5 Pi05,6 Pi05,7 Pio5,s 

Pi06,5 Pi06,6 Pi06,7 Pio6,s 

Pi07 ,5 Pi07 ,6 Pi07,7 Pio7 ,s 

PiOS,5 PiOS,6 PiOS,7 Pios,s 

Pi09 ,9 Pi09 ,10 Pi09 ,l1 Pi09 ,l2 

PiOlO ,9 PiOlO,lO PiOlO,ll PiOlO,l2 

PiOll ,9 PiOll,lO PiOll,ll PiOll ,l2 

PiOl2 ,9 PiOl2 ,lO Pi012 ,ll Pi012,l2 

PiOl3 ,l3 PiOl3 ,l4 PiOl3 ,l5 PiOl3 ,l6 

Pi014 ,13 PiOl4 ,l4 PiOl4 ,l5 . PiOl4 ,l6 

PiOl5 ,l3 PiOl5 ,l4 PiOl5 ,15 Pi015 ,l6 

PiOl6 ,l3 PiOI6 ;14 PiOl6 ,15 PiOl6 ,l6 

and 
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as is Pho 

PhOl,l PhOl ,2 PhOl ,3 PhOl ,4 Phos,s PhOS,6 PhOS,7 Phos,s 

Ph02,l Ph02,2 Ph02,3 Ph02,4 Pho6,s Ph06,6 Ph06,7 Pho6,s 

Ph03,l Ph03,2 Ph03,3 Ph03,4 Pho7,s Ph07,6 Ph07,7 Pho7,s 

Ph04,l Ph04,2 Ph04,3 Ph04,4 Phos,s PhOS,6 PhOS,7 Phos,s 

Ph09 ,9 Ph09 ,lO Ph09 ,ll Ph09 ,l2 

PholO ,9 PholO,lO PhOlO,ll PholO ,l2 

PhOll ,9 PhOll,lO PhOll,ll PhOll ,l2 

PhOl2 ,9 PhOl2 ,lO PhOl2 ,ll PhOl2 ,l2 

and 

PhOl3 ,l3 PhOl3 ,l4 PhOl3 ,lS PhOl3 ,l6 

Pho14,13 . Ph014 ,l4 Ph014 ,lS PhOl4,l6 

PholS ,l3 PholS ,l4 PholS,lS PholS ,l6 

PhOl6 ,l3 PhOl6 ,14 PhOl6,lS PhOl6 ,l6 

See figure 3.16 for a few examples of paths taken into account by the modified 

transition probabilities displayed above. 

Just as for the 2 x 2 problem, we may rewrite the governing equations for the 4 x 4 

problem. Assuming that the matrix Pho is invertible, make the change of variables A = Pi:} 

where the nonzero subblocks of A are 
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Al,l Al ,2 A l ,3 . Al ,4 As,s AS,6 AS,7 As,s 

(3.102) 
A2,l A2 ,2 A2 ,3 A2 ,4 A6 ,5 A6 ,6 A6 ,7 A6 ,s 

A3 ,l A3 ,2 A3 ,3 A3 ,4 A7,5 A7,6 A7,7 A7,s 

A4 ,l A4 ,2 A4 ,3 A4 ,4 As,s AS,6 AS,7 As,s 

Ag,g A9,lO A9,1l A9,l2 A l3 ,l3 A l3 ,l4 A l3 ,l5 A l3 ,l6 

AlO,g AlO,lO AlO,u A lO ,l2 A l4,l3 A l4 ,l4 A l4l5 , Ai4,l6 

. Au,g AU,lO Au,u A U ,l2 A l5 ,l3 A 15 ,14 A 15 ,15 A 15 ,16 

A12,9. A 12,lO A 12,U A12 ,12 A 16,13 A 16,l4 A l6 ,15 A 16,l6 

This allows ~s to write 

(3.103) (Q -Pio)A(I - Phh ) - Pih = e 

Once again we may make the following changes of variables: 

(3.104) 

The resulting matrices X, W, and Y have very special block structures - the same 

block structures as the transition matrices above. X has the same zero structure as Pho and 

Pio. Wand Y, however, have the same zero structure as Pih and Phh : Once the changes of 

variables in equation 3.104 have been made, the governing equations become the familiar 

(3.105) Q(A - W) - (X - Y) = e 

Just as in the 2 x 2 case the columns of 3.105 come in groups. Only in this case four 

of the columns correspond to the same matrix equation. The eleventh through fourteenth 

columns of 3.105 are written below. 



.' 

Ql,9 

Q2,9 

QS,9 

Q4,9 

Q5,9 

Q6,9 

Q7,9 

QS,9 

Q9,9 

Q10,9 

Ql1,9 

Q12,9 

Q1,10 

Q2,10 

QS,10 

Q4,10 

Q5,10 

Q6,10 

Q7,10 

QS,10 

Q9,lO 

Q10,10 

Ql1,10 

Q12,lO 

Ql,l1 

Q2,ll 

Q3,ll 

Q4,ll 

Q5,ll 

Q6,ll 

Q7,ll 

QS,ll 

Q9,ll 

Q10,ll 

Qll,ll 

Q12,ll 

Q1,12 

Q2,12 

QS,12 

Q4,12 

Q5,12 

Q6,12 

Q7,12 

QS,12 

Q9,12 

Q10,12 

Qll,12 

Q12,12 

Q1,lS 

Q2,13 

QS,1S 

Q4,13 

Q5,1S 

Q6,1S 

Q7,13 

QS,lS 

Q9,1S 

QlO,1S 

Qll,1S 

Q12,1S 

Ql,14 

Q2,14 

QS,14 

Q4,14 

Q5,14 

Q6,14 

Q7,14 

QS,14 

Q9,14 

QlO,14 

Qll,14 

Q12,14 

Q1,l5 

Q2,l5 

QS,l5 

Q4,l5 

Q5,l5 

Q6,U 

Q7,l5 

QS,l5 

Q9,l5 

QIO;U 

Qll,l5 

Q12,l5 

Ql,16 

Q2,l6 

QS,l6 

Q4,l6 

Q5,l6 

Q6,l6 

Q7,l6 

QS,l6 

Q9,l6 

QIO,16 

Qll,16 

Q12,16 

Q13.9 QlS,lO Q13,ll QlS,12 QlS,13 QIS,14 Ql3,l5 QlS,16 

Q14,9 Q14,lO Q14,ll 914,12 Q14,13 Q14,14 Q14,15 Q14,16 

QU,9 Q15,lO QU,ll QU,l2 QlS,13 Q15,14 QU,IS Q15,16 

Q16,9 Q16,lO Q16,ll Q16,l2 Q16,l3 Ql6,14 Ql6,U Ql6,l6 

(3.106) 

A9,11 A9,12 -W9,13 -W9,14 

AIO,ll AlO,l2 -WIO,13 -WIO,14 

All,ll All,12 -Wll,IS -Wll,14 

A12,l1 A12,12 - W12,lS - W12,l4 

- Wl3,ll - W13,12 AlS,lS A l s,14 

- W14.11 - W14,12 A 14 ,13 A 14.14 

- W 15,ll - WU,l2 A 15,lS A15,14 

- W 16,ll - Wl6,l2 

X9,ll X9,12 

XlO,l1 

Xll,ll 

X12,ll 

Y13,ll 

Y14,ll 

Y15,ll 

Yl6,l1 

XlO,l2 

X 11 ,I2 

Xl2,12 

Y13,12 

Yl4,l2 

Y15,12 

Y 16,12 

A16,lS 

Y9,lS 

YlO,lS 

Yl1,lS 

Y 12,lS 

XIS,lS 

X14,lS 

XU,13 

Xl6,l3 

A 16,14 

Y9,l4 

YlO,14 

Yl1,14 

Yl2,14 

X13,14 

X14,14 

X15,14 

Xl6,l4 

00000000 

00000000 

00000000 

00000000 

00000000 

00000000 

00000000 

00000000 

-1 0 0 0 0 0 0 0 

o -1 0 0 0 0 0 0 

00 -1 0 0 0 0 0 

o 0 0 -1 0 0 0 0 

o 

o 

o 

o 

o 

o 

o 

o 

=8 

o 

o 

o 

o 

o 000 

o 0 0 0 

o 0 0 0 

o 0 0 0 
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Just as in the 2 x 2 case, not all of these equations are independent. Consistency 

conditions force the 8 x 8 upper left submatrix of the first matrix in equation 3.106 to be 

of rank four or less. We can solve for the Wi,j'S, Xi,j'S, and Yi,j'S in terms of the Ai,j's. 

Solving the first two columns of 3,106 is equivalent to solving the equation 
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QS,lS QS,14 QS,15 Q5,,16 0 0 0 0 0 0 0 0 -W13,ll -W13,12 

Q6,lS Q6,14 Q6,15 Q6,16 0 0 0 0 0 0 0 0 -W14,ll -W14,12 

Q7,13 Q7,14 Q7,15 Q7,16 0 0 o • 0 0 0 0 0 -W15,ll -W15,12 

Qa,lS Qa,14 Qa,15 Qa,16 0 0 0 0 0 0 0 0 -W16,ll -W16,12 

Q9,lS Q9,14 Q9,15 Q9,16 -1 0 0 0 0 0 0 '0 Xg,ll X9,12 

Q1O,lS Q1O,14 Q1O,15 Q1O,16 0 -1 0 0 0 0 0 0 X1O',ll XIO,12 

Qll,lS Qll,14 Qll,15 Qll,16 0 0 -1 0 0 0 0 0 XU,ll X ll ,12 

Q12,lS Q12,14 Q12,15 Q12,16 0 0 0 -1 0 0 0 0 X12,ll X 12 ,12 

Q13,13 Q13,14 Q13,15 Q13,16 0 0 0 0 0 0 0 Y13,ll Y13,12 

Q14,13 Q14,14 Q14,15 Q14,16 0 0 0 0 0 0 0 Y14,ll Y 14,12 

Q1S,13 Q15,14 Q15,15 Q15,16 0 0 0 0 0 0 0 Y15,ll Y1 S,12 

Q16,13 Q16,14 Q16,15 Q16,16 0 0 0 0 0 0 0 Y16,ll Y16,12 

QS,g QS,lO QS,ll QS,12 

Q6,9 Q6,lO Q6,1l Q6,12 

Q7,9 Q7,lO Q7,1l Q7,12 

QS,g QS,lO QS,ll QS,12 

Qg,g Q9,lO Q9,1l Q9,12 A9,1l A 9,12 

QlO,9 QlO,lO QlO,ll QlO,12 AlO,ll A 1O ,12 
(3,107) = 

Qll,9 Qll,lO Qll,ll Qll,12 All,ll A ll ,12 

Q12,9 Q12,lO Q12,1l Q12,12 A 12,ll A 12 ,12 

Q13,9 Q13,lO Q13,ll Q13,12 

Q14,9 Q14,lO Q14,1l Q14,12 

QlS,9 QlS,lO QlS,ll QlS,12 

Q16,9 Q16,lO Q16,1l Q16,12 

Solving for W, X, and Y in terms of A exhausts the supply of equations given by 

the governing matrix equation. Since A is invertible, one may now solve for the entries in 

P ih , Phh , P io , and P ho in terms of the data and Ai,/s. The forms of the solutions are similar 

among variables from the same transition matrix; samples of solutions in terms of Ai,j 's for 

one variable from each matrix are listed below. Westart with the simplest solutions, those 

in Pho: 



(3.108) 

(3.109) 

(3.110) 

Ph - dA[l,2,4j,[l,2,3j 
03,4 - - dA 

[1 ,2,3,4j ,[1 ,2,3,4j 

The next simplest solutions are those for entries of Phh • 

Phh3 ,ls = 

- (dA[l,2,3j,[l,2,4j (dQ[S,6,7,Sj,[l,2,3,13jA13,lS + dQ[S,6,7,Sj,[l,2,3,14jA14,lS 

+dQ[S,6,7,Sj,[l,2,3,lSjA1S,lS + dQ[S,6,7,Sj,[l,2,3,16jA16,lS) 

+ dA[l,2,4),[l,2,4) (dQ[S,6,7,Sj,[l,2,4,13jA13,lS + dQ[S,6,7,Sj,[l,2,4,14jA 14,lS 

+dQ[S,6,7,Sl,[l,2,4,lS)A1S,lS + dQ[S,6,7,Sj,[l,2,4,161A16,lS) 

+ dA[l,3,4),[i,2,4) (dQ[S,6,7,Sl,[l,3,4,131A13,lS + dQ[S,6,7,Sl,[l,3,4,14j A 14,lS 

+dQ A + dQ A) [S,6,7,Sl,[l,3,4,lSj lS,lS [S,6,7,Sl,[l,3,4,16) 16,lS 

+ dA[2,3,41,[l,2,4) (dQ[S,6,7,S),[2,3,4,13jA13,lS + dQ[S,6,7,Sl,[2,3,4,14j A 14,lS 

+dQ[S,6,7,S),[2,3,4,lSjA1S,lS + dQ[S,6,7,Sj,[2,3,4,16)A16,lS)) / 

dQ[S,6,7,S),[l,2,3,4j dA[l,2,3,4),[l,2,3,41 

The solutions for the entries of Pio are a little bit longer: 

P
. 1 
2OS,6 = - dA 

[S,6,7 ,Sl,[S,6, 7,sl 

(dA[s,7,Sj,[6,7,Sj (dQ[S,13,14,lS,161,[l,2,3,4,SjAs ,s+ 

dQ[S,13,14,lS,16),[l,2,3,4,6j A 6,s + dQ[S,13,14,lS,161,[l,2,3,4,71 A7,s + 

. dQ[S,13,14,lS,161,[l,2,3,4,SjAs,s) / dQ[13,14,lS,16),[l,2,3,4) -

dA[s,7,81,[S,7,Sj ( dQ[S,13,14,lS,16j,[l,2,3,4,SjAs ,6+ 

dQ[ [jA66 +dQ[ 1 [ jA 76 + S,13,14,lS,16),1,2,3,4,6, S,13,14,lS,16 , 1,2,3,4,7 , 

dQ[S,13,14,lS,16j,[l,2,3,4,SlAs,6) / dQ[13,14,lS,16j,[l,2,3,41 -

dA[S,7,81,[S,6,71 (dQ[S,13,14,lS,16j,[S,9,10,11,12)As ,s+ 

dQ[S,13,14,lS,16j,[6,9,10,11 ,121A6,s + dQ[S,13,14,lS,16) ,[7,9,10,11 ,12)A7,s + 

d Q[S,13,14,lS,161,[S,9,10,11 ,121 As,s) / dQ[13,14,lS,16) ,[9,10,11,121 

dA[S,7,8],[S,6,Sl ( dQ[S,13,14,lS,161,[S,9,10,11,121As,7+ 

dQ[S,13,14,lS,16),[6,9,10,11,121A6,7 + dQ[S,13,14,lS,161,[7,9,10,11,121A7 ,7 + 

dQ[S,13,14,lS,16j,[S,9,10,11,121As,7) / dQ[13,14,lS,16j,[9,10,11,121) 
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(3.111) 

