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DESIGN OF IDEAL CASCADES OF GAS CENTRIFUGES. WITH VARIABLE SEPARATION FACTORS 

by D. R. Olander 

Inorganic Materials Research Division of the 
Lawrence Berkeley Laboratory and the 

Department of Nuclear Engineering of the 
University of California 

Berkeley, California 94720 

ABSTRACT 

A method of designing ideal cascades in which the separation factor varies 

with stage number is presented and applied to centrifuges as separating units. 

The centrifuge is characterized by a performance function, which gives the 

separative power, optimized with respect to all internal variables, as a function 

of cut and throughput. For centrifuges with certain types of performance fonc-

tions, variable-a ideal cascades can provide product at lower cost than the 

conventional ideal cascade in which the separation factor is independent of 

stage number. 
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1. Introduction 

AS far as is known, all cascades for uranium isotope separation ar~ 

designed as ideal cascades with all separating units operated in exactly the 

same manner. When the separation factor (or the separative power) does not 

·vary with stage nuniber, the characteristics of the ideal cascade may be obtained 

from the theory developed in the books by Cohen (1) and Benedict and Pigford (2). 

However, we show in this paper that it is possible to construct ideal (i.e. , 

no..;.ili.ixing) ,cascades in which the separation factor varies from stage to stage. 

For certain types of separating units, the performance of this "variable-a" 

ideal cascade is superior to that of the conventional "constant-a" ideal 

cascade. 

In order to attain the no-mixing condition at each point in the cascade 

where streams join, each separating unit in a constant-a cascade must be 

operated symmetrically. In symmetric operation, the heads separation factor a 

is equal to the tails separation factor S. In a variable-a ideal cascade, on 

tpe other hand, the no-mixing requirement imposes different constraints on the 

asymmetries of the .units in adjacent stages. 

The ability of a centrifuge to perform as an isotope separator is described 

(PY the dependence of some measure of its separative effic±ency (e.g., heads, tails, 

or total separation factor or separative power) as a function of all experimentally 

controllable variables. The latter may be divided into two classes: internal 

parameters and operating parameters. The distinction between the two classes is 

as follows: changing an internal parameter affects only the product and waste 

compositions but does not alter the feed, product or waste flow rates. Change 

of an operating variable disrupts both the flows and compositions of the streams 

leaving the centrifuge. The two operating variables aie the cut 8 and the 

._; 
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throughput L.· Among the internal parameters are the temperature differences 

across the.end caps of the rotor and the design and PoSition of any scoops in-

side the rotor. The geometry (height and radius) and· peripheral speed of the 

rotor are not considered to be controllable variables. The.rotor is always 

driven close to its strength or stability limit; there is no reason to do 

otherwise. 

Throughout this analysis, we assume that the isotope fractions of U-235 

in all streams are much smaller than unity. With this restriction, the. heads 

separation factor for a single centrifuge is given by: 

(1) 

where xp is the u-235 concentration in the product stream and ~ is the feed 

composition. The tails separation factor is: 

where x is the waste composition from the centrifuge. By.means of material . w 

balances, the cut e is found to be related to the separation factors by: 

e = B - 1 
aS - 1 

(3) 

f! 
Theory and experiment give the separation factor as a function of all con-

trollable parameters of the centrifuge, or by a function of the general form: 

a(L,6, internal variables) 

The centrifuge performs most efficiently when the internal variables are adjusted 

(at each combination of L and 6) so that the separation factor is a maximum. The 

optimized separation factor is therefore a function only of the operating variables 

.· 
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L and 6. Using an asterisk to denote optimization with respect to all internal 

variables, the function a*(L,6) is called the performance function of the centri

fuge. Provided all of the internal variables have been considered in the optimi-

zation process, the isotope separating capability of the centrifuge is completely 

defined by the performance function. 

If the condition of symmetry (a=S) is imposed upon the centrifuge because 

it is to be employed in a constant-a ideal cascade, Eq. (3) shows that 

6 = 1/(1 +a), and hence a* is a function of L only. However, for the variable-a 

cascade, the restriction il = a does not apply and knowledge of the complete 

(i.e., two-dimensional) performance function must be used in cascade analysis. 

2. Centrifuge Flow Models 

Three different centrifuge performance functions are utilized in 

comparing constant-a and variable-a cascades. All.of the centrifuge models are 

derived by means of the Cohen method of solving the diffusion equation in the 

gas contained in the rotor (3) • Brief summaries of the three models are 

presented below; additional details are given in Appendix I. 

Case· A is the original Cohen model, in which the axial flow velocity 

is independent of axial position in the centrifuge (i.e., the "long bowl" 

approximation) • The only internal variable is the parameter m, which represents 

the ratio of the magnitude of the circulating flow to a characteristic molecular 

diffusion rate. Op.timization with respect to this . inte-rnal variable is 

accomplished by varying m ~~til the separation factor is a maximum. 



