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DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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T2CG 1, A PACKAGE OF 
PRECONDITIONED CONJUGATE GRADIENT 

SOLVERS FOR TOUGH2 

G. Moridis, K. Pruess, and E. Antunez 

Earth Sciences Division, Lawrence Berkeley Laboratory 
University of California, Berkeley, California 94720 

ABSTRACT 

T2CG 1, a package of preconditioned conjugate gradient solvers, has been added to TOUGH2 to complement 
its direct solver and significantly increase the size of problems tractable on PCs. T2CG 1 includes three 
different solvers: a Bi-Conjugate Gradient (BCG) solver, a Bi-Conjugate Gradient Squared (BCGS) solver, 
and a Generalized Minimum Residual (GMRES) solver. Results from six test problems with up to 30,000 
equations show that T2CGI (1) is significantly (and invariably) faster and requires far less memory than the 
MA28 direct solver, (2) it makes possible the solution of very large three-dimensional problems on PCs, 
and (3) that the BCGS solver is the fastest of the three in the tested problems. 

INTRODUCTION 

Most of the computational work in the numerical simulation of fluid and heat flows in 

permeable media arises in the solution of large systems of linear equations. The simplest 

technique for solving such equations is by direct methods. However, because of large 

storage requirements and accumulation of roundoff errors, the application of direct solution 

techniques is limited, depending on matrix bandwidth, to systems of a few hundred to at 

most a few thousand simultaneous equations. 

The matrices arising in fluid and heat flow simulations are generally sparse, i.e., 

typically only a few percent of matrix elements are non-zero. Matrix bandwidth and "infill" 

during direct solution increase dramatically with the dimensionality of the flow problem. 
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This limits direct matrix methods to problems with a few hundred grid blocks in 3-D, while 

one-dimensional calculations are feasible up to a few thousand grid blocks. 

An attractive alternative for large linear systems is provided by iterative matrix 

methods [Varga, 1962]. Conventional iterative methods converge only for diagonally 

dominant matrices, but conjugate gradient methods have no such limitation [Hestenes and 

Stiefel, 1952]. We have added a package of preconditioned conjugate gradient solvers to 

TOUGH2 [Pruess, 1991] to complement its direct solver and significantly increase the size 

of problems tractable on personal c0!llputers. The conjugate gradient solvers decrease 

execution time and memory requirements substantially, and make possible the simulation of 

three-dimensional flow problems with of the order of 10,000 grid blocks on workstations 

and PCs. 

This report briefly summarizes the selective adaptation of an off-the-shelf conjugate 

gradient package to TOUGH2, and presents applications to a variety of fluid and heat flow 

problems. A more complete documentation of the conjugate gradient package is in 

preparation, which will include a full suite of sample problems, and a diskette with 

TOUGH2 input files and code enhancements. 

CONJUGATE GRADmNT PACKAGE 

T2CGl was derived from SLAP Version 2.0 [Seager, 1988], a package developed 

for the solution of large sparse linear N x N systems 

A-x=b (1) 

where N is the order of the A matrix. SLAP is a collection of various conjugate gradient 
" 

solvers, which come with two possible matrix preconditioning options: diagonal scaling 

(DS) and modified incomplete LU factorization (ILU). 

In TOUGH2 the matrix A is a Jacobian with certain consistent characteristics. In 

systems with regular geometry, A has a known block structure with well defined sparsity 
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patterns. In general, A matrices arising in TOUGH2 simulations are non-symmetric M­

matrices with typically no diagonal dominance. Although A can be positive definite in 

regular systems with homogeneous property distributions, it usually is not, and ill­

conditioning is expected in realistic heterogeneous large-scale simulations. Due to the fact 

that A is a Jacobian, the elements of A in a single row often vary by several orders of 

magnitude. In TOUGH2 simulations of flow and transport through fractured media, the 

implementation of the "multiple interacting continua" concept results in a large number of 

zeroes on the main diagonal of A, making pivoting impossible and resulting in very ill­

conditioned matrices. It is evident that TOUGH2 simulations create matrices which are 

among the most challenging, with all the features that cause most iterative techniques to 

fail. In addition, the general-purpose nature of TOUGH2 means that different matrix 

characteristics may arise for different types of problems. This explains the past heavy 

reliance of TOUGH2 on the direct solver Ma28 [Duff, 1977]. 