Solutions for the entries of Pih are of the form: 

. 1 
PzhlO ,14 = d 

Q[S,6,7,S],[9,10,11,12] 

( dQ[S,6,7,S,10],[9,10,11,12,13]A13,14 + dQ[S,6,7,S,10],[9,10,11,12,14]A14,14 + 

dQ[S,6,7,8,10],[9,10,11,12,1S]A1S,14 + dQ[S,6,7,S,10],[9,10,11,12,16]A16,14) + 

1 ((dQ A dQ . dA [S,6,7,S],[9,11,12,13] 13,14+ 
[S ,6,7 ,s] ,[9,10,11,12] [9,10,11,12] ,[9,10,11 ,12] 

dQ[S,6,7,S],[9,1l,12,14]A14,14 + dQ[S,6,7,8],[9,1l,12,1S]A1S,14 "\ 

dQ[S,6,7,S],[9,1l,12,16]A16,14 ) 

(dA[9,1l,12],[9,10,11] (dQ[S,6,7,S,10],[~,13,14,lS,16]A9,12 
+ dQ[S,6,7,S,10],[10,13,14,1S,16]A10,12 + dQ[S,6, 7,8,10] ,[11,13,14,lS,16]A11 ,12 

+dQ[S,6, 7,S,10],[12,13,14,lS,16]A12,12) / dQ[S,6, 7 ,8],[13,14,15,16] 

- dA[9,11,12],[9,10,12] (dQ[~,6;7,S,10],[9'13'14'15'16]A9'11 
+ dQ[S,6,7 ,S,10],[10,13,14,lS,16] A10 ,11 + dQ[5,6, 7,8,10],[11,13,14,lS,16] A11 ,ll 

+dQ[S,6, 7,S,10],[12,13,14,15,16]A12,11 ) / dQ[S,6, 7,8] ,[13,14,15,16] 

+ dA[9,1l,12],[9,1l,12] (dQ[10,13,14,1S,16],[5,6,7,S,9]A9,10 

+ d Q[10,13,14,lS,16] ,[S,6, 7 ,8,10] A 10 ,10 + dQ[10,13,14,1S,16] ,[S,6, 7 ,8,11] All ,10 

+dQ[10,13,14,15,16],[S,6, 7,S,12]A12,10 ) / dQ[13,14,lS,16],[S,6,7 ,8] 

- dA[9,1l,12],[10,1l,12] (dQ[10,13,14,15,16],[S,6, 7,S,lO]A10,9 

+dQ A +dQ A [10,13,14,15,16],[S,6,7,8,9] 9,9 [10,13,14,15,16],[S,6,7 ,S,ll] 11,9 

+dQ[10,13,14,1S,16],[5,6, 7 ,S,12]A12:9 ) / dQ[13,14,15,16],[S,6,7,S]) 
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+ (dQ . A 3 + dQ A [5,6,7,8],[9,10,12,13] 1 ,14 [5,6,7,8],[9,10,12,14] 14,14 

+dQ A +dQ A ) [5,6,7,8],[9,10,12,15] 15,14 [5,6,7,8],[9,10,12,16] 16,14 

(dA[9,10,12],[9,10,1l] (dQ[5,6,7,8,10],[9,13,14,15,16]A9,12 

+d Q[5,6, 7,8,10] ,[10,13,14,15,16] A 10 ,12 + dQ[5,6, 7 ,8,10] ,[11,13,14,15,16]All ,12 

+dQ[5,6,7 ,8,10],[12,13,14,15,16]A12 ,12) / dQ[5,6, 7,8],[13,14,15,16] 

- dA[9,10,12],[9,10,12] (dQ[5,6,7,8,10],[9,13,14,15,16]A9,1l 

+d Q[5,6, 7 ,8,10] ,[10,13,14,15,16] AlO,ll + d Q[5,6, 7 ,8,10] ,[11,13,14,15,16] All,ll 

+dQ[5,6,7 ,8,10],[12,13,14,15,16]A12,11) / d Q[5,6, 7 ,8] ,[13,14,15,16] 

+ dA[9,10,12],[9,11,12] (dQ[10,13,14,15,16],[5,6,7,8,9]A9,10 

+dQ[10,13,14,15,16],[5,6,7 ,8,10] A lO,10 + d Q[10,13,14,15,16] ,[5,6,7,8,11] All ,10 

+dQ[10,13,14,15,16];[5,6, 7,8,12]A12,10 ) / dQ[13,14,15,16],[5,6, 7 ,8] 

- dA[9,10,12],[10,11,12] (dQ[10,13,14,15,16],[5,6,7,8,10]A lO ,9 

+ dQ[10,13,14,15,16],[5,6,7,8,9]A9,9 + dQ[10,13,14,15,16],[5,6,7,8,11]A11 ,9 

+dQ[10,13,14,15,16],[5,6,7,8,12]A12,9) / dQ[13,14,15,16],[5,6,7,8]) 

+ (dQ[5,6,7,8],[10,11,12,13]A13 ,14 + dQ[5,6,7,8],[10,11,12,14]A14,14 

+dQ[5,6,7,8],[10,11,12,15]A15 ,14 + dQ[5,6,7,8],[10,11,12,16]A16,14) 

70 



(dA[lO,11,12],[9,10,11] (dQ[5,6,7,8,10],[9,13,14,15,16]A9,12 

+ dQ[5,6,7 ,8,10] ,[10 ,13,14,15,16] AlO ,12 + d Q[5,6, 7,8,10] ,[11 ,13,14,15,16]A 11,12 

+d Q[5,6, 7 ,8,10] ,[12,13 ,14,15,16] A 12,12 ) / d Q[5,6, 7 ,8] ,[13,14,15,16] 

- dA[lO,11,12],[9,10,12] (dQ[5,6,7,8,10],[9,13,14,15,16]A9,11 

+ dQ[5,6,7,8,10],[10,13,14,15,i6]A10,11 + dQ[5,6,7,8,10],[11,13,14,15,16]A 11 ,11 

+dQ[5,6, 7,8,10],[12,13,14,15,16]A12,11 ) / dQ[5,6, 7,8],[13,14,15,16] 

+ dA[lO,11,12],[9,11,12] (dQ[10,13,14,15,16],[5,6,7,8,9]Ag,10 

+ dQ[10,13,14,15,16],[5,6,7,8,10]AlO ,10 + dQ[10,13,14,15,16],[5,6,7,8,11]A 11 ,10 

+dQ[10,13,14,15,16],[5,6, 7,8,12]A12,10 ) / dQ[13,14,15,16],[5,6,7,8] 

- dA[lO,11,12],[10,11,12] ( dQ[10,13,14,15,16],[5,6,7,8,10]AlO,9 

+ dQ[10,13,14,15,16],[5,6,7,8,9]A9,9 + dQ[10,13,14,15,16],[5,6,7,8,11]A11 ,9 

+dQ[10,13,14,15,16],[5,6,7,8,12)A12,9) / dQ[13,14,15,16),[5,6,7,8]) 

. + (dQ[5,6,7,8],[9,10,11,13]A13 ,14 + dQ[5,6,7,8],[9,10,11,14)A14,14 

+dQ[5,6,7,8],[9,10,11,15]A15 ,14 + dQ[5,6,7,8],[9,10,11,16]A 16,14) 

(dA[9,10,11),[9,10,U] (dQ[5,6,7,8,10],[9,13,14,15,16]A9,12 

+dQ[5,6,7,8,10),[10,13,14,15,16]A10 ,12 + dQ[5,6,7,8,10],[U,13,14,15,16]AU ,12 

+dQ[5,6, 7,8,10),[12,13,14,15,16]A12 ,12) / dQ[5,6, 7,8],[13,14,15,16) 

- dA[g,10,1l),[9,10,12] ( dQ[5,6,7,8,10],[9,13,14,15,16]Ag,u 

+dQ[5,6,7 ,8,10] ,[10,13,14,15,16] AlO,u + d Q[5,6, 7 ,8,10] ,[11 ,13,14,15,16] AU ,l1 

+d Q[5,6, 7 ,8,10] ,[12,13,14,15,16] A 12,11) / d Q[5,6, 7 ,8) ,[13,14,15,16] 

+·dA[9,10,11],[9,11,12) ( dQ[10,13,14,15,16],[5,6,7,8,9]Ag,10 

+dQ[10,13,14,15,16],[5,6,7,8,10)A10,10 + dQ[10,13,14,15,16],[5,6,7,8,U)AU ,10 

+dQ[10,13,14,15,16),[5,6, 7,8,12]A12,10 ) / dQ[13,14,15,16],[5,6, 7,8] 

- dA[g,10,U],[10,U,12) ( dQ[10,13,14,15,16],[5,6,7,8,10]AlO ,9 

+ dQ[10,13,14,15,16],[5,6, 7 ,8,9]Ag,g + dQ[10,13,14,15,16],[5,6,7,8,11]AU ,g 

+dQ[10,13'14'1~,16J,[5,6'7,8,12]AI2,9 ) / dQ[13,14,15,16],[5,6,7,8]) ) 

71 



72 

3.2.3.2 Eliminating Ai'; '5 

Each of the four subsystems has an 8 x 8 data matrix. The data matrix for the 

1,1 subsystem is shown below: 

(3.112) 

Pi02 ,2 Pi02 ,3 Pi02 ,4 Pih2 ,s Pih2 ,6 Pih2,IS Pih2,16 Pi02,I 

Pi03 ,2 Pi03 ,3 Pi03 ,4 Pih3,s Pih3 ,6 Pih3,IS Pih3 ,16 Pi03 ,1 

Pi04 ,2 Pi04 ,3 Pi04 ,4 Pih4 ,s Pih4 ,6 Pih4 ,IS Pih4 ,16 Pi04 ,1 

Ph04 ,2 Ph04 ,3 Ph04 ,4 Phh4 ,s Phh4 ,6 Phh4 ,15 Phh4 ,16 Ph04 ,1 
Q11 = 

Ph03 ,2 Ph03 ,3 Ph03 ,4 Phh3 ,s Phh3 ,6 Phh3 ,15 Phh3 ,16 Ph03 ,1 

Ph02 ,2 Ph02 ,3 Ph02,4 Phh2:S Phh2 ,6 Phh2,IS Phh2,16 Ph02 ,1 

PhOI,2 PhOI,3 PhOI,4 Phhl,s Phhl ,6 Phhl ,15 Phhl ,16 PhOI,1 

PiOI,2 PiOI,3 PiOI,4 Pihl,s Pihl ,6 Pihl,IS Pihl ,16 PiOI,1 

Q11 has four rank deficient submatrices. They are 4 x 4 submatrices of rank two 

(or less). Two constraints are required to force a generic vector in ~ to lie in a given 

two dimensional subspace. Four conditions are required, therefore, to force a generic 4 x 4 

matrix to be of rank two. These consistency conditions upon Q11 may be expressed as the 

vanishing of 3 x 3 minors. Substituting the solutions for the modified transition probabilities 

into these minors forces highly nonlinear polynomials of the Ai,;s to be identically zero. 

These conditions will be studied in order of increasing complexity. (Clearly, the conditions 

which involve variables from Pih are bound to be horrendous, so they are not considered 

until much later.) Eight of the conditions are identities of the form Ai,; = o. The rest 

reduce (at a generic point) to four term linear equations. In the rest of this section, the 

right-left, left-right, top-bottom, and bottom-top rank deficient submatrices are labeled as 

Qijrz, Qijlr, Qijtb, and Qijbt where i,j = 1,2. For example, 
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Q11s,l Q11S 2 , Q11S,3 . Q11S,4 

Q116,l Q1162 Q1163 Q116,4 
Q11 r1 

, , 
= 

Q117l , Q1172 , Q117,3 Q1174 , 

Q11sl , Q11s,2 Q11s,3 Q11s,4 

Ph03 ,2 Ph03 ,3 Ph03 ,4 Phh3,s 

Ph02 ,2 Ph02 ,3 Ph02 ,4 Phh2,s 
(3.113)· = 

PhOl ,2 PhOl ,3 PhOl ,4 Phhl,s 

PiOl ,2 PiOl ,3 PiOl ,4 Pih1,5 

3.2.3.2.1 Identities Since Q11r1 is rank two, the determinant of any 3 x 3 milior is 

identically zero. Hence, 

Q11S,l Q11s 2 , Q11s,3 

0 Q116l Q116,2 Q1163 , , 

Q117l , Q1172 , Q117,3 

Ph03 ,2 Ph03 ,3 Ph03 ,4 

(3.114) = Ph02 ,2 Ph02 ,3 Ph02,4 

PhOl ,2 PhOl ,3 PhOl ,4 

Since the solutions for entries in Pho in terms of Ai,js are simplest, 3.114 is the 

simplest 3 x 3 minor of 3.113 when the solutions in terms of Ai,js are substituted in. Recall 

that A is a 16 x 16 block matrix, with 4 x 4 blocks on the diagonal. The upper left block 

of A is the inverse of the upper left block of Pho, and so 
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PhOI ,2 PhOI ,3 PhOI ,4 

-A4,1 = Ph02,2 Ph02,3 Ph02,4 / dPhO[I,2,3,4j,[1,2,3,4j 

Ph03,2 Ph03,3 Ph03,4 

Ql1S,1 Q11s,2 Q11S 3 , 

= Q116,1 Q116,2 Q1163 / dPhO[I,2,3,4j,[1,2,3,4j , 

Q117I , Q1172 , Q117,3 

- 0 

The same reasoning applies toQ11bt and shows that A I ,4 = o. This argument also 

applies to the rank-deficient submatrices Q21rz, Q21tb, Q12zr' Q12bb Q22tb, and Q22lr and 

yields the following identities: 

(3.115) A I ,4 = 0, 

A 9 ,12 = 0, 

A 4 ,1 = 0, 

A12,9 = 0, 

As,s = 0, 

A13,16 = 0, 

So really the upper left subblock of A looks like 

AI,I A I ,2 A I ,3 0 

A 2,1 A2,2 A2,3 A 2,4 

A3,1 A3 ,2 A 3,3 A3 ,4 

0 A4 ,2 A4,3 A4,4 

As,s = 0 

A16,13 = 0 

For larger systems there are even more zero valued Ai,js. In the first recursive 

step in the algorithm for the 8 x 8 problem A is a 32 x 32 block diagonal matrix with four 

8 x 8 blocks along the diagonal. For exactly the same reason that the blocks of A in the 

4 x 4 problem have zero valued corners the blocks of A for the 8 x 8 problem have three 

zero valued entries in each of their off diagonal corners. The upper left block has the zero 

structure: 
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o o 

A3,1 A3,2 A3,3 A3 ,4 A3,s A3,6 A 3,1 A3,s 

AS,l AS,2 AS,3 AS,4 As,s AS,6 AS,1 As,s 

o A1,2 A1,3 A 1,4 A1,s A1,6 A 1,1 A1,s 

o 0 AS,3 AS,4 As,s AS,6 AS,1 As,s 

In general, for a n x n problem where n = 2k for some whole number k, the matrix 

Aat the first level in this recursive algorithm has four n x n blocks and each of these blocks 

contains L}~~l) j = k(k;l) zeros in its off diagonal corners. 