4 

cases B and C permit axial decay of the axial velocity profile. The radial 

shape of the axial velocity is assumed to be independent of axial position, and 

only the magnitude of the flow changes. The gradient equations derived by Cohen 

still apply, but the coefficients are-dependent upon axial location. In case B, 

the internal flow is assumed to be driven thermally by a temperature difference 

at one end cap. The radial dependence of the axial velocity is taken --from the 

calculations- of Jacques (4) , although t~e ~articular radial shape is not as 

important in the present analysis ·as is the fact that the flow decays with distance 

from the driving end cap. Exponential axial decay of the flow in a centrifuge rotor 

was predicted by Ging (5). However, we have utilized decay constants larger 

than that predicted by Ging' s calculations in order to enhance the basic axial 

asymmetry about the midplane which this type of flow pattern causes. In case B, 

the only internal variable used in optimization is the end cap temperature 

difference, which is varied until a is maximized. 

case C represents a centrifuge driven thermally from both ends by tem

perature differences of opposite sign on the two end caps. As in case B, the 

radial shape of the end-driven flow is-taken_from Jacques' calculation and the 

flow magnitude is allowed to decreasewith distance away from the appropriate 

driving end. In principle, both end cap temperature differences are internal 

variables which should be included in the optimization process. To avoid time

consuming optimization calculations, the ratio of the end cap temperature dif

ferences and the common axial decay constant are fixed, so that only one 

optimization parameter needs to be considered. 

Figure 1 shows the variation of the magnitude of the axial flow velocity 

with height in the rotor for the three cases treated. The velocities have 

been normalized to unity at the bottom of the stripping section. The magnitude 

of the axial velocity is determined by the internal variable driving the flow 

(m for case-A and the hot end cap temperature difference for cases Band C) 

which is varied in order to maximize the separation factor. 

\ 
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3. Performance Functions 

The information contained in the performance function a*(L,8) may be 

eXpressed in terms of other variables. The usual dependent ·variable is the 

separative power of the centrifuge, and the function oU*(L,8) may be obtained 

directly from a*(L,8). The asterisk on OU indicates that it is optimized with 

respect to all internal variables. For cascade analysis, it is convenient to 

consider a and B as independent variables and L* and OU* as optimized dependent 

variables. If a is expressed in terms of a and B by Eq •. (3), the performance 

function a*(L,8) can be turned inside out to yield the function L*(a,B). Here 

L* is the maximum throughput which can be achieved at specified values of a and 
. ' . . . 

B. It may be shown that the values of the internal variables which maximize 

a for a particular L,8 combination are the same as those which maximize L at 

specified a and B. Thus, L*(a,B) is another way of expressing the performance 

function of the centrifuge. 

Presentation and analytical application of the performance function is 

facilitated if the dependent'variable is chosen as the separative power ou* 

rather than the separation factor a* or the throughput L*. The reason for 

this is that ~U* varies much -more slowly with either sets of independent 

variables (L,0) or (a, B). than do the other two possibilities. There is, 

however, disagreement concerning the proper formulation of the separative 

power for asymmetric-elements. 

Defining a function f(a, B> by: 

. ' 
f(a,B> = a<B-l)lna- (a-l)lnB . ' aa- 1 

(4) 

Bulang et al (6) obtain the separative power: 

cSu = Lf(a,B> {5) 

Whereas OUWerkerK and Los (7) arrive at the relation: 

ou = Lf(B,a> (6) 
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Bquation (6) may also be termed the Cohen separative power because it was 

obtained by OUwerkerk and LOs (7) assuming that the value function derived 

by Cohen (1) is applicable. [use Eq.(III-18) in Eq. (10), express concentrations 

in terms of <l and a by Eqs. (1) and (2) and eliminate the cut by Eqi (3).] 

These two formulations apply to dilute concentrations of U-235 in U-238 ·. 

and differ only in the order in which the variables a. and a appear in the 

function f. Whether the separative power is described by _Eq. (5) or by Eq. (6), 

oU*(a.,a) corresponds to the product of L*(a.,a) and either f(a.,al or f(a,a.). 

The relative merits of these two expressions for the separative power of a 

single asymmetric separating unit will be discussed in Sec. 4 ~ However, for 

the present analysis, Eq. (5) and Eq. (6) may be regarded simply· as alternate 

means of describing the centrifuge performance function. The choice of 

Cohen's or Bulang's separative power is not important in the cascade 

calculations.. As shown in the following s~ction, cascade configurations are 

compared on the basis of a figure•of-merit which closely represents the cost 

per unit amount of a product of specified concentratio~~ 

·.The. magnitudes of the optimized separative powers of the centrifuges 

modeled in the present calculation were not the main point of· interest. The 

important aspect of the :Performance function is! the manner in which oU* varies 

with L and 9 or with <l and a. Hence, the in~t parameters for the calculation 

of-the flow fields were selected so as to be reasonably realistic and to yield .. 
separation. factors sufficiently greater than unity so that the analytical 

degeneracies associated with close separation were avoided. In order to simplify 

the separation performance calculations, the range of the operating variables 

was restricted. The cut was required to be in. the range 0.1 ~ e ~ 0.9 and 

the throughput was restricted to .the range L . < L < L • OUr object 
· ID1Il - - max 

is to compare constant-a. and variable~a cascades comprised of centrifuges 

having the same performance function. The conclusions of this analysis are 

not substantially affected by restricting the range of operating variables to 

the confines cited above • 
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Figures 2, 3, and 4 show the performance functions oU* in terms of the 

independent variables L and 0 (left hand panels) and in terms of CL and. S 

(right. hand panels) for centrifuges A, B, and c. The performance functions 

oU*(a,S) are presented,as topographical maps in which the contours are lines 

of constant oU*. Bulang's separative power (Eq. (5)) has been used in all 

plots. Had the Cohen separative power (Eq. (6)) been used instead, the curves 

in the left hand panels of Figs. 2-4 would have been somewhat flatter than 

those for Btilang' s separative power and the contours in the right hand panels 

would have been somewhat· altered. However, the qualitative features of the 

performance function plots would be the same and identical values of L*(a,S) 

could be computed from them. 

