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~ Abstract

Recursive Recovery of Markov Transition Probabilities from
Boundary Value Data

Sarah Kathryn Patch

In an effort to mathematically describe the anisotropic diffusion of infrared radia-
tion in biological tissue Griinbaum posed an anisotropic diffusion boundary value problem

in 1989. In order to accommodate anisotropy, he discretized the terhporal as well as the spa-

~ tial domain. The probabilistic interpretation of the diffusion equafion is retained; radiation

is assumed to travel according to a random walk (of sorts). In this random walk the proba-

bilities with which photons change direction depend upon their previous as well as present

~ location. The forward problem gives boundary value data as a function of the Markov

transition probabilities. The inverse problem requires finding the transition probabilities
from boundary value data.

Problems in the plane are studled carefully in this thesis. Consistency conditions
amongst the data are derived. These conditions have two effects: they prohibit inversion
of the forward map but permit smoothing of noisy data. Next, a recﬁrsive algorithm
which yields a family of solutions to the inverse problem is detailed. This algorithm takes
advazltage of all independent data and generates a system of highly nonlinear algebraic
equations. Pliicker-Grafimann relations are instrumental in simplifying the equations. The
algorithm is used to solve the 4 x 4 problem. Finally, the smallest nontrivial problem in

three dimensions, the 2 x 2 X 2 problem, is solved.
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Chapter 1

Introduction

Nearly one century has passed since Rontgen took the first radiograph of his wife’s
hand. Since that time many different techniques for noninvasive imaging of human tissue
have been developedv. A concise history of the development of medical imaging can be found
in [14]. Some of these techniques are direct descendants of Rontgen’s radiograph; others
are completely unrelated. Computerized tomography, for example, is a direct descendant
of the radiograph. The word “tomography” refers to imaging an object by slices. X rays
have high energy and travel straight through the body. Both CT and magnetic resonance
imaging, (MRI), permit recovery of an image from knowledge of slices of the object. Data
analysis makes use of the Radon transform, which is linear. Ultrasound and impedance
imaging are examples of imaging techniques which enjoy neither straight travel paths nor
linear inversion formulas. The oxymoron ‘;diffuse tomography” refers to low energy imag-

ing in which the paths of the radiant energy are not necessarily rstraight and are unknown.

‘Data analysis in diffuse tomography is highly nonlinear and yields a vector valued function.

Because it is a low energy technique problems in diffuse tomography are highly nonlinear.
Clinical applications such as neonatal imaging and annual mammograms are not amenable

to high energy techniques which might overexpose the patient to harmful radiation. Exper-

.imentalists in optical tomography work with infrared radiation. Motivated by their work,

Griinbaum posed an anisotropic diffusion boundary value problem in 1989.

»



1.1 Overview of Thesis

This thesis addresses some of the most basic questions in diffuse tomography.
Despite the fundamental nature of this work, many of the calulations are quite involved.
This section attempts to give the reader a brief road map of the rest of the thesis in order
to prevent the reader from becoming lost in a sea of matrices and minors. _

In Chapter 2 thp forward problem is discussed for the smallest nontrivial two
dimensional problem, for larger problems in the plane, and for problems in d dimensions.
Chapter 3 concentrates on problems in the plane. It constitutes the bulk of this thesis.
Before attempting to solve the inverse problem, a thorough understanding of the range
of the forward map is required. Therefore, consistency conditions amongst the data are
studied in 3.1. The goal, of course, is an inversion formula or inversion algorithm. Because
of consistency conditions aniongst the data it is impossible to invert the for&ard map. It
is possible, however, to find a p-parameter family of solutions where p equals the difference
between the amount of data and the number of independent consistency conditions. In
section 3.2 a recusive recovery scheme which takes full advantage of all of the independent
data is detailed. The base case for this algorithm is solved in section 3.2.1. Graimannians
and the Gramann-Pliicker embedding are studied in subsection 3.2.1.2. Théy are used to
simplify the solution to the 2 x 2 problem in section 3.2.1.3. Tfle next level of the recusive
scheme is handled in section 3.2.3, yielding an analytic solution to the 4 x 4 problem. In
section 3.2.3.2 the number of parameters in the solution found in 3.2.3 is reduced using
consistency conditions amongst the data. Consistency conditions and Gramann relations
are used to eliminate more of the parameters in section 3.2.3.2.2. Elimination of parameters
continues, in sections 3.2.3.2.3 and 3.2.3.2.4. The reader should be warned that these

sections are quite technical. Finally, the smallest nontrivial three dimensional problem is

studied in Chapter 4.

1.2 Brief Overview of Other Imaging Techniques

To this day, radiographs are one of the most prevalent imaging methods. They
are much like photographs, except for the fact that radiographs use higher energy radiation

than light to form the image. A radiograph essentially plots an average density function,

p(e,) = [ play,2) ds



where p is the density of the tissue being imaged.

Computerized tomography, (CT), has quickly become one of the mainstays of
medical imaging. CT images display tissue density. With the help of intravenous contrast
enhancers, CT is capable of providing useful images of soft tissue. It is able to resolve small
features extremely well and data collection can be done quickly, reducing blufring due to
motion of internal organs. A | _ '

Positron Emission Tomography, (PET), requires injection of a radioactive label
(with a short half life!) into the patient. The isotopes emit positrons which are annihilated
' by electrons, creating + rays which are measured transaxially. From these measurerhients
the distribution of the label inside the body can be recovered.

 Magnetic resonance imaging provides excellent images contrasting hydrogen con-
centrations. and relaxation times of perturbed hydrogen dipoles. MRI is extremely useful
for imaging the brain and spinal cord, areas where tissue is soft and CT provides poor
resolution unless intravenous contrast enhancers are used. '

Real time ultrasound images have become a useful clinical tool, particularly for
prenatal imaging. Although data analysis is linearized the images obtained are clear enough
to prove diagnostically useful. . g

Radiographs, CT, and PET assume that the radiating energy/ray travels in a
straight line. Althoﬁgh MRI is a completely different technique, in an idealized setting the
(Bloch) equations governing the response of hydrogen nuclei are linear. Furthermore, MRI
data is often collected for a single “slice” of the object being imaged. In ultrasound and
impedance imaging neither electrical currents nor sound waves are assumed to travel in
straight lines through the body and in that respect they are somewhat similar to diffuse

tomography. In this thesis, however, no approximations or truncations are made to linearize

any of the governing equations.

1.3 Description of Diffuse Tomography

Expefimentalists in optical tomography are presenfly working with infrared and
near infrared radiation as another means of noninvasive imaging. Optical coherence tomog-
raphy, (OCT), makes use of light waves which are reflected. A beam is directed towards the
tissue being imaged. The light enters the tissue and some of it is reflected backwards. By

comparing the reflected light to the reference beam, the depth inside the tissue at which



the light was reflected can be calculated. Another type of optical tomography motivated
this work. Another group of experimentalists (Barbour et ai, Benaron, Chance et al, Delpy
et al, Gratton, ...) use information given by light which passes through tissue. For an in-
troduction to optical imaging see the recent articles [16, 17 , 18, 19] and [20]. . More detailed
research papers can be found in the proceedings [21] and [22]. As photons travel they are
scattered many times. This scattering complicates the inverse 'problem. Therefore, most
experimentalists use only data provided by ballistic photons, those which are scattered the
least. This thesis gives a detailed study of a Markovian model of photon migration in the
plahe and a preliminary look at photon migration in three dimensions. Here we consider
data generated by all photons, no matter how many scattering events they experience inside
the imaging object. We begin by describing the transport model in two dimensions.
Consider an n x n array of pixels in the plane which covers the object to be
reconstructed. On each of the 4n outer edges there are two devices. One device shoots
photons across the outside edge into the neighboring pixel; the other device detects photons
as they leave the system. For each of the 4n outside edges 4n pieces of data may be collected.
The data is stored as a 4n x 4n matrix, @, where Q; ; is the conditional probability that a
photon exits the system at detector j given that it entered the system at source z. Within the
array, photons travel in four directions: north, south, east, and west. They change direction
by turning some multiple of /2. They do not interact and may be absorbed within a pixel.
Photons move according to a two step .Markov process. The probabilities with which a
photon moves to a neighboring pixel depend upon its previous, as well as present, location.
In this two step formulation, the state space consists of locations. The state space may be
redefined so that photons move according to a one step Markov process. In the new state
space a single state accounts for a photon’s location at the previous time step and its present
location. There are three different types of these Markov states: incoming, outgoing, and
hidden. The probabilities with which photons move from one state to anothef are referred
to as transition probabilities. The transition matrix, M, is sparse and may be written as
a block matrix. M’s nontrivial subblocks are referred to as P,,, Py, Ph,, and Py,. Pi,, for
example, contains the probabilities with which photons in incoming states move directly to
outgoing states. P, contains the probabilities with which photons in incoming states move
to hidden states. P, and Py, are the transition matrices for photons starting in hidden
states travelling to outgoing and hiddén states, respectively. P,, and P,, are always square

matrices. If the Markov states are ordered carefully, all four of these submatrices of M have



a nice block structure.. v

The data matrix, @, is 4n X 4n. Q;:,; represents the probability that a photon
which enters the system at source i exits the system at detector j. Notice that Q provides
no time-of-flight information. The forward map is a function 6f the transition probabilities
and equals Q. The goal of diffuse tomographers is to invert this map. Given Q, we want
to recover the transition probabilities. For a given object the transition probabilities give a
discretized “image” of the object. In traditional imaging, one recovers a single parameter
for each pixel. From this information a visual picture of the object is made. In diffuse
tomography, however, one recovers many parameters per pixel. From this information one
- could make several “pictures” of the object. In both classical and diffuse tomography, fine
discretizations of the covering array provide clearer “images” than coarse discretizations.

The clarity 6f diffuse tomo'graphick “mages” will probably never match that of
CT and MRI Linear data analysis is certainly preferable to the nonlinear analysis in the
following chapters. Unfortunately, X rays and 'supermagnets' are expensive and potentially
dangerous. Low energy imaging techniques have fewer side effects and are less expensive
than high energy methods. Ultrasound, for example, is relatively ineﬁcpensive and harmless.
MRI, however, would not be cost effective for annual mammograms; PET and CT are not
safe for premature infants. It is hoped that optical imaging will become an inexpensive
and safe imaging technique; it is the author’s hope that 'd_iffuse tomographic models will aid

researchers in optical imaging.



Chapter 2

The Direct Problem

Because a thorough understanding of the simplest nontrivial system in the plane
is the cornerstone of Chapter 3, a detailed description of the 2 x 2 problem follows. Later
larger two dimensional systems and as well as d dimensional systems will be discussed.

Consider the setup for the 2 x 2 problem as shown in figure 2.1. On each of

-the eight outer edges there are two devices. One device shoots photons across the outside

01 T Og T
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Figure 2.1: Incoming, hidden, and outgoing states are labeled with i’s,h’s, and o’s respec-

tively.



edge into the neighboring pixel; the other device detects photons as they leave the system.
Photons change direction by turning an iﬁtegra.l 'rhultiple of /2. Photons do not interact.
Another property of this model is that a photon may die within a pixel.

Photons travelling according to the above rules are simply moving according to
a two step Markov process whose state space consists of locations. When a photon enters
pixel ¢, j from a particular direction it either dies or continues its journey. The.probabilities
with which the photon moves forward, backwards, left or right are functions of its previous
as well as present location. To simplify analysis the state space is redefined in order to
make the process a one step Markov process. In the new state space, the previous as well
as present location of a photon define its state. Equiva.lently, the location and direction
of travel determine a photon’s state. There are one “dead” and 24 “living” states. The
“living” states are listed below

i1, T2y <., igy Ry, ho, ..., hg, and 0y, 02, ..., Og ‘

v There are three ciasses of “living” states: incoming, hidden, and outgeing. See
figure figure 2.1. The “dead” state and all of the outgoing states are absorbing states. There
are four states by which a photon may enter a given pixel. Once inside the pixel there are
" .five things the photon may do. It may turn right, turn left, reverse directions, continue
straight through the pixel, or it mé.y die inside the pixel. The first four transitions are
referred to as dynamic transitions. Each of these five events occurs with some transition
probability and the sum of the probabilities is identically one. It is sufficient, therefore,
_ to recover only the four dynamic transition probabilities. There are 4 x 4 = 16 dynamic
transition probabilities for each of the four pixels, yielding a total of 64 unknowns.

The one step Markov transition matrix, M, has a sparse block structure. Ordering

the Markov states so that the incoming states precede the hidden states, which precede the

outgoing states, gives M the following block structure:

4

. 2
0 Py P

(21) ' M=10 Puw P
0 0 I

‘ M, ; = the probability that a photon in state : moves directly to state j. P, P,
Py, and Py, are one step transition matrices. They are sparse and their nonzero entries are

the dynamic transition probabilities. For example, P,.[s,t] = the probability of a photon



elle
pixel 1,2
'
ells
pizel 2,1 pizel 2,2

Figure 2.2: The probability that the photon will travel east into pixel 1,1 and continue east
into pixel 1,2 is written as elle. The probability that it will turn right and travel into pixel

2, 1 is written as ells.

moving from incoming state s directly to outgoihg state t; Pix[s,t] = the probability of a
photon moving from incoming state s directly to hidden state . The one step transition
matrices for the 2 x 2 problem are shown below. Note the sparse 2 x 2 block structure of

the submatrices for the 2 x 2 system and recall the notation as described in figure 2.2.

0 0 slls 0 0 0 0 slle
0 0 ells 0 0 0 0 elle

0 e2ln 0 0 e2le 0 0 0

0 n2ln O 0 n2le O 0 0
0 0 0 n22w 0 0 n22n 0
0. 0 0 w22w 0 0 w22n 0
wl2w 0 0 0 0 wl2s 0 0
s12w 0 0 0 0 s12s 0 0




[ 0 0 wils 0 0 0 0 wlle
0 0 nlls 0o o0 0 0 nlle
0 s2n 0 0 s2e 0 0 0

0 w2ln 0 0 w2le 0 . 0O 0

(2.3) Phh=
0 0 0 e22w 0 0 e22n 0
0 0 0 220 0 0 s2n 0
n2w 0 0 0 0 w2 0 0
Jezw 0 0 0o 0 el2s 00
ann slw 0 0 0 0 0 0
‘elln ellw 0 o 0o o 0 0
0 0 2w els 0 0 0o - 0
\ 0 0 mn2lw n2ls O 0 0 0
(24) : P,'o=

0 0 0 0 n22 n2 0 O
6O 0 0 0 w2 w2 0 0

0 0 0 0 0 0 wl2e wl2n

|0 0 0 0 0 0 12 s12n
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(wlln wilw 0 0 0 0 0 o
nlln nllw 0 0 0 0 0 0
0 0 s2lw  s21s O 0 0 0
0 0 w2lw w2ls 0 0 0 0
(2.5) Py, =
0 0 0 0 e22s e22e 0 0
0 0 0 0 5225 s22¢ O 0
0 0 0 0 0 0 nl2 ni2n
i 0 .0 0 0 0 0 el2e el2n |

Submatrices for other systems are not always square. For a two dimensional n X n
system, there are 4n incoming and 4n outgoing states and 4n? — 4n hidden states. Hence
for a n x n problem, P,, is 4n x 4n, Py, is 4n x 4n(n — 1), Py, is 4n(n — 1) x 4n(n — 1), -
and Py, is 4n(n — 1) x 4n. In three dimensions, there are 6n? incoming and outgoing states
and 6n® — 6n? = 6n?(n — 1) hidden states for a n x n X n system. In this case, P, is a
6n? x 6n® matrix, while P, is 6n® x 6n%(n — 1), Py is 6n%(n — 1) x 6n%(n — 1), and Py, is
6n2(n — 1) X 6n%. More generally, in d dimensions an n X n X ... X n system is made up of n?
d-dimensional cubes and has 2d large outer faces. Each of these large outer faces contains
n{4-1) faces of individual cubes. Therefore this system has 2dn(¢~%) incoming and 2dn(¢~1)
outgoing stafes, and 2dn? — 2dn(¢-) = 2dn(?~Y(n — 1) hidden states. P;, for this system is
2dn(4=1) x 2dn(#-V) | Py, is 2dn(4=D x 2dn(d~V(n~1), P, is 2dn—(n—1) x 2dn{¢-Y(n-1),
and P, is 2dn(¢Y(n — 1) x 2dn(¢-1),

For k € N, the 4, entry of the k** power of M is the probability that a photon

starting in state ¢ reaches state j after k Markov steps.

0 PPy Q*
(2.6) M‘=|0 Py  TELAPALP,
0 0 I

where
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k-2

(2.7)‘ : ) Cgk =:}%o + P (j{:-FﬁE) I%o

n=0

i.‘, ; is the probability that a photon which entered the system in incoming state
i exits the system via outgoing state J during the first k transitions. Because we have no

time-of-flight information the data we collect is

(2.8) Q=" Q@ =P+ Py (D P) Puo=Po+ Py (I - Pup)™! Py,

n=0

It is not difficult to show that the sum converges. Although the bulk of the research
done to date is on two dimensional models, equation 2.8 holds in any dimension. We say
that one solves the forward problem when one calculates @ from P,,, Pyj, Py,, and P;,. Let
f denote the forward map given by 2.8, so f(Piy, Pin, Pho, Par) = @ . For a k-dimensional
system, there are 4k® transition probabilities per voxel since a photon may enter a given
voxel via any one of 2k states and may éxit the voxel via 2k different states. Therefore, 4k*n*
_ of the entries in P, Pys, Pho, and Py, are nonzero for a n x n-x ... X n system. Although
this thesis concentrates on the algebraic inverse problem, there are physical constraints

ui)on dom(f) and Im(f). Let dl, dz, ... ,dak be the preferred directions of travel within the

system and let a be a multi-index a = (o3, 02,... ,az) where a; = 1,2,... ,n for each
i1=1,2,...,2k. . Then the domain of the forward map lies in the unit cube in R**»* and
satisfies '

. V 4kénk
(2.9) 0< diad; <1 Va and i=1,2,...,2k

1
-

j
There are similar restrictions upon the range. For an xn x ... x n system f maps
the transition probabilities to the 2kn(*~1) x 2kn(*~—1) matrix Q € Im(f) C Matg(2kn*-)
and since Q is a transition matrix the following conditions must hold:
2knt*=1)

(2.10) 0< > Qia<1 i=1,2,...,2kn*"
A=1

Let Jac denote the Jacobian. Then if rank(Jac(f(x))) < 4k*n* we cannot hope

to invert f at the point x. If rank(Jac(f)) = r at a generic point, then at best we can

»
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express the transition probabilities in terms of the data and ! independent parameters,
where | = 4k*n* — r. We shall do just this for two dimensional problems in the following

chapter. In Chapter 4 a small problem in three dimensions will be studied.
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Chapter 3
Two Dimensional Problems

‘We begin with a study of conditions upon the range of the forward map for prob-
lems in the plane. Later We_ develop an inversion algorithm which respects and takes ad-

vantage of these consistency conditions amongst the data.

3.1 ConSi_stency Conditions

- Consistency conditions amongst the boundary data have the unfortunate effect of ‘
reducing the amount of independent data. When working on an inverse problem, we would
like to have as much data as possible. At best, we may recover as many parameters as inde-
pendent data. In the first part ef this chapter consistency conditions amongst the boundary
data are derived and a few examples are given. In these examples we study boundary data
for problems of increasing complexity. It is shown that the number of independent consis-
tency conditions increases faster than the amount of data. Later, the ratio of independent
consistency conditions to total data is studied as the complexity increases. However, the

coarsest nontrivial array provides a good starting point for this study of consistency condi-

tions.

'3.1.1 Derivation for the 2 X 2 problem

During earlier work on inverting the forward map for the 2x 2 problem, consistency
conditions. amongst the data were found. Since the theory behind these conditions is the
same for 2 X 2 arrays as m X n arrays, the derivation for the consistency conditions in the

2 x 2 problem precedes the general derivation.
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In order to recover the probabilities at least as many independent data are required
as there are unknowns. Recall the eight detecfors positioned around the outer edges of the
system. When a photon is shot into the system through an outer edge, the photon either
dies somewhere inside the system or is detected as it leaves the system. By collecting data
on maﬁy photons which enter through the same edge, one may calculate the probability that
a photon entering the system through edgé s will exit through edge ¢ (here s,t =1,2,... ,8).
The 8 x 8 data matrix, @}, contains 64 pieces of data. '

During early work on this inverse problem the author stumbled upon many zero
valued 3 x 3 minors of Q. In this section, comsistency conditions amongst the data are
derived. These conditions force the following 4 x 4 submatrices of the 8 x 8 data matrix to

be of rank < 2.

Qs Qo Qs @us| [ @1 @z @ss Qs
o @5 Qo Qi1 Qus ]9 Qs Qs Q|
Qus @ss @sr Qs Qui Q2 Qrs Qra
| Qs Qus Qur Qus | | @1 @uz Qss Qs )
[ Qrs Qra Qus Que | [ Qur Qus Qun Qs |
. Qs Que @us Qe | | Qur Que Qu Qua
| Qus Que Qus Qs Qor Qs Qo1 Qs
| Q25 Qs Qus Quo | | Qo7 Qs Qox Qo2 |

By taking advantage of the Markovian nature of the model, we may easily prove

that these matrices are rank deficient. Define
pi; = probability of going “directly” from
incoming state ¢ to hidden state j

s;; = probability of starting in hidden state

¢ and ever reaching outgoing state j
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For the purpose of deriving the rank deﬁciency of matrix 3.1 a photon is said to
travel “directly” if its path from incoming state i to hidden state j includes only one crossing
of the thick vertical barrier as shown in figure 3.4. For example, two of the paths p; g takes
into account are shown in figure 3.4. One of the paths which sg 5 represenfs is shown in
figure 3.5. Note that p; g dqes not include the probability with which a photon travels as
shown in figure 3.6. '

Referring to figure 2.1 and the deﬁnifions given above, some of the Q; ;s may be

expressed in terms of the p; ;s and s, ;s

Q15 = DPis Sss+DPis S55
(3.3). o Q16 = Pi,s586+ P15 Ss6
Q17 = DPis Ss7+Di1s S5

Qis = Pis Sss+ D15 Sss

or,

' , Sg5 Sg6 58,7. Ss,8
(34) [ Qis Qe Q17 Qg ] = [Pl,s P15 ] ‘ A

S5,5 85,6 S57  Ss5.8

Notation: Q;, denotes the 4 X 4 submatrix of the probabilities With which a photdn
travels from vleft to right across the system, starting from sources 1, 2, 3 or 4 and ending
at detectors 5, 6, 7 or 8. Similarly, Q,; denotes the submatrix of probabilities with which
photons travel from right to left across the system. Q. and th are 4 x 4 submatrices

representing the probabilities of travel from bottom to top and top to bottom, respectively.

The entire Q;, submatrix can be expressed in the same notation:

_Ql,s Ql,s Q1,7 Ql,s | P1s Pis

v Q25 Q26 Q27 Q2s P28 D25 S85 S86 S8,7 Ss8
(3.5) =
Qs,s Qa,s Q3,7 Qs,s D38 D35 85,5 S5,6 9557 55,8

Q4,5 Q4,6 Q4,7 Q4,8 . Pags D4y

Similarly, the Qu, @i, and Qp: submatrices may be written as follows:



Q7,3
Q8,3
Q1,3
Q2,3

(3.6)

Q5.1

Qs,1
(3.7)

| Qs

-

Q3,7
Qa7
Qs
| Qe,7

(3.8)

Q7

Q7,4
Qs
Q1,4
Q2,4

Qs,2

Qs,2
Q7,2
Qs,2

Q3,8
Q4,8
Q5,8
QG,S

Qs
Qs
Qus
Q25

Qs
Qs
Qs
Qs

Qs
Q4
Qs
Qs,1

Q6
Qs6
Q16
Q2,6

Qs.4

Qs.4

Q7,4
Qs,4

Qsz2 |

Q4,2
Qs

Q5,2 |

D73
Ds3
P13

D23

Ds,4
P64
Y4

Ds,4

D32
D42
Ds,2

Ds,2

Pre

Ds.6

Dis

D26

Ds1

D

D71

DPsa

D37
y %
Ds;7

De,7

53,3

56,3

54,1

31,1

82,7

S7,7

53,4

S6,4

S4,2

S1,2

S2.8

S7,8

53,5

S6,5

54,3

51,3

S2,1

7.1

53,6

56,6

S4,4

51,4

S22

S7,2
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Since each of these 4 x 4 submatrices is the product of a 4 X 2 matrix with a 2 x 4

matrix, these 4 x 4 submatrices are of rank (at most) 2.

3.1.2 Derivation for the m x n problem

Moving on to a general description and existence proof of consistency conditions,

consider an m x n problem as shown in figure 3.7. Let Q. be the submatrix representing .

the probabilities of photons which enter the system on the left and exit on the right of the

thick vertical line. In this case,



( Ql,m+2k+1 Ql,m+2k+2
Qz2,mi2k41 Q2,m+2k+2
(39) er =
| Qmaizkmizess Qmizkmizks2
where N = 2(m + n).
Claim: rank (Q;.) < m.
" Proof : For any Q; ; in Q,,,
Qi,j = Z:;l Pia Sa,j) 1-€.,
(310)Q, =
D11 D12 D1im $1,m+2k+1
" P2a D2,2 Dom 82,m+2k+1
f .
| Pm+y2k,1  Pm+2k,2 Pmt2k,m | | Smym+2k+1
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Qun

Q2N
Qm+2k,N _
S1,m+2k+2 S1,N
S2,m+2k+2 - -+ . S2N
Sm,m+2k+2 --+ Sm,N |

Since @, is the product of a (m+2k) x m matrix with a m x (2(n — k) +m) matrix

the rank of Q.. is at most m. The same argument holds for Q,;, Q., and Qu, (although

the ranks of Q, and Q. are no greater than n).

Now consider an even more general left-right transition submatrix. @, represents

~ the probabilities of photons which start out on the left of the barrier and exit the system

on the right of the barrier shown in figure 3.8.

~ Without loss of generality assume that 1 <! < k < n. Then
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i
Ql,M+1 QN—I+1,M+2 R Ql,N
: Qz,M+1 QN—1+2,M+2 s Q2,N
(3.11) Qi =
B QM,M+1 QN,M+2 QM,N ]

where N = 2(m +n) and M = m + k +I. For any Q; ; in Q,,
Qi = Tt " Dia Sa it

so in this case Q;, equals

(3.12)
DPiax P12 -+ Pemi2n—l+l,m+k—l S1,M+1 S1,M+2 v S1,N
D21 P22 .- P2mi2n—i42,m+k-1 S2,M+1 S2,M+2 .. Sa2.N
| Pma Pm2 .- DM mtk~1 1 L Sm4k-t,M+1 Smik-l,M+2 --- Smik-I,N |

Qi is the product of an (I + m + k) x (m + k — l) matrix with an (m + k —[) x
(2n + m — I — k) matrix. Hence, rank(Q;,) < ‘(m+ k —1). The same sort of argument holds
for the other rank deficient submatrices. For the barrier in figure 3.8, rank(Q,;) < m + k — [.

3.1.3 Data subject to Conditions

Foran xn system, there are 16n? pieces of data. These data are not all inde-
pendent, however. Data which are part of some rank deficient submatrix are subject to
consistency conditions. In fact, only the data corresponding to nonzero entries of P;, are

independent of all consistency conditions.
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It is not difficult to see that thé nonzero entries of P, correspond to “independent”
data. Notice that these entries are precisely those representing the probability that a
photon may travel directly from an incoming state to an outgoing state. In other words,
if P,,[i, 7] # 0 then it is possible for a photon to travel from source i to detector j without
ever visiting a hidden state. Such a bhoton enters only one pixel during its lifetime, and
so never has the opportunity to cross any of the barriers which were used to derive the
consistency conditions. Hence, P;,[z,j] # 0 implies Q; ; is free of the consistency conditions
derived in section 3.1.2. ‘

Furthermore, only these data are.fr,ee of the consistency conditions derived in
section 3.1.2. Consider any piece of data Q, where P,[k,l] = 0 and suppose Qy; is ﬂot
part of any rank deficient rank n submatrix. Then there exists no right-left, left-right,
top-bottom, or bottom-top barrier between source k and detector {. Consider the barriers"
which immediately surround source k. See ﬁgure 3.9. (There are threé such barriers unless
source k shoots photons into a corner pixel. In that case. there are on'ly two surrounding
barriers.) The barriers do not separate source k from detector /, so there is some path from
k to I which does not cross any of these barriers. Such a path contains no hidden states,
which implies that P,[k,I] # 0. But P,[k,l] = 0, a contradiction. Hence Q,, is part of

some rank deéficient, rank n submatrix.

3.1.4 Examples for square systems

Before lOkaii“lg for an asymptotic limit to the number of independent consistency
conditions as a function of n, consider a few more examples. When n = 1 the array is a
single pixel, and there are no consistency conditions analogous to those derived above. For
‘a single pixel there are 16 iﬂdependent paramefers per pixel. For larger arrays, however,

there are fewer independent parameters per pixel. See figure 3.10.
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3.1.4.1 2 x 2 problem

For the 2 x 2 problem, there are four rank deficient sﬁbmatrices of the data.
There is one left-right, one right-left, one top-bottom, and one bottom-top submatrix.
Each submatrix is 4 x 4 and rank two. Although the submatrices overlap, each yields
four independent consistency conditions amongst the 64 pieces of data. The consistency
conditions leave at most 64 — 4 x4 = 48 independent pieces of data. See figure 3.11. In this
relatively small case, both Maple and Macsyma are capable of computing the Jacobian of
the forward map. At a generic point the rank of the Jacobian is 48. Since the rank of the

forward map is generically 48, there are at no other consistency conditions.