3.2.3.2.2 Easy Conditions Notice that there are sixteen '3 x 3 minors of the matrix 

Qllrl • Each rank deficient submatrix like Ql1rl yields at most four independent consistency 

conditions. Since we already know that A4 ,1 == 0, we can hope to get at most three more 

independent conditions from setting the 3 x3 minors of Qllrl to zero. When the other 

fifteen 3 x 3 minors are first written down, they seem highly nonlinear, but upon closer 

inspection they proved to be quite simple. Grafimann relations may be used to simplify 

the equations. Although we need not consider all fifteen remaining minors, we do so for 

the Qllrl submatrix. (In later sections minors of other matrices will turn out to be so 

cumbersome that we only consider an independent set of minors.) 

"Easy" Conditions before GraBmann 

Eight of the minors factor very easily. The minor dQll rl [2,3,4],[1,2,3] factors to 

become 
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d Q[5,6, 7 ,S] ,[13,14,15,16] 

(-dA[I,2,4],[1,2,3] dA[I,3,4],[1,3,4] dA[I,2,3],[2,3,4]+ 

dA[I,2,4],[2,3,4] dA[I,3,4],[1,3,4] dA . [1,2,3],[1,2,3] -

dA[I,2,4],[1,3,4] dA[I,3,4],[2,3,4] dA[I,2,3],[1,2,3] + 

dA[I,2,4],[1,3,4] dA[I,2,3],[2,3,4] dA[I,3,4],[1,2,3] -

dA[I,2,4],[2,3,4] dA[1,2,3],[1,3,4] dA[1,3,4],[1,2,3] + 

dA[1,2,4],[1,2,3] dA[1,2,3],[1,3,4] dA[1,3,4],[2,3,4]) 

(3.116) ( dQ A3 + dQ A 4 + [1,13,14,15,16],[3,5,6,7,S],4 [1,13,14,15,16],[4,5,6,7,S] 4. 

dQ[1,13,14,15,16],[1,5,6,7,S]A1,4 + A 2,4 d Q[1,13,14,15,16],[2,5,6,7,S]) 

the minor dQ11r1 [1,3,4],[1,2,3] becomes 

-dQ[5,6,7,S],[13,14,15,16] 

( dA[1,2,4],[1,2,4] dA[1,2,3],[2,3,4] dA[1,3,4],[1,2,3] + 

dA[1,2,4],[2,3,4] dA[1,3,4],[1,2,4] dA[1,2,3],[1,2,3] - . 

dA[1,2,4],[1,2,4] dA[1,3,4],[2,3,4] dA[1,2,3],[1,2,3] -

dA[1,2,4],[2,3,4] dA[1,2,3],[1,2,4] dA[1,3,4],[1,2,3] + 

dA[1,2,4],[1,2,3] dA[1,2,3],[1,2,4] dA[1,3,4],[2,3,4] -

dA[1,2,4],[1,2,3] dA[1,3,4],[1,2,4] dA[1,2,3],[2,3,4]) 

(3.117) ( dQ A3 + dQ A 4 + [1,13,14,15,16],[3,5,6,7,S],4 [1,13,14,15,16],[4,5,6,7,S] 4, 

dQ A +A2 dQ ) [1,13,14,15,16],[1,5,6,7,S] 1,4 ,4 [1,13,14,15,16],[2,5,6,7,S] 
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and the minor dQ11rl [l,2,4],[l,2,3] is 

d Q[5,6, 7 ,S} ,[13,14,15,16] 

( dA[l,2,3],[l,2,3] dA[l,3,4],[l,2,4] dA[l,2,4],[l,3,4]-

dA[l,2,3],[l,2,3] dA[l,2,4],[l,2,4] dA[l,3,4],[l,3,4] -

dA[l,2,3] ,[1 ,2,4] dA[1,3,4],[1,2,3] dA[l,2,4],[l,3,4] + 

dA[l,2,3],[l,2,4] dA[l,2,4],[l,2,3] dA[l,3,4],[l,3,4] + 

dA[l,2,3],[l,3,4] dA[1,3,4],[1,2,3] dA[l,2,4],[l,2,4] -

dA[l,2,3],[l,3,4] dA[l,2,4],[l,2,3] dA[l,3,4] ,[1,2,4]) 

(3.118) (dQ ] [ A + dQ ]. A + [1,13,14,15,16,3,5,6,7,8] 3,4 [1,13,14,15,16,[4,5,6,7,8] 4,4 

dQ A +A24dQ ) [1,13,14,15,16] ,[1 ,5,6,7,8] 1,4 , [1,13,14,15,16] ,[2,5 ,6,7,8] 

"Easy" Conditions after Grafimann 

We can use Grafimann relations to simplify the minors 3.116, 3.117, and 3.118 

even further. For example, the cubic term in equation 3.116 may be rewritten as 

(3.119) dA[1,2,4],[l,3,4] (dA[l,2,3],[2,3,4]dA[l,3,4],[l,2,3] - dA[1,3,4],[2,3,4]dA[l,2,3],[1,2,3]) -

dA[l,2,4],[2,3,4] (-dA[1,2,3],[1,2,3]dA[l,3,4],[l,3,4] + dA[l,2,3],[1,3,4]dA[l,3,4],[l,2,3]) + 

dA[l,2,4] ,[1,2,3] (dA[l,2,3] ,[l,3,4]dA[l,3,4] ,[2,3,4] - dA[l,2,3] ,[2,3,4]dA[1,3,4] ,[1 ,3,4]) 

Using the matrix 

A 1,1 A 1,2 A 1,3 A 1,4 1 0 0 0 

A 2,1 A 2,2 A 2,3 A 2,4 0 1 0 0 
(3.120) 

A 3,1 A 3,2 A 3,3 A 3,4 0 0 1 0 

A 4,1 A 4 ,2 A 4 ,3 A 4 ,4 0 0 0 1 

we may rewrite 3.119 in Gra£maIi.n notation as 
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(3.121) 11"1,3,4,7 ( 1I"2,3,4,S 11"1,2,3,6 11"2,3,4,6 1I"1,2,3,S) + 
11"2,3,4,7 (-11"1,3,4,6 1I"1,2,3,S + 11"1,3,4,8 11"1,2,3,6) + 
11"1,2,3,7 ( -11"1,3,4,8 . 11"2,3,4,6 + 11"1,3,4,6 1I"2,3,4,S) 

We may next make use of the GraBmann relations 

o 1I"2,3,4,S 11"1,2,3,6 11"2,3,4,1 1I"S,2,3,6 + 11"2,3,4,2 1I"S,1,3,6 

(3.122) 11"2,3,4,3 7rS,1,2,6 + 11"2,3,4,6 1I"S,1,2,3 

=, 1I"2,3,4,S 11"1,2,3,6 11"2,3,4,6 1I"1,2,3,S 1I"2,3,6,S 11"1,2,3,4 

0 = 1I"1,3,4,S 11"1,2,3,6 11"1,3,4,1 11"8,2,3,6 + 11"1,3,4,2 11"8,1,3,6 

(3.123) 11"1,3,4,3 11"8,1,2,6 + 11"1,3,4,6 11"8,1,2,3 

= 11"1,3,4,8 11"1,2,3,6 11"1,3,4,6 11"1,2,3,8 11"1,3,6,8 11"1,2,3,4 and 

0 = 11"1,3,4,8 11"2,3,4,6 11"1,3,4,2 11"8,3,4,6 + 11"1,3,4,3 1I"S,2,4,6 

(3.124) 11"1,3,4,4 11"8,2,3,6 + 11"1,3,4,6 11"8,2,3,4 

= 11"1,3,4,8 11"2,3,4,6 11"1,3,4,6 11"2,3,4,8 + 11"3,4,6,8 11"1,2,3,4 

Using these relations, the expression in 3.121 may be simplified as 

(3.125) 11"1,3,4,7 11"2,3,6,8 11"1,2,3,4 

11"2,3,4,7 11"1,3,6,8 11"1,2,3,4 + 11"1,2,3,7 1I"3,4,6,S 11"1,2,3,4 

Finally, we can make use of the GraBmann relation 

11"1,3,4,7 1I"2,3,6,S 11"2,3,4,7 11"1,3,6,8 + 
(3.126) 11"1,2,3,7 7r3,4,6,8 11"3,6,7,8 11"1,2,3,4 o 

to simplify 3.125. When equation 3.126 is used to simplify equation 3.125, the 

result is a product 
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(3.127) 1r 1r2 3,6,7,S 1,2,3,4 

which equals A1,3dA[1,2,3,4],[1,2,3,4] in the original nota~ion: We can write the minor 

dQ11rl [2,3,4],[1,2,3] as 

-dQ A dA
2 

[5,6,7,S],[13,14,15,16] 1,3 [1,2,3,4],[1,2,3,4] 

(3.128) ( dQ[1,13,14,15,16],[3,5,6,7,S]A3,4 + dQ[1,13,14,15,16],[4,5,6,7,S]A4,4 + 

d Q[l ,13,14,15,16] ,[1,5,6,7 ,S]A1,4 + A2 ,4 d Q[1,13,14,15,16] ,[2,5,6,7 ,S]) 

Similarly, equations 3.117 and.3.118 are equivalent to 

(3.129) 

and 

(3.130) 

respectively. 

dQ A dA2 • [5,6,7,S],[13,14,15,16] 1,2 [1,2,3,4],[1,2,3,4] 

(dQ A +dQ A + [1,13,14,15,16],[3,5,6,7,S] 3,4 [1,13,14,15,16],[4,5,6,7,S] 4,4 

~ A +A ~ ) [1,13,14,15,16],[1,5,6,7,8] 1,4 2,4 [1,13,14,15,16],[2,5,6,7,8]. 

-dQ A dA
2 

[5,6,7,8],[13,14,15,16] 1,1 [1,2,3,4],[1,2,3,4] 

(dQ[I,13,14,15,16],[3,5,6,7,S]A3,4 + dQ[l,13,14,15,16],[4,5,6,7,8]A4,4 + 

dQ[I,13,14,15,16],[I,5,6,7,8]A1,4 + A2,4dQ[l,13,14,15,16],[2,5,6,7,8]) 

Recall that each of these minors must be identically zero, dA[1,2,3,4],[I,2,3,4] i= 0 and 

A 1,1, A1,2, an<! A1,3 are generically nonzero. Finally, the 4x 4 minor of Q, dQ[5,6,7,8],[13,14,15,16], 

is also generically nonzero. Hence, in each of these three minors the relevant term is the 

last one: 



(3.131) 

(3.132) 

(3.133) 

dQ A + dQ A [1,13,14,15,16),[3,5,6,7,S) 3,4 [1,13,14,15,16),[4,5,6,7,S) 4,4 

+dQ A +A24dQ = 0 [1,13,14,15,16),[1,5,6! 7 ,S) 1,4 , [1,13,14,15,16) ,[2,5,6, 7,S) 

There are three more minors which factor easily. dQllrl [I,2,3],[1,2,4) equals 

( -A5,5d Q[13,14,15,16),[2,3,4,5] - A 6,5d Q[13,14,15,16),[2,3,4,6)­

As,sdQ[13,14,15,16),[2,3,4,S) - A 7,5 d Q[13,14,15,16],[2,3,4,7)) 

( dA [1,3,4), [1 ,3,4) dA[I,2 ,4) ,[2 ,3,4) dA[2,3 ,4), [1 ,2,4) + 

dA[I,3,4],[2,3,4]dA[2,3,4],[1,3,4]dA[I,2,4],[1,2,4] -

dA[I,3,4],[1,3,4]dA[2,3,4],[2,3,4]dA[I,2,4],[1,2,4] -

dA[I,3,4],[2,3,4]dA[I,2,4),[1,3,4]dA[2,3,4),[1,2,4] + 

dA[I,3,4],[1,2,4)dA[I,2,4],[1,3,4]dA[2,3,4],[2,3,4) -

dA[I,3,4],[1,2,4)dA[2,3,4],[1,3,4]dA[I,2,4),[2,3,4)) 

and dQll rl [I,2,3],[2,3,4] equals 

( A dQ +A dQ + 5,5 [13,14,15,16],[2,3,4,5] 6,5 [13,14,15,16],[2,3,4,6] 

A S,5 d Q[13,14,15,16),[2,3,4,S] + A 7,5 d Q[13,14,15,16],[2,3,4,7]) 

( - dA[1 ,2,4],[1,3,4]dA[I,2,3],[2,3 ,4]dA[2,3,4] ,[1 ,2,4]­

dA[I,2,4],[2,3,4]dA[2,3,4],[1,3,4)dA[I,2,3],[1,2,4] + 

dA[I,2,4],[1,3,4]dA[2,3,4],[2,3,4)dA[I,2,3],[1,2,4] + 

dA[I,2,4],[2,3,4]dA[I,2,3],[1,3,4]dA[2,3,4],[1,2,4] -

dA[I,2,4],[1,2,4]dA[I,2,3],[1,3,4]dA[2,3,4],[2,3,4] + 

dA[1,2,4],[1,2,4]dA[2,3,4),[1,3,4]dA[1,2,3],[2,3,4]) 
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and dQ11rl [1,2,31,[1,3,41 equals 

(3.134) 

( - A 5,5dQ[13,14,15,161,[2,3,4,51 - A 6,5dQ[13,14,15, 161,[2,3,4,61-

AS,5 dQ[13,14,15,161,[2,3,4,s1 - A 7,5dQ[13,14,15,161,[2,3,4,71) 

( - dA[1,3,41,[1,3,41 dA [1 ,2,31 ,[2,3,41 dA[2,3,41,[1,2,41-

dA[1,3,41,[2,3,41 dA[2,3,41,[1,3,41 dA[1,2,31,[1,2,4] + 

dA[1,3,4],[1,3,4]dA[2,3,4],[2,3,4]dA[1,2,3],[1,2,4] + 

dA[1,3,4],[2,3,4]dA[1,2,3],[1,3,4]dA[2,3,4],[1,2,4] -

dA[1,3,4],[1,2,41 dA[1,2,3],[1,3,4]dA[2,3,41,[2,3,4] + 

dA[1,3,4],[1,2,4]dA[2,3,4],[1,3,4]dA[1,2,3],[2,3,4]) 
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Just as before, one may use Grafimann relations to simplify the above minors. 