The left hand panels of Figures 2 - 4 display the performance functions 

as they normally would be obtained 'from experiment or from theoreticai calcul-· 

ation. The case A performance function of Figure 2 indicates that oU* is rela-

tively insensitive to cut for a < 0.6 but thereafter decreases rapidly. The 

OU*(L,6) plot for the case B centrifuge (Figure 3) decreases uniformly with cut. 

This behavior reflects the decay of the axial velocity with distance from the 

heated end cap at the bottom of the stripping section. In. order to avoid iso-

tope miXing, the feed injection point in units of rotor length is approximately 

equal to the cut (in the close-separation limit, these two quantities are exactly 

equal (5)). Consequently, separative performance is .improved to the extent that 

the feed can be introduced at an axial position where the circulatory flow is 

strong. For the case B centrifuge, feed injection near the bottom of the strip-

ping section, which implies a small cut, produces the largest OU~. In the case C 
; 

centrifuge shown in Figure 4, the flow strength-passes through a minimum at 
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6 = 0.4 (Figure 1) •. As a result, when the cut (and hence the feed injection 

point) is ~ 0.4, ou* is poorest. In this instance, ou* is largest for cuts 

either near 0.1 or between.~ 0.7 and 0.8. 

The contour representations of OU*(a,8), which contain the same informa-

tion and are obtained from the OU*(L,9) plots, also reflect the effect of axial 

variation of the circulatory flow. The oU* contours in Fiqure 2 slope gently 

downward as 8 increases (or, according to Eq. (3), as e increases). The OU* 

terrain in Fiqure 3 is about twice as steep as it is in Figu:r.::e 2 but slopes in 

the same direction. The contour plot for case c (Figure 4) has a distinctly 

different character from those of the previous two cases. Large oU* values are 

achieved for both combinations of large a, small 8 and ·for small a, large 8. At 

high flow rates (near the L = L boundary) , ou* is depressed near the 
max 

symmetry line (a= 8). 

3. cascade Design 

In this section, constant-a and variable-a ideal cascades constructed·of 

centrifuges with performance functions represented by Figures 2 - 4 are compared. 

Comparison is based upon the unit cost of product of a specified composition. 

It is assumed that all costs are proportional to the total number of centri-

fuges in the cascade, so that the unit product cost is: 

= k ~c.;P l. . 
1 

(7) 

where k is the annual cost of operating one centrifuge (including capital recovery, 

.machine replacement, power and operating costs) cmd ci is ,the number of centrifuges 

in stage i. The cascade contains ~ stages and P is the product flow rate .from the 

top stage. The quantity by which a particular cascade design is ·judged is the ratio 

C /k, which, according to Eq. (7), is equal to the number of centrifuges in the cas-p . 

cade divided by the product flow rate. This comparison is meaningful only 
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if the two cascades under consideration receive feed of the same composition 
.·' ~. 

and produce waste and product streams of the same assay • 
. . ...:. . '~, ,. 

·' 

In designing a variable-a cascade, the separation factors at each stage 
'··· 

are selected in a manner which minimizes the product cost c . However, in 
. ' p 

order to satisfy th!=! requirement of no mixing, the heads and tails separation 

factors on adjacent stages must satisfy the condition (see Appendix II): 

(8) 

A ~thod,of designing a no-mixing cascade w~ich satisfies this restraint is 

presented in Appendixi!I.For any specified set of heads separation factors 

(i.e. I ao·· (l'll • • • • .Qn) 'I the throughput tO the CentrifugeS in Stage i .fOllOWS 

fxom the performance function and- Eq'-. (8) 1 namely; Li =· L* (ai ,a.i_1> •. The .per:

formance function L*(Cl',(3)· is obtained from• one of. the contour plots of Figures 

2, 3, or 4 by dividing OU* by f(a.,(3) given, by Eq. (4). . Similarly, the cut. of 

the centrifuges in stage i is found by combination of Eqs. (3) and (8). 

In order to assure integer numbers of stages in the . stripping_ and en-

riching sections and to avoid isOtope mixing with natural uranium feed, the 

waste and product compositionS cannot be· specified a priori. Instead, .these 

compositions are chosert'to.be as close as possible to. nominal values of 0.003 

and 0.03 respectively when the number of stages in each section are integers. 

The·unit·product cost of the variable-a. cascadeis then determined from Eq. (7). 

'Ibis quantity depends .only upon the separation facto~s assigned to each stage 

and the performance function of the centrifuges. in :the cascade. 