3.1.4.2 4 X 4 problem

As shown in section 3.1.2, there are three rank four Q;, submatrices; three rank four
Q,: submatrices; three rank four Q4 submatrices and three rank four Qs submatrices. The
Q. submatrices all okferlap with each other, as do the other sets of rank four submatrices.
None of the @, submatrices overlap with any of the @,; submatrices. Similarly, the Q;,
and @,: submatrices are separated. ‘ v ’

The Q,, and Q,; submatrices overlap with the Q,, and Q;, submatrices, however. -
Recall that these submatrices and the entries of P;, cover the data matrix, ). We would like
to know how many of the data are independent. The rank four submatrices can easily be
used to show that there are at most 160 independent pieces of data (amongst the 256). From
the forward map we may recover at most ten independent parameters per pixel, (assuming
that it is possible to recover the same number of parameters per pixel). Clearly, the data
which occupies the same positions as nonzero entries in P, are independent. But what of
the other data? Consider first the 8 x 8 rank four submatrices. Just as in the 2 x 2 case,
a 4 x 4 block from each submatrix may be written off as redundant. See figure 3.12. This
takes full advantage of the fact that the submatrices are of rank four and accounts for all
of the data in the submatrix. Consider next the data which are part of one of the 10 x 6
rank four submatrices. Most of this data has already been accounted for because it is part
of one of the 8 x 8 submatrices. Only the first and last rows contain unaccounted for data.
Three entries in each of the end rows are assumed known because they lie in neighboring

8 x 8 rank deficient submatrix.
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We need know only one more piece of data in order to calculate the two unknown
pieces of data in each end row. Analogous reaéoning applies to the 6 x 10 rank deficient
submatrices. Therefore, we may write off as redundant additional data within the 4 x 4

subblocks along the diagonal, as shown in fig 3.12.

3.1.4.3 8 x 8 problem

In this case there are seven rank eight submatrices of each stripe: left-right, right-
left, top-bottom, and bottom-top. Once again all of the left-right submatrices are disjoint
from the right-left submatrices, but do overlap With the top-bottom and bottom-top sub-
matrices. (Also, the top-bottom submatrices do not intersect any bottom-top submatrices.)
And the union of all of the rank deficient, rank eight submatrices and the entries of P, cover
the data matrix. Below it is shown that for n = 8 we may recover at most nine independent
parameters per pixél ﬁofn the forward map alone.

Once again begin by considering the 16 x 16 rank eight submatrices. They contain
8*8=64 redundant pieces of data each. Writing off one 8 x 8 block per submatrix takes all of
these consistency conditions into account. Now all data within these submatric_es is assumed
to be known. Next, consider the data which is part of an 18 x 14 rank eight submatrix.
As before, moétv of the data is already accounted for. Only the first and last rows lack
accounted for data. In both the first and last row, seven pieces of data are assumed known,
since they are part of some 16 X 16 rank eight submatrix. If in both TOWS one more piece
of data is assumed known, then the six remaining pieces of data may be calculated. The
same reasoning applies to the first and last columns of the 14 x 18 rank eight submatrices.
Similar reasoning applies to the end rows and columns of the 20 x 12 and 12 x 20 rank eight
submatrices. Finally, we write off data in the end rows and columns of the 22 x 10 and

10 x 22 rank eight submatrices. See figure 3.13.
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independent
n data/pizel
1 16
2 12
4 10
8 9

3.1.5 For n a power of 2

For coarse grids, (n < 8), the maximum number of independent databper pixel
decreases as n increases. In this section the method by which redundant data was found in
the examples is generalized. The chart below shows the number of independent data per
‘pixel for n x n. systems.

Further, notice that for n > 2 the rectangular (not square) rank deficient sub-
matrices account for the increase in the ratio of redundant data to total data. The data
rendered redundant by these rectangular submatrices may be chosen inside n x n blocks
along the diagonal. Therefore, the n X n blocks of along the diagonal are studied below.

Notice that in the examples, the only necessary data in the blocks along the
diagonal form an ‘X’. All other data within these blocks is redundant. The reason is not
too hard to see, even for general n = 2%, k € N. The redundant data belongs to some
rectangular rank deficient submatrix. Such submatrices, however, are mostly accounted for
by the data in the corresponding square rank n submatrix. There are at least 2n rows
(or columnsk) common to the square and rectangular submatrices. Consider first one of
the (2n — 2) x (2n + 2) submatrices. Only one column protrudes from either side of the
corresponding 2n X 2n submatrix. For each of these columns, n—1 of the data are accounted
for because they are part of an overlapping 2n x 2n submatrix. Hence, we need only add
one piece of data to each column in order to calculated the rest of the column. If we choose
to add the piece of data in the corner of the n x n block along the diagonal, then the
(2n — 2) X (2n + 2) submatrix corresponding to the first square submatrix now has n pieces

of data in the protruding columns, and so the rest of the (2n — 2) x (2n + 2) submatrix can
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be calculated. Furthermore, one of the protruding rows of a neighboring (2n + 2) x (2n — 2)
rank n submatrix now hé.s n pieces of accounted for data. So we may also calculate the
n — 2 remaining pieces of data in that row. By adding one piece of data to one protruding
column, we gain 2(n — 2) pieces of data. Adding one piece of data to each protruding
column allows the calculation of the unaccounted for data in both ﬁhe (2n — 2) x (2n + 2)
- and (2n + 2) X (2n — 2) rank deficient submatrices. Similarly, the judicious addition of one
piece of data to each end column of the (2n — 4) x (2n +4) rank eight submatrices permits
us to calculate the rest of the unaccounted for data in all of the (2n —4) x (2n + 4) and
(2n+ 4) x (2n — 4) rank deficient submatrices. We may continue this process until reaching
the center of the n X n Block along the diagonal. The data in the center of the block are
independent entries since they correspond to nonzero entries of P,,. Only 2n pieces of data .
within each of the diagonal n x n blocks need be known. The other n? — 2n pieces of data
are redundant. And among each of the rank n, 2n X 2n submatrices exactly n? pieces of
, .data are redundant. Since the redundant data méy be choosen independently, there are at
least 4((n? ~ 2n) + n?) = 8n(n — 1) pieces of redundant data, leaving at most 8n(n + 1)
pieces of independent data. The fraction of independent data decreases as the number of
pixels increases. v

For most imaging methods, Quality improves as pixel size decreases. Large pixels
yield grainy images. The more pixels used to image an object, the clearer the image. For
n = 2k, the fraction of independent data approachés 1/2 as k appr.bache's infinity. For
n > 16, the forward map generates at most eight independent data per pixel. Additional
information about the system is needed in order to recover diagnostically relvant information
from the data. Some a priori knowledge of photon transport is needed to close the system

- .of governing equations derived in the next section.
. l e
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3.2 Recursive Inversion Algorithm

Although it is not possible to invert the direct map because of the consistency
conditions amongst the data, it is possible to recover as much information as there are
independent data. For an n x n system the forward map takes 16n? transition probabilities
and maps them to the 4n x 4n matrix . The domain of the forward map lies in the unit

cube in R*"" . The domain is defined by the equations
eije + eijw + etjn +eijs <1
(3.13) . wije + wijw + wijn + wijs < 1
nije + nijw + nijn + nijs <1

sije + sijw + stjn + sijs <1

for i,j=1,2,...,n. Because Q is a transition matrix acceptable solutions lie in R**"" and
satisfy
_ 4n '
(3.14) . 0< > QA <1 i=1,2,...,4n
A=1

Since the rank of the forward map is less than 16n> we cannot hope to invert it. If
the rank of its Jacobian .isigenerically r, then at most we can recover r pieces of information.
Although we cannot explicitly solve for transition probabilities in terms of the data, we can
express them in terms of the data and k independent parameters, where k = 16n? — r. In

this section a recursive algorithm for finding the k parameter family of solutions is detailed.

3.2.1 Base Case (2 x 2 problem)
3.2.1.1 Solving the Governing Equations

By making several nonlinear changes of variables, we may remove the nonlinearities
from 2.8, (or “move” them to the changes of variables). First define, (assuming fhat Py, is

invertible),

(3.15) \ A=PF]

Equation 2.8 may be rewritten as
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(3.16) (@-P AU~ Pu)-Pa=6

where © is a matrix of zeros. § will denote a vector of zeros. A few more changes

of variables are required to make 3.16 linear:

W = APhh
(3.17) X = P,A
Y = PW-Py

We can recover P;,h, P,,, and Py in terms of A if we know W, X, and Y. Under

these substitutions, the matrix equation 3.16 becomes

(3.18) | QU-W)—(X-Y)=0

Recall that @ is the data, so 3.18 is linear in the unknown matrices 4, W, X,
and Y. Furthermore, the new matrices have special block structures. A has the same
diagonal block structure as Py,. X is also block d.iagonal.. Finaily, W and Y have the
same off diagonal block structure as Py, and P;. The variables for each system/column of
equations contains three each of the A4; ;s, W, ;s, X, ;s, and Y; ;s. The W, ;s, X, ;s, and Y; ;s
are functions of A4, ;s which correspond to other columns. Although the variables differ from
column to column (exactly 64 variables total—no repeats between columns), the columns

are only artificially decoupled.



(319) A-W =
[ A, A, Wi 0 0 0
Ay1 Ay —Way 0 0 0
0 -W;2 Asgs Asy Wi 0
0 Wi, Az  Agy —Wes 0
0 0 0 —Wsa Ass  Asg
0 0 0 —Wee Ass Asg
Wy, 0 0 0 0 Wi
| —We: o O 0 0 0 W
[ X, X, -Yis 0 0 0
X1 Xp2 Y23 O 0 0
0 —Y3,2 X3z Xsa —Yigs 0
0 -Yi, X435 Xsu -Yi5 O
(3200 X-Y=
0 0 0 Y54 Xss5 Xsg
0 0 0 ~Ys. Xos Xog
~Y;; 0 0 0 0 —Yig
| Y1 O 0 0 0 Y6

- Xos
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0

Xss

Now the equations in column six of 3.18 are linear in the variables

{A5,67 AG,67 W7,6a WS,G) XS,G) X6,6> yt/,ﬁ) 1,8,6}

and can be written as a homogeneous matrix equation:



(3.21)

Qs
Q25

Q3;5‘

Qus
Qs
Qo
Qrs
Qus

Qus
Q26

' Qs,s

Que
QS,G
Qs,s
Qe

Qs

Q1
Q2,7
Qs,7
Quz
Qs,r

Qs.7

Q17
Qs,7

Qs 00 0 0
Qs 00 0 0O
Qs 00 0 0
Qgs'o 6 0 0
Qs 10 0 0
Qes 01 0 0
Qs 00 -1 0

Qss 0 0 0 -1

] L
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]

We can do the same for the other columns in 3.18. To each column in 3.18

there corresponds a system of eight linear equations in the variables which appear in the

corresponding columns of 3.19 and 3.20. Note that as far as their zero structures are

concerned, the columns of 3.19 and 3.20 come in pairs. The roles of the A; ;s and W, ;s

are reversed in the first and eighth columns of 3.19 as are the roles of the X; ;s and Y; ;s

in the first and eighth columns of 3.20. Hence, we must solve the “same” matrix equation

for the first and eighth columns of 3.18. Similarly, the linear systems corresponding to the

second and third columns of 3.18 are given by a single matrix equation; the fourth and fifth

columns by a third matrix equation; and the sixth and seventh columns by a fourth matrix

equation. We are left with four sets of homogeneous linear eqﬁations, i.e., four 8 x 8 matrices

which satisfy the homogeneous equation Qz = 6. Since the trivial solution would not be

interesting enough to write about we may safely assume that there must be other solutions.

This is indeed the case since the upper left 4 x 4 submatrix found in equation 3.21,

(3:22)

. representing travel from left to right

Qus Qus Qur Qus

Qus Qus Qor Qas
Qs,s Q‘s,e Q3,7 Qs,s

Qas Qs Qa7 Qag |

across the system is rank deficient. As noted in

section 3.1 the submatrix above is of rank two or less. So we may solve 3.21 for at most six

of the eight unknowns in terms of the other two.
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The variables for each system of equations contains two each of the A;;s, W, ;s,
X, ;s, and Y;;s. Do not forget, hbwever, that the W, ;s, X, ;s, and Y, ;s are‘functions of
A; ;s which correspond to other columns. Although the variables differ from column to
column (exactly 64 variables total—no repeats between columns), the columns are only
artificially decoupled. Recall that only six equations per column of 2.8 are independent.
Since the W, ;s, X;;s, and Y, ;s are already functions of A, ;s, it seems natural to solve
for them in terms of the A, ;s. Following this procedure for all eight columns reduces the
number of unknowns from 64 to 16. |

To solve 3.21 for the Wi,;s, X;;s, and Y, ;s in terms of the A, ;s, we need only

solve:

[ Qs Qas 0 0 0 0] [ Wie] [ Qus Qs ]

Q4,7 Qss O 0 00 Ws.e Q4,5 Qs

Q5;7 Qs.s -1 0 00 Xs,s Qs,-s Qs,s As,a
(3.23) . : =

Qs,7 Q's,s 0 -1 00 Xs,s Qs,s Qe,e Ae,e

Q7,7 Qs 0 0 10 Y6 Q7,5 Q7,6

| Qs Qg 0 0 0 1 ]| Yas | [ Qss Qs

For the sake of simplicity the first two rows of the matrix equation 3.21 were
omitted and the equation was rewritten with the unknown W, ;s, X, ;s, and Y ;s on the
lefthand side. The determinant of the lefthand matrix in 3.23 is dQ(3 4,75 3.23 has a
unique solution if and only if dQ(s4),(7,s) # 0. A similar requirement holds for each of the
other columns of 3.20. In order to solve each column of equations for the W ;s, X ;s, and

Y; ;s in terms of the A, ;s it is sufficient that the following minors be nonzero.

(3.24) dQ3 4,78, dQr 83,4, dQ[s.6),1,2] dQ[1,2],[5,_61

If the data satisfy these requirements then we can solve the 48 independent equa-
tions in 64 variables linearly for the nonzero entries in W, X, and Y in terms of the 16
variables in A = P'. Unfortunately, that exhausts the supply of equations for the original
model. Example solutions from each of the four one step transition submatrices are shown

b_elow:
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A1,2

(38.25 | wlly = ———22
) ' dA[l,2],[1,2]

where wllw is an entry in P,,. One of P,;’s nonzero entries is
w2le = (thl,z],[s,s]As,sAs,s +dQy 2),13,6146,5 43,3+

(3.26) o dQ[1,z],[4,5]As,sA4,3 +dQ[1,2],[4,6]A6,5A4,3)/

dQp 5,3,99 43,4, 3.4

and - . _ .
n2ls = dQ[l»2,4],[4,5,6]‘43»3‘44,4 _ dQ[4,5,6],[1,2,4}A4,3A3,4+
0 dQp 50943 AQgs 61,29 A1,41,03,4)
(3.27) (dQ[5’6]’[1’2]dQ[1’2'4]*[3v5’61 - dQllﬂ}sls,G]dQ[4,5,61,[1,2,31) A3 3434

dQp1,2),i5,619Qs 61,02,219413.41,13.4)

is an entry of P,,. Finally, one of the nonzero entries of P, is

§12s = (_dQ[S,G],[1,2] (dQ[1,2],[5,6]dQ[1,2,8],[6,7.,8] - dQ[l,z],[6,7]dQ[1,2,8],[5,G,8])
—dQ[1,2],[s‘,s]dQu,z],[s,s]dQ[s,s,s],p,g,ﬂ) 46,6147,8448,7 |
+ (dQ[s,G],[l,z] (dQ[1,2],[G,S]dQ[l,Z,B],[5,6,7] + dQ[1,2],[s,s]dQ[1,2;s],[6,7,s])
—dQ[l,2],[s',7]dQ{1,z],[5,s]dQ[s,s,s],[l,z,s]) A7 46,648,
- (_dQ[s,s],[l,z] ( dQ[l,z],[s,é]dQ[l,z,s],[sﬂ,sj - dQ[l,z],[5,7]‘dQ[1,2,8],[5,6,8])
—dQ[l,z],[s,s]dQ[l,z],[s,s]dQ[s,e,sj,u,z,n) AssAs7Ars
+ (dQ[s,e],[l,z] ( dQy 2),i5,619Qp1,2,81,65,7.8) T dQ[l,2],[5,8]dQ[1,2,8],[5,6,7])
(3.28) o _dQ[l,z],[5,7]dQ[1,2],[5,6]dQ[S,G,B],[I,Z,S]) As6As s Az,
+Ag 7 Ass (dQ[1,2],[s,s]A6,6 + dQ[l,z],[s,g]As,e)
(_dQ[s,s,s],[1,2,8]dQ[1,2],[5,6] + dQ[s,e],[1,z]dQ[1,2,s],[s,6,s])_
A4 (dQ[Lz],[s‘J]AG,G + dQ[1,2],[5;7]A5,6)
(4Qps.611.29Q 2.15.671 — 9Q25.69Qs 00121 ) /
dA[7,8],[7,81dQ[1,z],[7,8]dQ[l,z],[s,s]dQ[s,s];[1,2]
Solutions for variables from a transition submatrix afe all of the same form. For

example, all of the transition probabilities in P, are equal to an entry pf A divided by a

2 x 2 minor of A.
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3.2.1.2 GraBmannians and the Grafimann-Pliicker Embedding

Since equation 3.23 is a linear system of six equations in eight unknowns, it is
not surprising that Grafimannians and the Grafimann-Plicker embedding come into play.
Grafilmannians and the identities which embed them in projective space will be used in the
following section to simplify solutions for incoming-hidden transition probabilities like that

shown in 3.28.

3.2.1.2.1 Grafimannians Given integers ¥ and n, where k < n, G(k,n) is defined as
the set of all k-dimensional linear spaces in C*. Let A be an element of G(k,n). Then there
exists a set of k 1 x n spanning vectors of A. Represent A as a k X n matrix whose rows are
these spanning vectors. Because the choice of spanning vectors is not unique, a family of
matrices represent A. Given any g in GL(k), define A’ = gA. In the following sections both
the poin’; A € G(k,n) and a k X n matrix representing A will be denoted by A. Hopefully,
context will make the author’s meaning clear. The rows of A’ span the same space as the
rows of A, so we identify A’ and A.

Under these identifications, it is easy to construct a bijection between a dense,
open subset of G(k,n) and C*"=%). Let O be the set of all points in G(k,n) which may be
represented by a k x n matrix whose first k£ columns are independeht. O is a dense open set
in G(k,n). Given any representation for A in O, we can easily find the matrix representation
A for A such that the first k columns of A are the identity matrix. (Simply take g~! to
be the first k columns of A. The rows of A are independent so g~! is invertible. Define
A = gA.) Only the entries of the rightmost k x (n — k) submatrix of A are unconstrained.

More generally, let I = (i1,1s,%3,...,%) index k independent columns of the orig-
- inal representation for A. Then given any A, we can define the map ¢; such that ¢r(A)
satisfies the following: column i; of ¢;(A) = e;, where i; is the j,; index in I and e; is the
jun canonical vector. In order to define ¢;, first set g~ equal to the matrix with columns
i1,42,%3,..-,2 Of A. Generically, g~! is of rank k so g exists. Then A = gA is has column

i; equal to e;. The inverse of ¢; is always uniquely defined.
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Let I' denote another set of linearly independent columns. Define A; = ¢;(A) and
Ap = ¢p(A). Then Ay and Ay satisfy A; = gA and Ap = g’A for some g,¢' in GL(k).
Then Ay = hA; for some matrix h in GL(k). A moment’s reflection reveals that A must
be the inverse of the matrix composed of the columns of A; which are indexed by I'. Note
that the entries of h ‘are analytic functions of the entries of A, so G(k,n) has the structure

of a complex manifold.

3.2.1.2.2 The Pliicker Embedding Any Grafimannian, G(k,n), may be embedded
into P(:)-1, P¥ is N dimensional projective space over the complex numbers; we can think
of PV as an N dimensional sphere lying in N + 1 dimensional space with antipodal points
identified. A point, P, in PY may denoted by (po,p:1,p2,- .,pn)- This point is identified
with all other points a X (pg,p1,P2,--.,pn) for any nonzero scalar a.

In the simplest case, G(1,n), any point of the GraBmannian is represented by a
single row vector. Since we may multiply each element of the Grafimannian by a nonzero
scalar, we may canonically identify P;“l and G(1,n). Every element, A, of a G(k,n) defines
a k dimensional linear space in C*. The Pliicker coordinates of a Grafmannian A are by
definition the determinants of all k£ x k minors of any representation A of an element in
G(k,n). The dual space corresponding to A is A+, the (n — k) dimensional linear space in
C" orthogonal to A. There is a 1 — 1 correspondence between the Pliicker coordinates of
A and A*. Since the set of (n — 1) dimensional spaces in C" is isomorphic to the space
of one dimensional spaces, we can identify any A in G(n — 1,n) with its dual, AL. Hence
G(n —1,n) and P*~! are identified. v v

When 1 < k < (n—1) more complicated relations are required to émbed G(k,n) in
some projective space. It is easy to check that Pliicker coordinates ére projectively inva.ﬁant
under representation of A. Let A and A’ be equivalent representations for the same element
of G(k,n). Then A = gA’ for some g in GL(k). Let I be any index of k£ columns. The
submatrix taken from the I columns of A equals g times the submatrix taken from the I
columns of A’. By the rules of determinants, |AB| = |A| | B|, and so the determinant of the
I,;, minor of A equals the determinant of ¢ times the determinant of the I,; minor of A'.
This holds for all I, and so if the (¢)-tuple P are the Pliicker coordinates of A then 9|9
are the Pliicker coordinates of A’. Since there are (}) % X k minors of a k£ X n matrix, the

Pliicker map takes G(k,n) into P(G)-1). (Note that the Pliicker map is not ontg.)
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We can check that for 1 < k < n, (}) —1 > k(n— k). In order for the Pliicker map
to be an embedding, there must be some (i.e., (() — 1 — k(n — k))) independent relations
amongst the Pliicker coordinates of a point A in G(k,n). For G(2,n) these are the Pliicker
relations. For general G(k,n) they are called Grafmann relations. In either case the
relations are quadratic in the Plicker coordinates for A. The Grafimann relations are easily

derived.

3.2.1.2.3 Derivation of Grafimann-Pliicker Relations Let A be any rectangu-
lar matrix with k& rows and n columns where ¥ < n —1 and A = (a);;. Let I =
(41592,%3, . .« yi(e-1)) index (k — 1) distinct columns of A. Let J = (j1,J2,Js,-- - J(k1))

index (k + 1) distinct columns of A. Consider the sum,

k1 Q14 G -+ Oy G
E(_l)A+1
A=1
Ak i) s cee Qpgy_y Qg gy
Q151 -+« Qi Cijag oo Qgegs
(3.29)
Gy +++ Gkga1s Ckgaga o+ Ok
To simplify 3.29, expand the first determinant along the last column as shown
below
A1iy @i, o+ Oy Qs k
(3.30) : : =Y, CF,
. #:1 .
Ak, Ckyin_y  Ok,js

where CF, is the cofactor of the matrix on the left-hand side of 3.30 about the (u, k)
entry. Then 3.29 becomes '
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k1 k Q1,51 -+ Qgay Q1jay, --- Q15341
A+1 :
E:(71) E:au,ijF#
A=1 C p=1
Qk,jy oo o Ckga_y Chgagr o Ok
o ... 0 Ay s 0 0
k k1l o, . , . . ' ,
Q1,5 -+ Qi G150 Q154 Q1,541
= Y CRY | . .
p=1 A=1 . . .
Qk,jy oo Okjay Gk coe kg
Aug Qu2  oor Ougpy,
k .
Q1,5 Q1,5 Q1,5i 41
(3.31) = E CF, . _' ’
p=1 ‘ : .
Qkjy Qkjz --+ Ok jag
k
= Y CF,-0
p=1
= 0

" Denote ‘by 77 the determinant of the minor whose columns are indexed by the

multi-index I. Then

k+1

(3'32) E :W(ix,iz,---,ika,J'A)7r(.1'1,.7'2»-~-,j,\—1y1'x+1,--¢,jk+1) =0
A=1 .

Equation 3.32 defines the GraBrﬁann relations. In the following paragraphs a few

simple examples are given.

3.2.1.2.3.1 Examples of Grafimann-Pliicker Relations - G(2,4) First
we consider G(2,4). Since G(2,4) is isomorphic to a dense, open subset of C*, and the
Pliicker map takes G(2,4) into P®, only one nontrivial Grafimann relation is required to

embed G(2,4) into P5. Consider the representation for A € G(2,4)

. _ Ay A Az Apg
(3.33) - _ A=
Ay Asp Az Asy

and consider



(3.34)

Al 1 A1,2

]

AZ 1 A2,2

)

since

(3.35)

AN

(3.36)

(3.37)

A1,3 Ars

Azs Azs

9

)

Al 1 A1,3

Ay Azs

Az

A12 A14 All A14

equation 3.34 can be rewritten as follows

Az A
(A4, + Az2A;1,1)
Arg Azs
(3.38) +
which equals
Az Aig Asp
A | Az — A3
i Azs Azg Az
_ Ay Ay
(3.39) - Ay |4 — Az
\ Az Azg

equation 3.39 can be rewritten again

, : : 4 || A
+
Ars Asy Ary Ay Az
= —Aj2421+ AspAs;
= —A134;1+Ar341,
= —Aysfyy+ Az2441,
A, Aig
- (—Ay342:+ Az 34,,1)
Asp Aszg
Arp Asgs
(—A1442, + Az 44,,1)
Ay A
Ay Aip A
+ A4
Az s : Arp Azgs
A Ag Ay, A
+ A v
Arp Azs Azp Ass

34



35

)

Az 0 0 | -] 0 Ay 0 0. 0 Ay,
Aig || A2 Ars Avg |+ A1z Ay A |+ Ap A Arg
Azp Asp Asg A2,2 A3 A2,4 | Az Az,a A2,4
Az 00 0 A;s O 0 0 A,
(340)— Asn || Az Az A |+ Az Ay Ayd |+ )11,2 Az Ay
Azy Azs Asy Ayy Ass Agy Azs Az Asy

which in turn equals

Az Axz Az, A, A Ay,
(3:41) A Aip Az Ay - Azy | Asp Ag Ay | = Apjp*x0—A45,%0=0
Azy Asz Azs Azp Az Azg

Therefore, equation 3.34 is identically zero. In the “n” notation this means that

(3.42) 1,234 — M1,3Ma,4 + M1 4T23 =0

Equation 3.42 was generated from equation 3.32 by setting I = (1) and J =
(2,3,4). It is an easy excercise to see that the result is the same for any other I and J as
long as I J = 0. If, however, I J # 0, where I = (i) and J = (3, 5, j3) then the resulting

identity is trivial:

(3.43) : TiiTads — Tiia Mg + Tijs Tip = 0
3.2.1.2.3.2 Examples of Gramann-Pliicker Relations - G(2,5) G(2,5),

however, is slightly more corhplica.ted. G(2,5) is isomorphic. to a dense subset of C°, and
we shall see that there are (7) = 5 nontrivial Pliicker relations. But the Pliicker map takes

G(2,5) into IP°, so must be three independent Pliicker relations corresponding to A where
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Ay Asp Az Ais A

)

(3.44) A=
Asy Asp Ays Asy Aog

As long as we choose four different columns of 3.44 it does not matter how the

four columns are assigned to I and J. There are () = 5 ways to choose the columns

L=Q1) J =(234

| L=(1) J,=(2,3,5)

(3.45) I=(1) J3=(2,4,5)
Li=Q1) Jy=(3,45)

Is=(2) Js=(3,4,5)

corresponding to the five Pliicker relations:

T1,2M3,4 — W13Ma g + My a2z = 0
My2M35 — M1 3Mas + W1 5Ma3 = 0
(3.46) T1,2Ma,5 ~ M1,4T2,5 + 7T1,s’"'é,4 = 0
T1,3Tas — T1aMas + 7f1,57T3,; =0
M2 3Mas — Mo 4Mas + W2 sTas = 0
3.2.1.2.3.3 More General Grafimann-Pliicker Relations For there té be

a nontrivial Gramann relation, at least three of the “j,” must be distinct from the “:,”
and one of the “i,” must be distinct from the “j,”. One can check that there may only
be an even number of nonrepeated indices. Suppose for any k < (n — 1) and A in G(k,n),
there are exactly four indices, [, I3, I3, and l;, which are not repeated. Without loss of
generality assume that I = (i1,42,...,%k-2),l1) and J = (i1,42,...,%k—2),l2,{3,1s). The
Plicker-Grafimann relation generated by I and J is similar to the relation generated by an
element of G(2,4) where I = (1;), J = (l5,13,14). The other indices don’t “matter” because

they contribute only zero terms to equation 3.32.
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If we consider G(k,n) for k > 2 there are many identities given by 3.32. Some
of these identitites have terms which are identically zero. (Whenever jy € iy,%3,... ,45_1,
for example.) Suppose A represents an element of G(k,n) and some of the columns of A
are repeated. If there are only six  different columns in A we can calculate the number of
nontrivial Pliicker-Graimann relations as though we were working in G(3,6). In G(3,6),
I and J have two and four components, respectively. So there are (§) = 15 ways to pick
I and J so that I has two indices and J has four indices. Hence there are 15 nontrivial
Pliicker-Grafimann relations. Note, however, that G(3,6) is isomorphic to a dense subset
of C¥6-3) = (® and that the Pliicker-GraBmann map takes G(3,6) into P(&)-1 = P1o,
| Hence, among the 15 Pliicker-Grafmann felations, ten are independent. Pliicker-Grafimann
relations will first be used to simplify the solutions to the nonzero entries of Py, which were

_ calculated in section 3.2.1.1.