Provided that A 2,4, A 3,4, and A 4,4 are nonzero they yield only one relevant term: 

( A dQ +A dQ + 5,5 [13,14,15,16],[2,3,4,5] 6,5 [13,14,15,161,[2,3,4,6] 

(3.135) A dQ· + A dQ ) = 0 S,5 [13,14,15,16],[2,3,4,8] 7,5 [13,14,15,161,[2,3,4,7] 

The same hold true for the other rank deficient submatrices, Q11bt , Q21rl' Q21tb, 

Q121r , Q12bt , Q22tb, and Q221r . Each submatrix has several 3 x 3 minors which factor easily 

but these easily factorizable minors yield only two relevant equations per submatrix. For­

tunately, these equations are linear in the unknowns! Recall that each of these submatrices 

has one 3 x 3 minor which yields one of the identities in 3.116. So we expect to find only one 

more independent relation per rank deficient submatrix. Fortunately, the remaining minors 

are easily cleaned up. They are sums of many terms, Some of which are eqivalent to the 

identities just found (like 3.135) multiplied by some other term. When these identities are 

subtracted from one of the remaining minors, another relation amongst the Ai,js appears. 

One example is given below: 



(3.136) 

d Q[S,6, 7 ,8], [13 ,14 ,15 ,16] d Q[13 ,14,15 ,16] ,[5,6,7,8] dA[I,4] ,[2 ,4] 

(A7,sdQ[I,13,14,IS,16],[1,2,3,4,7] + A6,sdQ[I,13,14,IS,16],[1,2,3,4,6]+ 

As sdQ[ ] [ ] + dQ[ A ) = 0 , 1,13,14,15,16 , 1,2,3,4,5 1,13,14,15,16],[1,2,3,4,8] 8,5 . 
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In fact, all of the remaining 3 x 3 minors of Q11r1 yield the same relevant term, as 

we might expect. Each of the other seven rank deficient submatrices that have been studied 

thus far yields exactly one more independent relation amongst the Ai,js. 

If the rank deficient submatrices Q11rl' Q11bt , Q21rz, Q21tb, Q121r , Q12bt , Q22tb' 

and Q221r were all independent of each other then they would correspond to 8 * 4 = 32 

independent 3 x 3 minors. Unfortunately, this is not the case. The 24 nontrivial minors 

may be grouped in eight sets of three according to their unknowns. Grafimann relations 

may be used to show that all three equations per group are equivalent. One of the sets is 

shown below: 

dQ A +dQ A + [1,13,14,15,16],[1,2,3,4,7] 7,5 [1,13,14,15,16],[1,2,3,4,6] 6,5 

(3.137) dQ A +dQ A = 0 [1,13,14,15,16],[1,2,3,4,5] 5,5 [1,13,14,15,16],[1,2,3,4,8] 8,5 

dQ A +dQ A. + [13,14,15,16],[2,3,4,5] 5,5 [13,14,15,16],[2,3,4,6] 6,5 

(3.138) dQ A +dQ A [13,14,15,16],[2,3,4,8] 8,5 [13,14,15,16],[2,3,4,7] 7,5 o 

dQ A +dQ A + [8,13,14,15,16],[1,2,3,4,7] 7,5 [8,13,14,15,16],[1,2,3,.4,8] 8,5 

(3.139) dQ A +dQ· A = 0 [8,13,14,15,16],[1,2,3,4,6] 6,5 [8,13,14,15,16],[1,2,3,4,5] 5,5 

Notice that this equation does not take the identities 3.116 into account. When 

the identities are considered the Jacobian of the above system becomes: 

dQ[13,14,15,16],[2,3,4,5] dQ[13,14,15,16],[2,3,4,6] dQ[13,14,15,16],[2,3,4,7] 

(3.140) d Q[1 ,13,14,15,16] ,[1 ,2,3,4,5] dQ[I,13,14,15,16] ,[1,2,3,4,6] d Q[1 ,13,14,15,16] ,[1,2,3,4,7] 

d Q[8,13,14,15,16] ,[1,2,3,4,5] dQ[8,13,14,15,16] ,[1 ,2,3,4,6] d Q[8,13,14,15,16] ,[1,2,3 ,4,7] 

This Jacobian portends trouble: either the solution to the system 3.137; 3.138, and 3.139 
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is trivial, Qr else these equations are not all independent. We may use Grafimann relations 

to show the latter. For the equations to be equivalent, the rank of this matrix must be one. 

The rank is one if and only if every 2 x 2 minor is identically zero. Start with the upper 

left 2 x 2 minor 

dQ[13,14,IS,16],[2,3,4,5] dQ[I,13,14,IS,16],[I,2,3,4,6] 

(3.141) d Q[13 ,14,IS,16],[2,3,4,6] dQ[I,13,14,15,16],[I,2,3,4,5] 

In order to use Grafimann identities to show that 3.141 is identically zero, consider 

the matrix 

Ql,l Ql,2 Ql,3 Ql,4 Ql,S Ql,6 Ql,7 1 0 

QS,l QS,2 QS,3 QS,4· QS,5 QS,6 QS,7 0 1 

(3.142) 
Q13,l Q13,2 Q13,3 Q13,4 Q13,S Q13,6 Q13,7 0 0 

Q14,l Q14,2 Q14,3 Q14,4 Q14,S Q14,6 Q14,7 0 0 

QlS,l QlS,2 Q15,3 QlS,4 Q15,S· Q15,6 Q15,7 0 0 

Q16,l Q16,2 Q16,3 Q16,4 Q16;5 Q16,6 Q16,7 0 0 

In the Grafimann notation with respect to this matrix, 3.141 is 

(3.143) 1l"2,3,4,S,S,9 1l"l,2,3,4,6,9 - 1l"2,3,4,6,S,9 1l"I,2,3,4,S,9 

The Grafimann relation beginning with these terms is 

(3.144) 1l"2,3,4,S,S,9 1l"I,2,3,4,6,9 - 1l"2,3,4,6,S,9 1l"l,2,3,4,S,9 - 1l"2,3,4,S,6,9 1l"I,2,3,4,S,9 = 0 

Hence, the upper left 2 x 2 minor in equation 3.141 equals 

(3.145) dQ[I,13,14,15 ,16],[2,3,4,S,6] dQ[13,14,15,16],[l,2,3,4] 

But the submatrix of Q containing rows [1,7,8,9,10,11,12,13,14,15, 16J and 

columns [2,3,4,5, 6J is of rank four. So the minor dQ[l,13,14,lS,16],[2,3,4,5,6] is identically zero. 

Then the expression in 3.145 is identically zero, which forces the minor in 3.141 to be 

identically zero~ Grafimann identities plus consistency conditions can be used to show that 

each 2 x 2 minor of the Jacobian in 3.140 is identically zero. The same holds for each of 

the eight sets of three equations. Amongst the two dozen conditions found, only eight are 

independent. The author prefers to work with the relations whose coefficients are of lowest 

degree in the data and uses the following solutions to eliminate eight of the Ai,js 
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A dQ +A dQ 
A 5,5 -

6,5 [13,14,15,16],[2,3,4,6] 7,5 [13,14,15,16] ,[2,3,4,7] 

dQ[13,14,15,16],[2,3,4,5] 

A 12 ,12 = 
AlO ,12 d Q[5,6,7,S],[10,13,14,15] + A11,12 d Q[5,6,7,S],[11,13,14,lS] 

d Q[S,6, 7 ,S] ,[12,13,14,15] 

dQ A +A dQ 
A 13 ,13 = 

[S,6,7,S],[10,11,12,14] 14,13 15,13 [5,6,7,S],[10,11,12,lS] 

d Q[5,6, 7,S] ,[10,11,12,13] 

A dQ +A dQ 
As,s = 

7,S [13,14,15,16],[7,9,10,11] 6,S [13,14,lS,16],[6,9,10,11] 

dQ[13,14,15,16],[S,9,10,11] 

A dQ +A dQ 
A 9 ,9 = 

11,9 [13,14,15,16],[6,7,S,11] 10,9 [13,14,15,16],[6,7,S,10] 

d Q[13,14,15,16] ,[6,7 ,S,.9] 

A dQ +A dQ 
A 4 ,4 

2,4 [13,14,15,16],[2,S,6,7] 3,4. [13,14,lS,16],[3,5,6,7] 

dQ . [13,14,15,16],[4,5,6,7] 

A dQ +A dQ 
A 16 ,16 = 

15,16 [S,6,7,S],[l,2,3,IS] 14,16 [5,6,7,S],[1,2,3,14] 

dQ[5,6,7,S],[l,2,3,16] 

dQ A2 +dQ. A 
(3.146) A 1;1 

[5,6,7,S],[2,14,15,16],1 [5,6,7,S],[3,14,15,16] 3,1 -
d Q[5,6, 7 ,S] ,[1,14,15,16] 

3.2.3.2.3 Hard Conditions We may now substitute the solutions in 3.146 and 3.116 

back into' the modified probabilities, (the data for the 2 x 2 subsystems which are the nonzero 

entries of the modified transition matrices P ih , Pio, P hh , and P ho ). The eight 4 x 4 rank 

deficient submatrices which were not used to find the solutions in 3.146 and 3.116 may now 

be used to eliminate more of the Ai,js. As before eight 4 x 4 submatrices of rank two yield 

(at most) 32 independent conditions amongst the remaining 48 Ai,js. 

The submatrices which have not yet been used to eliminate A,js are Q11zr' Q11tb' 

Q12rz, Q12bt , Q211r , Q21bt , Q22bt , and Q22rl . Since the 3 x 3 minors of these equations 

cannot all be independent we need not bother simplifying all of them. These 3 x 3 minors 

are extremely cumbersome so the author generated a phantom and substituted its data into 

the minors in order to look for the simplest maximal spanning set of these minors. Some 

of these minors were much simpler than others. Recall that generically four conditions are 

required to force a 4 x 4 matrix to be of rank two. Although each rank deficient submatrix 

corresponds to four independent 3 x 3 minors, there may be dependencies between minors 

generated by different submatrices. As with the submatrices Q11rz, Q11bt , Q121r , Q12tb, 

Q21rl' Q21tb, Q22tb' and Q221r , which had only sixteen independent minors amongst them, 

the remaining eight submatrices correspond to only sixteen independent minors. 
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Preferring the path of least resistance, the author chose to simplify as few of 

the general minors as possible, starting with the minors corresponding to rows [1,2,3] and 

[1,2,4] and columns [1,2,3] for the submatrices Q12,./, Q21/,., Q22bt , and Q11tb • This choice 

of equations is not unique and was made simply because these equations looked simplest. 

The first step after writing down the equations is to eliminate their denominators. The next 

step is to collect appropriate terms in the equations. When a data set is substituted into 

the general equations the resulting equations have numerical coefficients and are referred to 

as numerical equations. The numerical equations have nearly as many terms as the general 

equations and many of their terms share the same coefficient. Once terms in the numerical 

equations with like coefficients are collected, the resulting equations have 1000 terms each. 

The arguments of like coefficients factor into a neat form (sometimes zero!). Collecting the 

general equations with respect to the minors ofthe data matrix, Q, yields 1000 term general 

equations. We may simplify each of these terms individually. The nontrivial terms which 

are independent of the data matrix Q are either of the same form as 3.119 or of the form 

. (3.147) 

(3.148) 

(3.149) 

-dA[2,3,4] ,[1,3,4] dA[I,2,3] ,[2,3,4] +. dA . [1,2,3],[1,3,4] 
dA . 

[2,3,4],[2,3,4] 

Referring to the matrix 3.120, we can write 3.147 in Grafimann notation 

11"1,3,4,5 11"2,3,4,8 11"1,3,4,8 11"2,3,4,5 

which is the beginning of the Grai3mann relation 

11"1,3,4,5 11"2,3,4,8 11"1,3,4,8 11"2,3,4,5 - 11"3,4,5,8 11"1,2,3,4 = ~ 

From 3.149 we can make the substitution 

dA[2,3],[3,4]dA[I,2,3,4],[1,2,3,4] == -dA[2,3,4],[1,3,4]dA[I,2,3],[2,3,4] + dA[I,2,3],[1,3,4]dA[2,3,4],[2,3,4] 

Once substitutions like this are made, we can factor out a square of one of the 

following minors: 

dA[I,2,3,4] ,[1,2,3,4], dA5,6,7,8],[5,6, 7 ,8], dA[9,10,1l,12],[9,10,1l,12], and dA[13,14,15,16],[13,14,15,16] 

. as well as several gener~cally nonzero minors of the data matrix. This step reduces the 

degree of the equations in Ai,js from thirteen to five and many of the terms in the equations 

are functions of minors of A. As long as the minors are written in the shorthand using the 

symbol dA, the identities in 3.116 are not recognized. So we must (have MAPLE) write out 

the minors and substitute the'identities 3.116 into the equations. In both the numerical 

and general cases, the resulting equations have 256 terms, once they are collected with 
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respect to the Ai,is. In the numerical case, the equations factor to have one quadratic term 

with 16 terms, another quadratic term with four terms and one linear term with only four 

terms. Generically, the relevant term is the linear one. Unfortunately, the author's general 

equations do not factor. The coefficients of each of the terms is a polynomial in minors of 

Q. The minors are expressed in the by-now familiar shorthand using the symbol dQ. As 

the GraBmann relations show, there are many ways of writing a polynomial in minors of a 

matrix. If MAPLE were able to handle equations of arbitrary size then the easiest thing to 

do would be to rewrite the equations without the dQ notation and ask MAPLE to factor 

them. At present, that is not possible. So we must work. 