If the separation factor is to be the same at all stages of an ideal 

cascade, Eq. (8) shows that a. must be equal to B. In terms of the contour 

plots, a. (and B> must lie along the 45° lines in Figures 2 - 4. For all three 

centrifuges, maximum separative power along the symmetry lines occurs at the 
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largest ailowable flow rate. ('111is fe$ture may not occur if the effect of 

feed on the velocity profiles is incorpOrated into the centrifuge performance 

model) • The maximum oU* for the constant...a ca!:lcades are denoted by the points 

marlted "S" in Figures 2 ~ 4. The unit product cost for the constant-a cascade 

may be detenni.ned from conventional ideal cascade theory ( 2) • For each per-

formance function there is only one min~ product cost constant-a cascade. 

There are, on the other hand, an infiilite number of variable-a cascades. The 

•savings".: 

savings C \) -
(C ) - (C ) 

p const.-a p vbl.-a 

(CP) const.-a 
X lOO (9) 

is the measure of the superiority (or inferiority) of a particular variable-a 

cascade design over the best possible COnstant-a mode of operation of the 

available centrifuges. The unit product cost of the constant-a cascade is 

evaluated at the same feed, product, and waste compositions as those of the 

particular variable-a cascade with which comparison is made. 

The remaining question is how.to select the set of heads separation 

factors for ·the variable-a cascade in a manner which minimizes C • For p 

~dall,ce t;o th.e solution of this problem·, . we utilize the performance 

•function plots. Eq. (8). indicates ~at the heads se~ation factor of 

a stage in an ideal cascade must be equal to the tails separation factor of 

the stage above it. One method of selecting a set of a. values is to require 
l. 

that for each' a, the corresponding a be chosen as the point on the contour plot 

for which OU* is a maximtnn. This specification defines an "operating line" on 

the contour plot,· to which the conditions of all stages in the cascade are 

restricted. 
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The·'rype-A Centrifuge 

The operating line delineating the "ridge" of separative power for the 

Type-A centrifuge is shown in Figure 2. Suppose the first stage is operated at 

the point A in the plot (a1 = 1.40, S1 = 1.17}. The cascade condition given 

by Eq. (8) requires that S2 = a1 ' =· 1. 40. The point on the operating line 

corresponding to S2 = 1.40 is ~2 = i.11 (Point A' of Figure 2}. The separative 

power of the A' stage is smaller than that of the A stage. Because the 

operating line is symmetric about the 45° line, all odd number stages operate 

with the. centrifuges at point A and all even number stages consist of 

centrifuges with the characteristics of point A'. This arrangement produces 

the following set of heads separation factors which constitute the input 

information to the variable-a cascade analysis: 

sl = ao = 1.17 

al = 1.40 

a = 
2 

1.17 

a3 = 1.40 

calculation of the unit product cost for this particular variable-a design 

and for the oonstant-a design corresponding to the point S on Figure 2 shows 

that the savings defined by Eq. (9) is -3.7%. That is, the variable-a design 

is less efficient than the conventional constant-a design. It does not matter 

whether the first stage is selected at A' or A. The same negative saving of 

-3.7% is found for'the variable-a consisting of the points Band B' as well. 

The unit product cost of the constant-a cascade at point C in Figure 2 is also 
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3. 7% greater than that of the point S cascade. For the type-A centrifuge, 

there does not appear to be any way of designing a variable-a cascade which is 

superior to the constant-a cascade composed of centrifuges each of which operates 

at its maximum separative power (point S) • Although the separative powers. of 

the. stages operated at points A or B are greater than the separative power at 

S, the stages which must operate at points A' and B' produce less separative 

work than machines operating at s. The net result is that the loss of separative 

work due to the high-cut operation at A' or B' more than offsets the gain in 

separative performance arising from the low-cut operation of the machines at A 

or B. 

~e !Yfe-B centrifuge 

The variable-a cascade composed of Type-B centrifuges most likely to com

pete successfully with the best constant-a design follows the operating line 

shown in the contour plot of Figure 3. The first stage of the variable-a cas

cade has been arbitrarily selected at the point a 1 = L52, 81 = 1.07. Once 

this point has been chosen, the operating points of the remaining stages are 

fixed by the operating line and the cascade condition of Eq. (8). The operating 

points for the 11 stages in the variable-a cascade are Shown as the numbered 

.dots along the operating line in Figure 3. Note that because the operating line 

is not symmetric about the 45° line, operating conditions closer to symmetry are 

approached towards the top of ·the cascade. The unit product cost calculated for 

this particular variable-a design is 5.4% greater than that obtained for the 
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·Constant-a cascade operatedatpoint Sin Figure 3. For this particular centri-

fuge'performance function, there does 'not appear to be a better way of designing 

a cascade then as a conventional constant-a assembly of centrifuges operating at 

maximum separative pciwer. 