3.2.1.3 Simplifying solutions to P;; by adding Grafimann identities

Notice that in 3.28 several of the coefficients in the numerator contain factors
which are quadratic in minors of Q. Some of the identities used to embed G(3,7) in P(G)-1

- are useful in simplifying 3.28. Consider the matrix:

. .QI,S Qi Qir G 1 0 .0
(3.47) Qs Q26 Q2,7 Qs 0 10
Qss Qse Qsr Qss 0 0 1

The quadratic factors appeé,ring in 3.28 are written below as they appear in 3.28

and in the 7 notation used in section 3.2.1.2.3.
'dQ[l,2],[5,6]dQ[1,2,8],[6,7,8] - dQ[l,2],[6,7].dQ[1,2,s],[5,s,s] = 7"1,2,771'2,3.,4 — 72,3,771,2.4
Q25,6199 281,578 T Q2 s.819Qn 28561 = T127TL84 F T147T1,3
(3.48) dQ[1,2],[5,6]dQ[1,'2,8],[5,7,8] - dQ[1,2],[5,7]dQ[1,2,8],[5,6,8] = Wi2,7T1,34 — T1,3,771,2,4

dQ[1,2],[s,s]dQ[1,2,s],[5,s,7] + dQ[l,Z],[S,G]dQ[1,2,8],[6,7,8] = T2,4,7M1,2,3 1+ T1,2,772,3,4

The following Grafimann identities may be used to simplify the equations above:



71,2,772,3,4
T1,2,771,3,4

(3.49) T1,2,771,3,4

72,4,771,2,3

T1,2,277,3,4
71,2,177,3,4
T1,2177,3,4

712,4,177,2,3

+ o+ +

“+

M1,2,37M7,2,4 —

71,2,3771,4 —

1,237,144 —

T2,4,2T7,1,3
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71,2,477,2,3 =
T1,2,477,1,3 =

71,2,477,1,3

o o o o

T2,4,3M7,1,2 =

So we can simplify the right hand sides of the quadratic clusters in 3.48 as follows -

(3.50)

71,2,7772,3,4 — T2,3,7T1,2,4

71,2,771,3,4 — 71,3,771,2,4

—T2,4,771,2,3
M1,2,7713,4 T W147T123 = T124M137
—71,4,771,2,3

M2,4,77M1,2,3 + M1,27M234 = M237M1,24

The Grafimann relations in 3.50 allow us to make the following substitutions:

dQp 51,15.6)9Q 2,91,06,7.8) — Q1,216,719 2,805,681 =
dQ(1,2),5,6)9Q1,2,8),(5,7.8) T 4Q1,2),5,8/9 Q12,805,611 =

(3.51) dQq1,2),15,619Qq,2,81,15,7.8] — Q1,215,719 2,815,608 =
dQ(1,,16,819Q1,2.81,(5.6,7 T IQ1,2),5.69R,2,8),58,7.8]) =

_dQ[l,Z],[6,8]dQ[1,2,8],[5,6,7]
dQp1,2,(5,19Q,2,8),5.,6.8)
~4Qp1,21,5.89Q1,2.81,5.6,7)
dQp1,21,06,19Q1,2,81, (5,681

When 3.51 are substituted into the solution in 3.28 the resulting solution looks

much simpler:

s12s = (As,7As,s (dQ[1,2],[s,s]A6,6 "'/dQ[1,2],[5,s]A5,6)

(3.52) (‘dQ[s.s,sl,il,z,SJdQu,21,[5,6] + ins,sl,il,zldQ[l,z,sl.[5,6,81) +

7/

dQq 2) 6.8 ( dQps,6),11,219Q(1,2,81,(5.6.7 — dQ[l,z],[s,s]dQ[s,e,s],[1,2,7]) AgcArgAsr + -
dQ(1,2),(6,7) (_dQ[s,6,8],[1,2,s]dQ[1,2],[5,6] + dQ[s,6],[1,2]dQ[1,2,s},[5,6,8]) A7 7 A66A88 +
dQ1,),(5.8) (ths,GJ,[l,z] dQq1,2,8,15.6,7 — 4Q1,2),5.6) dQ{s,s,s],[x,z,ﬂ) A5 6As 1 Arg +
dQyy 2,557 (“dQ[s,e,s],[1,2,8]dQ[1,2],[5,6] + dQ['s,e],[1,2]dQ[l,z,s],[s,s,s]) AsAgg Az +
AzgArq (dQ[1,2],[s,7]A6,6 + dQ[l,z],[s,ﬂAs,s)
(dQ[s,6],[1,2]dQ[1,2,8],[5,6,7] - dQ[l,z],[5,6]dQ[5,6,s],[1,2,7])) /
dAr,8),17,819Q1 2),17,84Q1,21,5.614 Qs 01,112

which factors to become
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5125 = ((As5dQps611,29Q 215,68 — 47591 25,6195 81,127~
As,84Q(5.6,8,11,2.9Q1,2,5,6) + A7,sdQ[5,s],[1,2]dQ[1,2,81,[5,s,7]) |
(AQu 21551 46.6 48,7 + AQ 2151456487
+dQqy 5),56,7 47,7 46,6 + dQ[1,2],[s,7]A5,6A7,7)) /
(3.53) dAr,80,17519Q,21,07 599 21,561 9Qs a1 1.2

All of the sixteen solutions for the entries in Py, in terms of the entries of A factor

once they have been simplified using Pliicker-Grafimann relations.

3.2.1.4 A “special” model with a closed system of equations

Motivated by the observation that the rank of the direct map is generically 48, we
looked for a model which has 48 independent parameters, distributed evenly among the four
pixels. In order to reduce the number of independent parameters we made the following

identifications:
(3.54)  eije = wijw, sijs = nijn, sijn = nijs, eijw =wije for all 4,j.

The first two constraints are fairly natural. They represent iﬁstances of the prin-
ciple of “microscopic reversibility”. Notice that the other two conditions are a bit less
natural; they represent a certain type of “mirror symmetry”. Experimentalists often make
use of physically plausible constraints. Unfortunately, these constraints do not always sim-
plify the mathematical problem. For example, imposing microscopic reversibility on the
system would lead to less than twelve free parameters per pixel. Data matrices generated
by microscopically reversible n x n models are symmetric. This symmetry renders half of
the otherwise independent consistency conditions reduﬁdant. Unfortunately, it also renders
n(n —1)/2 of the data redundant. In the 2 x 2 case this reduces the rank of the direct map
to 28. Finally notice that we have not made the assumption that the probability of being
killed in a pixel is independent of the direction from Which.the photon entered the pixel.
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Once the above identifications are made, the problem has the following features:
the rank of the forward map remains 48, the main diagonals of P,, and P,, are common,

| and the off diagonals of P,, and P,;, are common.

3.2.1.4.1 Cubics and Quadratics In section 3.2.1.1 we had freedom to choose sixteen
of the 32vequations in the matrix equation 3.16 which were functions only of A and P,,. More
precisely, in each of the eight columns of equations in 3.16 we were free to choose two of the
four equations which were independent of P,,, and P,,. Experimentation with a few of the
(3)® = 1,679,616 possibilities showed that some choices of equations are better than others.
Thanks to a different choice of equations the results presented below are somewhat simpler
than those in [5, 6] and [7]. In this section, the solutions for the transition probabilities

were obtained by disregarding the equations in 2.8 corresponding to the ‘z’s in the matrix

below:
[0 000000 0]
0 0000 O OO
z 0 0 000 z z =z
zr 0 0 00 z z =z
(3.55)

0 z z z z 0 0O

O.mx:c:cOOO

When substituting the solutions found in section 3.2.1.1 into 3.54 the equations
corresponding to travel straight through a pixel yield eight quadratic identities. Many of

the equations which follow are identically zero and the “= 0” has been omitted.

dQs 6,(7.8) (dQu,z],[5,s]dQ[s,e,v],[1,2,7]As,7A7,8 = dQps,6,12,219Q1,2,7), 15,6, 47,7 48,8
+ (4Qu 245,619, 6711.20 ~ 9Q,611,19Qp,2,1,55.1) As.74ss)
(3.56) —dQ1,2),15,6)9Qys,61,11,2) (dQ[s,s],[2,7]A2,1A7,7 + dQs 6, 12,8 48,742,1
+dQ[5,§],[1,7]A1,1A7,7 + dQ[s,e],[1,s]As,7A1,1) )



(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

41

dQps 611,21 (9Qs.61,17.619Qz,5.61 2.4 42,2411 — dQys 611,995,617, A1 2421
- ('dQ[s,s],[3,4]dQ[z,5,s],{1,7,s] + dQ[z,s,s],[1,3,4]dQ[5,61,[7,s]) A1,1A1,2)
+4Qys, 6117819 Qs. 615,41 (AQs. 61181488412 + AQps 62,71 A7,5 4
+dQps 611,71 Ars 412 + Qs 6 gy As,s Az ) 5

dQ(; 21,(5.6) (dQ[1,z],[7,s]dQ[1,z,s],[3,4,s]A6,6A5,5 — dQp 2,13,49Q1,2,5),5,7,8) 46,5 45,6
- (—dQ[x,2j,[3,4]dQ[z,z,s],[s,-/,s] + dQ[1,2,5],[3,4,6]dQ[1,2],[7,8]) Ae,eAs,s)
—dQq,2),3,419Q1,2)(7,8] (dQ[1,z],[s,7]A7,7As,s + dQp 21,5,6148,7 45,5
+dQyy 9,16, A7,7 46,5 + dQ[1,2];[s,s]As,7As,s) ;

dQpy 21, (3,4 (dQ[l,z],[s,s]dQ[s,s,s],[1,2,3]A3,3A4,4 = dQps,6),11,21dQ1,2,31,(3,5,6) 44,3 43,4
- (“dQ[s,s],[1,2]dQ[1,2,3],[4,5,6] + dQ[s,s,s],[1,2,4]dQ[1,2],[5,6]) A4,4A4,3)
Q1 21569911121 (4Q 205455408 + A3 46,54Q 21 g
+dQp1 23,6/ 46,5433 + dQ[l,z],{g,s]As,sAs,S) ;

dQss,015.4 ((4Qus.01,01.29Q 2,959 ~ 49,205,090 as.01012.) Az

—dQu,z],[5,s]dQ[4,s,vs],[1,2,4]A'4,3A3,4 + dQ[s,s],[1,2}dQ{1,z,4],[4,5,s]A3,3A4,4) -

dQp1,23,(5,619 Qs 61,11, _(dQ[S,GL[M]A‘*v‘*Al’Z + dQps 6,12, Ae,0 42,2+
dQ[s,s],[1,3]A1,2A3,4 + dQ[s,s],[z,a]A2,2A3,4)

,. dQ[1,z],[§,s] (—dQ[l,z],[3,4]dQ[l,2,6],[6,7,s]A6,6As,s + dQ1,2),17,8/9Q11,2,6),(3,4,6) 46,5456
+ (.dQ[l,2,6],[3,4,5]dQ[1,2],[7,8] = dQ[1,2],[3,4]dQ[1,2,6],[5,7,8]) AS,GAS;S)
| +dQ[1,2],[3,4]dQ[1,2],[7,8] (A4,4A6,sdQ[1,z],[4,s] + dQp1,2),(4,5)44,4 45,6
+dQ1,2),(3,6) 46,6 43,4 + dQ[1,2],[3,5]A3,4A5,6) )
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4Qus 01111 (~4Qs.0105.09Q.0,00,7 422411 + 421 4124Q 5.6,018 4D s.0,178)
+ (dQ[s,s],[7,s]dQ[1,s,e],[2,3,4] - dQ[l,s,s],[2,7,s]dQ[5,s],{3,4]) Az,l_Az,z)
(3.62) +dQ[5,G],[7,8]dQ[sy,;],[M] (dQ[s,G],[z,4]A4,3A2,1 + dQps 612,31 43,3 42,1
+dQps 611,440,341, + dQps 611,545,541, )

and finally

dQ(1 2),(7,8] (dQ[s,s],[1,2]dQ[1,z,s],[s,s,s]As,7A7,8 = dQp,2,5,6/9 Qs 5,87, (1,2,8) 47,7 48,8
+ (dQ[s,s],[1,2]dQ[1,2,8],[5,6,7] - dQ[1,2],[5,e]dQ[5,s,g],[1,2,7]) A7,7A7,s)
(3.63) +dQy1 25,61 9Qs,61,11,2] (dQ[l,z],[s,s]As,sAs,s + dQ(1,2,16,7146,6 A7,
+dQqy 2),;5,745,6 47,8 + dQ[1,21,[s,s1As,sAe,s) |

The identifications corresponding to reversing direction inside a pixel yield eight

cubic equations:

(3.64)  —A21dQ5 6),11,29Qs 61,17,8)d Qs 60, 3,4) —
dQ[s 6],12,3] (dQu 5,61,(1,3.4]9Qs,61,17,8) — dQq1.5,60,12,7,819Qs 61, (3,4 ) A33ArpAL —
Qrs.6),(2,4] (dQ[l 5,6],(1, 3,4]dQ[5 6,(7,8) — AQq1,5,61,11,7,819Qs,61,3, 4]) Ag3Az24A1 —
dQs,6),01,3] (dQu 5,60,(1,3,419Qs,61,17,8) — 4Q1,5,61,11,7,8519 Q5. 61,3 4]) A12A11435 —
dQs 61,(1,4) (dQ 1,5.60,(1,3,4/9Q5.6),17, 5 ~ dQy1 5.6,11,7,819Qs,6)(2 4]) A12As34:, —
dQ[s 6] [2,3] (dQ 5,6],(7,8] Q[l 5,6),{2,3,4] © dQ[l 5,6],(2,7 S]dQ[s 6],{3 4]) A2,1A3,3A2,2 -
dQs,6),12,4] (dQ[s 61,17.819Q(1,5,61,(2,3,4) — 4Q(1,5,6,12,7,819Q5,61,(3,4] ) Ag3Az 1Az, —
dQps6),11,4] (dQ[s,e],[7,s] Qu 62,34 — dQ[l,s,e],[2,7,8]dQ[5,e],[3,4}) A12A4342,
(dQ[s,G],[7,8]dQ[s,s],[3,4]dQ[1,5,6],[1,2,3] — dQp5.6),12,591,5.61,11,3,09Qs 617,81 T
dQ[s,s],[1,3]dQ[s,s],[3,4]dQ[l,5,6],[2,7,s]) Ay 2421433,



(3.65)

| (3.66)

As,5dQp1 21 5,6:9Q1 215,49 Q 2178
+dQp1 2 s8] (‘ dQp 282,659 Q2 r.0 + 49,210,491 2,51 15.7.51) As,648,745,5
+ (dQp 21,49 2.799Q125.15.68 ~ 3Q,2116,519Q02.27.619Q 2515451+

dQq 1 45,19Q1,25.49 Qs 251571 As.7As 0 Ass |
deQ[l,z],[s,s] (dQ[l,Z],[3,4]dQ[1,2,5],[6,7,8] - dQ[l,Z,S],[3,4,6]dQ[1,2],[7,8]) Ag 5 Ag 7 Ass
+dQ 215,81 (491205092 11,2.50,6,7.81 — Q250 5.0.6) 4Qz17.) AssAs 5 Asr
+ Q16,1 (~4Q 25105659217 + AR 215,409 251 5.10) ArrAs.s s s

. +dQ[172]7[5’7.] (—.dQ[l7275]’[3)4,5]dQ[112]v[718] + dQllsz]1[314]dQ[1,2.5],[5,7,8]) A516A7,7A5,5

+dQ[1 2],[6,7] ( dQ[l 2}, [3 4]dQ[1 2,5],(6,7,8] dQ[1 2,5},[3,4 S]dQ[l 2},[7,8 ) As 5A6 6A7 7
(dQ[1 2,03,419Q0,21,17,814Q1,2,51,05.6,7 + 41,21, 7]dQ 1,2,7,819Q1,2,51,(3,4,6) —
dQq 2)16,19Q1 2 5419Q1 2.51,5,7.51) Ao.54s,6 47,7,

—AS,SdQ[l 2],{ 5,6]dQ[1 2 ,[‘;3,4'dQ [1,2],[7,8) |

+dQyy ) 1,[3.5] ( dQyy,2,6,(3,4,59Q [1,21,[7.8] + dQq1 2),3,4/9Q1,2,6), 578]) Az 4 AssAse

+dQ1 29 14,61 ( dQp1,2,6),13.4,5 dQ[1 2,78 T dQq1,21,13,4/9Q1,2,6),(5,7 s]) Agshssdss

+dQ(1,2),(a,6) ( dQ1,2,6),(3,4,6/9 Q121,781 T+ dQ[1 2),13,419Q(1,2,6),(6,7.8 ) AesAs,046,5

+dQp 24,5 ( dQp,2,6),3,4,519Q1 23,1781 + de,z},[3,4]dQ[1,2,s],[5,7,s1) As5As4456

+dQp,1,13.6) (_dQ{1,2,s],[3,4,6]dQ[1,2],[7,8] + dQ[l,z],[3,4]dQ[1,2,6],[6,7,8]) Ap5Az,446,5

- ( dQ[1,2],[3,4]dQ[1,2],[7,8] dQ[1,2I,6],[4,5,6] - dQ[l,Z},[4,5] dQ[1,2],[3,4}dQ[1,2,6],[6,7,8]+
dQ[1,2],[4,6]dQ[1,2],[7,8]dQ[1.,z,e],[3,4,5]) Asslep4ss

+ (dQu,ﬂ,la,ﬂdQ[l,zl,[7,sidQ[1,2,e'1,[s,s,61 +dQp 21,13,619Q1,21,5,49Q1 2,61, 65,7.8
dQ[1,2],[3,5]dQ[1,2},[7,s]dQ[1,2,e],[3,4',6]) AgsAs Az

- (dQ[l,Z],[3,4] dQ[1,2],[7,8]dQ[l,Z,G],[3,5,6] - dQ[l,2],[3,5]dQ[l,2],[3,4] dQ[l,Z,G],[6,7,8]+
dQ[1,2],[3,6]dQ[1,2],[7,8]dQ[1,2,6],[3,4,5]) Asz,4A6,64s,5,



(3.67)

(3.68)

44

—Ar,8dQ 27,891 21,15,619 Qs 01,2,

~dQp 214 (AQus.0,0.29Q, 215,67 — 4Qr 205,099 6.8,01,2.1) Arr s o Ars

= dQp ), (53] (—dQ[s 6.81(1,2,819Q1,21,5,6) + AQs.61,12,219Q1,2,8),(5.6 s}) AgsAs6As,7
—~dQp 21451 (—4Qs. 6,611,219 256 + 49, 61,0.29Q,2.8,5. 51) As o s s
—dQq1,2),5.9) ( dQs 61,11,219Q(1,2,8),5,6,7 — dQ[1,2],[5,6]dQ[5,6,8],[1,2,7]) As6As7A7s
~dQp1 5151 (4Qps ,1,29Qp 215,61 — dQp1 2 5,69Qs 6,511.2,7) Ao.6A7.84s,7
—dQ1,21,06,7) ( dQs.6.,81,11,2,8) 4Q1,21,5,6) T 9Qps,67,1,2) 4Q1,2,8), 5,s,s]) Az A6 638
~dQ 21,57 (dQ[s 61,1,2)4Q1,2,8,15.6,7 — 49, 2,5,6/9 Q5.6 81,[1,2 7]) AseA7847 7
—dQ 21,5,7) ( =dQs,6,8),1,2,8/9Q1,21,15.6) T dQ[s,e],[1,2]dQ[1,2,8],[5,6,8]) As 6 Ag s Az 1,

A4,3dQ[1,2],[3,4]dQ[1,2],[S,G]dQ[S,SL[L?]
+dQ[1,2),13.5) (dQ[s,a],[1,2]dQ[1,2,3],[3,5,s] — dQ3 5,6),01,2,39Q [1,2],[5,5]) AssAz44;5 3
+dQ (1,213,581 (dQ[s,s],[l,g] dQq 2,3 14,56 — dQ[s,s,e],[l,2,4]dQ[1,2],[5,6]) Ay3AssAs s
+dQyy 2),3,6] (dQ[s,s],[1,2]dQ[1,2,3],[3,5,6] - dQ[s,s,s],[1,2,3]dQ[1,2],[5,6]) Az 4As 5433
+dQ(1,2),4.6) (dQ (5.6,(1,2/9Q1,2,31,(3,5,6) — dQ[s,s,e],[l,z,s]dQ[l,z]3[5,6]) AgsAs3hes
+dQ 1,2],(4,6] (dQ[S,G],[1,2]dQ[1,2,3],[4,5,6] - dQ[s,s,s],[1,2,4]dQ[1,2],[5,6}) A6,5A4,4A4,3
+dQq1,2,(4,5) (dQ[s,s],{1,2]dQ[1,2,3],[4,5,s] — dQq35,6,11,2,419Q [1,2],[5,6]) As5A44As3
+ ( dQ[s,s],[1,2]dQ[1,2],[5,6] dQ[1,2,3],[3,4,5] - dQ[l,z],[4,5]dQ[1,2],[s,s]dQ[s,s,s],[1,2,3]+
dQ[l,z],[3,s]dQ[s,s],[1,2]dQ[1,2,3],[4,5,§]) As5A3,3A444
- (dQ[s,e],[1,z]dQ[1,2],[5,s]dQ[1,2,3],[3,4,6] + d.QI[l,z],[3,6]dQ[1,2],[s,s]dQ[a,s,G],[1,2,4]
: _dQ[1,2],[4,6]dQ[5,6],[1,2]dQ[1,2,3],[3,5,6]) A4,3A3,4A6,5’



(b3.69)

(3.70)

and

A3,4dQs 610,491 215,995 61,2

_dQ[s,e],[z,s] (dQ[s,e},[l,z]th1,2,4],[4,5,6] - dQ[l,z},[5,s]dQ[4,5,s],[1,2,4]) A2,2A3,3A4,4

—dQ[5,6]»[2,4] (dQ [516],[1,2]dQ[1,2,4],[4,5',6] - dQ[l,z],[5,6]dQ[4,5,s],[1,2,4]) As3As 4z

+ (dQ[s.,ej,[1,2]dQ[1,2],[5,e]dQ[4,5,6],[1,3,4] - des,s],[1,3]dQ[s,s],[1,z]dQ[i,2,4],[4,5,s] .
+dQs 611,419Qs 215,69 Qa5 0,012) Ar2 s adss

—de[S,G],[l,fl] (dQ[s,s],[1,2]dQ[1,2,4],[4,5,6] - dQ[l,z],[s,e}dQ[4,s,s],[1,2,4]) A4,3A1,2A4,4

-dQ[s,s],[z,s] (dQ[s,s],[1,2]dQ[1,2,4],[3,5,e] - dQ[l_,z],[s,e]dQ[4,s,s],[1,2,3]) Az 4As 2453

- (dQ[S,6],[1,2]dQ[l‘,Z],[5@]th4,5,6],[2,3,4] - dQ[s,é},[z,s]dQ[1,2],[5,6]dQ[4,5,6],[1,2,4]‘
+dQ[5,G],[2,4]dQ[5,6],[1,2]dQ[1,2,4],[3,5,6]) Ay 3Azada |

—dQs 6,11,3] ( dQ[s,s],[1;2]dQ[1,2,4];[3,5,s] - dQ[1,2],[5,6]th4,5,e],[1,2,3]) Ay 2434433

—dQqs 61,11, (dQ[s,a],[1,z]dQ[1,z,4],[3,5,é] - dQu,z],fs,s]th4,s,s],[1,2,3]) Ay3A1 2454,

“As,b7dQ[5,s],[7,s]de[5,s],f1,2]dQ[1,2],[5,6] ' .

+ (dQ[s,s],[1,z]dQ[1,2],[5,s]dQ[5,s,7},[1,7,s]v— dQs 61,11,719Rs,61,01,219Q2,2,71,05.6.8
dQ [5,6],[1,3]dQ[1,2],[5,6]dQ[s,s,7],[1_,_z,7]) A1 A7848,7

- d.QIS,GI,[l,SJ (dQ[S,Gl»[m} dQ[1,2,7],[5,6,8] - dQ[l»z],[s,G]dQ[5,6,7],[1,2,s]) AggAy1As7

_dQ[s,sj,[1,7] (—dQ[l,Z],[5,6]dQ[5,6,7],[1,2,7] + dQ[s,s],[1,2]dQ[1,z,7],[5,6,7]) A7,7A1,1A7,8

- _(dQ s.6,2 9Qqu21,5,699s,6,71,0,7.8 — 9Qs,61,01,19Q0,21,5,6 Qs 6,71,11.2.8]
+dQis 61,11.,6/4Rps,61,11.2) dQ 1,2,7),(5,6.7 ) AggAr7A1,

—dQs 61,(2,7) (dQ[s o1,1,219Q1,2,71,15.6.8) — 4Q0, 21,15,614Qys.6,71,(1.2.8 ) Az ArgAsr

_dQ[s 6],2,8] (dQ[S,G],[l,Z] dQ[1,2,7],[5,6,8] - dQ[1,2],[5,s] dQ[5,6,7],[1,2,8]) A8,8A2,1A8,7

~dQs 612,71 (—4Q1 15,69 Qs.6.708.2m + dQ[s,sl,[l,zldQ[1.2,71,_[s,s,ﬂ) Arg Az Arg

- (dQ[S,G],[l,Z]dQ [1,2],[5,6]dQ[5.,6,7.],[2,7,8] — dQs.6),12,719Q1,51,5.61 Qs.6,7),11,2.8)
+dQ[5,e],[§,s] dQ[s,s],[l,2]dQ[1,2,7],[5,6,7]) AggAr 74z,

45
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(3.711)  A12dQqs5,6),11,2)dQs,61,17,6)9 s 61, 3.4

+ (4Qps 617,619 Qs 61 3,419Q2.5.611,271 T AQs,61,00,19Qs 81,07.519 Rz .01 2.5,
~dQys 6)2,79Qs 51,419 Q2,5.611,78)) A7, 422411

+dQ[5,;],[1,7] (— dQps,61,3,419R02,5,61,11,7,8) T dQ[z,s,s],[1,3,4]dQ[s,e],[7,s]) A 2A1 1478

+ (dQ[s,s],[7,8]dQ[s,s],[3,4]dQ'[2,5,s],[1,2,s] + dQ[s,s],[i,s]dQ[s,s],[7,s]dQ[z,5,s],[z,3,.4]—
dQ[S,G],[2,8]dQ[5,6],[3.4]dQ[2,5,6],[1,7,8]) AggAz241 1

+d Qs 61,11,8] (—dQ[s,s],[3,4] dQp5.6,11,7,8) T dQ[z,s,s],[1,3,4]dQ[5,6],[7,s]) A; 2411458

+dQys,61,(2,7 (dQ[s,sl,tv,s]dQ[z,s,sJ,[z,s,q - dQ[S,S],[3,4]dQ[2,5.,6],[2,7,s]) Az1Arshss

+ (dQ[Q,s],[z,;]dQ (2,5,60,(1,3,419Qs.63,(7.8) = AQs,61,1,719Qs,61,13,4) AQp2.5.61,12,7.]
—dQs.6),7,8) dQ[s,s],[3,4]dQ[2,5,6],[1,2,7]) A12Az1475

+d Qs 6),(2,8) (dQ[s,s],[7,8]dQ[z,s,e],[2,3,4] - dQ[s,s],[3,4]dQ[2,5,6],[2,7,s]) Az 1Az Az

+d Qs 6,(2,8) (—dQ[s,s],[s,«;]dQ 2,5.6),(1,7.8] T 4Q2,5,6),1,3,4] dQ[s,s],[7,s]) Ay 2Ar 1445

3.2.1.4.2 Simplifying cubics by adding Grafimann identities Grafimann-Plicker

relations allow us to simplify one of the coefficients in 3.64. Note that

- dQps,61,07,819Q5,61,13,419 Q1 5,61, 11,2,3] — AQys,6,12,819 Q1. 5,61:11,3,419 Qs 61, 17,8)
(3.72) Qs 61,11,39Qs,60,3,09Qn s 61, 2.7.8) =
dQys 61,(7,8) (dQ[s,el,[3,41dQ[1,5,6},[1,2,3] - dQ[s,el,[z_:sldQ{l,s,s],[l,s,‘t]) +

dQys 61,11,919 Qs 67,13,414 Q1 5,61, 12,7,8)
If we consider the element of G(3,7),
Qi1 Q12 Qi3 @1e 1 00
(3.73) Qs Qs2 Qs3 Qs4 0 1 0
Q61 Qo2 Qo3 Qea 0 0 1
then we can write
(3.74) dQ[S,G],[3,4]dQ[1,5,6],[1,2,3] = dQ[s,s],[2,3]dQ[1,5,6],[1,3,4] = T3,4,5M1,2,3 — T2,35M1,3,4

but if we use the Grafimann relation



(3.75)

(3.76)

(3.77)