Extensive testing of the SLAP package in a variety of flow and transport problems 

identified the most promising conjugate gradient methods. The properties of the A matrix 

essentially precluded the use of DS preconditioning, a fact which was confirmed in the 

process of testing SLAP. Without exception, ILU preconditioning was far more effective 

and often the only possible option. Of the 15 methods available in SLAP, three were 

identified as the ones with the most potential. In order of increasing robustness, these were 

the (1) Bi-Conjugate Gradient (BCG) method, (2) the Lanczos-type Bi-Conjugate Gradient 

Squared (BCGS) method, and (3) the Generalized Minimum Residual (GMRES) method. 

In terms of the SLAP terminology, these methods corresponded to the subroutines 

DSLUBC, DSLUCS, and DSLUGM, respectively. 

Fletcher [1976] proposed BCG for the solution of linear, but not necessarily positive 

definite or symmetric systems. Theoretical analysis of the properties of BCG indicates that 

as long as the recurrences in the method do not break down, it must terminate in m < N 
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iterations. Although there is no guarantee of reduction of the quadratic functionals (i.e. that 

the recurrences will not break down or become unstable), in practice this is rare [Press et 

aI., 1986]. If a good preconditioner is used, BeG is an effective method [Seager, 1988]. 

The BeGS [Sonneveld, 1989] method is related to the BCG, but it does not involve 

adjoint matrix-vector multiplications, requires half the computational work, and the 

expected convergence rate is about twice that of BeG. For a N x N problem, BeGS was 

theoretically shown to terminate in at most N steps. Seager [1988] reports that when BeG 

diverges, BeGS diverges twice as fast, and when BeG stagnates, BeGS is more likely to 

diverge. He also suggested using BeGS after fIrst successfully applying BeG. However, 

in most TOUGH2 applications, we did not observe similar behavior. We observed a non­

monotonic reduction in the error of BeGS, with many (and sometimes signifIcant) local 

peaks in the convergence performance. These local peaks are also observed in BeG, but 

they are usually smaller in magnitude. 

The GMRES method of Saad and Schultz [1986] is a Lanczos-type extension of 

conjugate gradients for general non-symmetric systems which is expected to converge in 

m < N steps for any non-singular matrix if truncation errors are not considered. It 

generates an orthonormal basis from the Krylov subspace 

(2) 

where r 0 = b - Ar 0 is the initial residual. Since storage requirements increase with m and 

the number of multiplications with m2
, m has to be much smaller than N. If the 

convergence criterion is not met within m iterations, the iteration can be restarted using as a 

starting value of x the one obtained at the m -th iteration of the previous cycle. The 

GMRES we used employs this approach. We found that a m=20 to 30 is needed in most 

TOUGH2 simulations. For m<15 we generally obtain unsatisfactory performance, and it 

is usually pointless to use m>35 (since this probably indicates that GMRES may not be a 
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good method in that particular problem). A unique feature of GMRES is that the residual 

norm is diminished at every iteration, i.e. the error decreases monotonically. 

In the T2CGl package we maintained the nomenclature of SLAP, but substantially 

modified the structure and content of the subroutines. We eliminated most subroutines used 

in the SLAP structure and reprogrammed large segments of the code to take advantage of 

the well-defined sparsity pattern of matrix A. This resulted in a compact code optimized 

for TOUGH2, which is substantially faster, but which lacks the modular structure of 

SLAP. The native TOUGH2 mode uses a matrix storage scheme which is identical to the 

SLAP Triad Matrix Storage Format, which was maintained unaltered in T2CG 1. The ILU 

preconditioner was maintained for use in simulations with irregular geometry. However, 

for simulations with regular geometry we made use of the known structure of the A matrix 

(determined by the integrated finite difference formulation of TOUGH2) to develop an 

optimized Incomplete Block LU factorization (ffiLU) preconditioner [Sonneveld, 1989]. 