The 'rype-C Centrifuge 

The contour plot of Figure 4 for,the Type;.;C centrifuge does not exhibit 

a ridge of ou•· of approximately hyperbolic shape in ·the a-S plane as do the Types 

A and B centrifuges.' ·Instead, the separative power i;n the region of symmetric 

··operation is lower than the ou• on the heights at either side of the 45° line.~ 

Consequently, we have selected a variable-a cascade whose stage operating points 

oscillate between points A and A' in Figure 4 for comparison with the best 

constant-a cascade at points. If' the first stage is selected at point A, all 

, odd numbe·r~d stages operate with a = LSO, B = 1.08. For the even numbered 

Stages (pOint A'), a = 1.08, f3 = 1.50. The average separative of the powers 

at points A and A' is larger than the maximum separative power along the 

symmetry iine (point S) • The detailed cascade analysis described in Appendix 

0 shows that the savings is 5.5\ if stage one is at point A and 5.7\ if the 

cascade is started at point A • • 

Figure 5 shows the details of the variable-a cascade of Type-c centrifuges 

in which the odd-numbered stages are rel'resented by point A' in Figure 4 and the 

even-numbered stages operate at point A. The ordinate height of each stage in 

Figure 5. gives the heads ·concentration lea~i~g the stage and the width of the 

rectangles is proportional to the number of centrifuges in the stage. The heavy 
. . 

vertical arrows represent large flow rate streams (heads.flow from high-cut 

stages and tails flow.from low-cut stages) and the light arrows indicate small 

flow rates. The cascade contains two stripping stages and six enriching stages 



14 

and supplies a product stream of sliqhtly larger assay than the nominal require-

ment of 3%. The tails stream is somewhat more depleted than the desired waste 

composition of 0.3%. 

The constant-a cascade to which the arranqement shown in Fiqure 5 was 

compared to obtain the 5.7% product unit cost savinq cannot be diaqrammed; for 

the same productand waste compositions as shown in Figure 5, noninteqer numbers 

of staqes would be required in a constant-a cascade with all staqes represented 

by point S in Fiqure 4. However, the nearest inteqer staqe cascade in which 

each centrifuqe operates at point s of Fiqure 4 (a = 1.152) is shown in FigUre 6. 

This cascade contains ~ 5 times as many centrifuqes as .the one in Fiqure 4 but 

supplies ~. 5 times the product flat~ rate as does the latter. The number of cen-

trifuqes per unit product flow rate is approximately the same for both arrange-

ments. Despite the very different appearances of the. variable-a cascade of 

Fiqure 5 and the constant-a arranqement in Figure 6, both cascades utilize the 

same centrifuqes. 

4. Separative Power and Value Function of Asymmetric Elements 

The qreat utility of the Cohen value function qiven by Eq. (III-18) is 

that when used to calcUlate the separative duty lm of a cascade by Eq. (III-17) 

and to calculate the separative power of a sinqle centrifuqe by: 

~u = L[9v(x) + (l-0)V(x) - V(x_)], 
· p W F 

(10) 

the ratio ~U/~U is equal to the total number of centrifuqes in the cascade, which 

is a direct measure of the cost of the process. This important result can 

be riqorously demonstrated only for ideal cascades consisting of symetrically 

operated centrifuqes (i.e., for Constant-a cascades). In the case of the 

variable-a cascade, in which ou is different for the centrifuges on each stage, 

the analoq of Eq. (III-20) is: 
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~u = r c. <Su. 
l l. l. 

0 ·-~ 
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(ll) 

where £\u is given by Eq. (III-17) and <Su. is the Cohen separative power 
l. ' 

(Eqs. (4) and (6)) for each of the ci centrifuges comprising stage i of 

the cascade. We have not been able to prove that Eq. (11) is applicable· 

to any variable-a, ideal cascade. ·However, Eq. (ll) has been applied to 

the cascade shown in Fig. 5 using the interstage flow rates supplied by 

the detailed cascade analysis, and was found to be satisfied as accurately 

as the computations permitted. 

The usefulness of Eq.· (ll) for. symmetric cascades lies in the fact 

that the <Su. are the same for all centrifuges, thus providing a means of 
l. 

. calculating the total number of centrifuges needed without a complete 

cascade analysis. For the variable-a cascade, on the other hand, Eq. (ll) 

does not permit computation of the total number of centrifuges, which can 

be obtained only by the methods outlined in Appendix III. 

· Bulang's (6) analysis of the asymmetric element produces, in addition 

to the separative power of Eq. (5}, an associated value function. Unfortunately, 

this value function depends upon a and f3 as well as upon concentration. 

~ Consequently, a value balance over a variable-a cascade cannot be made 

because there is no way of deciding which of the many a's to use in the 

value functions in (Eq. (III-17)). 

5. Conclusions 

It has been shown that it is possible to design ideal cascades wherein 

· the separation factors vary in an arbitrary fashion with stage number. For cer-

tain types of centrifuge performance functions, a properly chosen set of heads 

separation factors results in a cascade for which the product has a lower unit 

cost than any constant-a cascade utilizing the same centrifuges and producing the 

same exit stream compositions. The separative power of the asymmetrically 
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operated centrifuqe in a vari,able-a cascade is .. a useful quide to the 

efficiency of the cascade design; the unit cost of product is lowest when 

the averaqe OU* of the stages in the cascade is largest. When the restriction 

of constant separation factor at each staqe is removed, the search for the most 

efficient .cascade can· be reduced to the followinq topological problem: to 

find the set of points (cx.,f3.),· i = l, •••• n, on the .performance function 
l. l. : 

cont9ur plot which maximizes oU* subject to the restraint ex. 
1 

= a .• 
avq J.- l. 