M3,4,571,2,3 — T3,4,175,2,3 + T3,4275.13 — M3,4,3T5,1,2 = 0

we can simplify the right hand side of equation 3.72

dQys,6,5.49Q15,6011,2,3 — AQs,61,02,99Q 5.6,11,3.0 = ~9Qs,611,599Q15.61,2,2.4

when we substitute this into the only “complicated” coefficient in 3.64 we get

dQs,6),7,819Q5,61,(3,419R11,5,61,1,2,3) — IRps.61,2,319Q1,5,61,11,3,4/d Qs 61, 17,8)
dQ[S,G],[1,3]dQ[5,6],[3,4]dQ[1,5,6],[2,7,8] =
—~dQys 6),11,3] _(dQ[s,s],[7,8de[1,5,e],[2,3,4] = dQq 5.6, (2,7.8) dQ[s,s],[3,4])

when we substitute this into equation 3.64 we get

= A21dQp5,61,1,29Qs ), [7sdQ[5s] 8.4]

(3.78)

- (3.79)

—dQs,6),(2,3] (dQu 5.61,(1,3,419Qs.6], r.8) = dQq 5,6),11,7 s]dQ[s 6,(3,4 ) Az 3z Ar
_dQ[s,s (2,4] (dQ 1,5,6],{1,3,4 dQ[s 61,17, 8] - dQ 1,5,6) [1 7 s]dQ[s 6],[3,4] ) A4,3A2,2A1,1
(dQ 1,5,6],(1,3,4] Q[s 6),(7,8] dQ[l 5,6],[1,7,8 dQ[s 6],3,4] ) A1,2A1,1A3,3
(dQ[l 5,6,(1,3,419Q5.,61,(7,8) — 4Qpu,5,6),11,7 s]dQ[s 6.l 3,4]) A12A434,,
“dQ[s 6],(2.3] (dQ[5 6,17,819Q1,5.6),12,3,41 — 9Q(1,5,6,(2,7,8/9Q 5,61, 4]) A2,1A3,3A2,2
—dQs 6),(2,4) (dQ[s 6,07.819Q01,5,61,12,3.4) — AQ1.5,61,12,7,819 Qs 61, 3,4]) Ay3A314;5

(dQ[s a,17,819Q(1,5.61,(2,3,4) — dQ[l 5,6,(2,7.814Qs,6),3 4]) A2A2,1433
—dle 6],(1,4] (dQ[s 6107.89Q,5 o234 ~ dQq15,6),(2,7,5)9Qs 61,13, 4]) Ar2As3A2,1

And this simplified cubic equation factors neatly:

- (dQ[s,s],[z,s]_Az,sAz,z + dQps.6),12,944,342,2+
4Qus 10,5412 453 + 4Qus 11,041,244
(_A2,1dQ[l,s,e],[2,7,s]dQ[5,6]‘,[3,4] + A2,1dQgs 6 17,6191 5,61, (2,3,4)F
A1,1dQy 561,115,495 61,78 — Al,ldQ[l,5,6],[1,7,8]dQ[5,6],[3,4]) -
A218Qp5,6,1.29Qs 617019 s1 381
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" After simplification with Grafmann-Pliicker relations the rest of the cubic equa-

tions factor similarly:

(4Qpz 25,61 46.6 48,7 + AQp 21 fo 1 Ar,r As o+
dQp 215,456 48,7 + AQp 115,145 0 Ar7)
(A5.09Q5.6.0.01,2.89 Q1 15 — 48.89Qs.0,0,29Q 2,150
Ar,sdQps 61 11,29Q 281567 + A789Q1 215,619 Qs.6.811.21) —
(3.80) Ar,8dQq 2,17,819Q 25,619 Q5,612

(A2,145,8dQs g1 2.6) + AQs 011,71 A12 Ar s+
vz dQus gy + A1,145.8dQs 01115))
(As.7dQs 2115.619Qs,6,711,2.81 — A8.74 Qs 611,29Q 27105.08+
Ar2dQq 245,049, 1,02m ~ Q5,000,291 27 5.0.0477)
(3.81) - As,7dQgs 6, 17,619Q5,61,11,214 Q1. 21, 5,61

(dQ[l,é],[s,s]Ae,sAs,"/ + dQ[1,2],[5,7]A7,7A6,6+
- dQqy 25,8 45,6 48,7 + dQ[l,z],[5,7]As,6A7,7) _
(AG,SdQ[l,z],[3,4]dQ[1,2,5],[6,7,8] - dQ[l,z],[7,8]dQ[1,2,5],[3,4,6]A6,5+
AS,SdQ[l,z],[3,4]dQ[1,2,5],[5,7,8]v_ As,sdQ[l,z],[7,s]dQ[1,2,5],[s,4,5}) +
(3.82) As,54Qq1 215,69 R1,21,5,419Q1,2),17.8)

— (~A412dQp2 5 611,049 s 617,61 + 41,205 6115419 R 5,611,7.81—
A5,24Qps 67,519 Q5.6) 23,4 + 4228 Q5,615,092 5,612,751
(Az,lAs,sdQ[s,e],[z,s] + dQ[s,s],[1,7]A1,1A7,s + A7,8A2,1dQ{5,e],[2,7]+

(3.83) A1,1f48,8dQ[5,s],[1,s]) + A1,2dQs 6),1,219Qs,61,7,8/9 Qs 61,13,4]
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(dQ[5,611[2,3]A3,3A2,2 + dQ[s,s],[z,4]A4,3A2,z+
‘ dQ[5,6L[1,3]A1v2A3,3 + dQ[s,s],[1,4]A1,2A4,'3)
("A4,4dQ[5,e],[1,2]dQ[1,gT4],[4,5,s] = A3,4dQs.6,11,219Q1 2,413,561
A3,4dQy1 2),5,6/dQs 5,6, 11,23 T A4,4dQ[1,2],[5,6]dQ[4,5,6],[1,2,4]) +

(3.84) - Asad Qs 61,03,41 AR 21,05,6/d s 6,1,2)

— (6,5 43,44Q 21 po0) + Q213,545 5 Asa+
dQp gy 54 sAes + de,zl,g,e]Aé,sA‘;,‘;) |
(dQ[l,z],[s,s]dQ[a,s,e],[1,2,4]A4,_3 = dQq1,2,5),4,5,6:9Q5,61,11,2) 44,3~
A3,3dQ[5,6],[1,2]dQ[1,2,3],[3,5,G] + A'o'_,3dQ[1,2],[5,6]dQ[3,5,6],[1v2,3]) +
(3-85) N A4,3dQ[1,2],[3,4]dQ[1,2],[s,s]dQ[s,s],[l,z] ' | '

(AS,GdQ[l,2],[3,4]dQ[1,_2,6],[5,7,8] - AﬁdeQll,Z,ﬁl,[&M]dQ[1»2]y[7v8]+
Ae,6dQ(1 2,13,99Q1,2,6),(6,7,8) — As,sdQu,z,e],[3,4,s]dQ[1,2],[7,s])
(A6,5A5,4dQ[1,z],[3,s] + dQq,2),3,545,5 43,4+
| Qs 210,514,541, + Q0 o5 A0 ) —
(386) As,6dQp1 29, 15,6191, 21,(2,419Q1,21,17.8] |

3;2.1.4.3 Solving the Equétions The variables in these equations appear in a .very
systematic form. Each equation is a polynomiai in six variables: four from one of the 2 x 2
subblocks of A, the other two from one of the neighborfng subblocks of A. Furthermore, for
each cubic there exists a quadratic which is a function of the same six A;;’s. Finally, each
of the equations is linear in the 4, ;’s from the neighboring subblock. The following table

shows the pairings of variables of the quadratics and the cubics: -
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equation linear wvariable pair of two four wariables
pair linear wvariables
1 Az, Ass, Aygs Ay, A15,A21, 42
2 Arg As6, A AnyArg, Agry Agg
3 Agy A1, Az, A, Arg, Ag 7, Ass
4 Ass Az, Aga Ass, Asyes Asysy As s
5 Az Arg, Ags A1, 412,421, 422
6 A3,4 A1,2, A2,2 A3,31 A3,47 A4,3) A4,4
7 Ay As s, Asys Az, Azg, Agz, Agy
8 As Az, Ass Ass,As s, As s, Ass

(Note that the first column applies only to the cubics.)
From the above chart, we can see that we may either solve pairs 2,3,6, and 7 for
the subblocks of A containing A4, 412,421,422, 455, As,s,As,s, and Ag g, (Or vice-versa).

After making these linear solves we get solutions of the form



Ay = dQps 63,4 ( — dQ[ZLz],[s,s]dQ[zs,s],'[1,2] (dQ[s,e],[z,a]A§,4 +_dQ[5,s],[z,4]A4,4A3,4)
+dQs 6),(2,3) (dQ[1,2,4],[3,5,6]dQ[s,G],[l,z] - dQ[1,2],[5,s]dQ[4,5,s],[;,2,33) i A} LA,
+ (dQ[S,G],[2,3]dQ[21,2],[S,G]dQ[24,5,6],[1,2,4]
+2 dQ[s,s],[2,4]des,e],’[l,z]dQ[l,z,:;],[4,5,6]dQ[1,2,4],[3,5,s]
—dQgs 6,12,319Q1,21,65,619Qa,5.61,11,2,19 Qs 61,12,21 AR 2,41 f0,5.6]
""‘dQ[s,s],[z,‘;] dQps 61,11,219Q01,2,41,13,5.6) Qt,2105,619Qe,5.61,11,2,41
. +dQ[5,G],[2,4]dQ[21,2],[5,6]dQ[4,5,6],[1,2,3]dQ[4,5,6],[1,2,4] .
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—2dQ5,6),2,4) 9Qs,61,02,219Q1,2,4),(4.,5.6] dQ[1,2],[s,s]dQ[4,5,s],[1,2,3]) Az sAs3Ag44s;3

+ (dQ[s,G],[1_,2]dQ[1,2,4],[4,5,6] - dQ[x,z],[;,e]dQ[4,5,s],[1,2,4])
) dQ[s,G],[.l,z]dQ[s,G],[2,3]dQ[1,2,4];[4,5,6]Ai,4A§,3 )
+dQ(s,6,(2,3] (“dQ[1,2],[5,6]dQ[4,5,6],[1,2,4] +2 dQ[s,e],[1,2]dQ[1,2,4],[4,5,6]-)
| (dQ[1,2,4],{3,5,s]dQ[5,s],[1,2] - dQu,z},[s,s]dQ[;',s,s],[m,s]) A3 Ay aAs,
= (dQ[s,s],[1,2]dQ[1,2,4],[4,5,6] - dQu,2],[5,e]dQ[4,5,e],[1,z,4]) '
| dQ[s,s],[z,;]dQ[1,z],[s,e]dQ[4,s,s],{1,2,4]143,4144,414:,3
+ (dQ[s,s],[i,z]dQ[1,2,4],[4,5,6] - dQ[1,2],[5,6]dQ[4,5,s},[1,2,4])
{ dQ[s,s],[l,2]dQ[s,s],[2,4]dQ[1,2,4],[4,5,s]A3,3Ai,4A4,3
- (dQ[1,z,4],[3,s,s]dQ[s,e],[1,z] - dQ[l,z],[5,6]dQ[4,5,6],[1,2,3])
dQ[s,s],[2,’4_]dQu,z],[s,s]dQ[4,5,e],[1,2,4]A§,4A§,3
+ (dQ[1,2,4],[3,5,6]dQ[5,6],[1,2] - dQ[1,é],[5,s]dQ[4,5,6],[1,2,3])
(dQ[s,s],[2,4] dQ1,2,41,(3,5,619Qs,8),11,2) — dQ[s,s],[2,4]dQ[l,z],[5,e]dQ[4,s,e],[1,_2,3]—
dQ[s,e],[z,a]dQ[l,z]',[s,e]dQ[4,5,sJ,[1,z,4]) Aspd] 4 Ass/
AQy 115,619, 011.28A 05015, (4009012219 Qs 21150
—A4,4dQq 2),5,6)9Qu 5.61,1,2,9) T '
Asz4 dQis61,11,219Q(1,2,4),3,5.6) — A3,4dQ[1,2],[s,e]dQ[4,5,6],[1,2,3])
(—dQ[s,s],[2,4] dQrs 61,11,3) T AQs 61,11,4 d_Q[s,s],[z,s])

The denominator may be simplified (a little) with the Grafimann relation

(3.87) —dQs 61,12,39Qs,61,(1,4) T 9Qs,60,2,419Q 5,61, 11,3) = AQs,61,12,219Rp5.61,(3,4]
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The result is

Arz = (= dQf 25,695,602 (dQ[s,e],[z,s]A§,4 + dQ[s,s],{2,4]A4,4A3,4)
+dQs 61,1231 (dQu,2,4],[3,5,s]dQ[5,s],[1,z] - dQ[l,2],[5,6]dQ[4,5,s],[1,2,3])2 A3 AL
+(dQ[S,G],[2,3]dQ[21,2],[5,6]dQ[24,5,6],{1,2,4] o
+2 dQys 6),12,09Q5.61,11,219Q1,2,0114,5,6/ 91, 2,413,5.6]
—dQs.6),12,319Q1,21,15,619 Qs 5,61, (1.2, 9 Q5,611,211 2,41, 4,5.6)
_dQ[s,s],[2,4] dQ[s,s},[i,z]dQ[l,z,‘;],[3,5,6] dQ[1,2],[5,6]dQ[4,5,6],[1,2,4]
+dQ(s 6,2, 9% 21,(5.619.5.60,1,2,59Qpa,5.60.1,2.4) |
~2dQs,61,12,4) 9Qys,61,02,29 Q12,41 14,5.6] dQ[1,2]Q,’[5,6]dQ[4,5,6],[1,z,3]) A3 aAisAssAsy
+ (dQ[s,s],[1,2]dQ[1,2,4],[4,5,6] - dQ[l,Z],[5,6]dQ[4,5,6],[1,2,4])
Q5,611,295 61, 12,219 Q1 215,61 44,4 43,3
' +dQs,6),(2,3) (—dQ[1,z],[s,s]dQ[4,5,s],[1,2,4] +2 dQ[s,e],u,z]dQ[1,z,4],[4,5,s])
(dQ[1,2,4],[3,5,6]dQ[5,6],[1,2] = dQ[1,2],[5,6]dQ[4,5,6],[1,2,3]) Az AsaAl
- (dQ[s,s],[1,2]dQ[1,2,4],[4,5,6] - dQ[l,Z],[S,G]dQ[4,5,G],[1,2,4])
- Qs 6,12,419Q01,21,15,61 Qs 5,61, 1,2,41 43,0 40,045 5
+ (dQ[s,s],[1,2]dQ[1,2,4],[4,5,s] - dQ[1,2],[5,6]dQ[4,5,6],[1,2,4])
dQ[S,G],[l,z]dQ[S,G],[2,4]dQ[1,2,4],[4,5,6]A3,3AZ,4A4,3
- (dQ[1,2,4],[3,5,6]dQ[s,e],[1,2] - dQ[1,z},[s,s]dQ[4,5,s],[1,2,3])
dQps 6),12,419Q01,21,5,619Qa 5,6,2,2,41 43,445 5
+ (dQ[l,2,4],[3,5,s]dQ[5,s],[1,2] - dQ[1,2],[5,6]dQ[4,5,6],[1,2,3])
(dQ[s,s],[2,4] dQp1,2,41,3,5,619Qs,61,11,2) — AQs,61,12,419 1,21, 15,6)9 R, 5.60,11,2,31—
dQ[s,e],[2,3]dQ[l,z],[5,6]dQ[4,5,6],[1,2,4]) Az 343 4 Aga/
dQ[l,2],[5,6]dQ[5,6],[1,2]dA[3,4],[3,4] <A4,4dQ[5,6],[1,2}dQ[1,2,4],[4,5,6]
—A4,4dQyp 55,619 ,5,61,01,2,4) T
Asze dQp5.6),11,2)9Q01,2,4),3,5,6) — As,4dQ[1,z],[5,s]dQ[4,5,s],[1,2,3]) dQs 61,11,2)
Once solutions of this form are substituted into equation pairs 1, 4, 5 and 8, we

are left with eight messy equations. The equations which were once cubic now have twenty

terms; the equations which were once quadratic have one hundred terms. All eight equations
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share one important feature: the remaining A; ;’s appear in pairs. To solve the last eight

equations we make the substitutions
(3.88) .~ Ay =Ass qu, Aga=Ass @3, Asy = Arz g3, Agg = Ars a4

One of the four (pfeviously) cubic equations is shown below.

~q1 434 (—dQu 5.611,2:414Q1 215,61 + Q1 2,959 612,21
((—dQ[s,s,s],[1,2,7]dQ[1,z],[4,5]dQ[i,z],[5,s] + dQs 6),1,29R0 2,14,59R(1,2,80,5,6,7F
dQ[1,2,5],[4,7,8]dQ[S,G],[1,2]dQ[1,2]v,[5,6])
( dQs 6),11,219Q1,2,3),13,5.6) — 2 dQ[s,s,s],[1,2,3]dQ[1,2],[5,6]) ¢’
+ (dQ[ZS,S],[1,2]dQ[1,2,3],[4,5,6]th1,2],[3,s]dQ[l,z,s],[5,6,7]+ '
. dAQ[zs,G],[lﬂ]dQ‘ [1,2],[4,5]dQ[1,2,3],[3,5,6] dQ[l,Z,S],[5,6,7]
+dQ[25,6],[1,2] dQ[1,2,3],[3,5,6]dQ[1,2],[5,6] dQ[I,Z,S],Y[4,7,8]
—dQq 215,60 9Qys,60,11,219 1,21, 10,5) FQ1,2,31,(3,5,6)9 s 6,81, 01,2,7)
_dQ[l,z],[é,s]dQ[s,s],[1,2]dQ[1,2],[3.,5]dQ[s,s,é],[l,2,4]dQ[i,2,8],[5_,6,7]
—dQp1 1,(5,619Qs,61,(1,209Q1,21, 13,519 Rps.6,81,12,2,719 Rz 2,31, 14,5,6) -
+dQ[21,2],.[5,6]dQ[l,é],[3,5]dQ[s,s,é],[1,2,4]dQ[5,6,8],[1,2,7] '
“dQ[21,2],[s,s]dQ[s,s],[1,2]dQ[s,s,s],[1,2,4]dQ[1,2,5],i3,7,8]
+dQ[25,6]v[ly2]dQ[1,2,3],[4,5,6]dQ[1,2],[5,6]dQ[l,z,s],[s,'z,s]) 092
(3.89) +dQ[5,6]_,[1,2]dQ[l,z];[3,5]dQ[1,2,3],[3;5,6] |

(dQ[1;2,8],[S;G,SJdQ[S,GJ,[Lzl - dQ[S,G,S],[l,Z,B]dQ[l,z],[5,6]) qa 41

+dQ[;,2],[4,5] (dQ[l,z,s],[5,6,8]dQ[5,e],[1,2] - dQ[5,6,8],[1,2,8]dQ[1,2],[5,6])
( dQ[s,ls],[l,z]dQ[i,'z',a],[3,5,6] -2 dQ[x,s,e],[l,z,s]dQ[1,2],[5,6]) s @°

+ (dQ[1,z,s],[5,s,s]dQ[5,e],[1,z} = dQ[s,s,s],[1’,2,8}dQ[1,2],[5,6])
(dQ[s,e],[l,z} dQ[l,z],[3,5]dQ[1,2,3],[4,5,6]_ + dQ[5,§],[1;zde[1,2],[4,5]dQ[1,2,3],[3,5,6]

—dQ[l,2],[5,6]dQ[l,2],[3.5]dQ[3;5,6],[1,2,4]) 114_ @29 |
+dQ[5,6],[1,2]dQ[1,2,3],[3,5,6] (—dQ[s,s,s],u,2,7]dQ[1,2],[3,5]dQ[1,2],[5,6]
+4Qs,61,2.29Q 25,599 285,67 + Qs 111,219 215,619,257, 91 )



+a1 (dQ 61.1,219Q 215,61 (—4Qs,6.8101,219 91,2105, 4t 25,6

+4Qps 61,1,29Q11,21,3,59s 281,561 T dQ[s,G],[1,2]dQ[l,z],[s,G]dQ[l,z,s],[3,7,8])

+dQ25,s],[1,2 dQ[l,2],[4,5]dQ[21,2],{5,6]
(dQ[128 [5ssdQ[5s 1,2) dQ[sss] 1,2,8] Q[12 [56]) 9 Q1

- (—dQ[S,S,G],[1,2,4 dQ 12,0561 dQ[l,2,3],[4,$,6]dQ (5,6]:(1,2] )2

( dQs 6,8,1,2,9Q1,21,14, 5]dQ[1 25,61 T 9Qps.6,(1,209Q1,21,4,519Q(1,2,8),5,6,7]F
dQ[l 2,5),(4,7 s]dQ 5,6),[1, 2]dQ[1 2[5, 6]) A3,4‘12 S}

- (_dQ[S,G],[1,2]dQ[1,2,3],[3,5,6]dQ[1,2],[5,6]dQ [3,5,6],[1,2,4]dQ[1,2,5],{3,7,8]
=2 dQq 5,619Q1,2105,5 Q12,91 10.5.619Qs,61.2,29Qs,5.61,1,2.314 Q1 2,81,55,6,7
+AQF: ,75,61991,21,16,51993.5,61,11.2,219Q1,2,,3,5,6199s.61,11,219Rs 681, 11,2,7]
+2 dezl,Z},[S,G] dQIl,Z],[3,5]dQ[3,536],[1 ,2,4]dQ[3,5,6],[l,2,3]dQ[5 ,6],[1,2]dQ[1,2.,8],[5,6,7]
+dQf 215,699 230,519 Qs 6101,29Q1,2,81,2,5,61 4 Qs .61, 1,.2,41 4 Qs 6,81,1,2,7
+dQf 6).11,21991,27,15,519Q1,2,2113.5,619Q1,2,3,4,5,6) FQ1,2,81,65,6,7]
—dQyp; 2),15.6) dQ[25,6],[1,2]dQ[l,z],[3,5]dQ[1,2,3],[3,5,6]dQ[3,§,6],[1,2,4]dQ[1,2,8],[5,6,7] )
+2dQF, 51156991 21,3,519Qs1,2,5114,5,619Qs.61,1,219%3.5.61,1,2,9 Qs 6.8, (1.,2,7]
+dQ[1,2],[4,5]dQ?5,6],[1,2]dQ[21,2,3],[3,5,6]dQ[l,2,8],[5,6,7]
—dQp 21,15,619Q1,21,14,519Qs.61,12,21 4R 2,51 2,5,6 9 Qs 6,81, 11,27
-2 dQu,2],[3,s]dQ[$,5,e],[1,z,4]dQ[s,s,s];[1,z,3]dQ[s,e;s],[1,2,7]dQ{31,z],[s,s]
_dQ[l,Z],[S,G]dQ[l,Z],[4,5]dQ[3,5,6],[1,2,3]dQ[1,2,3],[3,5,6]dQ[25,6],[1,2]dQ[l,z_,S],[5,6,7]
—dQp1 2),(5,69Q6,11.219Q1,21,3,514Q1,2,31, 13,5619 R1.2,81 14,5, I Qs 0,81, 11,2,7]
+dQfs 61,01,29Q1,2,9),15,5.614Q1,2,31,04,5,619 Q21,0561 9Q1 2,513,781
—2dQf; 2),(5,6/9Qs.61,1,219Qz,5,61,11,2,319R1,2,30,14,5,619Q [1,2,50,55,7.8]
-dQ[zl 2),i5.6] 9Q[3,5,6),(1.2 3]de5 61,11,209Q1,2,31,(3,5,6)4Q1,2,50,(4,7,8)
+dQ 5,60,(1,214Q(1,21,(5.6] dQu 2,313,569 Q(1,2,5], (4,7 8]
+2dQs,6,11,2) dQ[lZ] [56dQ356 [123]dQ356] 1,2/4] Q[125 373]) g2 A3,
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~ (~4Qus50,2,2,59Q, 55,6 + 4Qs.0112.29Q1 2.1 55.1) 4,
+ (_dQ[3,5,6],[1,2,3]dQ[1,2],[5,s] (—dQ[s,s,s],[1,z,7]dQ[1,z],[4,s]dQu,z],[s,s}
+dQ[5,s],[1,z]dQ[i,z},[4,s]dQ[1,z,s],[s,s,7] + dQp,2,5),14,7,89Q [5,6],[1,é]dQ[1,2],[5,6]) a2
+ (dQ[l,Z,S],[5,6,8]dQ[5,6],[1,2] - dQ{S,G,S],[1,2,;]dQ[1,2],[5,6])
(dQ{s,ﬁl3[1,2]dQ[1,2],[3,5]dQ[l,z,s],'[s,s,s]q«i 01— dQ[z,s,s],[1,2,3]dQ[1,2],[5,6]dQ[l,2],[4,5]Q4 g’
'dQ 1 2]. (3, s]dQ[a 5 6],[1,2,3]dQ[1,2],[5,s]‘I4 ‘Z2)
+dQgs,61,11,219R1,2,3),3,5.6) ( dQgs 6.,81,11,2,719R1,21,(3,519 Q1,215,681
dQps,61,02,219 Q1 21,359 2,81, 15,61 T+ dQ[s,s],[1,2]dQ[l,2]-,[5,6]dQ[l,z,s],'[3,7,s]) 3
—dQps5,61,01,2,919Q1,21,15.6) (._.'dQ[S,G,B].,[l,ZJ]dQ[l,Z],[3,5]dQ[l,Z],[S,G]
+dQ[5,G],[1,2]dQ[1,2],[3,5]dQ[1,2,8],[s,6,7]_+ dQ[s,s],'[1,2]dQ[1,2],ls,eldQ[1,2,5},t3,7,81) Q2)
v_dQ[1,2],[4,5] (_dQ[3,§,6]{[1,2,4]dQ[1,2],[5,§] + dQ[1,2,3],[4,5,G]dQ[5,6],[1,2])2
(4205009 Qs 1.0 ~ 98,129 Qs 15.0) B 827 43,400
- (de,z,s],[s,s,s]dQ[s,e]b,u,z] - dQ[s,é,s],[l,z,s]dQu,z],[s,s])
(4Q% 62,2911 23,15.51 991,210,691 2.8 .5.6) + 42,219 2,311,561 4Q1,2110.5
—dQ[5,6];[1;2]dQ[l,Z],[5,5]dQ[l,2,3],[3,5,G]dQ[3,5,6],[1,2,4]dQ[1,2],[$,6]
-2 dQ[s;s],[1,z]dQ[1,z]',[3;5] Q1 2.91,14,5,6)9Q121,5.6] AQs.5.61,(1,2,3]
=dQps 61,11,2/9Q1,2),14,519R01,21,5,619Qp3.5,61,11,2,319Q(1,2,31,3.5.6]
+2dQq g, 54Q% 215,61 dQ[s,s,s],[1,2,4]dQ[3,5,6],[1,2,3]) g2 A3 491
+dQfs g, I, 2]dQ 1.2)(5,) ( dQps.6,8,11,2,719Q1,2), 45) dQ12),(5,6) |
+dQys,6),11,2)4 Q121,451 dQ[l 2,80,(5.6,71 T 4Q(1,2,5),(4,7,8) 4Q5,6),(1,2dQ1.2),5 s]) a
dQ[s,s],[1,2]dQ[l,z],[3,s]dQ[1,2],[5,6] (dQ[1,2,8],[5,6,8]dQ[s,s],[1,2] - dQ[s,s,s],[1,2,s] Q[l,z],[s,e]).%)

~ Notice that 3.89 is a function of ¢;, ¢;, ga, A§,4 and fhe data. We say that 3.89 is
a general equation because its coefficients are functions of a general data matrix, Q. Later,
we shall work with data from a phantom. A phantom is the solution to the forward problem
for a given set of transition probabilities. Data from a phantom are'r_eal numbers, whereas v
general data are variables, @;;. We can solve 3.89 for A§;4 in terms of ¢, ¢z, ¢4 and the

data. Similarly, we can solve the three other former cubic equations for A%,, A, and
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Ag,s. Each of these solutions is a function of three of the ¢;s and the data. Substituting ‘
these solutions into the four (previously) quadratic equations we get four highly nonlinear
equations in g¢;, ¢.,¢3,qs. Because the coefficients in these equations are so cumbersome

only caricatures are shown below

g3 (a2 + g3 a3) (g4 as + q3) (g2 a5 + a5) (g2 19 + G20 + q1 021) (@1 + 2 a4) @3
(3.90) (gs°q2a7 + 92 93°qu Gs + @3 @2 @9 + @2 93 ga Q10 + G2 Q11 + G2 G4 Q1o+

@3 Q13 + g2%014 + Q15 + €3.94 Q16 + Qs Q17 + @37 Gs G15)

1

g3 (a2 + g3 a3) (g3 94 Q24 + @3 Q25 + G4 G26) (s @ + ¢3) (g2 a5 + a6) (q1 + G2 @4) Q23
(3.91) (92%q1 @27 + @1 2 93 G2s + Q1 G2 G20 + Q1 g3 30 + G1 @31 + G2°G1 @3 Q2+

9223 a3z + a34 + q3 92 G35 + 27 azs + g2 @37 + g3 asg)

@1 (94 G40 + @41) (G4 G4z + Qu3 + 93 Gas) (g1 @4 + g3) (@45 + 1 046) (@1 + g2 @4) @39
(3.92) (g4 012¢2 @ar + q1°qs Gag + @1°q2 Q4o + g1 as0 + 41 91 @51 + Q4 Q1 G2 G52+

g1 92 @s3 + Q1 G54 + g2 G4 G55 + Q56 + G2 As7 + G4 Asg)

@1 059 (Qs Qg0 + @q1) (g @s + G3) (ass + 1 G46) (@1 @2 Q46 + Q1 Q72 + g2 G73)
(3.93) (g1 +g20s) (graso + 0104061 + Q1 Gz Ge2 + @1 gs’aes + ¢1 g3 ¢4 Geat+

01 93 4% aes + Ggs + G4 Q67 + 3 Ges + Q3 ga Qo + g3 G4 Q7o + Q42071)

where each of the a;s is a polynomial in minors of the general data matrix, @, and
the “relevant” term is the last one. The zero valued, or relevant, terms of each of these four
equations is a twelve term polynomial, involves only three of the ¢;s, and is linear in one of
the g;s. The roles of the four ¢;s occur cyclically. éolvirig for two of the variables (linearly)
and replacing the result into the remaining two equations we get two nonlinear equations of
35 terms each. All of this can be done with the general equations!! Solving equations 3.90

and 3.91 for ¢; and ¢, and subsituting into 3.92 and 3.93 yields
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bas + g3 bs + qs*by + g3°b1o + g3*bao + g3°bss + @a°bas+
G202 + g2 43 bs + 42 ¢3°bs + 2 ¢5%ba1 + g2 3" b2 + @2 43°b2s + g2 %D +
(3.94)  @:%bis + 2" 3 bis + 22°¢3°b12 + 42205 bas + g2 q3*bas + 02°qs°bar + 427 %0 +
g2°b11 + @22 g b1r + 022 0a%b1s + 022 05%b32 + 022 45*b26 + 2245 b2o + 422 %7 +

g2*b1o + g2 03 bis + @2 43%b1s + ¢2% 4% b3z + @2 g3t bao + @250 + 92*q3°bg
and

bes + G2 bar + ¢27bas + 923b4é + g2*ba1 + ¢2°bss + ¢2°bes +
3 bas + g2 3 bso + 92703 bas + 42°03 bag + G2*q3 bas + 02°q3 bes + 92°a bro +
(3.95)  gs®bss + g5’z bse + Q2293zb43 + gs°2°bso + ¢s° g2 bar + 3> q2"bs7 + 45”¢2°bes +
s°bs1 + 3°q2 bss + q3°q2%bss + Q:va.3¢123b63v+ 3°q2°bse + g3°q2*bes + q'ss.Qsze-/ +

g3*bs2 + q3*q2 bss + ¢3*q2%bse + 3% 02 %be1 + €5 02" b6z + €302 bas + 3*22%beo

where the b;s are polynomials in minors of the data matrix. Thus far, our data
have been the symbols Q; ;, where ¢,j = 1,...,8. The size of the polynomials (or rather
the coefﬁciehts) in the above equations prohibits further computation with a general data
set. During preliminary work on this problem, the author implemented this algorithm on
severél phantoms. The author used a very general phantom: MAPLE’s random number
generator was used to assign numerical values to transition probabilities. These values did
not necessarily satisfy conditions 3.13 and 3.14.