The ffiLU preconditioner was based on an approach proposed by Meyerink [1983], and 

significantly sped up the convergence rate of the three methods compared to the ILU. 

Moreover, we confirmed Sonneveld's observation that the ffiLU factorization has the 

additional advantage of being less sensitive to special directions in the problem (e.g. the 

advection direction in the advection-diffusion equation, layering, etc.). 

Storage requirements in T2CG 1 remained the same as in SLAP and are described in 

detail in Seager [1988]. DSLUBC and DSLUCS have the same storage requirements, 

while DSLUGM needs several times more memory. In terms of speed, our experience in a 

large number of TOUGH2 simulations indicated that DSLUCS is the fastest by a 

substantial margin, followed by BCG. DSLUGM was the slowest, but also the most 

robust, and managed to solve efficiently some of the most demanding problems. Contrary 

to Seager's observations, DSLUCS was the second most robust. Although one or two 

methods in the T2CG 1 package occasionally failed to converge successfully, we have not 

encountered a case where all three methods failed. 
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SAMPLE PROBLEMS 

REPOSITORY PERFORMANCE ASSESSMENT AT YUCCA MOUNTAIN 

This is a two-dimensional radially symmetric model that represents, in a schematic 

way, alternating layers of fractured-porous (welded) and porous (non-welded) tuffs (see 

Fig. 1). The flow domain extends from the land surface to the water table and has a radius 

of 5000 m. It consists of 630 grid blocks with 1209 connections between them. With the 

EOS4 fluid property module a total of 1890 simultaneous equations have to be solved. The 

repository is modeled as a circular disk of 1500 m radius. Heterogeneity is moderately 

strong, with permeability contrast between different layers of up to 104. The system is 

initialized with gravity-capillary equilibrium at zero net infiltration, and the response to 

repository heating is simulated. Special features include effective continuum treatment for 

the fractured units, and strong vapor pressure lowering effects from formation drying. Full 

problem specifications and discussion of simulated system behavior are given in Pruess 

and Tsang [1993] and Tsang and Pruess [1990]. 

The problem was run on an ffiM RS/6000 workstation, using 64-bit arithmetic. 

Execution time for 10 time steps, corresponding to a siinulated time of 6.48 days, was 

693.5 seconds for the MA28 direct solver [Duff, 1977]. The same simulation required 

456.5 seconds with the DSLUCS iterative linear equation solution. For the specified 

convergence criterion of 10-6 only 3-5 iterations were needed for each equation solution. 

CHANNELIZED WATER FLOW AT YUCCA MOUNTAIN 

Among the concerns being addressed in site suitability studies for Yucca Mountain is 

the possibility of rapid channelized water flow along fast paths. Such fast paths may arise 

from the heterogeneity within individual fractures as well as fracture networks. Effects 

such as capillary imbibition into the rock matrix and vaporization from radioactive decay 

heat would tend to diminish channelized water flow in fractures. We have set up several 

models to examine the conditions under which liquid water flow may serve as a pathway 
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for contaminants. The model discussed here is a three-dimensional X-Y -Z model with 6 x 8 

x 21 = 1008 grid blocks and 2682 connections between them. It represents a one-fourth 

symmetry element of the area of a single waste package in an idealized vertical emplacement 

configuration as shown in Fig. 2. The gridding in the vertical (Z) direction is identical to 

the previous R-Z model. The first Y-gridding has a width of 1 mm and represents a fracture 

with a high permeability of 9x 10-12 m2. The issue to be addressed by the model is whether 

vapor generated near the waste packages can be discharged into fractures and then 

condense at some distance from the waste packages in a sufficiently focused manner to 

cause rapid and persistent downflow of water past the repository horizon. With the 

Topopah Spring matrix rock assigned a permeability of 1.9xlO-18 m2, heterogeneity is 

rather strong with a maximum permeability contrast of approximately 5x106. 