Assuming that the general equations should factor just as their numerical counter­

. parts do, we make good use of that knowledge. Consider the 64 combinations of variables 

which occur if we expand both quadratic terms in one of the equations. The coefficient of 

anyone of these combinations is the desired linear term. Since this procedure was rela­

tively easy, the author took the coefficient of each one of the 64 combinations and got 64 

different linear terms. Fortunately, they are all equivalent. Although tedious, it is just as 

. straightforward to show that these relations are equivalent as it is to show that the rela­

tions 3.137, 3.138, and 3.139 are equivalent. Once again, the author pl'efers to work with 

the equations which have the coefficients of lowest degree in the data. Two of the identities 

are shown below 



,.' 

o ( d Q[S,13,14,IS,16],[1,2,3,4,S]d Q[6,13,14,IS,16] ,[S,9,10,11,12]-

dQ[6,13,14,IS,16],[1,2,3,4,S]dQ[S,13,14,IS,16],[S,9,10,11,12]) AS;6 + 

( d Q[S,13,14,IS,16] ,[1,2,3,4,7] dQ[6,13,14,IS,16] ,[S,9,10,11,12]-

dQ[6,13,14,IS,16],[1,2,3,4,7]dQ[S,13,14,IS,16],[S,9,10,11,12] -
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(3.150) dQ[13,14,IS,16J,[1,2,3,4]dQ [S,6,13,14,IS,16],[7,S,9,10,11,12]) A7 ,6 + 

(3.151) 

As,6' 

and 

( dQ dQ + - [13,14,15,16] ,[1,2,3,4J [S,6,13,14,IS,16],[S,S,9,10,11,12] 

dQ[S,13,14,IS,16],[1,2,3,4,S]dQ[6,13,14,IS,16J,[S,9,10,11,12] -

dQ[6,13,14,IS,16] ,[1 ,2,3,4,5] dQ[S,13,14,IS,16] ,[S,9,10,11 ,12]) As,6 + 

( - dQ[13,14,IS,16],[1,2,3,4]dQ[S,6,13,14,lS,16],[6,S,9,10,11,12]­

dQ[6,13,14,IS,16],[1,2,3,4,6]dQ[S,13,14,IS,16],[S,9,10,11,12] + 

dQ[6,13,14,IS,16],[S,9,10,11,12]dQ[S,13,14,IS,16],[1,2,3,4,6]) A6 ,6 

o = ( -dQ[S,13,14,IS,16],[1,2,3,4,S]dQ[7,13,14,IS,16],[S,9,10,11,12]+ 

dQ[S,13,14,IS,16J,[S,9,10,11,12]dQ[7,13,14,IS,16],[1,2,3,4,S]) As,6 + 
( -d Q[S,13,14,IS,16],[1,2,3,4, 7]d Q[7,13,14,IS,16] ,[S,9,10,11 ,12] + 

dQ dQ + [7,13,14,15,16] ,[1 ,2,3,4,7] [S,13,14,IS,16],[S,9,10,11,12]. 

dQ dQ ) A + [5,7,13,14,15,16] ,[7 ,S,9,10,11 ,12] [13,14,15,16] ,[1 ,2,3,4] 7,6 

( -dQ[S,13,14,IS,16],[1,2,3,4,S]dQ[7,13,14,IS,16],[S,9,10,11,12J+ 

dQ . dQ + [5,13 ,14,IS,16J ,[S,9 ,10,11,12] [7,13,14,15,16], [1,2,3,4,5] 

dQ dQ ) A -+-[5,7 ,13,14,IS,16J ,[S,S,9,10,11 ,12] [13,14,15,16] ,[1 ,2,3,4] 5,6 

( - dQ[7,13,14,IS,16],[S,9,10,11,12] dQ[S,13,14,lS,16],[1,2,3,4,6J + 

dQ dQ + [5,13,14,15,16] ,[S,9,10,11 ,12] [7,13,14,15,16],[1,2,3,4,6] 

d Q[S, 7 ,13,14,15,16] ,[6,S,9,10,11 ,12J d Q[13,14,IS ,16] ,[1,2,3,4]) A6,6 

These equations are independent and yield the following solutions for Ag,6 and 



A - (- (dQ 8,6 - [6,7,13,14,IS,16J,[1,2,3,4,S,6J dQ[S,13,14,IS,16],[8,9,10,11,12] 

dQ dQ. [7,13 ,14,IS ,16J, [1,2 ,3,4 ,6] [S,6 ,13 ,14 ,IS, 16J ,[S,8,9,1 0,11 ,12J 

d Q[S, 7 ,13,14,IS,16J,[S,8,9,10,11,12] dQ[6,13,14,IS,16J,[1,2,3,4,6J + 

dQ[S,7,13,14,IS,16J,[6,8,9,10,11,12] dQ[6,13,14,IS,16],[1,2,3,4,SJ 

d Q[6,13,14,IS,16J ,[8,9,10,11,12J d Q[S, 7,13,14,IS,16],[1,2,3,4,S,6J 

d Q[7 ,13,14,IS,16J ,[1,2,3,4,SJ d Q[S,6,13,14,IS,16J,[6,8,9,10,11,12J 

d Q[6, 7 ,13,14,IS,16J,[6,8,9,10,11 ,12J dQ[S,13,14,IS,16J ,[1,2,3 ,4,SJ + 

dQ[7,13,14,IS,16],[8,9,10,11,12J dQ[S,6,13,14,IS,16J,[1,2,3,4,S,6J + 

dQ[6,7,13,14,IS,16J,[S,8,9,10,11,12J dQ[S,13,14,IS,16J,[1,2,3,4,6J + 

dQ[S,6, 7,13,14,IS,16],[S,6,8,9,10,11,12J dQ[13,14,IS,16],[1,2,3,4]) A6,6 -

( d Q[6, 7 ,13,14,IS,16] ,[1,2,3,4,S, 7J dQ[S,13,14,IS,16J,[8,9,10,11,12J 

d Q[S, 7 ,13,14,IS,16J ,[S,8,9,10,11,12J dQ[6,13,14,lS,16J ,[1,2,3,4, 7J 

dQ[7,13,14,IS,16],[1,2,3,4,S] dQ[S,6,13,14,IS,16J,[7,8,9,10,11,12] + 

d Q[7 ,13 ,14,lS,16J ,[1,2,3,4,7] dQ[S,6,13,14,lS,16J,[S,8,9,10,11,12J + 

d Q[S, 7 ,13,14,lS,16J ,[7 ,8,9,10,11,12J dQ[6,13,14,lS,16J,[l,2,3,4,S] + 

d Q[7 ,13,14,lS,16] ,[8,9,10,11 ,12] d Q[S,6,13,14,15,16J ,[1,2,3,4,S, 7] 

d Q[6, 7 ,13,14,IS,16],[7 ,8,9,10,11,12] d Q[S,13,14,lS,16] ,[l,2,3,4,SJ 

d Q[6,13,14,lS,16J ,[8,9,10,11,12J d Q[S, 7 ,13,14,lS,16J ,[l,2,3,4,S, 7J + 

d Q[6, 7 ,13,14,lS,16J,[S,8,9,10,11,12] dQ[S,13,14,lS,16J ,[1,2,3,4,7] + 

dQ[13,14,lS,16J,[l,2,3,4J dQ[S,6,7,13,14,lS,16J,[S,7,8,9,1O,11,12]) A7,6) / 

( dQ[6, 7 ,13,14,lS,16] ,[l,2,3,4,S,8] d Q[S,13,14,lS,16J ,[8,9,10,11,12J 

d Q[6,13,14,lS,16] ,[l,2,3,4,8J dQ[S, 7 ,13,14,lS,16] ,[S,8,9,10,11,12] + 

d Q[7 ,13,14,15,16] ,[1,2,3,4,8] d Q[S,6,13,14,1S,16J ,[5,8,9,10,11 ,12J 

d Q[6,13,14,lS,16] ,[8,9 ,10,11,12J d Q[S, 7,13,14,lS,16],[1,2,3,4,S,8] + 

d Q[7 ,13,14,1S,16J ,[8,9,10,11 ,12J d Q[5,6,13,14,lS,16] ,[1 ,2,3,4,S,8J + 

dQ[6,7,13,14,lS,16],[S,8,9,10,11,12J dQ[5,13,14,15,16],[l,2,3,4,8J) 
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(3.152) 

A - ((-dQ 5,6 - [1,13,14,15,16),[1,2,3,4,8) dQ[5,6,13,14,15,16),[6,8,9,10,11,12) 

d Q[6,13,14,15,16) ,[1,2,3,4,S) d Q[5, 1 ,13,14,15,16] ,[6,S,9,10,11,12) 

dQ[6,1 ,13,14,15,16) ,[6,S,9,10,11,12] d Q[5,13,14,15,16) ,[1,2,3,4,S) 

dQ[6,1,13,14,15,16],[1,2,3,4,6,S] dQ [5,13,14,15,16),[S,9,10,11,12] + 

d Q[5, 1 ,13,14,15,16) ,[1,2,3,4,6,S) 

dQ[5,6;13,14,15,16],[1,2,3,4,6,8) 

( dQ[6,i3,14,15,16),[1,2,3,4,S) 

dQ[6,13,14,15,16],[S,9,10,11,12) 

dQ )A + [1,13,14,15,16],[S,9,10,11,12) 6,6 

d Q[5, 1 ,13,14,15,16J ,[1 ,S,9,10,11 ,12J 

dQ[1,13,14,15,16],[1,2,3,4,S) dQ[5,6,13,14,15,16],[1,S,9,10,11,12) 

d Q[5,13,14,15,16] ,[1,2,3,4,S) dQ[6, 1 ,13,14,15,16] ,[1 ,8,9,;0,11,12J 

dQ[5,6,13 ,14,15,16) ,[1,2,3,4,1 ,S) d Q[1 ,13,14,15,16),[S,9,10,11,12) 

dQ[6,1,13,14,15,16],[1,2,3,4,1,S) dQ[5,13,14,15,16),[S,9,10,11,12] +. 

dQ[5,1,13,14,15,16J,[1,2,3,4,1,8] dQ[6,13,14,15,161,[B,9,10,11,12]) A1,6) / 
( d Q[6, 1,13,14,15,16J ,[I,2,3,4;5,S] d Q[5,13,14,15,16),[8,9,10,l1,12) 

d Q[6,13,14,15,16) ,[1,2,3,4,8J d Q[5, 1 ,13,14,15,16),[5,8,9,10,11,12] + 
dQ . [1,13,14,15,16] ,[1 ,2,3 ,4,S] dQ[5,6,13,14,15,16],[5,8,9,10,11,12] 

dQ[6,13,14,15,16),[S,9,10,11,12)d Q[5, 1,13,14,15,16] ,[1,2,3,4,5,8) . + 

dQ[1,13,14,15,16),[S,9,10,11,12) dQ[5,6,13,14,15,16],[1,2,3,4,5,8] + 

dQ[6,1,13,14,15,16J,[5,8,9,10,l1,12) dQ[5,13,14,15,16J,[1,2,3,4,8)) 
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3.2.3.2.4 Very Hard Conditions The only rank deficient submatrices we have not 

yet accounted for are Q22rh Ql1lr , Q21bt , and Q12tb • The author chose to simplify the 

simplest minors generated by the phantom, those from columns [1,2,4] and both sets of 

rows [1,2,4] and [1,3,4]. The equations obtained by subtituting 3.153 and its counterparts 

into these remaining minors are polynomials in the remaining Ai,is and with coefficients 

which are large polynomials in the minors of Q. In preliminary work with a phantom each 

of these equations was a quintic in the Ai,is and became the product of a 32 term quartic 

and a linear term after factorization. Upon substituting the phantom's values for the Ai,is 

into the minors, the relevant terms turned out to be the linear terms. Unfortunately, the 
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general versions of these minors did not factor, presumably because the coefficients were 

written in the "dQ" notation. As with the hard conditions, the author assumed that the 

coefficient of any of the 32 terms in the quartic is the desired linear term. 

Because their coefficients are so cumbersome, only a caricature of one of these 

identities is shown below 

(cs (C4 as - b2 C6 + b6 cs) d1 - dQ[S,6,7,S],[13,14,lS,16)dQ[S,6,7,S],[9,10,1l,12] 

( dQ[13,14,lS,16),[S,9,10,12)a1 - a4 dQ[13,14,lS,16],[S,9,10,11)) 

(b1 dQ[11,13,14,lS,16],[6,7,S,9,1l) - b3 dQ[10,13,14,lS,16],[6,7,S,9,11)) 

-dQ[13,14,lS,16] ,[6,7 ,S,9] d Q[S;6, 7 ,S] ,[9,10,11 ,12] a6 (as dQ[13,14,lS,16] ,[S,9,10,11] 

+dQ[s,6,7 ,S,10] ,[10,13,14,15,l6]a2 d Q[13,14,lS,16] ,[S,9,11,12]) 

+d Q[13,14,15,16] ,[6,7 ,s,9)d Q[S,6, 7 ,S] ,[9,10,11,12) a1 (a7 dQ[10,13,14,lS,16] ,[S,9,10,11,12] 

(3.153) -as dQ[11,13,14,lS,16] ,[S,9,10,11,12]) 

+d Q[13 ,14,15,16) ,[6,7 ,s,9)dQ[5,6, 7 ,S],[9,10,11,12] (a7 d Q[13,14,1S,16] ,[S,9,10,11] 

+dQ[5,6, 7 ,S,l1) ,[10,13,14,15,16) a2 d Q[13,14,15,16],[8,9,11,12]) a9 

-dQ[S,6,7,S],[9,10,11,12] (b4 dQ[13,14,1S,16],[S,9,11,12) + bs dQ[13,14,15,16],[S,9,10,11)) Cs a4 

+dQ[s,6,7,8],[9,10,11,12) (C1 a2 dQ[13,14,15,16],[6,7,S,9]a3 - dQ[S,6,7,S],[13,14,lS,16]C2 a2 a4 

-dQ[13,14,1S,16],[6,7,S,9)dQ[13,14,1S,l6],[S,9,lO,11)a10 a3 + dQ[l3,14,1S,16],[S,9,lo,l2]bs al Cs 

+dQ[13,14,l5,l6],[S,9,10,l2)b4 Cs a3 + dQ[13,14,lS,16],[6,7,S,9]al dQ[l3,14,lS,16],[S,9,11,12]alO 

+dQ[5,6,7,S],[13,14,1S,16]C3 a2 a6 - dQ[5,6,7,S],[13,14,lS,l6]C7 a9 a2) ) A[lO, 11] 

+ (-C9 (C4 as - b2 C6 + b6 cs) d1 - dQ[13,14,15,16],[6,7,S,9]dQ[S,6,7,S],[9,10,11,12] 

(bs dQ[13,14,lS,16],[8,9,10,11] + dQ[13,14,15,16],[8,9,11,12]a2) 

(-dQ[5,6,7,S,11],[9,13,14,lS,16]a9 + dQ[5,6,7,8,10),[9,13,14,lS,l6]a6) 

+dQ[5,6,7,S],[9,lO,11,12) (b4 dQ[13,14,1S,16),[S,9,11,12)'+ bs dQ[13,14,lS,16),[8,9,10,11]) C9 a4 

-dQ[S,6,7,Sj,[9,10,11,12j ( -dQ [13,14,lS,16j,[6,7,8,9j dQ[13,14,lS,16j,[S,9,10,l1j a 11 a3 

+dQ[13,14,15,16j,[6,7,S,9j a 1 dQ[13,14,1S,16],[S,9,11,12j a 11 - C10 a2 dQ[13,14,15,16j,[6,7,8,9)a3 

+dQ[13,14,lS,16],[S,9,10,12)b4 C9 a3 - C10 b5 dQ[13,14,lS,16j,[6,7,S,9]a1 

+dQ[13,14,15,16j,[8,9,lO,12)bs al C9)) A[9, 11] 
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+ ( dQ[13,14,lS,16),[6, 7 ,8,9)dQ[S,6,7,8),[9,10,11,12) ( -dQ[11,13,14,lS,16),[8,9,10,11,12) 

( -b1 dQ[S,6,7,8),[13,14,lS,16) + dQ[S,6,7,S,10),[12,13,14,lS,16)a2) 

-( -b3 dQ[S,6,7,S),[13,14,'lS,i6) + dQ[S,6,7,S,11),[12,13,14,lS,16)a2) dQ[10,13,14,lS,16),[8,9,10,11,12)) a3 