Taking the resultant of 3.94 and 3.95 yields 3.96, a huge polynomial equation in
one variable. In our numerical tests we have always observed that 3.96 factors to have
the same form, regardless of the variable with which we take the resultant.” The following

caricature of an equation shows the form of the reésultants.
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c1 (g3’cao + Gz can + C42)2 (gs’cas + gz Cas + 645)2 (43204s_+ Q3 Cq7 + C43)2
(3.96) (g5°cas + gs cs0 + 651)2 (gsc2 +c3)
(gscs + cao + ga*cr + g3°cs + g3 17 + ¢3*%cis + gacrot
@372 cz0 + @5%%ca1 + @3% Caz + @38 cas + g3 ean + g3 %005 + g3 % a6 +
g3 cor + qs*cas + 4% 20 + 437030 + g3°car + @3 % a2 + g3M s +
3" caa + gs™%css + g3"%cas + @37 Car + 3% cas + g3 crz + Q:i25013 +

@27 c1a + @3*%cis + @37 ci6 + g3 ca + @37 cs + g3°co + @3 ¢io + gs*enn)

where the c;s are complicated functions of the data and the relevant term is the only linear
term in g3. _

The author completed this computation on several phantoms and in each case
the relevant factor was linear (g; c; + ¢3) and gave the solution g3 = —c¢3/ca. Once g3 is
computed, it is possible to compute g, by substituting the solution for g; into 3.94 or 3.95
Next we can substitute the values of ¢» and ¢; into the solutions for ¢, and ¢, obtained
from 3.90 and 3.91. Once the values for the g;s are found, A,, 43;, A};, and A7, can
be computed from 3.89 and its counterparts. Therefore, we have A3 4, A;3, A7 7, and A7,g
modulo signs. We can use this to solve 3.88 for A, 4, A43, Asz, and Agg up to signs.

In order to assign the proper signs to Az 3, As4, As3, and A,y recall that since

A = P;}}! and A is a block matrix,

1 A4 4 —A3,4 e2lw e2ls

¥

(3.97) =
Az 3Ass — Az sy —As;  Ass n2lw n2ls

For a solution to be physically viable all of the transition probabilities must be positive.

For example, we know that
(398) sgn(A3,3A4,4 — A3’4A4,3) = sgn(A3,3) = Sgn(A4’4) = —sgn(A4,3) = —Sgn(A3,4)

We can use 3.98 to compute the signs of A; 3, As4, Az4, and Ay ;.
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3.2.2 Writing the equations for general n

For n > 2 the problem becomes worse even though the governing matrix equa-
tioﬁ, 2.8, looks the same. Although there are always 4n incoming and outgoing states for a
larger n x n system, there are many more hidden states. Including incoming states, there -
are four states per pixel (plus 4n outgoing states). Since there are n? pixels there are 4n2
v incomingv and hidden states. That leaves 4n? — 4n hidden states. See figure 3.14. Only
when n = 2 is the number of hidden states equal to the number of incoming and outgoing
states. For a n X n system P,, is a 4n x 4n matrix and P is a (4n? — 4n) x (4n? — 4n)
matrix. P, is a 4n X (4n? — 4n) matrix and Py, is a (4n? — 4n) x 4n matrix. For n > 4
the governing equations are so horribly large and nonlinear that MAPLE cannot even solve
the forward problem analytically. (Invérting (I = Pyy) is too much for MAPLE.) In order
to begin work on the inverse problem one must somehow cut this monstrosity down to size.
Even if MAPLE were able to handle the equations for any large n x n system the
_algorifhm described in section 3.2.1 is doomed to failure. P, is not invertible since it is
not even square. One would like to preserve the “squareness” of the transition submatrices
“as well as reduce the complexity of the problem. A recursive apprbach allowing only one
layer of hidden states at any recursion level achieves both goals. The recursive algorithm
described below decomposes the system into subsyst‘ems which are subsequently decomposed
into subsystems of their own.. A system is broken into subsystems by ignoring most of its
hidden states. No matter how one decomposes the system, the new system must adhere to
the consistency conditions discussed in section 3.1.
~ For any square system, notice that if we choose one horizontal and one vertical
barrier there are exactly 4n hidden states associated with these barriers. (Each of the
- barriers is a_,ssociated with two rank deficient submatrices of rank n. The vertical barrier
is associated with a right-left as well as a left-right submatrix; the horizontal barrier is
associated with a top-bottom as well as a bottoni—top submatrix.) Recall that there are

exactly 4n incoming and 4n outgoing states.
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Cbﬂsider the example in figure 3.15. The 4 x 4 array of pixels has been divided into
four subarrays, labeled 11, 12, 21, and 22. There are 16 incoming states and 16 outgoing
states. There are 16 relevant hidden states, those associated with the barriers. The incoming
states which send photons into a subarray are considered to be adjacent only to hidden and
outgoing states which send photons out of that subarray. Similarly, hidden states which
send photons from one subarray into a second subarray are adjacent only to hidden states
which send photons from the second subarray into any other subarray. Finally, hidden
states which send photons into a subarray are adjacent only to those outgoing statés which
send photons out of that subarray. As in the base case, it is assumed that photons can only
travel directly from one state to adjacent states.

The governing matrix equation may be rewritten as the following:

(3.99) (Q-Pu)A(I - Pu) =P =©

where Q is the data matrix and P,,, Piy, Ph,, and Py, are probability transition
matrices for this modified system and A = P'. Although 3.99 looks the same as in the 2 x 2
example, the transition matrices are very different. They have nonzero entries wherever it
is possible to travel from one state .to another without leaving the éubarray in which the
first state puts the photon. The shortest possible path between states in this modified
system may require that the photon travel several steps in the original system. The most
important thing to notice is that these modified transition probabilities are the data for the
subarrays. Once again, the transition matrices P,, and P;, share block diagonal structures
and P, and P, share off diagonal block structures. In fact, replacing nonzero entries in
the transition matrices for the 2 x 2 system with dense n/2 x n/2 blocks and zeros in the
2 x 2 system with sparse n/2 x n/2 blocks gives the structure of the modified transition
matrices. Also, A has the same structure as P, and the same changes of variables which

were used to solve the 2 x 2 problem may be used here.



61

3

= APy,
(3.100) X = P,A
Y = P,W-PF,

Finally, notice that X has the same zero structure as P, and P,, and that Y and
W have identical zero structures as P;, and P,;. The governing equation may be rewritten

as

(3.101) . QUA-W)-(X-Y)=0

" Just as in the 2 x 2 problem, there are redundéntv equations in the governing matrix
equation and the columns of 3.101 are decoupled homogeneous systems ofv linear equations.
As before, one may solve for the W; ;s, X, ;s, and Y;;s in terms of the A4;;s. From these
solutions, one can write down the transition 'probébilities for the modified 4 x 4 system in
terms of the A;;s. This exhausts the supply of equations given by the governing matrix
equation for the modified system. |

- Let the data matrices fbr the subarrays be denoted as Q11, Q12, Q21, Q22. The

entries of the transition matrices P;,, Pj, P,,h, and P, may be written as functions of the
entries of A and are the data in Q11, @12, @21, and Q22. Once we recover these data
matrices we can tackle each subarray separately. There are consistency conditions amongst
the data for each of the subarrays. These conditions provide some highly nonlinear equations
which can be used to solve for some of the 4, ;’s in terms of the remaining A; ;’s. We cannot
hope to recover all 16 x 42 parameters. Some extra conditions must be found, somewhere.
Once the data for each of the four subsystems is found the procedure is repeated on each of
thé four subsystems. This recursion continues kuntil the 2 x 2 “base case” is reached. The
algorithm described in section 3.2.1 is then used to glean as .ml.lch useful information from
the base case as is possible. Notice that there has been no mention of any identifications in

this section. This method of solving the equations is absolutely general.
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3.2.3 4 x 4 problem

The recursive algorithm described above is developed in detail for a 4 x 4 system.

3.2.3.1 Solving for Py, P, P,, and P}, in terms of 4

The algorithm for soIving the 4 x 4 problem described below requires only one
level of recursion and gives a completely general solution. In other words, the author
makes no assumptions about the physical properties of the system; no identifications of the
form 3.54 are made. There are 16 * 16 = 256 unknown transition probabilities and (as we
saw in section 3.1) only 160 independent data. In sections 3.2.3.1 and 3.2.3.2 we find a 96
parameter family of solutions to the 4 x 4 problem. | _

We start by labeling the states for the 4 x 4 system as in figure 3.15, and all of
the 2 x 2 subsystems as in figure 2.1. The transition matrices for the modified system are
sparse block matrices. These matrices are larger than their 2 X 2 counterparts, but have
similar block structures. The nonzero subblocks of the transition matrices are shown below,

starting with P, which has an off diagonal block structure.

P’l:h]_’s Pihl,s .Pih1,15 Pihl,ls Pih5’3 Pih5,4 Pih5,g Pihs,m
Pihy5 Pihyg Pihyis Pihggs Pihgs Pihgy Pihsy Pihe o

Pihss Pihse Pihsys Pihge Pih:3 Pih;y Pihqg Pihr0

Pihys Pihys Pihyys Pihygs | Pihgs Pihgs Pihgye Pihs,mj

Pihg; Pihgs Pihgy; Pihgys

Pih10,7 Pith,S Pih10,13 Pih10,14
,and

Pihy7 Pihng Pihyyys Pihiag

Pih12,7 Pih‘12,8 Pih12,13 Pih12,14 J
[ Pihyyy Pihiss Pihigay Pihass
Pihm,l Pihu,z Pihu,u Pih14,12

Pihls,l PihlS,Z Pihls,ll Pih15,12

| Pihl&,l Pih16,2 Pih16,11 Pih16,12



P has the same block structure as P,

Phhy; Phhgg
Phhyr Phhygg
Phhyr Phhyyg

Phhiar Phhiag

Phhys Phhyg -
Phhys Phhag
Phh3,5 .'Phhv3’.6

| Phhys Phhyg

Phhg 13

Phhio,s

Phh11,13

Phh12,13

Phhl,lS‘
Phhsy 5
Phhg ;s

Phhy s

Phhy 14
Phhio,14
Phhij 14

Phhiyz14

Phhay 6
Phhys.

Phhg 16

Phhyye |

. P.,, however, is block diagonai,

Piol,l Pi
PiOz,l Pi

Pi03,1 Pl

L Pi04,1 Pi

01,2 P’i01’3 Pi01’4 .

02,2 Pi02;3 Pi02,4

03,2 Pi03,3 PZ-O3',4

04,2 P’L'O4’3 Pi04,4

Pi09,9
PlOlo,g
PZOu,g

P’L'Olzyg

Pioys,13

| Pioisas

PiOg,lo
P5010,10
Pi011,10

P2012,10

P’L'013‘13 Pi013

Pi014,13 Pioys

,and

Pioss *Piosg
PiOé’s PZ'OG,G

Pi07,5 Pi07,6

L PZ'03,5 PiOg’G
P’iOg,ll PiOg’lz 1
Pi010,11 Pi01o,12

Pi011,11 Pi011,12

Pi012,11 Pi012,12 |
,14 . Pi0y3,15 Pi013,16

aa Pioys Pioig e

Pi015,14 P2015,15 P1015,16

Pi016,14” Piols,ls P-i016,16

[ Phhyy; Phhys,
Phhyy, Phhy,
Phhys, Phhys,

| Phhyy Phhys,

2 Phhizna
2 Phhisna
2 Phhys

2~ Phhygy

Phhs; Phhs, Phhsg
Phhey Phhg, Phheg
Phhsy Phhys Phhyg

| Phhgy Phhsy  Phhsg

Pi05,7 Pi0573
PiOéJ PiOﬁ’g
Pi0_7,7 Pi07’3

Pi03,7 PiOgvg

'.and

Phhg 10

Phhysz 1z
Phhis2
Phhs 12

Phhyg 2

Phhs 10
Phhg, 10

Phhz 10
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as is P,

-

PhOl,l
Ph02,1

Ph03,1

Ph04’1

and

Ph012 Ph013

3 L]

PhOz’g Ph02’3

Ph03,2 Ph03,3

Ph04,2 Ph04,3

Ph0919
Phom,s

Ph011,9

i PhOu 9

’

( Ph013,13
Phoys s

Ph015,13

| Ph016,13

Ph014

’

Ph024

’

Ph03,4

Ph04y4

PﬁOg,lo
Ph01o,1o
Ph011,10

P h012,1o

Ph013,14

P h014,14

P h015,14

Ph01s,14

See figure 3.16 for a few examples

transition probabilities displayed above.

Ph055

’

Ph055

y

Ph07,5

PhOg’s

Ph09,11
Pholo,n
Ph011,11

Ph012,11

Ph013,15
Ph014,15
Ph015,15

Ph016,15

PhOs’G
PhOG,G
Ph07,6

PhOg,s

Ph09’12
Ph010,12
Ph011,12

Ph012,12

P h013,16

Pho14,16 ,

Ph015,16

Ph016,16
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Ph05’7 Ph05’3

Ph067 PhOsg

’ )

Ph07y7 Ph07’8

Ph08,7 PhOs,g

J

of paths taken into account by the modified

Just as for the 2 x 2 problem, we may rewrite the governing equations for the 4 x 4

problem. Assuming that the matrix P, is invertible, make the change of variables A = P}

‘where the nonzero subblocks of A are
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Ali A1,2 A1,3' Az ) Ass As,s As Ass

Ayy Ayy Az Ang Ass Ass Asz Asg
(3.102) ' : ;
A3,1 A3,2 A3,3 A3,4 A7,5 A7,6 ,A7,7 A7,8
| A471 A4,2 A4,$ A4,4 J L As,s As,s As,7 As,s ]
[ A9,9 A9,10v A9,11 A9,12 ] . r*413,13 A13,14 A13,15 'A13,16 ]
A10,9 A10,10 A10,11 A10,12 . A14,13 A14,14 'A14,15 'Ai;,lé
’ A11,9 , Aﬁ,mv A11,;1 A-u,iz ’ A15,13 A1$,14 A15,15 A15,16
| A12,9: A12,10' A12,11 412,12 _ L A16,13 A16,14 .' A1(§,15 A16,16 |

This ailes us to wiite
(3.103) - Q=P )AI-Pu)—Pp=0
Or_xce again we may make the following changes of variables:
W = APhh
(3.104) ' X = P,A
Y = PW-PF;

The resulting matrices X, W, and Y have very special block structures - the same
block structures as the transition matrices above. X has the same zero structure as Py, and
P,,. W and Y, however, have the same zero structure as Py and P,;: Once the changes of

variables in equation 3.104 have been made, the governing 'eq'uations become the familiar
(8.105) QA-W)-(X-Y)=06

, - Just as in the 2 x 2 case the columns of 3.105 come in groups. Only in this case four
of the columns correspond to the same matrix equation. The eleventh through fourteenth

co_'lumhs of 3.105 are written below.
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[ Q1,0 Q1,10 Q1,11 Q1,12 Q1,13 Q1,14 ) Q1,15 Q1,16 0 0 0 0o 0 0 o0 o
Q2,90 Q2,10 Q2,11 Q2,12 Q2,13 Q2,14 Q2,15 Q2,16 0 0 0 o 0 0 o0 ©
Qs,0 Q3,10 Q3,11 Q3,12 Q3,13 Q3,14 Qs,15 Q3,16 0 0 0 o 0 0 0 O
Qq,gi Q4,10 Q4,11 Q3,12 Q4,13 Q4,14 Q4,15 Q4,16 0 0 ] 0 0 0 0 o
Q5,9 Q5,10 Q5,11 Q5,12 Q5,13 Q5,14 Q5,15 Q5,18 0 0 0 0 0 0 o0 o
Qs,9 Qs,10 Q6,11 ‘Qs,12 Q6,13 Qe,14 Qs,15 Qs,16 0 0 0 6 0 0 o o
Q7o Q7,10 Q7,11 Q7,12 Q7,13 Q7,14 Q17,18 Q7,16 0 0 0 0o 0 0 o0 O

Qs,9 Q8,10 Qs,11 Qs,12 Qs,13 Q3,14 Qs,15 Qs,16 0 0 0 0 0 0 0 O

- Qo,0 Qs,10 Q9,11 Qo,12 Qp,13 Q9,14 Qo,15 Qo186 -1 O 0 0O 0 0 o0 o
Qio,e Q10,10 Qi0,11 Q10,12 Qio,13 Q10,14 RQro,1s5 Qio0,16 o -1 ] 6o 0 0 0 O
Qiie Q11,00 Qi1,11 Quia2 Q11,38 Qu14 Quias Quias 0 0 -1 0 0 0 0 O
Q12,0 Qi2,30 Q12,11 Q1232 Qi2,1s Q2,14 Qu2,15 Qizae O (W 0 -1 0 0 o0 ©

Qi3;p Qisa0 Q13,11 Qu3,12 Qizas  Qisae Qisas Qis,ie 0 0 0 0 1 0 o0 O
Q4,0 Que20 Qu411 Qua12 Qi3 Q14 Que15 Qigte o] o s} 0 0 1 0 o

Q15,0 Q5,30 Q15,31 Q1512 Qis,as Q1514 Qus,as Qis,ie 0 0 0 o 0 0 1 O

L Qis,6 Qie,10 Q16,11 Q612 Qis13 Qie,1¢ CQisas  Qis,as o 0 0 o o o o 1|

[ 4s,11 Ag 12 -Woas -Ws,14
Ai0,11 Ajo,12 -Wi0,13 -Wio,14
Ai1,11 ESTRE —Wi11s  —Wiiise
Aj2,11 ‘ Aj2,12 -Wiz2,13 ~Wi2,14

-Wiz, 11 —Wis,12 Ajs3,18 A13,14

-Wiga1r  —-Wigaz Ai14,13 Ais,14

-Wis,a1  —Wisa2 A1s,18 A15,14

3.106 ‘ —Wie.u -Wie,12 Azg,13 Aig,14 o
(3.106) : =
: Xo,11 Xo,12 Yo,13 Yo,14
. X10,11 X10,12 Yi0,13 Y10,14
.

X11,11 X11,12 Y1113 Y11,14

X12,11 Xi12,12 Y1213 Yi2,14

Yis3,11 Y13,12 X13,18 X13,14

Y1411 Y14,12 Xi14,13 X14,14

Yis,11 Y1512 X153 X15,14

L Yie,11 Yie,12 X18,13 X16,14

Just as in the 2 x 2 case, not all of these equations are independent. Consistency
_ conditions force the 8 x 8 upper left submatrix of the first matrix in equation 3.106 to be
of rank four or less. We can solve for the W, ;’s, X, ;’s, and Y;;’s in terms of the A, ;’s.

Solving the first two columns of 3.106 is equivalent to solving the equation
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[ Qsa1s Q514 Qsas Qs,16 0 o 0 6 0 0 o0 o0 -Wiz,1  —Wisiz
Qe,13 Q6,14 Qea1s5 Qeze 0 0 0 0 0 o0 0 o -Wis1  —Wigaz
Q7,13 Q7,14 Q75 Q716 0 0 0" 0o o0 0 o0 o -Wisa1  —-Wigi2
Q8,13 Q84 Qsas  Qse 0 0 0 6 0 0 0 o ~Wig,11  —Wig12
Q0,13 - Qp,14  Qo,15 Qeae -1 O 0 0 0 0 o0 ‘0 Xo,11 Xo,12
Q10,13 Q10,14 Qlo.is Qi016 0 -1 O 6 0 0 o0 0 X10,11 X10,12
Qi1,1s Q1,14 Qi11s Quiae O o -1 o0 0 0 0 O X11,11 X11,12
Q12,18 Q12,04 Q12,15 Qiza6 - 0 ° 0 -1 0 0 0 0 X12,11 X12,12
Q13,13 Qi34 Q315 Qizie O 0 0 0 1 0 0o o s Yig,n Y13,12
Q14,13 Q14,14 Qi4,15 Qi4,18 0 0 0 0 ’ 0 1 0 o Y1411 Y1412
Q15,13 Q15,14 Qis,15 Qis8 0 0 0 0 0 o0 1 o Yis5,11 Yis5,12

| Qis,13 Q16,14 Qie15 Q;e,.1e o 0 Y 0 0 0 o0 1 J | Yienu Yig,12

Qss  @s0 Q5,1.1 Q5,12
Qs Qs0 _Qs,n Qs,12
'Q7,9. Qri0 Qrun Qriz - | | ’
@ss Qsio Qs Qs

. Q9,9 QQ,IO Q9,11 Q9,12 A9,11 A9.12
: Q10,9 Q10,10 QlO,ll Q10,12 AlO,li A10,12
(3.107) = 4
Q11,9 Q11,10 Qll,ll Q11,12 All,ll A11,12
Q12,9' Q12,10 Q12,11 Q12,12 | A12,11 A12,12 ]

Qi35 RQis10 Qla,u Q13,12
Qi Q14,1o Qa1 Qa2
Qis,0 Q15,10 Q1511 Qis,12

L Q16,9 Q16,10 Qlﬁ,ll Q16,12 | )
Solving for W, X, and Y in terms of A exhausts the supply of equations given by

the governing matrix equation. Since A is invertible, one may now solve for the entries in
Py, Pun, P, and Py, in terms of the data and A; ;’s. The forms of the solutions are similar
among variables from the same transition matrix; samples of solutions in terms of A; ;’s for

one variable from each matrix are listed below. We start with the simplest solutions, those

in Pho:



dA
(3.108) Phoy 4 = ———(1:2411,23]
dAn 28,401,234 ‘

The next simplest solutions are those for entries of P;.

Phh3,15 -

- (dA[1,2,3],[1,2,4] (dQ[5,6,7,s],[1,2,3,13]A13,15 + dQ[5,6,7,8],[1,2,3,14]A14,15
+dQ(s 6,7,8),(1.,2,3,151 415,15 + dQ[s,s,7,_s],[1,2,3,16]A16,15)
+ dA[1,2,4],[1,2,4] (dQ{5,6,7,s],{1,2,4,13]A13,1‘5 + dQ[s,s,7,s],[1,z,4,14]A14,15
(3.109) +dQps 67,8, [1,2,4,151 415,15 + dQ[5,6,7,8},[1,2,4,16]A16,15)
+ dA[1,3,4],[1}2.4] (dQ[s,6,7,s],[1,3,4,13]A13,15 + dQ[s,s,T,s],{1,3,;,14]A14,15
+dQps,6,7,8,(1,3,4,151 415,15 + dQ[s,s,7,s],[1,3,4,16]-416,15)
+ dA[2,3,4},[1,2,4] (dQ[5,6,7,8],[2,3,4,13]‘413,15- + dQ[S,G,T,B],[2,3,4,14]A14,15
+dQs,6,7,8),(2,3,4,151 415,15 + dQ[5,6,7,s],[2,3,4,16]A16,15)) /
dQs 6,7,8),11,2,3,4/8411,2,3,41,(1,2,3,4]

The solutions for the entries of P, are a little bit longer:
1

Piogg = —
58 dA[5y677v8]1[5’6’7’8]

(dA[5,7»8]»[677,8] (dQ[S,13,14,15,16],[1,2,3,4,5]A5,5+
dQ[5,13,14,15,1s],[1,2,3,4,6]A6,5 + dQ[5,13,14,15,16],[1,2,3,4,7]A7,5 +
| dQ[5,13,14,15,16],[1,2,3,4,8]AS,S) /dQ[13,14,15,16],[1,2,3,4] -

dA[577y8]»[5,7,8] (dQ[5,13,14,15,16],[1,2,3,4,5]A5,6+
dQ[5,13,14,15,16],[1,2,3,4,6]AG,G + dQ[s,13,14,15,16],[1,2,3,4,7]A7,6 +
dQ[5,13,14,15,16],[1,2,3,4,8]AS,G) /dQ[13,14,15,16],[1,2,3,4] -

(3'110) dA[5,7,8],[5,6,7] (dQ[5,13,14,15,16],[5,9,10,11,12]A5,8+
dQ[5,13,14,15,16],[6,9,10,11,12]A6,8 + dQ[5,13,14,15,16],[7,9,10,11,12]A7,s +
dQ[S,13,14,15,16],[8,9,10,11,12]A8,8) /dQ[13,14,15,1s],{9,10,11,12]

dA[5,7:8L[5,6,8] (dQ[5,13,14,15,16],[5,9,10,11,12]A5,7+
dQ[5,13,14,15,16],[6,9,10,11,12]A6,7 + dQ[5,13,14,15,16],[7,9,10,11,12]A7,7 +

dQ[5,13,14,15,16],[8,9,10,11,12]A8,7) /dQ[13,14,15,16],[9,10,11,12])
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(3.111)

Solutions for the entries of P;, are of the form:

1

Pihyo s =
' dQ[s 6,7,8,(9,10,11,12]

(dQ[s 6,7,8,10},[9,10,11,12 13]A13 14t dQ[s 6,7,8,10],(9,10,11,12 14]A14 14 t+

dQ[s 6,7,8,10],[9,10,11,12 15]A15 14 + dQ[s 6,7,8,10],(9,10,11,12 16]A16 14) +

1
dQ Asz et
dQ 5,6,7,8],[9,10,11 12]dA 9,10,11,12],{9,10,11,12] (( 15.6.7.85, [9 11,12,13) 3,14

dQ[5 6,7,8],(9,11,12 14]A14 14+ dQ[s 6,7,8),(9,11,12 15]A15 14 +
dQ[s,s,7,s],[9,11,12,1s]A16,14) '
'(dA[9v11’12]y[9»10,11] (dQ[5,6,7,8,10],[9I,13,14,15,16]’A9,12
+ dQ[5,6,7,8,10],[10,13,14,15,16]A10,12v + dQ(s 6,7.8,10] (11,13,14,15,16)A11,12
+dQ[5v617’3,10],[12,13,14,15,16]A12,12) /dQ[s,e,-/,s],[13,14,15,16]
- dA[9,11,12],[9,10,12] (dQ[s’,sﬂ,s,im,[9,13,14,15,16]A9,11
+ dQs 6,7,8,10,120,13,14,15,16] 410,11 T AQ5.6,7,8,10,{11,13,14,15,16) 411,11
+dQ[5,s,7,e,1o],[12,13,14,15,16]1412,11) /4Qys,6,7.61,113,14,15,16]
+ dA[9’11y12],[9,11,i2] (dQ[lo,lé,M,lS,lG],[5,6,7,8,9]A9,10
+ dQr10,13,14,15,16],(5,6,7,8,101 410,10 + AQ10,13,14,15,16),(5,6,7,8,111 411,10
+dQ[1o,13,14,15,16]-,[5’6’7,8,12],412’10) /dQ13.14,15,16),5.6.7.8)
— dA[9,11;12],[10,11,12] (dQ[m’ls’M’l'sle],[5,6,7,3,10]A10,9 .
+ dQq10,13,14,15,16),(5,6,7,8,91 49,9 + AQ(10,13,14,15,161,(5,6,7,8,111 4119