Using the EOS4 fluid property module, 3xl008 = 3024 simultaneous equations are to 

be solved. The simulations were again carried out in 64-bit arithmetic on an IBM RS/6000 

workstation. With the DSLUCS iterative solver, a run to 10 years of simulated time 

required 36 time steps and 4603.9 CPU-seconds. The linear equation solution with a 

specified convergence tolerance of 10-6 required an average of 40 iterations. MA28 failed 

for this problem. After 2 hours of CPU time it had not yet completed a single linear 

equation solution whereupon the run was terminated. The failure of MA28 occurred in spite 

of the fact that very large memory allocations were made for the problem-size dependent 

arrays, which would in fact have been sufficient for 10,000 grid blocks and 24,000 

connections with the iterative sol~ers. 

ENVIRONMENTAL REMEDIATION 

This is a modified version of a problem developed by S. Webb [private 

communication, 1993] to study the TEVES (Thermal Enhanced Vapor Extraction System) 

process being designed and built at Sandia National Laboratories. In this process the 

ground is electrically heated, and borehole(s) at the center of the heated zone are maintained 
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at a vacuum to draw air and vaporized contaminants into the borehole and to a subsequent 

treatment facility. The ground above the heated zone and beyond is insulated to minimize 

heat loss to the environment. A vapor barrier is also used over a larger area to provide a 

more complete air sweep of the contaminated soil. The simulated domain consists of 1300 

elements in a three-dimensional grid. The problem is to be run with the EOS3 fluid 

property module for water, air, and heat, resulting in a system of 3,900 simultaneous 

equations. Repeated attempts to solve this problem using the MA2S direct solver failed 

because of insufficient memory. We allowed a maximum of 10 time steps, and tested two 

of the three conjugate gradient methods, DSLUCS and DSLUGM. 

Both methods performed remarkably well. On a Macintosh QuadraSOO 

. microcomputer, DSLUCS required 658.12 seconds (109.0S for input and 549.03 for 

calculations) when the convergence criterion was set to 10-10, and needed a minimum of 7 

and a maximum of 23 iterations for each matrix solution. This compares very favorably 

with the total number of equations N = 3900, which is equal to the maximum number of 

iterations for convergence. 

For a convergence criterion of 10-8, DSLUCS required 619.57 seconds (IOS.64 for 

input and 510.94 for calculations) and needed a minimum of 6 and a maximum of 17 

iterations for each matrix solution. DSLUGM also performed very well, but was slower 

than DSLUCS. It required 703.69 seconds (108.17 for input, 595.52 for calculations) to 

reach the closure criterion of 10-10, and reached convergence after a minimum of 12 and a 

maximum of 32 iterations for each matrix solution. It must be noted that the calculation 

times in this and all subsequent examples include a significant amount of overhead (e.g. the 

time needed for the initial set-up, to write voluminous results in the output files, etc.). 

Therefore, an even better performance is expected in longer runs. 
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VERTICAL SECTION OF WIPP 

The WIPP (Waste Isolation Pilot Plant) is a planned repository for defense nuclear 

wastes in a bedded salt formation near Carlsbad, New Mexico. The present simulation 

problem as designed by S. Webb [private communication, 1993] includes a preliminary 

model of the repository and the surrounding detailed stratigraphy with explicit 

representation of the various layers of pure halite, argillaceous halite, polyhalitic halite, and 

anhydrite. The purpose of the model is to evaluate effects of gas generation and two-phase 

flow on repository performance within a complex stratigraphy, and to compare with other 

models that use a simplified representation of the stratigraphy. 