Despite the greater flexibiiity that removal of the restriction of symmetric 

operation provides in cascade design, not all types of centrifuge cart be arranged 

in variable-a cascades which are better than the conventional constant-ex cascade. 

Variable-a designs appear to be superior to co~~tant-Cl designs only when the cen-

trifuge exhibits a minimum in the circulatory flow near the midplane of the rotor. 

However, the general question of the character of the internal flow profile which 

produces performance functions from which efficient variable-a. cascades can be 

constructed has not been explored in detail. Only the three axial decay shapes 

shown in Figure 1 and analyzed by the Cohen model were investigated in this work. 

Nor has the question of how to deduce the set of separation factbrs which yield 

·the most efficient ideal cascade for a given performance function plot been in-

vestigated in detail •. 

Despite these unexplored areas, the present calculations have demonstrated 

that for, at least one type of performance function, cascades should be constructed 

with variable rather than constant separation factors at each stage. Determina-

tion of the performance function of a particular centrifuge (i.e., one of specified 

rotor geometry and peripheral speed) either theoretically or experimentally is a 

tediouS job, primarily because of the necessity of optimizing the performance function 

witP respect to all internal variables which can affect the gas circulation inside 

the rotor. The cost of obtaining the performance function oU*(L,9) must be justified 

in terms of the potential benefits of more efficient cascade performance. The 

savings of '\I 5% found for the Type-C centrifuge in this .work can be translated 

into a cost savinq in the following way. The annual separative work capacity 
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which will be reqUired in the United States in the next 50 years has been esti

mated to be between 100 and 400 million SWU/yr 1 depending upon the date of 

introduction of LMFBRs (8). The specific cost of plants constructed in this 

time period will probably be between $130 and $200 per SWU/yr capacity (9). 

Thus, the investment in isotope separation plants up to the year 2020 will be 

between 13 and 80 billion dollars. If all of this capacity is in the form of 

centrifuges, a 5\ improvement in efficiency represents a saving of between 

2/3 and 4 billion dollars. There appears to be ample incentive to justify 

exploring all proposed centrifuge desigris for the possibility of cost reduction 

by use in ideal cascades with variable separation factors. 
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APPENDIX I 

'CER'l'RIFUGE PERFORMANCE MODELS. 

Within the context of the Cohen model (1), the change in the U-235 con-

centration with axial positio~ in the rotor is given by Eqs. (52) and (59) of 

Reference 3. The effect of throughput on the velocity distribution is neglected 

in the analysis and the axial gradient equations are: 

ldx - - = x - y9L (x - x) 
g dn P 

(I-1) 

in the enricher, and: 

! ~ = x - y(l - 9)L(x - xw) (I-2) 

in the stripper. In these equations, n is the axial position in units of rotor 

length and x is the isotopic fraction of u-235 in the gas at position n. The 

coefficients g and y, which may depend upon Tl, are given by: 

and 

1 . 
g<n> = yen> 

F(r,n)rdr 

1 J [FCr,n>1
2 

0 1 

(I-3) 

(l-4) 

where Z and r
2 

are the length and radius, respectively, of the rotor and po is 

the density-diffusivity product of UF6 gas. Th 
2. 

e constant a 1s: 

(l-5) 
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where !1M = 3 is the mass difference between the two uranium is<?topes, n is the 

angular speed of the rotor, R is the gas constant and T is the temperature of 

the bulk gas in the centrifuge. F(r,n} is the flow function, defined by: 

F(r,n> = 2n pw(r' ,n}r'dr' (I-6) 

0 

w(r,Tl) is the axial oomporient of the gas velocity in the rotor. 

A. Nondecaying Flow 

If w is not a function of n, g and y are constants. Eqs. (I-3) and (I-4) 

may be written as: 

1 ·, 2 2} q =- a r 
12 2 

where E is the flow pattern efficiency: 

4 [! r2 F(r) rdrr 
E = -r4- 1 . 

2 J [F (r} ]
2 

dr/r 

0 

(I-7) 

(I-8) 

(I-9) 

.. 
and m is a·dimensi~nless quantity dependent upon the magnitude of the internal 

flow: 

m= (I-10) 
(21TPDr

2
) 
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with 9 and y constant, Eqs. (I-1) and (I-2) may.~ inteqrated analytically (3). 

Usinq the definition of the heads and tails separation factors given by Eqs. (1) 

and (2), there results: 

(1 + 9yL) exp[g(l- nF}(l + 8yL)] 
~ -~---~---------~~------~~---~~~ 1 + 8yL exp[g(l- nF) (1 + 8YL)] 

exp{g~[l- (1- 8)"(L]} - (1 - 8)YL 
B .. 

1 - (1 - 8)yL 

(I-ll) 

where nF is the axial position at which the concentration is equal to ~· The 

feed point is assumed to be adjusted to prevent isotope mixing by feed injection. 