+dQ[10,13,14,15,16],[5,6,7,8,12]A12y9) /dQ‘[13,14,15,16],[5,6,7;8])
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+ (dQ{S,ﬁﬂ,S],[9,10,12;13]‘413,14 +dQ;s,6,7,8),(9,10,12,14) A14,14
+dQ(s.6,7,8),[9,10,12,15} 415,14 + dQ[s,s,i,s],[s,m,u,m]A16,14)
(dA[9,10,12I,[9,10,11] (dQ[s,s,7,8,10],[9,13,14,15,16]A9,12
+dQ[5,6,7,s,10],[10,13,14,15,16]A10,12 + dQ[s,s,’r,s,m],[11,13,14,15,16]A11,12
+dQ[s,s,7,s,m],[12,13,14,15,16]A12,12) /4Qs,6,7,8),(13,14,15,16)
- dA[9,10,12L[9,10,12] (dQ[s,s,7,8,10],[9,13,14,15,16]A9,11
+dQs,6,7,8,101,[20,13,1¢,15,26) 410,11 + AQ(5 6,7,5,10),[11,13,14,15,16) 411,11
+dQ[5,6,7,8,10],[12,13,14,15,16]A12,11) /dQys.6,7.8),(13,14,15.16)
+ dA[9110,12]1[9,11,12] (dQ[10,13,14,15,16],[5,6,7,8,9]A9,10
+dQ(10,13,14,15,16],(5,6,7.8,20) 410,10 + AQ[10,13,14,15,16],(5,6,7,8,11] 411,10
+dQ[1o,13,14,15,16],'[5,6,7,8,12]7412,10) /AQ13,14,15,16),5,6.7,8)
— dAf9,10,12),(10,11,12) (dQ[10,13,14,15,16],[5,6,7,8,10]A10,9
+ dQ(10,13,14,15,16],(5,6,7,8,91 49,9 T AQ10,13,14,15,161,(5,6,7,8,111A11,0
+dQ[m,13,14,15,1s],[5,6,7,8,12]A12,9) / dQ[13,14,15,16],[5,6,7,8])
+ (dQ[s,e,7,8],[10,11,12,13]A13,14 + dQ[5,6,7,8],[10,11,12,14]A14,14
_+dQ[5,e,7,s],[10,11,12,15]A15,14 + dQ[s,s,7,s],[1o,11,1z,161—416,14)
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(dA[IO,}1,12],[9,10,11] (dQ[S,6,7,8,10].,[9,13,14,15,16]A9,12
+ dQ[5,6,7,8,10],[10,13,14,15,16]A10,12 + dQ[5,6,7,8,10],[11,13,14,15,16]A11,12
+dQ[5,6,7,s,10],[12,‘13,14,15,16]A12,12) /4Qs.6,7,8),(13,14,15,16]
- dA[10y1'1,12],[9,10,12] (dQ[5,6,7,8,10],[9,13,1.4,15,16]‘49,11
+ dQ(s,6,7,8,10),[10,13,14,15,16) 410,11 + AQ(s5.6.7.8,20),(11,13,14,15,06/ 411,11
| +dQ[s,s,7,8,10],[12,13,14,15,16]A12,11) /dQ[5;6,7,8],[13,14,15,16]
+ dA[10{11y12]’[9,11,12] (dQ[10,13,14,15,16],[5,6,7,8,9]A9,10 .
+ dQ[10,13,14,15,16},[5,6,7,8,10]A10,10’+ dQ[1o,13,14,15,16],[5,6,7,8,11]A11,1o
+dQ[1o,13,14,15,m],[5,6,7,8,12]A12,10) /dQ[1.3,14,15,16],[5,6,7,8]
~ dAf10,11,12),010,11,12] ( dQ[10,13,14,15,16],[5,6,7,8,10]A10,9
+ dQ[10,13,14,15,1s],[s,s,7,s,9]'A9,9 + dQ[10,13,'14,15,16],[5,6,7,8,11]A1_1,9 _
+dQ[1o,13,14,15,16],{5,6,7,8,12]A12,9) /dQ[13,14,15,16],[5,6,7,8])
+ (dQ[5,6,7,s],[9,10,11,13]A13,14 +vdQ[5,6,7,8],[9,10,1;,14]‘41‘.1,1.4.
+dQ;s,6,7,8,09,10,11,15) 415,14 + dQ[5,6,7,8],[9,10,11,16]A16,14>
(dA[9;10,11],[9,10,11] (dQ[5,6,7,8,10],[9,13,14,15,16]A9,12 .
+C_IQ[5»6’7:8:10],[10,13,1;,15,16]A10,12 + dQ[5,6,7,8,10],[11,13,14,15,16]A11,12
+dQ[5,6,7,8,10],[12,13,14,15,16]A12»12) /dQ[5,6,7,8],[13,14,15,16]
- dA[9,10,11],[9,10,12} (dQ[5,6,7,s,1o],[9,13,14,15,16]A9,11 _
+dQps 6,7,8,10),(10,13,14,15,16] 410,12 + dQps,6,7,8,101,(11,13,14,15,16] 411,11
+dQ[5,6,7,8,10],[12,13,.1.4,15,16]‘412,11) /dQ[5,6,7,8],[13,14,15,16]
+dAp,10,11),[9,11,12) (dQ[10,13,14,15,16],[5,6,7,8,9]‘49,v10
+dQ[1o,13,1_4,15,1s],[5,6,7,8,10}4410,10 + dQ[10,13,14,15,1s],k5,6,7,s,11]A11,10
+dQ[10,13',14,15,16],[5,6,7,8,12]A12,10) /dQ[ls,14,15,16],[5,6,7,8]
- dA{9,1o,11],[10,11,12] (dQ[1u,13,14,15,1e],[5,6,7,8,10]Alo,g

+ dQ10,13,14,15,16],(5,6,7,8,9) 49,9 T dQ(10,13,14,15,16],(5.,6,7,8,111A11,9

+dQ[10,13,14,15,16],[5,6,7,8,12]‘41‘2,9) /dQ[13,14,15,16],[5,6,7,8]))
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3.2.3.2 Eliminating 4;;’s

Each of the four subsystems has an 8 x 8 data matrix. The data matrix for the

1,1 subsystem is shown below:

(3.112)
| Pio,; Pioss Pioys Pihys Pihss Pihgis Pihgss  Piogy |
Pios, Pioss Piogs Pihss Pihss Pihgys Pihsss Piogs
Pioy; Piogs Piogs Pihss Pihss Pihes Pihess  Piogy
- Phosy Phoss Phoss Phhys Phhes Phhess Phhass Phosy

Ph03,2 Ph03,3 Ph03,4 Phh3’5 Phh3,6 Phhg’ls Phh3,15 Ph03,1
Ph02’2 Ph02,3 Ph02,4 Phhz;s Phhz,s Phh2,15 Phhg’le PhOz,l

PhOl,g Ph01,3 Ph01,4 Phh1,5 Phh]_’ﬁ Phhl,ls Phhl,lﬁ PhOl,]_

PiOl’z P’I:Ol,g P2‘01,4 Pihl,s Pihl’s Pih1’15 Pih1’15 Pi01,1

Q11 has four rank deficient submatrices. They are 4 x 4 submatrices of rank two
(or less). Two constraints are required to force a generic vector in R* to lie in a given
two dimensional subspace. Four conditions are required, therefore, to force a generic 4 x 4
matrix to be of rank two. These consistency conditions upon 211 may be expressed as the
vanishing of 3 x 3 minors. Substituting the solutions for the modified transition probabilities
into these minors forces highly nonlinear polynomials of the A; ;s to be identically zero.
These conditions will be studied in order of increasing complexity. (Clearly, the conditions
which involve variables from P,-,, are bound to be horrendous, so they are not considered
until much later.) Eight of the conditions are identities of the form A;; = 0. The rest
reduce (at a generic point) to four term linear equations. In the rest of this section, the

right-left, left-right, top-bottom, and bottom-top rank deficient submatrices are labeled as
Qijr, Qijir, Qijss, and Qijy, where ¢,j = 1,2. For example,
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Qlls,l Qlls,z Q115,3 ’ Q115,4
Qlls;, Qllz, Qllg; Qllg,
Q1l1,, Qi1,, Qll,, Qil,,

[}

_Q118,1 Qlls,z Qlls,s Q118,4
[ Phos, Phoss Phoss Phhsg

' Qllrl =

Ph02,2 PhOz,a Ph02,4 Phhz’s

. (3.113) ‘ = _ ‘
. Phol,z Ph01,3 Ph01’4 Phh1,5

P?:Ol,z' Pi01,3> PZ'01,4 P'I:hl,s ]

3.2.3.2.1 Identities ' Since Q11,,; is rank two, the determinant of any 3 x 3 minor is

identically zero. Hence,

Q11 | Ql1;, Qll;,
0 = | Qi Quﬁ;2 Qllg,
Ql1l,;, Ql1,, Qll,,
Phos; Phoss Phosy

(3114) = Ph02’2 Ph02,3 Ph02,4

PhOl,z Ph01,3 Ph01,4

Since the solutions for entries in P, in terms of A; ;s are simplest, 3.114 is the
. simplest 3 X 3 minor of 3.113 when the solutions in terms of A, ;s are substituted in. Recall

that A is a 16 x 16 block matrix, with 4 x 4 blocks on the diagonal. The upper left block
of A is the inverse of the upper left block of P,,, and so



- T4

Phoy, Phoy3 Phoyy
—As1 = | Pho,y Phoyz Phoyy |/dPhop 234 1,23,4
Phos, Phoss Phosy
Qll,, Ql1,, Qll;,-
= Qlls, Qll,, Qllg; |/dPhop2sa,1,2,8,4)

Q117,1 Ql1,, Q117,3

The same reasoning applies to Q11;, and shows that 4, 4 = 0. This argument also
applies to the rank-deficient submatrices Q21,;, @214, Q12;,, Q12;;, Q22,,, and Q22;, and
yields the following identities:

(3.115) . A1,4 == 0, . A4’1 = 0, As,s == 0, A8,5 - 0
A9,12 =0, A12,9 =0, Ais,m =0, A16,13 =0

So really the upper left subblock of 4 looks like

Ay Aip Aps 0
Az Azp Az,s Az

Aszy Az Aszs Asg

0 A4,2 Ags Ayy

For larger systems there are even more zero valued 4, ;s. In the first recursive
step in the algorithm for the 8 x 8 problem A is a 32 X 32 block diagonal matrix with four
8 x 8 blocks along the diagonal. For exactly the same reason that the blocks of 4 in fhe
4 x 4 problem have zero valued corners the blocks of A for the 8 x 8 problem have three
zero valued entries in each of their off diagonal corners. The upper left block has the zero

structure :
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A41 A42. A43 A44 A4,5 A46 A4,7 A48

L]

A5,1 A52 A5,3 A54 A5,5 AS,G A57 A58

A61 _A62 A6,3 -AG,4 AGS AGG A6,7 A68

0 Azp Ay Ary Ars Arg Arr Aqg

] ¥ )

0 0 'A8,3 A84 AB,S AS,G A8,7 A88

In general for a n x n problem where n = 2 for some whole number k, the matrix
A'at the first level in this recursive algonthm has four n X n blocks and each of these blocks

ke~ k—
contains Z( Vj= -(——ll zeros in its off dlagonal corners.

.v 3.2.3.2.2 Eas‘y Conditions Notice that‘there are sixteen 3 x 3 minors of the matrix
Q11,,. Each rank deficient submatrix like _Qll,, yields at most four independent consistency
conditions. Since we already know that A4, = 0, we can hope to. get at most three more
independent conditions from setting the 3 % .3 minors of Q11,; to zero. When the other
fifteen 3 x 3 minors are first written down, they seem highly nonlinear, but upon closer
inspection they proved to be quite simple. Gréﬁrﬁann relations may be used to simplify
thé equations. Although we need not consider all ﬁfteeﬁ remaining minors, we do so for
the Q11,; submatrix. (In later sections minors of other matrices will turn out to be so

cumbersome that we only consider an independent set of minofs.)

“Easy” Conditions before Graﬁmann ,
Elght of the minors factor very easﬂy ‘The mmor dQ11,1[234] (1,2,3) factors to

become



dQ[5,6,7,8],[13,14,15,16]
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(—dAp 24,123 GA[L,3,4)[1,3,4] dA[‘1,2,3],[2,3,4]+'

dAp 24,234 dApsansg dApzs)nzs) —
dAp2a 134 dAnsaesyg dApz2an,29 +
dAp 234 dApzaezse dApsazg —
dAp 24 23,4 QAn,23,034 dApsanzagt
dAp 24123 GAp2a) s G434 2s.4)
(3.116) (dQ[l,13,14,15,16],[3,5,6,7,8]A3,4 + dQ{l,13,14,15,16],[4,5,6,7.8]A4.4+
dQ[1,13,14,15,16],[1,5,6,7,8]A1,4 + A2,4dQ[1,13,14,15,1s],[2,5,6,7,8])
the minor dQ11,1[1,3,4],[1,2,3] becomes
—dQs5 6,7,8],(13,14,15,16]
(dApzgnzg dAp2azse dAnsanzat
dA[1,2,4],[2,3,4] dA[1,3,4],[1,2,4] dA[1,2,3],[1,2,3] -
dAp 240,012, dAt1,3,4],[2,3,4] dAp 2,3,01,2,3) —
dAp 242,34 dApzan24 dAps4n,23) +
dApa4,23 dAp2a 2.4 9An3,4,02,3,4 —
dA[1,2,4];[1,2,3] dAps ey dApzs)2sa)
(3.117) (dQ[1,13,14,15,16],[3,5,6,7,8]A3,4 + dQp113,14,15,160,[4,5,6,7.8) a4+

dQ[ly13,14,15,16],[1,5,6,7,8]A1,4 + A2,4dQ[1,13,14,15,16],[2,5,6,7,8])



and the minor dQ11r1[1,2,4]’[1,2,3] is

dQ[s,s,7,8],[13,14,15,16]
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(dAp23028 dApsanze dApza,,34—

dA[1,2,3),01,2,3)
dA[1,2,3),1,2,4]
dAp,2,3),01,2,4)
dAp,2,3),11,3,4]
dA[1,2,3],01,3,4]

dAp,2,4,1,2,9)
dAp5.4,11,2,3)
dA(1,2,4(1,2,3)
dA[1,3,4],[1,2,3]
dA[i,2,4],[1v2’31

dAp 34,0134 —
dAp2,4,0,3,4 +
dA[1,3,4],[1,v3,4] +
dAp 2,401,249 —
dA[1,3,4],[_1,2,4])

(3.118) (dQ[l,13,14,15,16],[3,5,6,7,8]A3,4 + dQ[1,13,14,15,16],[4,5‘,6,7,8]A4,4+

dQ[1,13,14,15,16],[1,5,6,7,8]A1,4 + A2,4dQ[1,13,14,15,16],[2,5,6,7,8])

“Easy” Conditions after Grafimann

We éan use Grafmann relations to simpﬁfy the minors 3.116, 3.117, and 3.118

even further. For example, the cubic term in equation 3.116 may be rewritten as

(3.119) dA[1,2,4],[1,3,4] (dA[1,2,3],[2,3,4]dA[1,3,4],[1,2,3] - dA[l,3,4],[2,3,4]dA[1,2,3],[1,2,3]) -
dA[1,2,4,[2,3,4] (—dA[l,2,3],[1,2,3]dA[1,3,_4],[1,3,4] + dA[1,2,3],[1,3,4]dA[1,3,4],[1,2,3]) +
dAp2,41,1,2,3) (QAR,2,3)1,3,41940,3,42,3,4) — A71,2,3),(2,3,410A11,3,4),[1,3,4])

Using the matrix

[ Ay Aip A Ay 10 0 0]
A21 Az,z A2’3 A24 0100
(3.120) .
Azy Azp; Asz Azy 0 0 1 0
L A4,1 A4,2 A4,3 A4,4 0 0 01 ]

we may rewrite 3.119 in Grafmann notation as



(3.121)

(3.122)

(3.123)

(3.124)

(3.125)

(3.126)

result is
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71,3,4,7 (7T2,3,4,s T1,2,36 — T2,34,6 7T1,2,3,8) +

Tagar (—T1346 71238 + Ti3as Ti236) +
71,2,3,7 ("7?1,3,4,8 - T234,6 T T1346 71'2,3,4,8)

We may next make use of the Gramann relations

= T2348 TM1236 — 72341 7Ts236 T 72342 Ng136 —
M2,34,3 Ts1,26 T+ TM2346 781,23

= 72348 M1,236 — 72346 71,238 — 723638 71,234

= M348 71,236 — 71,341 78236 T TMi342 78136
T1,34,3 781,26 T+ 71346 78,123

= T1,34,8 71,236 — Ti1346 7T1,238 — Ti1368 T1,234 and

= 713,48 72346 — 71342 78346 T T1343 Tg24,6
T1,3,4,4 78236 + 71346 78234

= 71348 72346 — 71346 M2348 T T3468 71,234

Using these relations, the expression in 3.121 may be simplified as

71,3,4,7

72,347 71,368 71,2,3,4

72,3,6,8

T1,2,34 —

+ 71237

73,4,6,8

Finally, we can make use of the Graimann relation

T1,3,4,7 72,368

71,2,3,7

73,468

—  T2,3,4,7

73,6,7,8

71,3,6,8

711,2,3,4

-+

71,2,3,4

0

to simplify 3.125. When equation 3.126 is used to simplify equation 3.125, the

a product
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(3.127) ' Ta678 Tia34

which equals A1,3dA[21’2,3,4],[1’2’3,4] in the original notation. We can write the minor

dQ11,2,3,41,1,2,3) as.

"dQ[s,e,7,8],[13,14,15,16]Al,é ' dAf1,2,3,4],[1,2,3,4]
(3.128) (dQ[1,13,14,15,16],[3,5,6,7,8]A3,4 + dQ[1,13,14,15,16],[4,5,6,7,8]A4,4+

dQ[1,13,14,15,16],[1,5,6,7,8]A1,4 + A2,4dQ[1,13,14,15,16],[2,5,6,7,8])

Similarly, equations 3.117 and.3.118 are eqﬁivalent to

9 .
dQ[5,6,7,s],[13,14,15,-16]A1,2 dA[1,2,3,4],[1,2,3,4]
(3~129) (dQ[l,13,14,15,16],[3,5,6,7,8]A3,4 + dQ[l,13,14,15,16],[4,5,6,7,8]A4,4+

dQ[l,13,14,15,16],[;,5,6,7,8]A1,4 + A2,4dQ[1,13,14,15,16],[2,5,6,7,8])

and
. 2 ‘
—dQ[5,6,7,s],[13,14,15,16]Al,1dA[1,2,3,4],[1,2,3,4] ’
(3.130) (dQ[1,13,14,15,16],[3,5,6,7,8]A3,4 + dQ[1,13,14,15,16],[4,5,6,7,8]A4v4+
dQ[l,13,14,15,16],[1,5,6,7,8]‘41,4 + A2,4dQ[1,13,14,15,16],[2,5,6,7,8])
respectively.

Recall that each of these minors must be idenfically 'zero,'dA[1,2,3,4],[1,2,3,4] # 0 and
Ai;, Ay, and ‘A1,3 are generically nonzero. Finally, the 4x4 minor of @, dQ(5,6,7,8,(13,14,15,16]»
is also generically nonzero. Hence, in each of these three minors the relevant term is the

last one:
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dQ[1,13,14,15,16],[3,5,6,7,8}A3,4 + dQ[1,13,14,15,16],[4,5,6,7,3]A4,4

(3.131) ' +dQ[1,13,14,15,16],[1,5,6!7,8]A1,4 + A2,4dQ[1,13,14,15,16],[2,5,6,7’8] =0

There are three more minors which factor easily. dQ11,y; 2 3),1,2,4) equals

_ (—A5,5dQ[13,14,15,16],[2,3,4,‘5] - AG,SdQ[i3,14,15,16],[2,3,4,6]_

(3.132) AS,.5.dQ[13,14,15,16],[2,3,4,8] - A7,5dQ[13,14,15,16],[2,3,4,7])
| (dAq3,4111,8,41040,2,41,12,3,414 4 2,3,41,[1,2,4F
dA[,3,4,2,3,49412,3,4,1,3,4F4[1,2,4),[1,2,4) —
dAp,3,4001,3,48412,3,4),12,3,4F401,2,4,(1,2,4) —
dAp 3,4, 2,3,41941,2,4,01,3,09A4(2,3,4,01,2,4] T
dAp 3,41,01,2,41840,2,41,01,3,410412,3,4),12,3,4] —

dAp 3,40, 01,2,4/440,3,4,1,3,410A01,2.41,[2,3,4])

and dQl 1,.1[.1,2,3],[2’3’4] ehua.ls

(As,sdQ[13,14,15,1a],[2,3,4,5] + A6,5dQq13,14,15,16),(2,3,4,6)
(3-133) | A8,5dQ[13,14,15,16],[2,3,4,8] + A7,5dQ[13,14,15,16],[2,3,4,7])
(—dAp,2,4,1,3,4d411,2,3),12,3,41942,3,4),[1,2,4 =
dAp 2,423,494 12,3,41,11,3.419401,2,3)[1,2,4) T
dAp,2,40,1,3,498402,3,4),(2,2,49401,2,3),[1,2,4) T
dAp,2,4,(2,3,4184(01,2,3,(1,3,4042,3,4)[1,2,4) —
dA[1,2,4],[1,2,4]dA[1,.2,3],[1,3,4]dA[2,3,4],[2,3,4] +

dAp 2.4111,2,418402,3,4)1,3,4194[1,2,3,[2,3,4])
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and dQ11r1[1,2,3],[1,3,4] equals

("AS,5dQ[13,14,15,16],[2,3,4,5] - A6,5dQ[13,14,15,16],[2,3,4,6]—
(3.134) | Ass dQpu3,14,15,16),(2,3,4,8] — A7,5dQ[13,14,1s,16],[2,3,4,7])

(—dAp 3,411,394 40 2,3),12,3,0dA2,3,4,1,2,4)—
dA[1,3,4],[2,3,4]dAt2,3,4],[1,3,4]dA[1,2,3],[1,2,4] +
dAp,3,4,01,3,4194(2,3,4),(2,3,48401,2,3) [1,2,4) T
dA(1,3,4)12,2,41940,2,3),11,3,418A4(2,3,4,11,2,4) —
dAp,3,4,1,2,41040,2,3),11,3,4194(2,3,4],[2,3,4) T
dAp,3,4,11,2,419402,3,41,1,3,414411,2,3),(2,3,4))

Just as before, one may use Grafimann relations to simplify the above minors.

Provided that A, ,, As34, and A, 4 are nonzero they yield only one relevant term::

(As,sdQ[13,14,1s,1e],[2,3,4,51 + A6,5dQu3,14,15,16), 12,34,

(3.135) _ » A8,5dQ[13,14,15:,16],[2,3,4,8] + A7,5dQ[13,14-,15,16],[2,3,4,7]) = ,0

The same hold true for the other rank deficient submatrices, Qilbt, Q21,, Q21,,
Q12;,, Q12s:, Q22,;, and Q22;.. Each submatrix has several 3 x 3 minors which factor easily
but these easily factorizable minors yield only two relevant équations per submatrix. For-
tunately, these equations are linear in the unknowns! Recall that each of these submatrices
has one 3 x 3 minor which yields one of the idéntities in 3.116. So we expect to find only one
more independent relation per rank deficient submatrix. Fortunately, the remaining minors
are easily cleaned up. They are sums of many terms, some of which are eqivalent to the
‘identities just found (like 3.135) multiplied by some other term. When these identities are

subtracted from one of the remaining minors, another relation amongst the A; ;s appears.

One example is given below:



dQ[s,e,7,8],[13,14,15,16]dQ[13,14,15,1s],[5,6,7,8]dA[1,4],[2,4]

(3.136) (A7,5dQ[1’13,14,15,16],[1,2,3,4,7] + As,sdQ[1,13,14,15,1s],[1,2,3,4,6]+

As,5dQp,13,1415,16,1,2,3,4.5 T dQ[1,13,14,15,16],[1,2,3,4,3]As,5). =0
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In fact, all of the remaining 3 x 3 minors of Q11,, yield the same relevant term, as

we might expect. Each of the other seven rank deficient submatrices that have been studied

thus far yields exactly one more independent relation amongst the 4, ;s.
If the rank deficient submatrices Q11,;, Q11,,, Q21,,, Q21,,, Q12;,., Q12;,, @22,
and Q22;, were all independent of each other then they would correspond to 8 x 4 = 32

independent 3 x 3 minors. Unfortunately, this is not the case. The 24 nontrivial minors

may be grouped in eight sets of three according to their unknowns. Grafimann relations

may be used to show that all three equations per group are equivalent. One of the sets is

shown below:

dQ(1,13,14,15,16),[1,2,3,4,7 47,5 + dQ(1,13,14,15,16],[1,2,3,4,6) 46,5

(3.137) dQ[1,13,14,15,16],[1,2,3,4,5]A5,5 + dQ[1,13,14,15,16],[1,2,3,4,8]A8,5

dQ(13,14,15,16),(2,3,4,51 45,5 T AQ13,14,15,16),(2,3,4,61 A5+
(3-138) dQ[ls,14,15,16],[2,3,4,8]AB,S + dQ[13,14,15,16],[2,3,4,7]A7,5

7

dQ[s,13,14,15,16],[1,2,3,4,7]A7,5 + dQ[s,13,14,15,16],[1,2,3,4,3]A8,5+

(3.139) dQs,13,14,15,16),[1,2,3,4,6/ 46,5 T AQ(8113,14,15,16],(1,2,3,4,5145.5

0

Notice that this equation does not take the identities 3.116 into account. When

the identities are considered the Jacobian of the above system becomes:

dQ[13,14,15,16],[2,3,4,51 dQ[13,14,15,16],[2,3,4,6] dQ[13,14,15,16],[2,3,4,7]
(3.140) dQ[1,13,14,15,16],[1,2,3,4,5] dQ[1,13,14,15,16],[1,2,3,4,6] dQ[1,13,14,15,16],[1,2,3,4,7]

dQ[s,13,14,15,16],[1,2,3,4,5] dQ[s,13,14,15,16],[1,2,3,4,6] dQ[s,13,14,15,16],[1,2,3,4,7]

This Jacobian portends trouble: either the solution to the system 3.137, 3.138, and 3.139
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is trivial, or else these equations are not all independent. We may use Grafmann relations
to show the latter. For the equations to be equivalent, the rank of this matrix must be one.
The rank is one if and only if every 2 x 2 minor is identically zero. Start with the upper

left 2 x 2 mihor
dQ[13,14,1§,16],[2,3,4,5] dQ[1,13,14,15,16],[1,2,3,4,6] -
(3.141) dQps,14,5,16) [2,3,4,6)  AR1,13,24,15,16],[1,2,3,4.5]

In order to use Grafmann identities to show that 3.141 is identically zero, consider

the matrix _ _
[ Qi Qe Qus Qe Qs Qus Qi 1 0]
Qsi Q2 Qus Qe Qus Qus Qor 0 1
(3.142) Q13,1 Q13,2 le,;‘ Q13,4 Q13,5 Q13,6 Q13,7 00

Qua1 Quaz Quz Quae Quys Quas Quar 0 0
Q;s,1 Q52 Qis3 Qusg Quss Qs Qusyr 0 0
| Q61 Qis2 Ques Quss Qm;s Q66 Quer 0 0 |

In the Grafmann notation with respect to this matrix, 3.141 is

(3~143) ' » - 72,3,4,58,9 71,2,3,4,6,9 — 72,3,4,6,8,9 71,2,3,4,5,9
The Graﬁmann relation beginning with these terms is

(3-144) 72,3,4,5,8,9 71,2,3,4,6,9 ~ 72,3,4,6,8,9 71,2,3,4,5,9 — 7T2,3,4,5,6?9 1,233,489 =0
Hence, the upper left 2 x 2 ‘minor in equation 3.141 equals

(3.145) dQ[1,13,14,15,16],[2,3,4,5,6]' dQ[13,14,15,1s],[1,2,3,4]

But the'.submatrix of Q containing rows [1,7,8,9,10,11,12,13,14,15,16] and
columns [2,3,4,5,6] is of rank four. So the minor dQ[1,13,14,i5,16],[2,3,4,5,6] is identically zero.
Then the expression in 3.145 is identically zero, which forces the minor in 3.141 to be
identically zero. GraBmann identities plus consistency conditions can be used to show that
each 2 x 2 minor of the Jacobian in 3.140 is identically zero. The same holds for each of
the eight sets of three equations. Amongst the two dozen conditions found, only eight are
ihdependent. The author prefers to work with the relations whose coefficients are of lowest

degree in the data and uses the following solutions to eliminate eight of the A, ;s
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_ As,59Q(13,14,15,16),(2,3,4,6) T A7,59Q(13,14,15,16],2,3,4,7]

Ao = dQ[13,14,15,16],[2,3,4,5]
Apy = — A10,12dQp5 67,8, (10,13,14,15) T A11,12dQ[5,e,7,s],[11,13,14,15]
’ dQps.6,7,8),(12,13,14,15]
A = — dQrs.6,7,8),10,11,12,14) 414,13 + A15,13dQ[5 6 7 5),110,11,12,15]
' dQ;s 6,7,8),[10,11,12,13]
Ags = - A?,sdQ[13,14?15,1s],[7,9,10,11] + A6,8dQ[13,14,15,16],[6,9,10,11]
’ dQ13,14,15,16),(8,9,10,11]
Agy = — All,QdQ[13,14,15,16],[6,7,8,11] + A10,9dQ[ls,14,15,16],[6,7,8,10]
' dQ[13,14,15,16],[6,7,8,_9]
Ay = — A2,4dQu3,14,15,16), (2,567 T A3,4dQ13,14,15,16),(3,5.,6,7)
’ dQ[13,14,15,16],[4,5,6,7]'
A = — A15,16dQ[5,6,7,8],[1,2,3,15] + A14,16dQ[5,6,7,8],[1,2,3,14]
o dQs.6,7,8,(1,2,3,16]
(3.146) Ay, = - dQ(s 6,78, 12,14,15,16)42,1 + dQs 6 7,81, (3.14,15,16) 43,1

dQ[5,6,7,8],[1,14,15,16]

3.2.3.2.3 Hard Conditions We may now substitute the solutions in 3.146 and 3.116
back into the modified probabilities, (the data for the 2 x 2 subsystems which are the nonzero
entries of the modified transition matrices P,-_;,, P,,, P,,, and P,,). The eight 4 x 4 rank
deficient submatrices which were not used to find the solutions in 3.146 and 3.116 may now |
be used to eliminate more of the A; ;s. As before eight 4 x 4 submatrices of rank two yield
(at most) 32 independent conditions amongst the remaining 48 A; ;s. '

The submatrices which have not yet been used to eliminate A; ;s are Q11;,, Q11,,
Q12 Q12,,, Q21,,, Q21,;, Q22, and Q22,;. Since the 3 x 3 minors of these equations
cannot all be independent we need not bother simplifying all of them. These 3 x 3 minors
are gxtremely cumbersome so the author generated a phantom and substituted its data into
the minors in order-to look for the simplest maximal spanning set of these minors. Some
of these minors were much simpler than others. Recall that generically four conditions are
required to force a 4 x 4 matrix to be of rank two. Although each rank deficient submatrix
corresponds to four independent 3 X 3 minors, there may be dependencies between minors
lgenerated by different submatrices. As with the submatrices Q11,;, Q1ly, Q12;,., Q124,
Q21,;, Q214, Q22,, and Q22;,, which had only sixteen independent minors amongst them,

the remaining eight submatrices correspond to only sixteen independent minors.
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Preferring the path of least resistance, the author chose to simplify as few df
the general minors as possible, starting with the minors correéponding to rows (1,2,3] and
[1,2,4] and columns [1,2,3] for the submatrices Q12,;, Q21;., Q22;,, and Q11,,. This choice
of equations is not uniqué and was made simply because these equations looked simplest.
The first step after writing down the equations is to eliminate their denominators. The next
step is to collecf appropriate terms in the equations. When a data set is substituted into
* the general equations the ie_sulting equations have numerical coefficients and are referred to
as numerical equations. The numerical equations have Inearly as many terms as the general
equations and many of their terms share the same coefficient. Once terms in the numerical
‘equations with like coefficients are collected, the resulting equations have 1000 terms each.