The simulated domain consists of 1200 elements in a two-dimensional vertical section 

grid. This is an isothermal two-phase flow problem to be run with EOS3 (water, air), and 

results in a system of 2,400 simultaneous equations. Permeabilities in the problem were 

stratified, generally very low, with extremely high permeability contrast in the vicinity of . 

the more permeable repository. This type of problem is among the most challenging for 

iterative solvers because elements of the Jacobian matrix along the same row may differ by 

many orders of magnitude. We tested the direct solver MA28 and two of the three 

conjugate gradient methods, DSLUCS and DSLUGM, in 10 time step runs on a Macintosh 

Quadra 800 microcomputer. 

MA28 was able to solve the problem and required 531.47 seconds (448.87 for 

calculations, 82.60 for input). Both conjugate gradient methods significantly outperformed 

the direct solver. DSLUCS concluded the lO-time step simulation in 355.42 seconds 

(272.78 for calculations, 82.63 for input), and reached the specified convergence criterion 

of 10-10 in a minimum of 7 and a maximum of 11 iterations for each matrix solution. When 

the convergence criterion was increased to 10-8,346.62 seconds were needed (263.53 for 

calculations, 83.08 for input) and the number of iterations per matrix solution varied 

between 6 and 10. The performance of DSLUGM for a closure criterion of 10-8 was very 
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similar: 354.38 seconds were required (272.25 for calculations, 82.13 for input), and 7 to 

12 iterations were needed per matrix solution. Comparing calculation times only (and 

disregarding the fact that these include the substantial times spent on overhead), the 

conjugate gradient solvers are about 1.7 times faster than the direct solver. It is expected 

that the relative speed will increase in longer runs. 

THREE-DIMENSIONAL GEOTHERMAL RESERVOIR MODEL 

Five three-dimensional simulation models with different discretization were 

constructed [Antunez et aI., 1994]. The different discretizations ranged between 500 and 

10,000 elements and resulted in (a) 1,000 to 20,000 equations iil single-phase systems and 

(b) 1,500 to 30,000 equations in two-phase systems. The simulation models have an areal 

extent of 5 x 4 Ian (20 Ian2) and a thickness of 1000 m, divided in ten layers of 100 m 

each (Fig. 3). The same discretization of the vertical reservoir dimension was maintained 

in all cases, but fmer discretizations were used in the X and Y directions. All grids have a 

well producing at a constant rate of 30 kgls in the sixth layer, an injection well operating at 

a rate of 30 kgls in the third layer, and a 30 MW heat source at the bottom layer (layer 10). 

The wells are located at the node of the element closer to the points (500, 500, 550) for the 

producer and (4500, 3500,250) for the injector. The heat source is distributed among the 

required elements to cover an area of 4x105 m2 (1000 m in x and 400 m in y) at the center 

of bottom layer (Fig. 3). All of the models were used to perform simulations for single­

phase and two-phase conditions. 

For the single-phase cases the initial conditions are 40 MPa and 280°C in all blocks; 

for the two-phase cases, 10 MPa and Sg=O.20 in all blocks. No-flow boundaries to mass. 

and heat are employed. Relative permeabilities correspond to Corey's curves with residual 

saturations of liquid and steam equal to 0.3 and 0.05, respectively. Capillary pressures are 

neglected. 
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CERRO PRIETO GEOTHERMAL FIELD 

The Cerro Prieto geothermal field developed by the Comisi6n Federal de 

Electricidad (CFE), is located approximately 35 km south of Mexicali, Baja California, 

Mexico. Since the beginning of the exploitation of Cerro Prieto in 1973, one of the most 

important operational problems that CFE has had to face was the handling of the waste 

brine [Hiriart and Gutierrez Puente, 1992]. Up to date most of the brine is sent to 

evaporation ponds that presently cover an area of 18.6 km2, Figure 4. An infiltration area 

west of the ponds is used during the winter, when the evaporation rate is lower. 