Elimination of nF between Eqs. (I-ll) and (I-12) yields: 

a. . r (l + SYL) [l _ ln[8 - (8 - 1) (1 - 8)yL] ]) (I-l3) 
.1- (a- 1)8yL- exp lg g{l- (1- 8)yL] J. 

The cut may be eliminated from Eq. (I-13) by use of Eq. (3), which yields an 

equation which may be solved numerically for the throughput L as a function of 

a,_ 8, g and y. Since all of the terms in Eq~. (I-7) and (I-8) except m are fixed 

.once the rotor speed, radius and height are specified, we have L as a function 

of a, 8, and m. L*(a,8) is determined from this equation by maximizing L with 

respect to m. Finally, the performance function OU*(a,8) is determined by use 

.of Eqs. (4) and (5). The alternate performance function, oU*(L,8), may be 

constructed directly from these results. The numerical work, the coefficient of 

ill in Eg. (I.;;.7) was taken as 60 arid the coefficient of the bracketed function of 

· m in Eq~ (l-8) was assumed to be 1.8. 

B. Flow Decay from One End 

The circulatory flow in a centrifuqe can be driven by a temperature dif-

ference. ~Th between a heated end cap and the bulk gas. The axial velocity pro

file generated by this driving mode is represented by the product of a radial 

shape function and an exponential decay from the heated end plate <n = 0): 
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. -KTl 
w(r,n) = ~Th h(r) e (I-14) 

The function h(r) specifies the radial shape and magnitude of the velocity. 

The flow magnitude is proportional to the temperature driving force 6Th' which 

has been extracted from h(r) because of its role as.the internal variable used 

for optimization. The radial function h(r) has been taken from the work of 

Jacques (4). When Eq. (I-14) is used in Eq. (I-6) and the resulting flow 

function inserted in Eqs. (I-3) and (I-4), the axial dependence of the coeffi-

cients g andy in the gradient equations is fixed. Eqs. (I-1) and (I-2) are 

integrated numerically. Eq. (I-2) is employed from n = 0 to the position at 

which the computed concentration is equal to ~· Thereafter, numerical inte-

gration continues using Eq. (I-1) until n = 1 is attained. In the computations, 

a value of K = 1~. 5 was used. 

c. Flow Decay from Both Ends 

If one end plate of a centrifuge is maintained hotter than the bulk gas 

and the other end plate is cooled, the flows generated at each end cause cir-

· culation in the same direction in the rotor. The axial velocity profile may 

be obtained by superposition of the flows generated by each end plate: 

(-I-15.) 

The flow decays from each end towards the midplane of the rotor. The internal 

variables of the centrifuge are the two temperature differences 6Th and 6Tc and 

optimization should be performed on both of them. However, we have arbitrarily 

fixed the ratio of 6Tc to ~Th at 2.23 and optimized only upon ~Th. The decay 

constant K was also arbitrarily chosen equal to 4 to produce a factor of two 

decrease in the flow magnitude between the hot end and the midplane of the 

centrifuge. 



APPENDIX II 

RELATION BE'IWEEN THE HEADS AND TAILS SEPARATION FACTORS IN AN IDEAL CASCADE 

Fiqure 7 shows ·two stages of a recycle cascade in which the heads stream 

from stage i...;l is fedto stage i and the tails stream from stage i-1 constitutes 

the feed to stage i-2. For the limiting case of U-235 £ractions much less than 

unity, the requirement of no isotope mixing leads to: 

= v. 
l. 

(II-1) 

Where u. and v. ate the heads and tails concentrations, respectively, in the 
1 1 

streams leaving stage i. The heads separation factor for stage i-1 is: 

(II-2) 

The tails separation factor for stage i is: 

Substituting Eqs~ (II-1) and (II-2) into (II-3) yields: 

a. 1 = B. 
1"" l.' 

(II-4) 

The cut at stage i is given by Eq. (3) which, when combined with Eq. (II.-4} 

results in: 

.(II-5} 
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APPENDIX III 

NO-MIXING, VARIABLE-a CASCADE ANALYSIS 

~ wish to determine the product flow rate, the number of stages and the 

number of separating units per stage in a cascade subject to the following 

restraints: 

1. '!be feed to the cascade is natural uranium (~ = 0.0071). Nominal product 

and waste compositions are 0.03 and 0.003, respectively.· Exact values of X and 
p 

X are to be chosen so that they are as close to the nominal values as possible 
w 

and: (a) the cascade contains an integer number of stages; (b) the composition 

at the feed stage is exactly equal to 0.0071. 

2. The heads and tails from each.stage flow to the adjacent upper and lower· 

stages, respectively. 

3. No mixing of streams of ~fferent isotopic composition occurs.anywhere 

in the cascade. 

4. All U-235 isotopic fractions are negligible compared to unity. 

5. Each separating unit in the cascade has the same performance function 

. L* (a, B> , which may be obtained from ou* (a, B> plots· such as those of Figures 

2- 4 by use of Eqs. (4) and (5). The separating units in each stage operate 

identieally:. However; each stage need not be operated at the same values of a and 

B as the other stages (i.e., the cascade is not necessarily a constant-ex cascade). 

6. The heads sP.paration factor of each stage in the cascade is assumed to be 

specified. In addition, the tails separation factor for the bottom stage in the 

stripping section is specified. 