+dQ[13,14,lS,16),[6,7,8,9)dQ[S,6,7,S),[9,10,11,12) ( -dQ[13,14,lS,16),[S,9,11,12)b3 dQ[S,6,7,S),[13,14,lS,16] 

+d Q[S,6, 7 ,S,l1) ,[12,13,14,lS,16) bs d Q[13,14,lS,16) ,[S,9,10,11) 

+dQ[S,6, 7 ,S,l1) ,[12,13,14,lS,16) dQ[13,14,lS,16) ,[S,9,11 ,12] a2 ) a9 

- d Q[13,14,lS,16] ,[6,7 ,S,9) dQ[S,6, 7 ,S] ,[9,iO,11 ,12) ( -dQ[13,14,lS,16) ,[S,9,11,12] b1 d Q[S,6, 7 ,8) ,[13,14,lS,16) 

+dQ[S,6, 7 ,S,10) ,[12 ,13,14,lS,16]bS dQ[13,14,lS,16] ,[S,9,10,11] 

+d Q[S,6, 7 ,S,10),[12,13,14,lS,16) d Q[13,14,lS,16) ,[S,9,11 ,12) a2 ) a6 

~dQ[S,6,7,S],[9,10,11,12) (b4 dQ[13,14,lS,16],[S,9,11,12] + bs dQ[13,14,lS,16],[S,9,10,11]) C11 a4 

+d Q[13,14,lS,16) ,[6,7,8,9) d Q[S,6, 7 ,S] ,[9,10,11,12) 

( d Q[S,6, 7 ,S,l1] ,[12,13,14,lS,16)d Q[S,6, 7 ,S,10,11) ,[10,12,13,14,lS,16)d Q[9,10,13,14,lS,16] ,[5,6, 7,S,9,12] 

+dQ[S,6, 7,S ,10) ,[12,13,14,15,16) d Q[ll ,13,14,15,16) ,[5,6, 7,S,12)dQ[S,6, 7 ,S,9,10,11) ,[9,10,12,13,14,15,16] 

- d Q[S,6, 7 ,8 ,11), [12 ,13 ,14,15,16) d Q[10 ,13 ,14,lS,16] ,[5,6,7 ,S,12) d Q[S ,6,7 ,S,9 ,10 ,11), [9 ,10 ,12,13 ,14,15 ,16) 

+d Q[S,6, 7,S ,10) ,[12 ,13 ,14 ,15 ,16) d Q[S,6, 7,S ,10,11), [9 ,12 ,13 ,14,lS ,16] d Q[9 ,11 ,13 ,14,lS,16] ,[5 ,6, 7,S ,10 ,12) 

- d Q[S,6, 7 ,S,10) ,[12,13,14,15,16) d Q [S,6, 7 ,8,10,11) ,[10,12,13,14,lS,16]d Q[9,11,13,14,lS,16] ,[S,6, 7 ,S,9,12) 

dQ dQ' dQ - [S,6, 7 ,8,11),[12,13,14,15,16] [S,6,7 ,S,10,11) ,[9,12,13,14,15,16) [9,10,13,14,lS,16] ,[S,6, 7 ,S,10,12] 

- d Q[10,11 ,13,14,lS,16) ,[S,6, 7 ,S,10 ,12) d Q[S,6, 7,S,10,11) ,[9,12,13,14,lS,16)d Q[S,6, 7 ,S,9] ,[12,13,14,lS,16) 

+d Q[10,11,13,14,lS,16] ,[S,6, 7 ,S,9,12) d Q[S,6, 7 ,8,10,11) ,[10,12,13,14,15,16] dQ[S,6, 7 ,S,9) ,[12,13,14,lS,16]) 

( - dQ[13,14,lS,16),[8,9,11,12)a1 + dQ[13,14,lS,16),[S,9,10,11)a3 ) 

+dQ dQ . [S,6,7 ,8) ,[13,14,15,16) [S,6,7 ,8) ,[9,10,11,12] 

( -a4 dQ[13,14,1~,16],[S,9,11,12] + dQ[13,14,lS,16),[8,9,10,12)a3 ) 

(b1 dQ[11,13,14,lS,16),[6,7,~,9,11) - b3 dQ[10,13,14,lS,16),[6,7,8,9,11)) 

+CS ~11 d1 b6 + C4 Cu as d1 -' C6 Cu d1 b2 

+C11 (b4 a3 + a1 bs ) dQ[13,14,lS,16],[S,9,10,12)dQ[S,6,7,S],[9,10,11,12] 

+bs (-a9 C7 - a4 C2 + C3 a6) dQ[S,6,7,8),[13,14,lS,16) dQ[S,6,7,S),[9,10,11,12) 

+ dQ[S,~,7,8),[9,10,11,12]C12 bs dQ[13,14,lS,16),[6,7,S,9]a1) A[12, 111 



+ (-dQ[S,6,7,8],[9,10,11,12] (-C14 a9 + CIS a6) 

(bs dQ[13,14,lS,16],[S,9,10,11] + dQ[13,14,lS,16],[S,9,11,12]a2 ) 

+d Q[S,6, 7 ,S] ,[13,14,lS,16] d Q[S,6, 7 ,S] ,[9,10,11,12] 

(-dQ[13,14,lS,16],[8,9,11,12]a1 + dQ[13,14,lS,16],[S,9,10,11]a3 ) 

(b1 dQ[11,13,14,lS,16],[6,7,8,9,11] - b3 dQ[10,13,14,lS,16],[6,7,S,9,11]) 

-C6 C13 d1 b2 + dQ[S,6,7,S],[9,10,11,12]dQ[13,14,lS,16],[8,9,10,12]bs a1 C13 

-dQ[S,6,7,S],[9,10,11,12] (b4 dQ[13,14,lS,16],[S,9,11,12] + bs ~Q[13,14,lS'16],[8,9,10,11]) C13 a4 

+dQ[S,6,7 ,S] ,[9,10,11 ,12] dQ[13,14,lS,16] ,[8,9,10,12] b4 a3 C13 

+C4 C13 a8 d1 + Cs C13 d1 b6 + dQ[13,14,lS,16],[6,7,S,9]dQ[S,6,7,S],[9,10,11,12] 

( - d Q[S,6, 7,8,10] ,[11 ,13,14,lS,16] d Q[S,6, 7 ,8,10, 11] ,[10 ,12,13,14,lS ,16] d Q[9 ,11 ,13 ,14,lS,16] ,[S,6, 7 ,S,9 ,12] 

- d Q[10,11,13,14,lS,16] ,[S,6, 7 ,S,10,12]dQ[S,6, 7 ,8,9,11] ,[9,12,13,14,lS,16]dQ[S,6, 7 ,S,10] ,[11,13,14,lS,16] 

~Q . dQ ~ [10,11,13,14,lS,16] ,[S,6, 7 ,S,10,12] [S,6,7 ,S,9,10] ,[9,12,13,14,lS,16] [S,6, 7 ,S,11],[l1,13,14,lS,16] 

- d Q[S,6, 7 ,S,9 ,10 ,11],[9 ,10,12 ,13 ,14 ,IS ,16] d Q[10 ,13 ,14,lS,16], [S,6, 7 ,S,12] d Q[S,6, 7 ,S ,11] ,[11 ,13,14 ,IS ,16] 

+d Q[S,6, 7 ,S ,I 0] ,[11 ,13,14,lS,16] d Q [11,13,14 ,lS,16] ,[S ,6,7 ,S ,12] d Q[S,6, 7 ,S,9 ,10 ,11] ,[9 ,10 ,12 ,13 ,14,lS,16] 

+dQ dQ dQ [10,11 ,13,14,lS,16] ,[S,6, 7,8,9,12] [S,6, 7 ,S,9,11] ,[10,12,13,14,lS,16] [S,6, 7 ,8,10] ,[11,13,14,lS,16] 

- d Q[S,6, 7 ,S,9,10] ,[10,12 ,13,14,lS,16]d Q[S,6, 7 ,S,l1] ,[11 ,13,14,lS,16]d Q[10,l1,13,14,lS,16],[S,6, 7,S,9,12] 

-d Q[9,10,13,14,lS,16] ,[S,6, 7 ,8,10,12]dQ[S,6, 7 ,8,10,11] ,[9,12,13,14,lS,16] dQ[S,6, 7 ,S,11],[11,13,14,lS,16] 

+d Q[9,10,13,14,lS,16],[S,6, 7 ,8,9,12]dQ[S,6, 7 ,S,10,11] ,[10,12,13,14,15,16]d Q[S,6, 7 ,S,l1] ,[11,13,14,15,16] 

+d Q[S,6, 7,8,10] ,[11 ,13,14 ,lS,16] d Q[S,6, 7 ,8,10 ,11] ,[9,12,13 ,14,lS,16] d Q[9,11 ,13 ,14,lS ,16] ,[s ,6,7,8,10,12] 

+dQ 'dQ· dQ ) [9,10,11 ,13 ,14 ,IS ,16] ,[S ,6,7 ,S ,9 ,10 ,12] [5,6,7 ,S] ,[13 ,14,lS ,16] [S,6, 7 ,S ,10 ,11], [11 ,12 ,13 ,14,lS ,16] 

( -dQ[13,14,lS,16],[S,9,11,12]a1 + dQ[13,14,lS,16],[8,9,10,11]a3 ) 

-dQ[S,6,7,S],[9,10,11,12] (dQ [13,14,lS,16],[6,7,S,9]C1 6 + C2 dQ[S,6,7,8],[13,14,lS,16]) 

(a2 a3 + a1 bs )) A[11, 11] 
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where each of the aiS represents a six term quadratic polynomial in minors of Q. 

The bis represent ten term quadratics in minors of Q. The CiS represent two term quadratics 

in minors of Q. 
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The author has little doubt that equation 3.153 and its counterparts can be sim­

plified significantly if enough time, energy, and computing power are devoted to the cause. 

When this last set of minors is solved linearly for eight more of the Ai,js in terms of the 

remaining Ai,js, we are left with a 32 parameter family of solutions for the modified 4 x 4 

problem. Therefore, we have 32 parameter family data sets for each of the four 2 x 2 sub­

systems. The last step is to solve each of these subsystems as done in section 3.2.1. The 

solution for each of the 2 x 2 subsystems is a 16 parameter family of solutions in terms of the 

data. The process of solving all four subsystems introduces another 64 ~ 4 * 16 parameters 

and yields the result promised at the beginning of section 3.~.3: a 96 = 4 * 16 + 32 parameter 

family of solutions for the unknown transition probabilities for a 4 x 4 system. 

3.2.4 n x n problem where n = 2k, kEN 

In the previous section two recursive levels were required to solve the 4 x 4 problem. 

A sketch of the author's vision of the algorithm for the 8 x 8 problem follows. Later, the 

algorithm for a n x n problem is sketched. 

The first step in tackling the 8 x 8 problem is to break up the 8 x 8 system into 

four 4 x 4 subsystems. See figure 3.1. Only 32 of the original 82 * 16 - 32 = 992 hidden 

states are considered in this modified system. The modified transition probabilities are the 

probabilities with which a photon travels from one of the pertinent states to another such 

that its travel path lies entirely inside one of the subsystems. These modified transition 

probabilities comprise the data for the 4 x 4 subsystems. Furthermore, the same process 

for solving the governing equations 2.8 that was used in sections 3.2.1 and 3.2.3.1 permits 
1 

expression of the modified transition probabilities in terms of the entries of A = Ph~l. Pho 

is a 32 x 32 block diagonal matrix with four 8 x 8 blocks along its diagonal. Since A has the 

same zero structure, we have a 4 * 82 = 256 parameter solutions for the modified transition 

probabilities. There are many consistency conditions amongst the data for each of the 4 x 4 

subsystems. These conditions should allow us to solve for all but 64 Ai,js in terms of the 

remaining Ai,js. 
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Notation: Let A, Pho, Pio, Phh , and P;h denote the modified transition matrices 

at the first level of this recursive algorithm. At the next level of the recursivE! process 

each of the four 4 x 4 subsystems will have its own data matrix, Qi1il, where we refer to 

the subsystems as systemidl, where illil = 1,2. The transition matrices for the modified 

4 x 4 systemi1il are referred to as Aidl' Pidlho, Pidlio' Pidlhh, and Pidlih. At the last 

recursive level of this recovery algorithm, each of the 4 x 4 modified systems will be broken 

into four 2 x 2 subsystems. The (i2,i2/h 2 x 2 subsystem of the (il,idh 4 x 4 subsystem 

will be referred to as systemidli2i2. The data matrices for these sub-subsystems will be 

referred to as Qidli232i the transition matrices as Pid1i232ho' Pid1i2i2io' Pid1i232hh' and 

Pidl i232 ih . 

Now that we have 64 parameter solutions for Ql1, Q12, Q21, and Q22 we can 

implement the recovery algorithm for the 4 x 4 problem on each of the 4x 4 subsystems 

as done in section 3.2.3. See figure 3.2. For subsystemidl we recover Qidli2i2 for each 

combination i2,i2 = 1,2 in terms of Qidl and half of the nonzero entries of Ai1il. Since 

each Aidl is a 16 x 16 block diagonal matrix with four 4 x 4 blocks along the diagonal, 

we introduce 1/2 * 4 * 4 * 42 = 128 additional parameters to our solutions for the data 

submatrices for the 2 x 2 sub-subsystems. The resulting data matrices, Qid1i232' should be 

functions of 64 + 128 = 192 parameters. Now, we must simpy implement the 2 x 2 recovery 

algorithm on each of the 42 = 16 sub-subsystems. We may solve for each set of transition 

matrices Pid1i232ho' Pid1i2i2io' Pid1i232hh' and Pid1i232ih in terms of Aidli232 , introducing 

another 256 = 42 * 16 parameters. The end result is a 256 + 128 + 64 = 448 = 8 * 8(8 - 1) 

parameter family of solutions for the transition probabilities in terms of the data matrix Q. 

Recall from section 3.1 that the rankpfthe forward map is at most 8n(n+ 1). For the 8 x 8 

problem we can at best find a 16n2 - 8n(n + 1)ln=8 = 448 parameter family of solutions. 
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In general, the recovery algorithm for a n x n system where n = 2k, kEN, requires 

k - 1 recusive levels before the 2 x 2 "base case" is reached. Pseudocode for this algorithm 

is shown below: 

solveasubsystem := proc(sysin) 

break up sysin into four m x m subsystems 

ifm = 2 then 

solve each subsystem for its transition probabilities in terms 

of its data and 16 parameters 

else for each subsystem 

1. solve for modified transition probabilities in terms of data and A 

2. eliminate all but 8m parameters using consistency conditions 

3. call solveasubsystem with this subsystem as input 

fi· , 
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Figure 3.1: Decomposition of an 8 x 8 system into four 4 x 4 subsystems. The thick lines 

separate the subsyst~ms. Only states which are considered when solving for the subsystems' 

data are denoted with arrows. 