Recently (1992-93), CFE started a series of cold brine (approximately at 200 C) 

injection tests, using brine from the evaporation ponds. The objective of these tests was to 

monitor the reservoir's response to the injection and to test the injectivity of different areas 

of CPl in the western part of the field. Under the DOE/CFE cooperative agreement on 

geothermal energy, a numerical model for CPl was developed, using data provided by 

CFE. The computational grid, covering an area of 89 km2, was defined based on the 

geological model of the field and the location and completion of the production and 

injection wells (Fig. 4). 

In the vertical direction the model extends from the surface to 5,000 m depth, and is 

divided· into six layers. All the layers have the same discretization and have 235 grid 

elements (Fig. 4), except layer five that has 47 additional blocks in the NE simulating the 

volume of the CP2, CP3 and CP4 areas. The numerical model has a total of 1,411 

elements (resulting in 4233 simultaneous equations) and was developed as a single porosity 

model [Antunez and Lippmann, 1993]. Finer discretizations in the vertical direction 

resulted in discretizations of 5,644 to 8,466 elements and 16,932 to 25,398 equations. The 

model was calibrated with production and piezometric data, and was used to test several 

injection strategies. 
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For the Cerro Prieto model, the timing of the Newtonian iterations was conducted 

using the following scenario: Inject 3,500 tIh of 200 C brine evenly distributed between 

injection wells M-48, 101, 104, E-6, 0-473 and M-6. Production wells will continue 

producing at a rate equal to that measured at the end of 1991 (for that year, the average field 

production was 5,459 t1h of steam and 6,394 tIh of separated brine). Injection well 

locations are shown in Figure 4. 

Table 1 presents a summary of the results of testing the different solvers [Antunez 

et ai., 1994]. Case 1 and 2 correspond to the Cartesian models for single and two-phase 

conditions. Cases 3 and 4 are for the two-phase conditions using an irregular grid with 

single and double porosity. The reported total number of iterations are the sum of: a) the 

Newtonian iterations (external iterations); b) the repeated external iterations due to 

, convergerice failure (after 9 Newtonian iterations without reaching convergence, the 

incremental time used in the current time step is divided by five and the iteration procedure 

for that time step is repeated); and c) the convergence iterations (iterations that do not need 

to call the solver since convergence has been attained) one per prescribed time step. The 

average timing per Newtonian iteration only includes the completed Newtonian iterations; 

convergence iterations are not considered in this column. The CPU time corresponds to 

execution time for all iterations Newtonian and non-Newtonian, plus the time to write the 

output files. 

Time comparisons for the different cases indicates that conjugate gradients 

outperformed the direct solver in all the cases where MA28 could be applied. The BCGS 

solver was consistently the fastest method, followed by the BCG solver. The GMRES 

method does not seem to be a good choice for the geothermal systems tested, as it was 

often slower than the direct solver MA28. However, due to significantly lower memory 

requirements, the GMRES method could be used for the solution of large three­

dimensional problems intractable with MA28. In terms of CPU time, BCGS was between 

1.5 to 3.2 faster than MA28 in the smaller three-dimensional cartesian grid problems (up to 
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2,000 elements and 4,000 equations). Due to very large memory requirements, MA28 

could not be used in larger problems, in which BCGS was the only method used. 

However, it is important to emphasize that iterative methods are problem-specific. 

A solver that perfonns well in a given problem is not guaranteed to work with all problems. 

The GMRES solver was found to be the slowest of the three tested conjugate gradient 

solvers but in previous testing of some highly heterogeneous fluid and heat flow problems 

it was the only one that could converge. Preliminary testing of the CG solvers in a specific 

problem is strongly recommended in order to select the best for the task. 