The arguments of like coefficients factor into a neat form (sometimes zero!). Collecting the
| general equé.tions With respect to the minors of the daté. matrix, @, yieldsﬂ 1000 term general
equations. We may simplify each of these terms individually. The nontrivial terms which

are independent of the data matrix Q are either of the same form as 3.119 or of the form
- (3.147) | —dApsansg GAnzazag 0 dApaanseg dApsa 2.

Referring to the matrix 3.120, We.can. write 3.147 in Gramann notation
(3.148) 71,3,4,5 7F2,3,4,s> — Migas T2345

which is the beginning of the GraBmann relation

(3-149) 1,345 72348 — 71348 72345 73458 771,2,3,4=0

From 3.149 we can_.make the substitution
dApapadAnzaagnzsd = ~dApaensgdAnzazeg + dAn 2 ngdAne ez

Once substitutions like this are made, we can facj;or out a square of one of the

following minors:
dAp 23,411,234 456,785,678 GA[9,10,11,12),{9,10,11,12)s and dA;13,14,15,16),(13,14,15,16]

- as well as several generically nonzero minors of the data matrix. This step reduces the
degree of thé equations in A; ;s from thirteen to five and many of the terms in the equations
“are functions of minors of 4. As long as the minors are written in the shorthand using the
symbol dA, the identities in 3.116 are not recognized. So we must (have MAPLE) write out
the minors and substitute the identities 3.116 into the equations. In both the numerical

and general cases, the resulting equations have 256 terms, once they are collected with
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respect to the A; ;s. In the numerical case, the equations factor to have one quadratic term
with 16 terms, another quadr_atic'term with four terms and one linear term with only four
terms. Generically, the relevanf term is the linear one. Unfortunately, the author’s general
equations do not factor. The coefficients of each of the terms is a polynomial in minors of
Q. The minors are e:gpressed in the by-now familiar shorthand using the symbol dQ. As
the Grafimann relations show, there are many ways of writing a polynomial in minors of a
matrix. If MAPLE were able to handle equations of arbitrary size then the easiest fhing to
do would be to rewrite vthe equations without the d@ notation and ask MAPLE to factor
them. At present, that is not possible. So we must work.
Assuming that the general equations should factor just as their numerical counter-
‘parts do, we make good use of that knowledge. Consider the 64 combinations of variables
which occur if we expand both quadratic terms in one of the equations. The coefficient of
any one of these combinations is the desired linear term. Since this procedure was rela- '
tively easy, the author took the coeflicient of each one of the 64 combinations and got 64
different linear terms. Fortunately, they are all equivalent. Although tedious, it is just as
- straightforward to show that these relations are equivalent as it is to show that the rela-
tions 3.137, 3.138, and 3.139 are equivalent. Once again, the author prefers to work with
the equations which have the coefficients of lowest degree in the data. Two of the identities

are shown below



0 = (dQ[s,13,14,15,16],[1,2,3,4,3]dQ[s,13,14,15,16],[8,9,10,11,12]“
dQ[6,13,14,15,16],[1,2,3,4,8]dQ[5,13,14,15,16],[8,5,10,11,12]) Ags +
(dQ[5,13,14,15,1s],[1,2,3,4,7]dQ[e,13,14,15,16],[8,9,10,11,12]_
dQ[s,ls,14,15,16},[1,2,3,4,-7]dQ[5,13,14,15,16],[8,9,10,11,12] -
(3.150) dQ[13,14,15,1s],[1,2,3,4]dQ [5,6,13,14,15,16],[7,8,9,10,11,12]) {47,6 +
(—dQ[13,14,15,1s],[1,2,3,4]dQ[s,s,13,14,15,16],[5,8,9,10,11;12]+
dQ[5,13,14,15,16],[1,2,3;4,5]dQ[6,13,14,15,161,[8,9;10,11,12] -
dQ[s,13,14,15,16],[1,2,3,4,5]dQ[5,13,14,15,1s],[8,9,10,11,12]) As e +
(—. dQ[13,14,15,16],[1,2,3,4]d.Q[5.,6,13,v14,15,16],[6,8,9,10,11,12]—
| dQ[s,13;14,15,16],[1,2,3,4,6]dQ[5,13,14,15,16],[8,9,10,11,12]
vdQ[G,13,14,15,16],[8,9,10,11,12]dQ[5,13,14,15,16],[1,2,3,4,6]) As 6

and '

0 = (—dQ[s,13,14,15,16],[1,2,3,4,s]dQ[7,13,14,15,16],[3,9,10,11,12]+

dQ[5,13,14,15,16],[8,9,10,11,12]dQ[7,13,14,15,16],[1,2,3,4,8]) Age +
(_dQ[5,13,14,15,16],[1,2,3,4,7]dQ[7,13,14,15,16],[8,9,10,11,12]+

dQ[7,13,14,15,1s],[1,2,3,4,7]dQ[5,13,14,15,16],[8,9,10,11,12} +

(3.151) dQ[5,7,13,14,15,16],[7,8,9,10,11,12]dQ[13,14,15,16],[1,2,3,4]) A +

("dQ[5,13,14,15,16],[1,2,3,4,5]dQ(7,13,14,15,16],[8,9,10,11,12]+
dQ[s,13,14,15,16],[8,9,10,11,12]dQ[7,13,14,15,16],[1,2,3,4,5] +
dQ[5,7,13,14,15,16],[5,8,9,10,11,12]dQ[13,14,15,1s],[1,2,3,4]) AS,G +

(— dQ[7,13,14,15,16],[8,9,10,11,12]dQ[s,la,14,i5,16],[1,2,3,4,6]+
dQ[5,13,1§,15,16],[8,9,10,11,12]dQ[7,13;14,15,16],[1,2,3,4,6] +

dQ[5,7,13,14,15,16],[6,8,9',10,11,12]dQ[13,14,15,16],[1,2,3,4]) As 6

A5 6

»

These equations are independent and yield the following solutions for Ag¢ and

87
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Agg = (— (dQ[e,7,13,14,15,16},[1,2.3,4,5,6] dQ[5,13,14,15,16],[8,9,10,11,12] +
dQ[7,13,14,15,16],[1,2,3,4,6] dQ[s,6,13,14,-15,16],[5,8,9,10,11,12]
dQ[s,7,13,14,15,16],[5,8,9,10,11,12] dQ[6,13,14,15,16],[1,2,3,4,6] +
dQ[s,7,13,14,15,16],[6,8,9,10,11,12] dQ[s,m,14,15,16],[1,2,3,4,5]
dQ[s,13,14,15,16],[8,9,10,11,12] dQ[s,7,13,14,15,16],[1,2,3,4,5,6]
dQ[7,13,14,15,16],[1,2,3,4,5] dQ[s,6,13,14,15,16],{6,8,9,10,11,12]
dQ[s,7,13,14,15,16],[6,8,9,10,11,12] dQ[5,13,14,15,1e],[1,2,3,4,5]

dQ[7,13,14,15,1s],[3,9,10,11,12] dQ[5,6,13,14,15,16],[1,2,3,4,5,6]

+ o+ o+

dQ[6,7,13,14,15,16],[5,8,9,10,11,12] dQ[5,13,14,15,16],[1,2,3,4,6]

dQ[5,6,7,13,14,15,16],[5,6,8,9,10,11,12] dQ[13,14,15,16],[1,2,3,4]) A6,6
_(dQ[6,7,13,14,15,16],[1,2,3,4,5,7] dQ[5,13,14,15,16],[8,9,10,11,12] -
dQ[5,7,13,14,15,16],[5,8,9,10,11,12] -dQ[6,13,14,15,16],[1,2,3,4,7]
dQ[7,13,14,15,16],[1,2,3,4,5] dQ[s,6,13,14,15,16],[7,8,9,10,11,12] +
dQ[7,13,14,15,16],[1,.2,3,4,7] dQ[5,6,13,14,15,16],[5,8,9,10,11,12] +
dQ[5,7,13,14,15,16],[7,8,9,10,11,12] _dQ[6,13,14,15,16],[1,2,3,4,5] +
dQ[7,13,14,15,16],[8,9,10,11,12] dQ[5,6,13,14,15,16],[1,2,3,4,5,7]
dQ[6,7,13,14,15,16],[7,8,9,10,11,12] dQ[5,13,14,15,16],[1,2,3,4,5] -
dQ[6,13,14,15,16],[8,9,10,11,12] dQ[5,7,13,14,15.16],[1,2,3,4,5,7] +
dQ[G,7,13,14,15,16],[5,8,9,10,11,12] dQ[5;13,14,15,16],[1,2,3,4,7] +
dQ[13,14,15,1s],[1,2,3,4] dQ[5,6,7,13,14,15,16],[5,7,8,9,10,11,12]) A’l,G) /
(ths,7,13,14,15,1s],[1,2,3,4,5,8] dQ[5,13,14,15,1s],[8,9,10,'11,12]7
dQ[s,13,14,15,1s],[1,2,3,4,8] dQ[5,7,13,14,15,16],[5,8,9,10,11,12] +
dQ[7,13,14,15,16],[1,2,3,4,8] dQ[s,6,13,14,15,16],[5,8,9,10,11,12]
dQ[6,13,14,15,16],[8,9,10,11,12]‘ dQ[5,7,13,14',15,16],[1,2,3,4,5,8]

dQ[7,13,14,15,16],[8,9,10,11,12] dQ[5,6,13,14,15,16],[1,2,3,4,5,8]

dQ[G,7,13,14,15,16],[5,8,9,10,11,12] dQ[5,13,14,15,16],[1,2,3,4,8])



89

AS,G = ((_dQ[7,13,14,15,1s],[;,2,;,4,8] | dQ[5,6,13,14,15,16],[6,8,9,16,11,12] +
dQ[6,13,14,15,16],[1,2,3,4,8] dQ[5,7,13,14,15,16],[6,8,9,10,11,12]
dQ[6,7,13,14,15,16],[6,8,9,10,11,12]. dQ[5,13,14,15,16],[1,2,3,4,8] -

dQ{s,7,13,14,15,16],[1,2,3,4,6,8] dQ [5,13,14,15,16],(8,9,10,11,12] . +

dQ[5,7,13,14,15,16],[1,2,3,4,6,8] dQ[6,13,14,15,16],[8,9,;0,11,12]' -

. dQ[5,6;13,14,15,1§],[1,2,3,4,6,8] dQ[7,13,14,15,16],[8;9,10,11,12]) A6,6 +
(dQ[e,ia,14,15,1é],[1,2,3,4,8] dQ[5,7,13,14,15,16],[7,8,9,10,11,12]
dQ[7,13,14,15,16],[1,2,3,4,8] dQ[5,6,13,14,15,16],[7,8,9,10,11,12]
dQ[5,13,14,15;16],[1,2,3,4,8] .dQ[é,7,13,14,15,16],[7,8,9,15,11,12] -

dQ[s,e,la,14,15,16],[1,2,3,4,?,8] dQ[7,13,14,15,16],[8,9,10,11,12]

dQ[6,7,13,14,15,16],[1,2,3,4,7,8] dQ[5,13,14,15,16],[8,9,10,11,12] +

(3-1'52) dQ[sﬁ,13,14,15,16],[1,2,3,4,7,8] dQ[s,13,14,15,16‘];[8,9,10,'11,12]) A7,6) /

(dQ[G,7,13,.14,15,16],[1,2,3,4;5,8] dQ[5,13,14,15,16],[8,9,10,11,12]
dQ[6,13,14,15,16],[1,2,3,4,8] ' dQ[s,7,13,14,15,16],[5,8,9,10,11,12] +
dQ[7,13,14,15,16],[1,2,3,4,8] dQ[5,6,13,14,15,1§],[5,8,9,10,11,12]

: dQ[e,13,14,15,16],[8,9,10,11,12]dQ[5,7,13,14,15,16],[1,2,3,4,5,81 +
‘dQ[7,13,14,15,1s],[8,9,10,11,12] _dQ[s,s,’13,14,15,16],[1,2,3,4,5,8] +

dQ[s,7,13,14,15,16],[5,8,9,10,11,12] dQ[5,13,14,15,16},[1,2,3,4,8])

3.2.3.2.4 Very Hard Conditions The ohly rank deficient submatrices we have not
yet accounted for are Q22,.1, Q11;,., Q21, and Q124. The author chose to simplify the
simplest. minors generated by the phahtom, those from columns [1,2,4] and both sets of
rows [1,2,4] and [1,3,4]. The equations obtained by subtifuting 3.153 and its counterparts
into these remaining minors are polynomials in the remaining A, ;s and with coefficients
which are large polynomials in the minors of Q. In preliminary work with a phantom each
of these equations was a quintic in the A; ;s and became the product of a 32 term quartic
and a linear term after factorization. Upon substituting the phantom’s values for the A, ;s

into the minors, the relevant terms turned out to be the linear terms. Unfortunately, the
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general versions of these minors did not factor, presumably because the coefficients were

written in the “d@” notation. As with the hard conditions, the author assumed that the

coefficient of any of the 32 terms in the quartic is the desired linear term. .

Because their coeflicients are so cumbersome, only a caricature of one of these

identities is shown below

(3.153)

(CS (caas - b ¢ + bg cg) dy — dQ[s,6,7,s],[13,14,15,1s]dQ[5,6,7,s],[9,10,11,12]
(dQ[13,14,15,16],[8,9,10,12]0‘1 — a4 dQ[13,14,15,16],[8,9,10,11])
’ (bl dQq11,13,14,15,16),6,7,8,9,11) — b3 dQ[10,13,14,15,1e],[s,7,§,9,11])
‘dQ[13,14,15,16],[6,7,8,9]_dQ[.S,'6,7,8],[9,10,11,12]0‘6 (‘15 dQ[13,14,15,16],[8,9,10,11]
+dQ[5,s,7,8,1o],[10,13,14,15,1_6102 dQ[13,14,15,16],[8,9,11,12])
+dQ(13,14,15,16),6.7,8,9/4Qs,6,7,81,[9,10,11,12) 02 (a7_dQ[10,13,14,15,16],[8,9,10,11,12]
—as dQ[ll,13,14,15,16],[8,9,10,11,12])
+dQ(13,14,15,16),6,7,8,919Qs5,6,7,81,19,10,11,12] (a,- dQq13,14,15,16],8,9,10,11]
+dQ[5,6,7,8,11],[10,13,14,15,16]a2 dQ[13,14,15,16],[8,9,11,12]) a9
—dQs 6,7,81,(9,10,11,12] (b4 dQq13,14,15,16],08,0,11,12) T s dQ[13,14,15,15],[8,9,10,11}) Cs Qg
+dQ[5,6,7,8],[9,io,11,12] (Cl az dQ[13,14,15,16],{6,7,8,9]0'3 - dQ[5,6,7,8],[13,14,15,16]62 G2 G4
‘“dQ{13,14,15,16],[6,7,8,9]dQ[13,14,15,1s],[8,9,10,11]‘110 az + dQ[13,i4,15,16],[8,9,10,12]bs a1 6Cs
+dQ[13,14,15,16],[8,9,10,12]b4 Cs a3 + dQ[13,14,15,16],[6,7,8,9]a’l dQ[13,14,15,1s],[s,9,11,12]‘110
+dQys 6,7,8),13,14,15,16)C3 Q2 G6 — dQs,6,7,8],13,14,15,16/C7 49 ‘12)) A10,11]
(—co (caag —bycs +bscs)di — dQ[13,14,15,16],[6,7,8,9]dQ[5,6,7,8],[9,10,11,12]
(bs dQq13,14,15,16),8,9,0,11) T dQ[13,14,15,1s],[8,9,11,12102)
(—dQ[5,6,7,8,11],[9,13,14_,15,16]“9 + dQ[5,6,7,8,10],[9,13,14,15,16]0’6)
+dQ;s.6,7,8],09,10,11,12] (b4 dQ13,14,15,16),i8,0,11,12) F b5 dQ[13,14,15,1e],[8,9,10,11]) Co Qg
—dQs,6,7,8),09,10,11,12] ("dQ (13,14,15,16),(6.7,8,9/9 Q[13,14,15,16],(8,9,10,11) 311 @3
+dQ[13,14,15,16],[6,7,8,9]0’1 dQ[13,14,15,16],[8,9,11,12]a11 — C10 Q2 dQ[13,14,15,16],[6,7,8,9]0‘3

+dQ[13,14,15,16],[8,9,10,12]b4 Cgaz — Cyobs dQ[13,14,15,16],[6,7,8,9]a’l

+dQ[13,14,15,16] [8,9,10,12) bs a; 09)) Al9,11]
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+ (dQ[l3,14,lg,16],[6,7,8,9]dQ[5,6,7,8],[9,10,11,12] (_dQ[11,13,14,15,15],[s,9,10,11,12]
(”bl dQ[S,G,7,8],[13,14,15,16] + dQ[S,G,7,8,10],[12,13,14,15,16]a2)
. _'(_bs dQ[s,s,m],[13,14,I'15,'16] + dQ[s,e,’r,s,u],[12,13,14,15,16}‘12) dQ[10,13,14,15,16],[8,9,10,11,12]) az
+dQ[13,14,15,16],[6,7,8,9]dQ[5,6,7,8],[9,10,11,12] (_dQ[13,14,15,16],[8,9,11,12]b3 dQ[s,§,7,s],[13,14,15,16]
+dQ[5,6,7,8,11],[12,13,14,15,16]b5 dQ[13,14,15,16],{8,9,10,11]
+dQ[5,6,7,8,11],[12,13,14,15_,16]dQ[;3,14,15,165,[8,9,11,12]a2) a9
—dQ(13,14,15,16],(6,7,8,919Q5,6,7,81,[9,10,11,12] (“dQ[1$,14,15,16],[8,9,11,12]bl dQs,6,7,5),(13,14,15,16)
+dQ[5,6,7,s,1o],[12,13,14,15,1é]b5 dQ[13,14,15,16],[8,9,10,11]
+dQ[5,6,7,s',10],[12,13,14,15,16]dQ[13,14,15,16],[8,9,11,12]‘12) Q¢
"dQ[s,G,7,s],[9,10,11,12] (b4' dQ[13,14,15,1s],[8,9,1;,12] + bs dQ[13,14,15,16],[8,9,10,11]) €11 04
+dQ[13,14,15,1s],[6,7,8,9]dQ[5,6,7,s],{9,10,11,12]
(dQ[5,6,7,8,11],[12,13,14,15,16]dQ[5,6,7,8,1o,11],[10,12,13,14,15,16]dQ[9,10,13,14,15,16],[5,6,7,8,9,12]
+dQ[5,6,7,8,10],[12,13,14,15,16]dQ[l1;13,14,15,16].,[5,6,7,8,12]dQ[5,6,7,8,9,10,11],[9,10,12,13,14,15,16]
-dQ[s,s,7,8,11],[12,13,14,15,16]dQ[10,13,14,15,1s],[5,6,7,3,12]dQ[5,6,7,s,9,1o,11],[9,10,12,13,14,i5,16]
+dQ[5,6,7,s,1o],[12,13,14,15,16]dQ[5,6,7,s,1o,11],[9,i2,13,14,15,1s]dQ[g,u,13,14,15,16],[5,6,7,3,10,12]
—dQ[s,e,né,m],[12,13,14,15,1s]dQ [5,6,7,8,10?11],[10,12,13,14,15,16]dQ[9,1_1;13,14,15,16],[5,6,7,8,9,12]
—dQ[s,s,7,8,11],[12,13,14,15,16]dQ[s,s,'r,s,lo,n],[9,12,13,14,15,16]dQ[9,1o,13,14,15,16],[5,6,7,8,10,12]
- dQ[lO,ll,13,14,15,16],[5,6,7,8,10,12]dQ[5,6,7,8,10,11],[9,12,13,14,15,16].dQ[5,6,77,8,9],'[12,13,14,15,16]
+dQ[1o,;1,13,14,15,1s],[5,6,7,3,9,12]dQ[5,6,7,s,1o,11],[10,12,13,14,15,16] dQ[5,6,7,8,9],[12,13,14,15,16])
(" dQ[13,14,15,1e],[8,9,11,12]01 + dQ[13;14,15,16],[8,9,10,11]“3)
+dQ[5,e,7,s],[13,14,15,16]dQ[s’,sﬂ,s],[9,10,11,12]
(—‘14 dQ[13,l4,1;,16],[8,9,11,12] + dQ[13,14,15,16],[s,9,1o,12]a3)
(bl.dQ[n,m,u,ls,m],_[s,-r,g;,g,n] —bs dQ[10,13,14,15,16],[5,7,8,9,11])
+cs 11 d1 be + ¢4 €11 agdy — Cg 11 d1 by
+c11 (bg az + ay bs) dQ[13,14,15,16},[8,9(,10,12]dQ[5,6.7,8],[9,10,11,1?]
+bs (—a9¢r — aqgc; + c3 a6) dQ[5,6,7,8],[13,14,15,16] dQ[5,6,7,8],[9,10,11,12]

+ dQjs 6,7,81,(9,10,11,12€12 s dQ[13,14,15,16],[6,7,8,9]0’1) Al12,11]

.
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+ (_dQ[5,6,7,8],[9.10,11,12] (—c14a9 + ¢35 as)
(bs dQ(13,14,15,16),(8,9,20,11] T+ dQ[13,14,15,1s],[3,9,11,12102)
+dQ[5,6,7,8],[13,14,15,16]dQ[5,6,7,s],[9,1o,11,12]
(—dQ[m’“'“’ml’[3’9’11,12]‘11 + dQ[13,14,15,16],[8,9,10,11]a3)
(b1 dQ(11,13,14,15,16],[6,7,8,9,11] — b3 dQ[10,13,14,15,1s],[6,7,3,9,11])
—Cg C13 dl b2 + dQ[5’6r7’8]’{9a10711,12]dQ[13,14,15,16],[8,9,10,12]b5 a1 €13
—dQgs,6,7,8],[9,10,11,12] (b4 dQ(13,14,15,16),(8,9,11,12 T s fiQ[13,14,15,16],[8,9,10,11]) C13 Q4
+dQs 6,7,81,10,10,11,12)dR(13,14,15,16],8,9,10,1204 @3 C13 '
+c4crzagd; + cg 613.d1 be + dQ[13,14,15,16],[6,7,8,9]dQ[5,3,7,8]’[9’10,11,12]
(—dQ[s’s,"',s,lO]’[11’13’14’15’16]dQ[5’6’7’8’10111]![10»12’13114’15le]dQ[9,11,13,14,15,16]![5,5,7,8,9,12]
— dQ[10,11,13,14,15,16],[5,6,7,8,10,12]dQ[5,6’7,3,9’11],[9,12’13,14,15’16]dQ[5’6’7,8,10]1[11,13’14’15,16]
+dQ[10,11,13,14,15,16],[5,6;7,8,10,12]dQ[5,6,7,s,9,m],[9,12,13,14,15,16] dQ[5,6,7,s,11],[11,13,14,15,161
_dQ[s,s,7,s,9,1o,11],[9,10,12,13,14,15,1e]dQ[1o,13,14,15,16],[5,6,7,8,12]dQ[S,W,S’n]’[11’13’14’15’16]
+dQs 6,7,8,10111,13,14,15,1619Q (11,15,14,15,16115,6,7.8,1219 Qs 6,7.8,9,10,11119,10,12,13,14,15,16)
+dQ[1o,11,13,14,15,16],[5,s,7,3,9,12]dQ{5,6,7,s,9,11],[10,12,13,14,15,16]dQ[576’7’8,10]’[11’13'14’15,16]
~ dQis,6,7,8,9,100,110,12,13,14,15,16/ Qs 6,7,8,111,111,13,14,15,16/9R(10,11,13,14,15,161,(5,6,7,8.9,12]
_dQ[9,10,13,14,15,16],[5,6,7,8,10,12]dQ[5,6,7,8,1o,11],[9,12,13’14,15,16] dQps 6,7,8,11),11,18,14,15,16]
+dQ[9,10,13,14,15,16],[5,6,7,8,9,12]dQ[5,6,7,8,10,11],[10,12,13,14,15’16]dQ[5’6,7,8,11],[11,13’14’15’16]
+dQ[5’6’7’8’10]’[11’13'14’15’16] dQ[s’G’.”s’lo’ll]r[9712’13’14’15v16]dQ[9y11,13,14,15,16]a[5,6,7,8,10,12]
+dQ{9,1o,11,13,14,15,16],[5,6,'7,8,9,10,12]dQ[5,s,7,'s],[13,14,15,1s]dQ[5,6,7,3,1o,11],[11,12,13,14,15,16])
(_dQ[13,14,15,1s],[3,9,11,12101 + dQ[13,14,15,1s],[8,9,10,11]‘13)
~4Qs.0,7.8119,10,11.12 (dQ [13,14,15,16),[6,7,8,0)C16 + €2 dQ[5,6,7,8]7[13,14,15,16])
(a2 a3 + a; bs)) A[11,11]

where each of the a;s represents a six term quadratic polynomial in minors of Q.
The b;s represent ten term quadratics in minors of Q. The ¢;s represent two term quadratics

in minors of Q.
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The author has little doubt that equation 3.153 and its counterparts can be sim-
plified significantly if enough time, energy, and computing power are devoted to the cause.
When this last set of minors is solved linearly for eight more of the A; ;s in terms of the
remaining A; ;s, we are left with a 32 parameter family of solutions for the modified 4 x 4
prbblem. Therefore, we have 32 parameter family data sets for each of the four 2 x 2 sub-
systems. The last step is to solve each of these subsystems as done in section 3.2.1. The
solution for each of the 2 X 2 subsystems is a 16 parameter family of solutions in terms of the
data. The process of solving all four subsystems introduces another 64 = 4 x 16 parameters
and yields the result promised at the beginning of section 3.2.3: a 96 = 4%16+ 32 parameter

family of solutions for the unknown transition probabilities for a 4 x 4 system.