Figure 3.2: Decomposition of a 8 x 8 system into four 4 x 4 which are subsequently decom­

posed into 2 x 2 subsystems. The thick lines separate the subsystems. 
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of-' ... 0..1 .. oJ 

Figure 3.3: Decomposition of a 16 x 16 system into four 8 x 8 subsystems. The thick lines 

separate the subsystems. 
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"- hs 

Figure 3.4: Two routes taken into account by PI,S 
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Figure 3.5: One of many paths taken into account by 8s,s 
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Figure 3.6: One route which PI,S does not take into account. 
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m+2k m+n+k 

Figure 3.7: An example of a larger system. The thick vertical line separates the "left" 

states from "right" states. In order for a photon to travel from one of the sources left of the 

barrier to a detector right of the barrier, the photon must enter at least one of the states 

marked with arrows. 
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.... 

.... 
m+k+l m+n+k 

Figure 3.8: Example of a larger system with a weird boundary. In this particular example, 

(k -l) = 2. 
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k 

Figure 3.9: Source k is surrounded by three barriers indicated by the thick lines. 

Figure 3.10: For the 1 x 1 case shown on the left, there are no boundaries. For the 2 x2, 

case, however, there is one left-right and one top-bottom boundary. 
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z z x x 

i i x x 

x x i i 

x x i i 

x x i i 

x x i i 

x x z z 

x xii 

Figure 3.11: Data for the 2 x 2 problem which may be considered redundant due to 4 x 4 

rank two submatrices are marked with an 'x'. Data which are independent of all consistency 

conditions are marked with ali 'i'. The independent data correspond to nonzero entries of 

Pio ' Note that the choice of redundant data is not unique. 
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i 0 0 X X X X 

0 i i 0 x x x x 

0 i z 0 x x x x 

0 0 i x x x x 

x x x x 0 0 

X X X X 0 Z 0 

x x x x 0 Z Z 0 

x x x x o 0 i 

x x x x i 0 0 

x x x x 0 i Z 0 

x x x x 0 i i 0 

x x x x o 0 Z 

x x x x zoo 

x x x x 0 Z i 0 

x x x x 0 i i 0 

x x x x 0 0 

Figure 3.12: Data which may be considered redundant due to 8 x 8 rank four submatrices 

are marked with an 'x'. Data which may be considered redundant due to 6 x 10 or 10 x 6 

rank four submatrices are marked with ,an '0'. Data which are independent of all consistency 

conditions are labeled with an 'i'. As before, the choice of redundant data is not unique. 
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. Figure 3.13: In anyone of the 4 x 4 blocks on the diagonal of the data matrix for the 

8 x 8 problem, data which may be considered redundant due to 18 x 14 or 14 x 18 rank 

eight submatrices are marked with an '01'. Data which may be considered redundant due 

to 20 x 12 or 12 x 20 rankeight submatrices are marked with an '02'. Data which may be· 

considered redundant due to 22 x 10 or 10 x 22 rank eight submatrices are marked with an 

'03'. Data which are independent of all consistency conditions are labeled with Ii'. Once 

again, this choice of redundant data is not unique. 
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02 01 016 015 
22 Z1 ZH ZH 

03 i:l i~4 °l..4 

04 i4 2.13. 0.l..3 

05 is i]2 012 

06 is ill 011 

i7 is iQ i,n 
0.,. Os 09 °10 

Figure 3.14: A 4 x 4 system. The incoming and outgoing states are labeled; all unlabeled 

states are hidden states. There are 16 incoming and 16 outgoing states, but 48 hidden 

states. 
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02 01 016 015 

22 21 216 215 

03 i3 h, hlR ill 0].4 

1 1 1 ') 
..L ..L ..L ~ 

04 i4 h? h t ... i1::! 013 

h4 h3 h14 h13 

. hs he hu h 12· 
05 25 h7 h1.0 i12 012 

') 1 ') ') 
~ ..L ~ I~ 

06 ia hA h~ in Ou 

i7 iR iQ 2,n 

0.,. Os 09 010 

Figure 3.15: Decomposition of a 4 x 4 system into four 2 x 2 subsystems. The thick lines 

separate the subsystems. The "modified" 4 x 4 system disregards individual pixels. Only 

the subsystems are relevant at the first level of this recursive procedure. 
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Figure 3.16: Examples of paths which are taken into account by transition probabilities for 

this modified system. 
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Chapter 4 

Three Dimensional Problems 

4.1 Introduction 

The setup is essentially the same in three dimensions as it was in two. An n x n x n 

array of voxels in ]R3 encloses the object to be reconstructed. There are 6n2 outer faces, 

each with a source and a detector. Preferred directions of travel are north, south, east, 

west, up, and down. The transitions matrices are larger than the matrices for an n x n 

problem and there are relatively more hidden states in three dimensions. The governing 

matrix equation 2.8 is unchanged, however. 

For a n x n x n system there are 6n2 incoming, 6n2 outgoing, and 6n3
. - 6n2 = 

6n2 (6n - 1) hidden states. }>.;O is a 6n2 x 6n2 matrix, while }>.;h is 6n2 x 6n2 (n - 1), Phh is 

6n2 (n - 1) x 6n2 (n -1), and Pho is 6n2 (n - 1) x 6n2
• Q is a 6n2 x 6n2 matrix. 

One of the differences between the two and three dimensional problems is the 

amount of data. In two dimensions there is precisely as much data as there are unknown 

transition probabilities. In three dimensions there are 36n4 pieces of data but only 36n3 

unknowns. (There are six ways to enter a voxel and six ways to exit; each voxel has 62 = 36 

transition probabilities.) Since the rank of the forward map cannot be greater than the 

dimension of its domain, there must be consistency conditions upon the entries of Q. In 

fact, there are enough conditions to make the three dimensional forward map rank deficient. 

In [13J it is shown that the Jacobian for the 2 x 2 x 2 problem is generically only of rank 240. 

In the following sections we shall express the unknown transition probabilities in terms of 

a 36 * 23 - 240 = 48 free parameters and the data. 
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2,2,2 

1,1,2 .1 2,2,1 

Z20 

.1 .1 
Z Z23 

1,1,1 2,1,1 

Figure 4.1: Eight voxels, seven of which are labelled above. Voxel 1,2,1 is hidden from 

view. Some incoming and outgoing states are labeled as well. A photon which travels north 

into voxel 112 via incoming state is and then turns upward traveling out of voxel 112 via 

outgoing state 06 does so with probability n1l2u. 

Notation: The probability that the photon will travel east into pixel 1,1,1 and 

continue east into pixel 2,1,1 is written as e1lle. The probability that it will turn right 

and travel out of the system is written as ellIs and the probability with which it turns 

upwards and travel into pixel 1, 1, 2 is written as ell In. 

(4.1) 

The transition probabilities satisfy 2.9 (as mentioned in chapter 2) 

eijke + eijkw + eijkn + eijks + eijku + eijkd ~ 1 

uijke + uijkw + uijkn + uijks + uijku + uijkd ~ 1 

dijke + dijkw + dijkn + dijks + dijku + dijkd ~ 1 

wijke + wijkw + wijkn + wijks + wijku + wijkd ~ 1 

nijke + nijkw + nijkn + nijks + nijku + nijkd ~ 1 

sijke + sijkw + sijkn + sijks + sijku + sijkd ~ 1 

where i,j, k = 1,2 
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Figure 4.2: A 2 x 2 x 2 system is split apart so that we can see a few hidden states representing 

travel from the "leftmost" voxels, 111, 121, 112, and 122, to the "rightmost" voxels, 211, 

221, 212, and 222. 

Furthermore, this system satisfies the range conditions (also mentioned in chap-

ter 2) 

24 

(4.2) 0:::; I: Qi,). :::; 1 i = 1,2, ... ,6n2 

).=1 

The method for finding a 48 parameter family of solutions to the inverse problem 

starts off just like the two dimensional method. The matrix equations 2.8, 3.18, and 3.18, 

are the same; only the matrices are different. The matrices for the 2 x 2 x 2 problem also 

have special block structures. Pio and P ho are 24 x 24 block diagonal matrices with eight 

3 x 3 blocks. Pih and Phh are 24 x 24 matrices with nonzero entries on their off diagonals. 

As before, A and X have the same diagonal block structure as Pho ; Wand Y have the same 

off diagonal block structure as Phh and ~h. For the 2 x 2 x 2 problem, each column in 3.18 

is a system of 24 linear equations in the 12 variables which appear in the corresponding 

columns of A - Wand X - Y. Just as in two dimensions, the columns of A - Wand X - Y 

come in pairs. The roles of the Ai,js and Wi,jS are reversed in the first and last columns 

of A - W as are the roles of the Xi,jS and Yi,jS in the first and last columns of X - Y. 

Hence, we must solve the "same" matrix equation for the first and last columns of 3.18. See 
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table 4.1. We shall consider column three of 3.18. The third columns of A - Wand X - Y 

are shown below: 

A1,3 X 1 ,3 

A2,3 X 2,3 

A3,3 X 3 ,3 

(4.3) -W4 ,3 -1'4,3 

-WS,3 -1'5,3 

-W6,3 -16,3 

() () 

respectively, where () is a column vector of eigllteen zeros. The 24 equations in 

column three can be written as a homogeneous matrix equation: 



( 4.4) 

Q1,l 

Q2,l 

Q3,l 

Q4,l 

QS,l 

Q6,l 

Q1,2 

Q2,2 

Q3,2 

Q4,2 

QS,2 

Q6,2 

Q1,3 Q1,4 Q1,S Q1,6 

Q2,3 Q2,4 Q2,S Q2,6 

Q3,3 Q3,4 Q3,S Q3,6 

Q4,3 Q4,4 Q4,S Q4,6 

QS,3 QS,4 Qs,s QS,6 

Q6,3 Q6,4 Q6,S Q6,6 

....,1 0 0 0 0 0 

o -1 0 0 0 0 

o 0 -1 0 0 0 

o 0 0 -1 0 0 

o 0 0 0 -1 0 

o 0 0 0 0 -1 

Q7,l Q7,2 Q7,3 Q7,4 Q7,S Q7,6 0 o 0 o 

o 

o 

o 

o 

o 

o 

o 

o 

Q8,l Q8,2 Q8,3 Q8,4 Q8,S Q8,6 0 o 0 

Q9,l Q9,2 Q9,3 Q9,4 Q9,S Q9,6 0 o 0 

Q10,l Q10,2 Q10,3 QlO,4 Q10,S Q10,6 0 0 0 0 0 0 W4 ,3 

QU,I QU,2 QU,3 QU,4 Qu,s QU,6 0 0 0 0 0 0 WS,3 

Q12,l Q12,2 Q12,3 Q12,4 Q12,S Q12,6 0 0 0 0 0 0 W6 ,3 

Q13,l Q13,2 Q13,3 Q13,4 Q13,S Q13,6 0 0 0 0 0 0 X 1,3 

. Q14,l Q14,2 Q14,3 Q14,4 Q14,S Q14,6 0 0 0 0 0 0 X 2 ,3 

Q1S,l Q1S,2 Q1S,3 Q1S,4 Q1S,S Q1S,6 0 0 0 0 0 0 X 3 ,3 

Q16,l Q16,2 Q16,3 Q16,4 Q16,S Q16,6 0 0 0 0 0 0 Y4 ,3 

Q17,1 Q17,2 Q17,3 Q17,4 Q17,S Q17,6 0 o 0 000 YS ,3 

Q18,1 Q18,2 Q18,3 Q18,4 Q18,S Q18,6 0 o 000 0 

Q19,1 Q19,2 Q19,3 Q19,4 Q19,S Q19,6 0 o 0 0 0 0 

Q20,1 Q20,2 Q20,3 Q20,4 Q20,S Q20,6 0 0 0 0 0 0 

Q21,1 Q21,2 Q21,3 Q21,4 Q21,S Q21,6 0 0 0 0 0 0 

Q22,1 Q22,2 Q22,3 Q22,4 Q22,S Q22,6 0 0 0 0 0 0 

Q23,1 Q23,2 Q23,3 Q23,4 Q23,5 Q23,6 0 0 0 0 0 0 

Q24,1 Q24,2 Q24,3 Q24,4 Q24,S Q24,6 0 0 0 0 0 0 

111 
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We have twelve sets of homogeneous linear equations like 4.4 corresponding to 

twelve 24 x 12 matrices which satisfy the homogeneous equation ex = e. Since the trivial 

solution would not be interesting enough to write about one may safely assume that there 

must be other solutions. This is indeed the case since the lower left 18 x 6 sub matrix found 

in equation 4.4, represents travel into voxels 111 and 112 from the the other six voxels. As 
J 

shown in [13] this submatrix is of rank four or less. Since the first six equations in 4.4 are 

independent, we may solve 4.4 for at most 6 + 4 = 10 of the twelve unknowns in terms of 

the other two. 

4.2 Solving the Equations 

Since the Wi,jS, Xi,jS, and }i,jS are already functions of Ai,js, it seems natural to 

solve, for them in terms of the Ai,js, Following this procedure for all 24 columns reduces 

the number of unknowns from 288 to 72. The analogous procedure in two dimensions 

exhausts the supply of independent equations. In three dimensions, however, we have 

enough information to solve for one third of the Ai,js in terms of the remaining Ai,js. 

To solve 4.4 for the Wi,jS, Xi,jS, }i,jS, and diag(A) in terms ofthe rest ofthe Ai,js, 

one need only solve: 

(4.5) 
QI.3 QI.4 QI.S QI.O -1 0 0 0 0 0 A3.3 QI.I QI.2 

Q2.3 Q2.4 Q2.S Q2.0 0 -1 0 0 0 0 W4.3 Q2.1 Q2.2' 

Q3.3 Q3.4 Q3.S Qa.o 0 0 -1 0 0 0 Ws.a Qa.l Q3.2 

Q4.S Q4,4 Q4.S Q4.0 0 0 0 -1 0 0 WO.3 Q4,1 Q4.2 

QS.3 QS.4 Qs.s Qs.o 0 0 0 0 -1 0 XI.3 QS.I QS.2 [ AI,a ] 
Q6.a QO,4 Qo.s Q6.0 0 0 0 0 0 -1 X2.3 QO.I QO.2 A2.3 

Qla.3 Q13.4 Ql3.S Q13.0 0 0 0 0 0 0 X3.3 Q13.1 Ql3.2 

Q14.3 Q14.4 Q14.S Q14,O 0 0 0 0 0 0 Y4,3 Q14.1 Q14.2 

QIS.3 Q15.4 QIS.S Q15.0 0 0 0 0 0 0 YS.3 QIS.I Q15.2 

Q16.3 QIO.4 QIO.S QIO.O 0 0 0 0 0 0 YO,3 QIO.I QIO.2 

Notation: Denote the determinant of the submatrix of Q taken from rows [rl' r2,'" ,rn] 

and columns [CI' C2,··· ,cn] as dQh,r2,'" ,rn ],[CI,C2,'" ,C n ] 
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column pairs nonzero minors 

1,24 dQ[13,14,15,16],[1,22,23,24] dQ[13,14,15,16],[1,2,3,24] 

2,11 dQ[13,14,15,16],[2,10,11,12] dQ[13,14,15,16],[1,2,3,11] 

3,4 dQ[13,14,15,16],[3,4,5,6] dQ[13,14,15,16],[1,2,3,4] 

5,20 dQ[13,14,15,16],[5,19,20,21] dQ[13,14,15,16],[4,5,6,20] 

6,7 dQ[13,14,15,16J,[6,7,8,9J dQ[13,14,15,16J,[4,5,6,7J 

8,17 dQ[1,2,3,4J,[8,16,17,18] dQ[1,2,3,4],[7,8,9,17J 

9,10 dQ[1,2,3,4J,[9,10,11,12J dQ[1,2,3,4],[7,8,9,10J 

12,13 dQ[1,2,3,4],[12,13,14,15J dQ[1,2,3,4J,[10,11,12,13J 

14,23 dQ[1,2,3,4J,[14,22,23,24J dQ[1,2,3,4],[13,14,15,23J 

15,16 dQ[1,2,3,4J,[15,16,17,18J dQ[1,2,3,4J,[13,14,15,16J 

18,19 dQ[1,2,3,4J,[18,19,20,21J dQ[1,2,3,4J ,[16,17 ,18,19J 

21,22 dQ[1,2,3,4J,[21,22,23,24J dQ[1,2,3,4J,[19,20,21,22J 

Table 4.1: The columns of 3.18 come in pairs. Each pair is shown in the left hand column. 