CONCLUSIONS 

A suite of preconditioned conjugate gradient solvers has been implemented in 

TOUGH2, considerably enhancing the size of tractable problems. On PCs, 

microcomputers and workstations two and three-dimensional flow problems can be run 

with as many as 10,000 or grid blocks or more. This compares with problem size limits of 

a few thousand grid blocks (for 2-D) when using the MA28 direct solver, and a few 

hundred grid blocks for 3-D problems. Memory requirements and execution times of the 

conjugate gradient routines are modest, increasing only approximately linearly with 

problem size. 
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Fig. 1: Two-dimensional radially symmetric (R-Z) model of a high-level 
nuclear waste repository at Yucca Mountain. 
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Fig. 4: Cerro Prieto model. Characteristics of the irregular computational grid. 
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Table 1: Timing of the test runs for TOUGH2IPC with the solvers package 

Grid Solver 
size 

500 MA28 
GMRES 

BCG 
BCGS 

1,000 MA28 
GMRES 

BCG 
BCGS 

2,000 MA28 
GMRES 

BCG 
BCGS 

5,000 GMRES 
BCG 

BCGS 
10,000 GMRES 

BCG 
BCGS 

500 BCGS 
1,000 .. 
2,000 .. 
5,000 .. 
10,000 .. 
1,411 BCGS 
5644 BCGS 
8466 .. 

Newtonian iteration tolerance = lxlO-5 

Closure in CG solvers = lxlO-6 

Number of iterations Time (sec 

Repeated per 
Total 1 Newtonian due to Newtonian Input CPU Total 

convergence iteration execution 
failure 

96 71 0 10.84 4.07 791.31 795.38 
108 82 1 10.35 3.63 870.73 874.36 
104 78 1 7.56 3.46 611.21 614.67 
97 71 1 6.79 3.46 518.06 521.52 
96 71 0 77.57 9.12 5551.59 5560.71 
126 97 4 46.78 8.08 4593.14 4601.22 
103 75 3 27.45 7.74 2246.84 2254.58 
98 70 3 20.60 7.97 1726.42 1734.39 
100 75 0 226.01 21.64 17041.46 17063.10 
144 113 6 227.88 19.55 25878.42 25897.97 
112 82 5 127.92 19.06 11947.56 11966.62 
99 70· 4 77.68 18.95 6655.65 6674.60 
101 68 8 1381.20 80.57 94437.19 94517.76 
106 75 6 471.38 79.20 48964.26 49043.46 
102 74 3 244.97 80.91 31499.60 31580.51 
57 39 3 4803.00 261.83 187876.22 188138.1 
109 77 7 1287.75 268.8J 163326.51 163595.3 
97 64 8 472.05 269.8~ 106601.76 106871.6 
140 113 2 4.02 3.79 485.38 489.17 
122 97 0 10.00 7.85 1017.44 1025.29 
134 108 1 25.75 18.73 2910.39 2929.12 
132 107 0 69.95 82.77 7732.52 7815.29 
134 109 0 162.41 274.29 18203.14 18477.43 
145 117 3 21.20 33.51 2595.45 2628.96 
194 154 15 55.56 114.8'i 10347.09 10461.94 
179 142 12 85.53 169.94 16808.09 16978.13 

Simulated Observations 

7. 1677E9 Standard verso 
4.5053E9 
4.7101E9 
4.7101E9 
19.660E9 Standard verso 
4.0957E9 
6.9629E9 
4.3oo5E9 
4.3oo5E9 Standard verso 
1.2285E9 
1.3821E9 
1.9453E9 
1.7250E8 
5.5501E8 
7. 1650E8 
4.1110E7 15 time steps 
2. 1730E8 
3.3250E8 
9.0900E7 
9.09ooE7 
9.09OOE7 
3.81ooE7 
2.5300E7 
4.8061E8 
4.1oo1E8 3 MlNC shells 
4.1oo3E8 5 MlNC shells 

1 The total number of iterations includes one additional convergence iteration per prescribed time step, 25 
in total. At each iteration convergence is checked and if convergence is satisfied a new time step is 
started. 
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