3.2.4 n xn problem where n=2F, k€ N

In the previous section two recursive levels were required to solve the 4x 4 problem.
A sketch of the author’s vision of the algorithm for the 8 x 8 problem follows. Later, the
algorithm for a n x n problem is sketched. _

The first step in tackling the 8 x 8 problem is to break up the 8 x 8 system into
four 4 x 4 subsystems. See figure 3.1. Only 32 of the original 8% % 16 — 32 = 992 hidden
states are considered in this modified system. The modified transition probabilities are the
probabilities with which a photon travels frdm one of the pertinent states to another such
that its travel path lies entirely inside one of the subsystems. These modified transition
probabih'ties comprise the data 'for the 4 % 4 subsystems. Furthermore, the same process
for solving the governing equations 2.8 that was used in sections 3.2.1 and 3.2.3.1 permits
expression of the modified transition proi)abilities in terms of the entries of 4 = Ph_ol. P,
is a 32 x 32 block diagonal matrix with four 8 x 8 blocks along its diagonal. Since A has the
same zero structure, we have a 4 * 8% = 256 parameter solutions for the modified transition
probabilities. There are many consistency conditions amongst the data for each of the 4 x 4
subsystems. These conditions should allow us to solve for all but 64 A, ;s in terms of the

remaining A; ;s.
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Notation: Let A, Py,, P, Py, and P;, denote the modified transition matrices
at the first level of this recursive algorithm. At the next level of the recursive process
each of the four 4 x 4 subsystems will have its own data matrix, Qi,7,, where we refer to
the subsystems as systemz, j;, where i;,j; = 1,2. The transition matrices for the modified
4 x 4 systemi, j; are referred to as A%;j1, Piij140, Pi1J1ios Ptij1pn, and Pijji,,. At the last
recursive level of this recovery algorithm, each of the 4 x 4 modified systems will be broken
into four 2 x 2 subsystems. The (i3,75)"" 2 X 2 subsystem of the (i1,71)™ 4 x 4 subsystem
will be referred to as systemsi,ji;,;,. The data matrices for these sub-subsystems will be
referred to as Q,71,,;,; the transition matrices as Pi,jy;,;, not Plidtiyi;:00 Pi1dis,, o and
Piljlizjzih'

Now that we have 64 parameter solutions for @11, @12, Q21, and Q22 we can
implement the recovery algorithm for the 4 x 4 problem on each of the 4 x 4 subsystems
as done in section 3.2.3. See figure 3.2. For subsystem:;j, we recover Qiyj,;,;, for each '
combination i,,j, = 1,2 in terms of Qi,j1 and half of the nonzero entries of Aé,7,. Since
each Ai;j; is a 16 x 16 block diagonal matrix with four 4 x 4 blocks along the diagonal,
we introduce 1/2 x 4 x 4 x 42 = 128 additional parameters to our solutions for the data
submatrices for the 2 X 2 sub-subsystems. The resulting data matrices, Q4,5;,,,, should be
functions of 64 + 128 = 192 parameters. Now, we must simpy implement the 2 x 2 recovery
algorithm on each of the 4> = 16 sub-subsystems. We may solve for each set of transition
matrices Piyji;,j, , Pitjii . Pitdiippss a0d Pisjis, , in terms of Aiyjy,, ., introducing
another 256 = 4? x 16 parameters. The end result is a 256 + 128 + 64 = 448 = 8 x 8(8 — 1)
parameter family of solutions for the transition probabilities in terms of the data matrix Q.
Recall from section 3.1 that the rank of the forward map is at most 8n(n+1). For the 8 x 8

problem we can at best find a 16n2 — 8n(n + 1)|,=—s = 448 parameter family of solutions.
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In general, the recovery algorithm for a n x n system where n = 2%, k € N, requires
k — 1 recusive levels before the 2 x 2 “base case” is reached. Pseudocode for this algorithm

is shown below:

solveasubsystem := proc(sysin)
break up sysin into four m x m subsystems
if m = 2 then ,
solve each subsystem for its transition probabilities in terms
of its data and 16 parameters
else for each subsystem
1. solvé for modified transition probabilities in terms of data and A
2. eliminate all but 8m parameters using consistency conditions

3. call solveasubsystem with this subsystem as input
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Figure 3.1: Decomposition of an 8 X 8 system into four 4 x 4 subsystems. The thick lines
separate the subsystems. Only states which are considered when solving for the subsyséems’

data are denoted with arrows.

L N S SN 4+ 4 ¢
1 1.2 1.2

=7 1,T TTI,2 =T71,1 =T 11,2

1 1 1.2 1.9

T T4,1 ki Y =TI =792,

2 2 2.2 9 4

=YATLI bk b V4 LT | T 52

92 2 2 2.9

=TT Y2 Y21 T2

LR I R

Figure 3.2: Decomposition of a 8x8 system into four 4 x 4 which are subsequently decom-

posed into 2 x 2 subsystems. The thick lines separate the subsystems.
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Figure 3.3: Decomposition of a 16 x 16 system into four 8 x 8 subsystems. The thick lines

separate the subsystems.

21

Figure 3.4: T'wo routes taken into account by p; s



hs

23

Figure 3.5: One of many paths taken into account by sgs

i

1

Figure 3.6: One route which p, 3 does not take into account.
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k 2 1 N
kE+1
m+k

m+k+1 m + 2k . m+n+k

Figure 3.7: An example of a larger system. The thick vertical line separates the “left”
states from “right” states. In order for a photon to travel from one of the sources left of the
barrier to a detector right of the barrier, the photon must enter at least one of the states

marked with arrows.

k 2 1 N
kE+1
m+k
m+k+1 m+k+1 m+n+k

Figure 3.8: Example of a larger system with a weird boundary. In this particular exé,mple,

(k—1)=2.
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Figure 3.9: Source k is surrounded by three barriers indicated by the thick lines.

Figure 3.10: For the 1 x 1 case shown on the left, there are no boundaries. For the 2 x 2,

case, however, there is one left-right and one top-bottom boundary.
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Figure 3.11: Data for the 2 x 2 problem which may be considered redundant due to 4 x 4
rank two submatrices are marked with an ‘x’. Data which are independent of all consistency
conditions are marked with an ‘1’. The independent data correspond to nonzero entries of

P,,. Note that the choice of redundant data is not unique.

-
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t 0 O X Tr T T
o t 1 O r r T T
o 1t t O r T T T

o 0 1 T Tr T T

Figure 3.12: Data which may be considered redundant due to 8 X 8 rank four submatrices
are marked with an ‘x’. Data which may be considered redundant due to 6 x 10 or 10 x 6
rank four submatrices are marked with an ‘o’. Data which are independent of all consistency

conditions are labeled with an ‘i’. As before, the choice of redundant data is not unique.
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"Figure 3.13: In any one of the 4 x 4 blocks on the diagonal of the data matrix for the

8 x 8 problem, data which may be considered redundant due to 18 x 14 or 14 x 18 rank

eight submatrices are marked with an ‘o,’. Data which may be considered redundant due

to 20 X 12 or 12 x 20 rank eight submatrices are marked with an ‘0,’. Data which may be-

considered redundant due to 22 x 10 or 10 x 22 rank eight submatrices are marked with an

‘o3’. Data which are independent of all consistency conditions are labeled with ‘’. Once

again, this choice of redundant data is not unique.
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Figure 3.14: A 4 x 4 system. The incoming and outgoing states are labeled; all unlabeled

states are hidden states. There are 16 incoming and 16 outgoing states, but 48 hidden

states.
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Figure 3.15: Decomposition of a 4 x 4 system into four 2 x 2 subsystems. The thick lines

separate the subsystems. The “modified” 4 x 4 system disregards individual pixels. Only

the subsystems are relevant at the first level of this recursive procedure.
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Figure 3.16: Examples of paths which are taken into account by transition probabilities for

this modified system.
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Chapter 4

Three Dimensional Problems

4.1 Introduction

The setup is essentially the same in three dimensions as it was in two. Ann X n xn

array of voxéls in R? encloses the object to be reconstructed. There are 6n? outer faces,
“each with a source and a detector. Preferred directions of travel are noi:th, south, east,

west, up, and down. The transitions matrices are larger than the matrices for an n x n
problem and there are relatively more hidden states in three dimensions. The governing
matrix equation 2.8 is unchanged, however.

For a n x n X n system there are 6n’ incoming, 6n? outgoing, and 6n3 — 6n% =
6n%(6n — 1) hidden states. P,, is a 6n% X 6n? matrix, while Py, is 6n* x 6n?(n — 1), Py, is
6n%(n — 1) x 6n%(n — 1), and P, is 6n%(n — 1) x 6n%. Q is a 6n? X 6n® matrix.

- One of the differences between the two and three dimensional problems is the
amount of data. In two dimensions there is precisely as much data as there are unknown
transition probabilities. In three dimensions there are 36n* pieces of data but only 36n3
unknowns. (There are six ways to enter a voxel and six ways to exit; each voxel has 6% = 36
transition probabilities.) Since the rank of the forward map cannot be greater than the
dimension of its domain, there must be consistency conditions upon the entries of Q. In
fact, there are enough conditions to make the three dimensional forward map rank deficient.
In [13] it is shown that the Jacobian for the 2 x 2 x 2 problem is generically only of rank 240.
In the following sections we shall express the unknown transition probabilities in terms of

a 36 x 2° — 240 = 48 free parameters and the data.
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Figure 4.1: Eight voxels, seven of which are labelled above. Voxel 1,2,1 is hidden from
view. Some incoming and outgoing states are labeled as well. A photon which travels north
into voxel 112 via incoming state ¢5 and then turns upward traveling out of voxel 112 via

outgoing state o does so with probability n112u.

Notation : The probability that the photon will travel east into pixel 1,1,1 and
continue east into pixel 2,1,1 is written as ellle. The probability that it will turn right
and travel out of the system is written as ellls and the probability with which it turns

upwards and travel into pixel 1,1, 2 is written as ellln.
The transition probabilities satisfy 2.9 (as mentioned in chapter 2)
eijke + eijkw + eijkn + eijks + etjku + eijkd <1
uijke + uijkw + uigjkn + uijks + uijku + uijkd <1
dijke + dijkw + dijkn + dijks + dijku + dijkd < 1
(4.1) wijke + wijkw + wijkn + wijks + wijku + wijkd < 1
nijke + nijkw + nijkn + nijks + nijku + nijkd <1

stjke + sijkw + sijkn + sijks + sijku + sijkd < 1

where 2,7,k = 1,2
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Figure 4.2: A 2x2Xx2 system is split apart so that we can see a few hidden states representing
travel from the “leftmost” voxels, 111, 121, 112, and 122, to the “rightmost” voxels, 211,
221, 212, and 222.

Furthermore, this system satisfies the range conditions (also mentioned in chap-

ter 2)
(4.2) 0<) Qa<1 i=1,2,...,6n°

The method for finding a 48 parameter family of solutions to the inverse problem
starts off just like the two dimensional method. The matrix equations 2.8, 3.18, and 3.18,
are the same; only the matrices are different. The matrices for the 2 x 2 x 2 problem also
have special block structures. P, ahd Py, are 24 x 24 block diagonal matrices with eight
3 x 3 blocks. Py and Py, are 24 x 24 matrices with nonzero entries on their off diagonals.
As before, A and X have the same diagonal block structure as P,,; W and ¥ have the same
off diagonal block structure as P,; and P;,. For the 2 X 2 X 2 problem, each column in 3.18
is a system of 24 linear equations in the 12 variables which appear in the corresponding
columns of A—W and X —Y. Just as in two dimensions, the columns of A—W and X -Y
come in pairs.. The roles of the A; ;s and W, ;s are reversed in the first and last columns
of A — W as are the roles of the X; ;s and Y; ;s in the first and last columns of X — Y.

Hence, we must solve the “same” matrix equation for the first and last columns of 3.18. See
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table 4.1. We shall consider column three ‘of 3.18. The third columnsof A~W and X - Y

are shown below:

(4.3)

[ A X1a
Az,s Xz,s
A3,3 X3,3

—W4,3 —K;,a
—W5,3 "'}/'5,3
_W6,3 _Y'G,S

L 0 J L 9 u

respectively, where 6 is a column vector of eighteen zeros. The 24 equations in

column three can be written as a homogeneous matrix equation:



(4.4)

Qs,2
Qs,2
Q7,2
Qs,2
Q9,2
Q10,2
Q11,2
Q12,2
Q13,2
Q14,2
Q1s,2
Q16,2
Q7,2
Q18,2
Q19,2
Q20,2
Q21,2
Q22,2
Q23,2
Q24,2

Qus

Q2
Q3,4
Q1,4
Qs,4
Q6,4
Q1.4
Qs
Qo4
Q10,4
Q11,4
Q12,4
Q13,4

Q14,4

Q15,4
Q16,4
Q17,4
Q18,4
Q19,4
Q20,4
Q21,4
Q22,4
Q23,4
Q24,4

Qs,5
Qs,5
Q7,5
Qs,5
Qo5
Q10,5
Q1,5
Q12,5
Qi35
Q14,5
Q15,5
Q16,5
Q17,5
Q18,5
Q19,5
Q20,5
Q21,5
Q22,5
Q23,5
Q24,5

Q16
Q26
Qs

© Qas

Qs.6
Qs,6
Q16
Qs,6
Qos
Q10,6
Q11,6
Q12,6
Q13,6
Q14,6
Q15,6
Q16,6
Qu7,6
Q18,6
Q19,6
Q20,6
Q21,6
Q26
Q236
Q24,6

(=]

A

Az

111
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We have twelve sets of homogeneous linear equations like 4.4 corresponding to
‘twelve 24 x 12 matrices which satisfy the homogeneous equation Cz = . Since the trivial
solution would not be interesting enough to write about one may safely assume that there
must be other solutions. This is indeed the case since the lower left 18 x 6 submatrix found
in equation .4.4, represents travel into voxels 111 and 112 from the the other six voxels. As
shown in [13] this submatrix is of rank four or less. Since the first six equz;,tions in 4.4 are
independent, we may solve 4.4 for at most 6 + 4 = 10 of the twelve unknowns in terms of

the other two.

4.2 Solving the Equations

Since the W, ;s, X, ;s, and Y; ;s are already functions of 4, ;s, it seems natural to
solve for them in terms of the A;;s. Following this procedure for all 24 columns reduces
the number of unknowns from 288 to 72. The analogous procedure in two dimensions
exhausts the supply of independent equations. In three dimensions, however, we have
enough information to solve for one third of the A; ;s in terms of the remaining 4, ;s.

To solve 4.4 for the W, ;s, X; ;s, Y; ;s, and diag(A) in terms of the rest of the 4, ;s,

one need only solve:

(4.5)
[ Q1,3 Q.4 Q1,5 Q1,6 -1 0 0 0 0 o 17T A3z 1 [ Q1,1 Q1,2 1
Q2.3 Q2,4 Q2,5 Q2,6 o -1 o ] o 0 Wa,s Q2,1 Q2,2
Qs,3 Q3,4 Q3,5 Q3,8 0 6 -1 0 0 0 Ws.3 Q3,1 Q3,2
Q4,3 Q4,4 Qa,s Q4,8 0 Y o -1 o0 O Ws,3 Q4,1 Q4,2
Q5,3 Q5,4 Qs,5 Qs,6 [} 0 0 o -1 o0 X1,3 B Q5,2 Qs,2 [ A1,3 ]
Qe,3 Qs,4 Qs,5 Qs,6 0 0 0 0 o -1 Xa2,3 N ] Qs,1 Qe,2 Az
Q13,3 Q13,4 Q13,5 Qias 0 o -0 0 0 0 X3,3 Q13,1  Qis,2
Q14,3 Qu4,4 Qia5 Qiss O 0 [} 0 0 [4 Yi,3 ) Q14,1 Qia,2
Qis,s Q54 Qiss Qise O 0 o o 0 0 Y5, Q5,1 Qis,2 |
| Qies Qisa Qiss Qe O 0 o 0 Y o | L Ye,3 _ L Qis,1  Qie,2 |

'Notation : Denote the determinant of the submatrix of Q taken from rows [r;,r;,... ,7.)

and columns [c1,Ca, ... ,Cn| 8S AQ(ry,rz ... ru),[c1,c20enr son]



column pairs

nonzero

minors

1,24 dQ(13,14,15,16],1,22,23,24] dQ3,14,15,16),(1,2,3,24]
2,11 dQps3,4,15,16],[2,10,11,12]  dQ[13,14,15,16],[1,2,3,11]
3,4 dQ(13,14,15,16],(3,4,5,6] dQ(13,14,15,16],(1,2,3,4]
5,20 dQ13,14,15,16),5,19,20,21] dQ[13,14,15,16],[4,5,6,20]
6,7 dQp3,14,15,16],06,7,8,9] dQ(13,14,15,16],(4,5,6,7)
8,17 dQp1,2,3,4),(8.16,17,18] dQ1,2,3,41,(7,8,9,17]
9,10 dQ(1,2,3,4),[9,10,11,12] dQp,2,3,4),(7,8,9,10)
12,13 dQ(1,2,3,4],(12,13,14,15] dQ1,2,3,4],110,11,12,13]
14,23 dQ1,2,3,4),114,22,23,24) dQp1,2,3,41,113,14,15,23)
15,16 dQ1,2,3,4),(15,16,17,18] dQ1,2,3,41,[13,14,15,16]
18,19 dQ1,2,3,4.,18,19,20,21]  AQ[1,2,3,4),[16,17,18,19)
21,22 dQp1,2,3,4),[21,22,23,24] dQ(1,2,3,4),[19,20,21,22]
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Table 4.1: The columns of 3.18 come in pairs. Each pair is shown in the left hand column.
In order to solve a “column of equations” in 3.18 we require that a minor of @ is nonzero.

These minors are displayed to the right of their corresponding column numbers.

The determinant of the lefthand matrix in 4.5 is dQ(13,14,15,16),(3,4,5,6- Fquation 4.5
has a unique solution if and only if dQ13,14,15,16],[3,4,5,6) 7 0. The same sort of requirement
holds for each of the other columns of 3.18. Although there are only twelve different (and
underdetermined!) matrix equations in terms of the unknowns, we must solve 24 different
linear systems of equations in order to solve for the W ;s, X; ;s, Y ;s and diag(A) in terms
of the rest of the A, ;s. Table 4.1 shows which columns correspond to the same matrix
equation and minors of the data we require to be nonzero.

If the data satisfy these requirements then we can solve the 240 independent equa-
tions in 288 variables linearly for the nonzero entries in W, X, Y, and diag(A) in terms of

the 48 other variables in A = P!, (Note that this choice of equations is not unique.)
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Because the solutions for the transition probabilities in terms of all 72 of the A, ;s
are much simpler than their solutions in terms of only the off diagonal elements of A, we
first solve in terms of all of the entries of A. Sample solutions from each of the four one
step transition submatrices shown below. Since P,, = A~!, the solutions for entries of P,
are especially simple:

- dA;; .
(4.6) - ul22w = ——(LEMDEL
) } ) A[7,8,9],[7,8,9]

Solutions for variables from a transition submatrix are all of the same form. For
example, all of the transition probabilities in P, are equal to a 2 X 2 minor of A divided

by a 3 x 3 minor of A. One of P,;’s nonzero entries may be written as

5112n = (A8,7dA[4,5],[4,51dQ (13,14,15],[4,5,8] T A9,7dA[4,6],[4,5]dQ[13,14,1s],[4,6,9]+
Ag,7d A 5),14,59Q)13,14,15),14,5,9) T A8,78A5,61,(4,5]dQu3,14,15),(5.6,8) T
(4-7) A9,7dA[5,6],[4,5]dQ[13,14,15],[5,§,9] + A7,7dA[4,6],[4,5]dQ[13,14,15],[4,e,7] +
A7 7d A5 6),14,519Qp3,10,15), (5,67 T A8,74A18,6),14,519Q13,14,15,ja,6,9) T
A7,7dA[4,5],[4,5]dQ[13,14,15],[4,5,7]) /(dA[4,5,6],[4,;,6]dQ[13,14,15],[4,5,6])

The solutions for entries of P,, and P, were quite simple (for MAPLE) to com-
pute. The solutions for transition probabilities in P,, and P;, appeared to be extremely
messy at first. By grouping terms in the solutions for entries of P;, carefully it is possible
to simplify them using matrix expansions of the forms
(4.8) —dA[z,a],[l,é]As,z +dAp,3,2,343,1 + dAp 31,2433 = 0

dApan2Ass + dAng) s dsy — dAngnads: = dAneanzg

The resulting solutions are quite simple:

dl112u = ‘dA[4,5],[5,6] (dQ[s,13,14,15],[1,2,3,4]A4,4 + dQ[s,13,14,15],[1,2,3,6]A6,4+
(4-9) . dQ[6,13,14,15],[1,2,3,5]A5,4) /dQ[13,14,15],[1,2,3]dA[4,5,6],[4,5,6] -
dA[4»5]»[4y6] (dQ[s,13,14,15],[6,19,20,21]A6,5 + dQ[6,13,14,1s],[4,19,20,21]A4,5+
dQ[6,13,14,15],[5,19,20,21]A5,5) /dQ[13,14,15],[19,20,21]dA[4,5,6]1[4,5,6] +
dA[4,5],[4,5] (dQ[s,13,14,15],[6,7,3,9]A6,6 + dQ[s,13,14,15],[5,7,8,9]A5,6+
dQ(e,13,14,15],[4,7,8,9]A4,6) /dQ{13,14,15},[7,8,9]dA[4,5,6]y[4,5»6]
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The identities giving the Grafimann-Pliicker embedding can be used to simplify
the solutions for entries of P;, considerably. The method for simplifying these solutions is
exactly the same as that used in (7, 6] and 3.2.1.3. One of the simplified solutions for a

transition probability in P;, is shown below:

d122d = —dQ[13,14,’15],[4,5,s]dQ [1,2,3],[16,17,18]dQ(la,14,15},[10,11,12]dA[7,8,9],[7,8,9]
(dQ[7,13,14,15],[7,8,9,12]A12,1o + dQ(7,13,14,15,(7.,8,9,101 410,20 + dQ[7,13,14,15],[7,8,9,11]A11,1o) +
dQ[13,14,15],[4,5,6]dQ[1,'2,3],[16,17,18] (A10,10 (dA['T,B],[7,8]dQ[13,14,15],[7,s,1o]+
dAI7,9],[7.8]dQ[13,14,15],[7,9,10] + dA[B,B],[7,8]dQ[13,14,15],[8,9,10]) +
Aiz 10 (dA[-(,s],[v,s]dQ[13,14,15],[7,9,12]+
dA[8,9],[7,8]dQ[13,14,15],[8,9,12] + dA[7,8],[7,8]dQ[13,14,15],[7,8,12]) +
Ay 10 (dA[7,81,[7,8]dQ[13,14,15],[7,8,11]_ + dA[s,g],[7,s}dQ[13,14,1s],[s,9,11]"f‘
dA[7,9],[7,8]dQ[13,14,15],[7,9,11])) (dQ[7,13,14,15],[7,10,11,12]A7,9+
A8,9dQ[7,13,14,15],[3,10,11,12] + A9,9dQ[7,13,14,15],[9,10,11,12]) -
dQ[1,2,3],[16,17,18]dQ[13,14,15],[1o,11,12] (A12,10 (dA[7,9],[8,9]dQ[13,14,15],[7,9,12}+
'dAIT,B],[8,9]dQ[13,14,15],[7,s,12] + dA[8,9]1[819]dQ[13,14,15],[8,9,12]) +
Ajo,10 (dA[7,8],[8,9]dQ[13,14,15],[7,8,10] + dA[8,9]y[8,9]dQ[13,14,15]',[s,9,1o]+
dA[’I,B],[8,9]dQ[13,14,15],[7,9,10]) +
A11,10 (dA[8,9],[8,9]dQ[13,14,15],[8,9,i1] + ‘11‘1[’1,9],[3,9]dQ[13,14,15],[7,9,11]+
dA[7,8],[8,9]dQ[13,14,15],[7,8,11V])) (A9,7dQ[7,13,1;,15],[4,5,6,9]+ _
| A7,7dQ[7,13,14,15],[4,5,6,7] + dQ[7,13,14,15],[4,5,6,8]A8,7) +
dQ[13,14,15],[4,5,6]dQ[13,14,1s],[10,11,12] (A10,10 (dA[8,9],[7,9]dQ[13,14,15],[8,9,10]+
dA[7,9],[7,9]dQ[13,14,15],[7,9;1o] + dA[7,8],[7,9]dQ[13,14,15],[7,8,10]) +
A11,10 (dA[7,8],[7,9]dQ[13,14,15],[7,8,11] + dA[7,9],[7,9]dQ[13,14,15],[7,9,11]+
dA[8»9],[7,91dQ[13,14,15],[8,9,11]) + Aiz,10 (dA[7»8]’[7!9]dQ[13,14,15],[7,8,12]+
dA[8,9],[7,9]dQ[13,14,15],[8,9,12] + dA[7,9],[7,9]dQ[13,14,15],[7,9,12]))
(A8,8dQ[l,2,3,7],[8,16,17,18] + A7,8dQ[1,2,3,7],[7,16,17,18]'+ dQ[1,2,3,7],[9,16,17,18]A9,8) /

(dA[7,8,9],[7,8,9]dQ[13,14,15],[7,8,9]dQ[13,14,15],[10,11,12]dQ[13,14,1s],[4,5,6]dQ[l,2,3],[16,17,18])
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These solutions, (4.10, 4.10, 4.6, and 4.8), are analogous to the sixteen parameter
solution to the 2 x 2 problem where all of the transitions probabilities can be expressed in
terms of the A; ;s. In this 2 X 2 x 2 problem, however, we can solve for diag(A) in terms of

the remaining A4; ;s. One of the solutions for a diagonal entry of A is shown below:

dQ(13,14,15,16],(4,5,6,21) 421,20 T dQ(13,14,15,16),(4,5,6,19] 419,20

(410) Azo’zo = -

dQ[13,14,15,16],[4,5,6,20]

Half of the solutions for Py, factor when the solutions for diag(A) are substituted

into their numerators. Here is one example:

nl22d = (_A7,8dQ[13,14,15,16],[8,10,11,12]dQ[1,2,3,4],[7,16,17,18]_

(4.11) Ag,8d Q13,14 15,16),(8,10,11,12)9Q1,2,3,4],[9,16,17,18) T
A9,SdQ[1,2,3,4],[8,16,17,18]dQ[13,14,15,16],[9,10,11,12] +
A7,8dQ[1,2,3,4],[s,16,17,1s]dQ[13,14,15,16],[7,10,11,12])

(A12,10A8,9dQ[13,14,15,16],[8,9,10,12] + dQ13,14,15,16),(7,9,20,11}47,9 411,10+
dQ13,14,15,16],(7,9,10,12] 412,20 47,9 + dQ[13,14,15,16],[8,9,10,11]A8,9A11,10) /

dA[7,8,9],(7,8,9]dQ[13,14,15,16],[7,8,9,1o]dQ[1,2,3,4],[s,16,17,18]dQ[13,14,15,16],[9,10,11,12]

Substituting the solutions for diag(A4) into the solutions for the transition prob-
abilities yields a 48 = 288/6 parameter family of solutions to the 2 x 2 x 2 problem. In
two dimensions, there are 64 unknown transition probabilities and a 16 = 64/4 parameter
family of solutions to the 2 x 2 problem. Notice that the ratio of unknowns to parameters
is higher in three dimensions than it is in two dimensions. The extension of the two dimen-
sional recovery algorithm to n x n systems gives a 8n(n — 1) parameter family of solutions
for the 16n? unknown transition probabilities. The analogous extension to the solution of .
the 2 x 2 x 2 problem will doubtless result in a O(n3) parameter family of solutions to
the n X n X n problem. ‘The author’s best guess is that the number of parameters will be

24n® + O(n?).
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Chapter 5

Conclusion

Diffuse tomography is still in its infancy, and there are many areas which should be
explored. In this thesis a recursive algorithm for computing a 8n(n — 1) parameter family of
solutions for a n xn problem was derived in section 3.2. Before deriving this algorithm it was
necessary to study consistency conditions in section 3.1. A thorough understanding of the
consistency conditions was required in section 3.2.3.2 to reduce the number of parameters in
the solution to the modified 4 x 4 problem. The recursive recovery algorithm was sketched

in section 3.2.4. Finally, the smallest nontrivial problem in three dimensions was considered

in Chapter 4.
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As yet unexplored areas which pique the author’s interest include completion of a
careful study of consistency conditions for the three dimensional model [13]. Understanding
the consistency conditions is crucial because the amount and type of additional information
required to close the resulting system of equations is directly tied to the number and type
of conditions. The very next item on the agenda isb to implement the recursive recovery
algorithm in three dimensional. The algorithm will be analogous to its two dimensional
predecessor. The biggest difference between the two and three dimensional algorithms is
complexity. '(The three dimensional version will be much worse!) Last, but certailﬂy not
least, is a careful stability study of these algorithms. Given a ;‘noiseless” set of data for
the two dimensional prdblem, the recursive algorithm recovers the transition probabilties
exactly. Noisy data could introduce large errors. One éource of efror is inverting Pj,.
When scattering is isotropic, for example, P,, is singular. Another source of error is the
fact that the algorithm requires solving nonlinear polynomial systems. Schub and Smale
have developed a ‘:condition number” for polynomial systems [15] which could be used in
_stabi]ity studies for both two and three dimensional algorithms. If the recovery algorithms
prove to be highly unstable, time-of-flight information would give additional data (we would
then have an overdetermined problem) which could be used to reduce errors due to noise.

This thesis work was done on an extremely general Markovian model of photon
transport. Neither time-of-flight information nor any physical information about photon
transport through tissue were taken into account. A priori information about photon trans-
port can and should be incorporated into this model. (The author doubts that clinicians
would find a set of 36n® Markov transition probabilities helpful diagnostic informafion.)
However, the fact that all of the independent data generated by the forward map for this
most general model can be recovered indicates (to the author, at least), that data gener-

ated by photons which scatter many times contain information independent of the data

generated by ballistic photons.
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