In order to solve a "column of equations" in 3.18 we require that a minor of Q is nonzero. 

These minors are displayed to the right of their corresponding column numbers. 

The determinant of the lefthand matrix in 4.5 is dQ[13,14,15,16J,[3,4,5,6J. Equation 4.5 

has a unique solution if and only if dQ[13,14,15,16J,[3,4,5,6] "# O. The same sort of requirement 

holds for each of the other columns of 3.18. Although there are only twelve different (and 

underdetermined!) matrix equations in terms of the unknowns, we must solve 24 different 

linear systems of equations in order to solve for the Wi,is, Xi,is, Yi,is and diag(A) in terms 

of the rest of the Ai,is. Table 4.1 shows which columns correspond to the same matrix 

equation and minors of the data we require to be nonzero. 

If the data satisfy these requirements then we can solve the 240 independent equa­

tions in 288 variables linearly for the nonzero entries in W, X, Y, and diag(A) in terms of 

the 48 other variables in A = Pho1
., (Note that this choice of equations is not unique.) 
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Because the solutions for the transition probabilities in terms of all 72 of the Ai,js 

are much simpler than their solutions in terms of only the off diagonal elements of A, we 

first solve in terms of all of the entries of A. Sample solutions from each of the four one 

step transition submatrices shown below. Since Pho = A-I, the solutions for entries of Pho 

are especially simple: 

122 = dA[7,81,[7,81 
U W dA 

[7,8,91,[7,8,91 
(4.6) 

Solutions for variables from a transition submatrix are all of the same form. For 

example, all of the transition probabilities in Pho are equal to a 2 x 2 minor of A divided 

by a 3 x 3 minor of A. One of Phh 's nonzero entries may be written as 

(4.7) 

s112n = (A8,7dA[4,51,[4,51 d Q [13,14,151,[4,5,81 + A 9,7dA[4,61,[4,51 d Q[13,14,151,[4,6,91+ 

A9,7dA[4,51,[4,s1dQ[13,14,1S1,[4,S,91 + A S,7dA[s,61,[4,s1 d Q[13,14,151,[5,6,81 + 

A 9,7dA [5,61,[4,51 dQ[13,14,151,[S,6,91 + A 7,7dA [4,61,[4,S1 d Q[13,14,151,[4,6,71 + 

A 7 ,7dA [5,61,[4,51 dQ[13,14,151,[5,6,71 + A 8,7dA [4,61,[4,s1 d Q[13,14,151,[4,6,81 + 

A 7,7dA [4,51,[4,51 d Q[13,14,15j,[4,S,71) / (dA[4,5,61,[4,~,61dQ[13,14'151 ,[4,5,61) 

The solutions for entries of Pho and Phh were quite simple (for MAPLE) to com­

pute. The solutions for transition probabilities in Pio and Pih appeared to be extremely 

messy at first. By grouping terms in the solutions for entries of Pio carefully it is possible 

to simplify them using matrix expansions of the forms 

(4.8) -dA[2,31,[1,3jA3,2 + dA[2,3j,[2,31A3,1 + dA[2,31,[1,2jA3,3 = 0 

dA[1,2j,[1,21 A 3,3 + dA[1,21,[2,31 A 3,1 - dA[1,21,[1,3jA3,2 = dA[1,2,31,[1,2,31 

The resulting solutions are quite simple: 

d112u = -dA[4,51,[5,61 (dQ[6,13,14,151,[1,2,3,41A4,4 + dQ[6,13,14,151,[1,2,3,61A6,4 + 

(4.9) dQ[6,13,14,151,[1,2,3,51A5,4) / dQ[13,14,151,[1,2,31dA[4,5,61,[4,5,61 -

dA[4,51,[4,61 ( dQ[6,13,14,151,[6,19,20,211A6,5 + dQ[6,13,14,151,[4,19,20,211A4,5 + 

dQ[6,13,14,151,[5,19,20,2i1A5,5) / dQ[13,14,151,[19,20,211 dA[4,5,61,[4,5,61 + 

dA[4,5j,[4,51 (dQ[6,13,14,151,[6,7,8,91A6,6 + dQ[6,13,14,151,[5,7,8,91A5,6+ 

dQ[6,13,14,151,[4, 7,8,91A4,6 ) / dQ[13,14,151,[7,8,91 dA[4,5,61,[4,5,6j 
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The identities giving the Grafimann-Pliicker embedding can be used to simplify 

the solutions for entries of Pih considerably. The method for simplifying these solutions is 

exactly t.he same as that used in [7, 6J and 3.2.1.3. One of the simplified solutions for a 

transition probability in Pih is shown below: 

d122d = -dQ[13,14,15],[4,5,6]dQ [1,2,3],[16,17,lS]dQ[13,14,15],[10,1l,12]dA[7,S,9],[7,S,9] 

(dQ[7,13,14,15],[7,S,9,12]A12,10 + dQ[7,13,14,15],[7,S,9,10]AlO ,10 + dQ[7,13,14,15],[7,S,9,1l]All ,10) + 

dQ[13,14,15],[4,5,6]dQ[1,2,3],[16,17,lS] (AlO,lO (dA[7,S],[7,S]dQ[13,14,15],[7,S,10]+ 

dA[7,9],[7,S]dQ[13,14,15],[7,9,10] + dA[S,9],[7,S]dQ[13,14,15],[S,9,10]) + 

A 12,10 (dA[7,9],[7,S]dQ[13,14,15],[7,9,12]+ 

dA[s,9] ,[7 ,S] d Q[13,14,15] ,[S,9,12] + dA[7 ,s] ,[7 ,S]dQ[13,14,15] ,[7 ,S,12]) + 

All,lO (dA[7,S],[7,S]dQ[13,14,15],[7,S,1l] + dA[s,9],[7,S]dQ[13,14,15],[S,9,1l]+ 

dA[7,9],[7,S]dQ[13,14,15],[7,9,1l])) (dQ[7,13,14,15],[7,10,1l,12]A7,9+ 

A S,9 d Q[7,13,14,15],[S,10,1l,12] + A 9,9 d Q[7,13,14,15],[9,10,ll,12]) -

dQ[1,2,3],[16,17,lS]dQ[13,14,15],[10,ll,12] (A12,10 (dA[7,9],[S,9]dQ[13,14,15],[7 ,9,12] + 

dA[7,S],[S,9]dQ[13,14,15],[7,S,12] + dA[s,9],[S,9]dQ[13,14,15],[S,9,12]) + 

AlO,lO (dA[7,S],[S,9]dQ[13,14,15],[7,S,10] + dA[s,9J,[S,9]dQ[13,14,15];[S,9,10]+ 

dA[7 ,9] ,[S,9] d Q[13,14,15] ,[7,9,10]) + 

All,lO (dA[s,9],[S,9]dQ[13'14'15],[S,9,~1] + dA[7,9J,[S,9]dQ[13,14,15],[7,9,1l]+ 

dA[7,S],[S,9]dQ[13,14,15],[7,S,ll])) (A9,7d Q[7,13,14,15],[4,5,6,9]+ 

A 7,7d Q[7,13,14,15],[4,5,6,7] + dQ[7,13,14,15J,[4,5,6,SJ A S,7) + 

dQ[13,14,15J,[4,5,6]dQ[13,14,15],[10,1l,12] (AlO,lO (dA[S,9],[7,9]dQ[13,14,15],[S,9,10]+ 

dA[7 ,9] ,[7 ,9] d Q[13,14,15] ,[7,9,10] + dA[7 ,s] ,[7 ,9]d Q[13,14,15] ,[7,S,10J) + 

All,lO (dA[7,S],[7,9]dQ[13,14,15J,[7,S,ll] + dA[7,9],[7,9]dQ[13,14,15],[7,9,ll]+ 

dA[s,9],[7,9J dQ[13,14,15],[S,9,llJ) + A 12,10 (dA[7,SJ,[7,9]dQ[13,14,15],[7,S,12]+ 

dA[s,9],[7,9] dQ[13,14,15],[S,9,12] + dA[7,9] ,[7,9]dQ[13,14,15],[7 ,9,12]) ) 

(As ,sdQ[1,2,3,7],[S,16,17,lS] + A 7,sdQ[1,2,3,7J,[7,16,17,18] + dQ[1,2,3,7],[9,16,17,18J A 9,S) / 

(dA[7 ,S,9] ,[7 ,s,9]d Q[13,14,15] ,[7 ,S,9] d Q[13,14,15J ,[10,11 ,12J d Q[13,14,15] ,[4,5,6J d Q[1,2,3J,[16,17 ,IS]) 
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These solutions, (4.10, 4.10, 4.6, and 4.8), are analogous to the sixteen parameter 

solution to the 2 x 2 problem where all of the transitions probabilities can be expressed in 

terms of the A;,js. In this 2 x 2 x 2 problem, however, we can solve for diag(A) in terms of 

the remaining Ai,js. One of the solutions for a diagonal entry of A is shown be~ow: 

(4.10) 
dQ A +dQ A A _ [13,14,15,16],[4,5,6,21] 21,20 [13,14,15,16],[4,5,6,19] 19,20 

20,20 - - dQ 
[13,14,15,16],[4,5,6,20] 

Half of the solutions for Phh factor when the solutions for diag(A) are substituted 

into their numerators. Here is one example: 

(4.11) 

n122d = ( - A7,8dQ[13,14,15,16],[8,10,11,12]dQ[I,2,3,4],[7,16,17,18]-

A dQ dQ + 9,8 [13,14,15,16],[8,10,11,12] [1,2,3,4],[9,16,17,18] 

A9 dQ dQ + ,8 [1,2,3,4] ,[8,16,17,18] [13,14,15,16] ,[9,10,11,12] 

A dQ dQ· ) 7,8 [1,2,3,4],[8,16,17,18] [13,14,15,16],[7,10,11,12] 

(AI2,lOA8,9dQ[13,14,15,16],[8,9,10,12] + dQ[13,14,15,16],[7,9,10,11]A7,9A 11,1O+ 

dQ[13,14,15,16],[7,9,10,12)AI2 ,lO A 7,9 + dQ[13,14,15,16],[8,9,10,11)As,9 A ll,10) / 

dA[7,8 ,9) ,[7,8,9] d Q[13,14,15,16] ,[7,8,9,10] d Q[1,2 ,3,4] ,[8 ,16,17,18] d Q[13 ,14,15,16] ,[9,10,11,12] 

Substituting the solutions for diag(A) into the solutions for the transition prob­

abilities yields a 48 = 288/6 parameter family of solutions to the 2 x 2 x 2 problem. In 

two dimensions, there are 64 unknown transition probabilities and a 16 = 64/4 parameter 

family of solutions to the 2 x 2 problem. Notice that the ratio of unknowns to parameters 

is higher in three dimensions than it is in two dimensions. The extension of the two dimen­

sional recovery algorithm to n x n systems gives a 8n( n - 1) parameter family of solutions 

for the 16n2 unknown transition probabilities. The analogous extension to the solution of 

the 2 x 2 x 2 problem will doubtless result in a O(n3
) parameter family of solutions to 

the n x n x n problem. The author's best guess is that the number of parameters will be 

24n3 + O(n2
). 
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Chapter 5 

Conclusion 

Diffuse tomography is still in its infancy, and there are many areas which should be 

explored. In this thesis a recursive algorithm for computing a 8n( n - 1) parameter family of 

solutions for a n x n problem was derived in section 3.2. Before deriving this algorithm it was 

necessary to study consistency conditions in section 3.1. A thorough understanding of the 

consistency conditions was required in section 3.2.3.2 to reduce the number of parameters in 

the solution to the modified 4 x 4 problem. The recursive recovery algorithm was sketched 

in section 3.2.4. Finally, the smallest nontrivial problem in three dimensions was considered 

in Chapter 4. 
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As yet unexplored areas which pique the author's interest include completion of a 

careful study of consistency conditions for the three dimensional model [13]. Understanding 

the consistency conditions is crucial because the amount and type of additional information 

required to close the resulting system of equations is directly tied to the number and type 

of conditions. The very next item on the agenda is to implement the recursive recovery 

algorithm in three dimensional. The algorithm will be analogous to its two dimensional 

predecessor. The biggest· difference between the two and three dimensional algorithms is 

complexity. (The three dimensional version will be much worse!) Last, but certainly not 

least, is a careful stability study of these algorithms. Given a "noiseless" set of data for 

the two dimensional problem, the recursive algorithm recovers the transition probabilties 

exactly. Noisy data could introduce large errors. One source of error is inverting Pho. 

When scattering is isotropic, for example, Pho is singular. Another source of error is the 

fact that the algorithm requires solving nonlinear polynomial systems. Schub and Smale 

have developed a "condition number" for polynomial systems [15] which could be used in 

stability studies for both two and three dimensional algorithms. If the recovery algorithms 

prove to be highly unstable, time-of-flight information would give additional data (we would 

then have an overdetermined problem) which could be used to reduce errors due to noise. 

This thesis work was done on an extremely general Markovian model of photon 

transport. Neither time-of-flight information nor any physical information about photon 

transport through tissue were taken into account. A priori information about photon trans­

port can and should be incorporated into this model. (The author doubts that clinicians 

would find a set of 36n3 Markov transition probabilities helpful diagnostic information.) 

However, the fact that all of the independent data generated by the forward map for this 

most general model can be recovered indicates (to the author, at least), that data gener­

ated by photons which scatter many times contain information independent of the data 

generated by ballistic photons. 
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