We·define a "minimum" cascade which supplies a product flow rate P from a 

sin~eseparating unit comprising the top stage. A cascade to supply a production 

rate larger than p may be regarded as composed of the appropriate number of 

minimum cascades. 
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The material balance over the enriching section of a recycle cascade 

constructed according to specification 2 above is (2): 

X - u. 
p 1 

ui - v i+l = Ni+l/P (III-1) 

where N. is the total tails flow rate from stage i. If L. is the throughput 
1 1 

to each separating rinit.in stage i and c. is the number of separating units 
1 

·connected in parallel at stage i: 

Ni = c. (1-8. )L. 
1 1 1 

(III-2) 

The cut at stage i, e., may be eliminated by use of Eq.(III-5), and substitution 
1 

of Eq. (III-2) into Eq. (III-'1) yields: 

Let the cascade contain n stages. 

X - u. p 1 

ci+l 

At the n'th stage, c = 1 and: 
n 

(III-3) 

(III-4) 

The product flow rate P inay be eliminated from Eq. (III-3) by use of Eq. (III-4) 

The tails concentration at stage i+l may be removed from Eq.(III-3) by using 

the no mixing requirement, vi+l = ui-l" With these substitutions, Eq. (III-3) 

may be solved ~or ci+l: 

X - u. p 1 

ui - ui-1 
(III-5) 

Since the performance function L*(a,S) is the same for all separating units, 

and according to Eq. Ctii-4) Si = ai-l, the flow rate Li is determined by the heads 

separation factors of stages i and i - 1: 



Li = L* (a. ,a. ·1 > 
1 1- . .... 

l . 
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(III-6) 

Using Eq. (I:II-6) (and the analogous relation for the ·top stage), .Eq~ (III-5) becomes: 

L*(a ,a 1> n n-c. = __ .:;__.:.:;~-
1 L* (a. ,a. 

1
> 

1 1-

1 

a. 1 1-

xp ~ ui-1 

ui-1' - ui-2 
(III-7) 

Eq. ~I-'7) applies to the enriching section, n + 1 < i < n, where n is the . . w - w 

number of stages in the stripping section and n is the total nUmber of stages. 

in the cascade. In the stripping section, 1 < i < n , the number of separating 
w 

units per stage is: 

where: 

/ 

u. l - X 
1-. w 

ui - ui-1 

L*(a ,a 1 > n n-

(III-8) 

(III-9)i 

·In Eqs. (III-8) and. (III-9) the separation factor of the hypothetical zeroth stage, 
•. 

a 0 , is equal to the tails separation factor of stage one, 81 • 

The cascade gradient equation is: 

(III-10) 

With a 0 , •••••• a specified, the solution procedure is as follows: Starting from 
. n 

i =1, where u1 = a 1a 0xw, Eq.(III-10) is integrated until ui = XF. :xw is adjusted 

about the nominal composition of 0.003 until the composition at the feed stage 

is exactly 0.0071. This procedure fixes X and n • Inte9ration of Eq.(III-10) w w 

continues until the stage n at which the calculated heads composition is closest 
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to the nominal product composition of 0.03. The number of stripping and enriching 

stages and the product and waste compositions from the cascade are thus deter-

mined. In addition, u. is known as .a function of stage number. 
' ~ 

With ai specified at each stage and ui known by the previous solution of 

the cascade gradient equation, the number of separating units in each stage is 

determined from Eqs. O:II-7) and (III-8). In this calculation, the performance 

function is available (e.g., from Figures 2, 3, or 4). The number of separating 

·units at each stage is not necessarily an integer, except for the product stage 

where c = 1. 
n 

Let k be the cost attributable to the capital investment and operating 

expenses of each separating unit, in dollars per separating unit per year. 

The total yearly. cost of a cascade of n stages with c. separating units per 
~ 

stage is: 

n 

·. ctot ($/yr) = k L ci 

1 

(III-11) 

The oost per unit amount of product may be obtained by dividing Ctot by the 

product flow.rate P. With the latter given by Eq.(III-4) and L expres~ed in n 

terms of the performance function, we have: 

Cp($/kg product) = k 
LC, 

~ 

L*.(a ,a 
1

> 
n n- . 

Eq. ([II-12) gives the unit cost of product from a variable-a ideal cascade pro-

viding a product of concentration Xp and a waste of composition Xw from a feed 

of composition XF = 0.0071. The compositions X and X are close to 0.03 and 
p w 

0.003, respectively; their exact values have been determined in the course of 

the computation. 
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In order to compare the variable-a. cascade with the conventional constant-a. 

cascade, the product cost of the latter must be calcuiated for the same product 

and waste compositions as those determined in the variable-a. cascade analysis. 

For the case of constant separation factor, it may"be shown that the equations 

derived above reduce to: 

and: 

where: 

ln(X /X ) 
n • ....-~·p~w.;.;.._ 

n- n 
w 

n 

lna - 1 

= ln(XP/~) 
lna 

-Pln(X /~) 
= p + Wln(XF"Xw) 

[ c. 
.l. P(a - l)lna 

1 

w X -~ -- p 
p 

~ - X w 

(III-13) 

. (III-14) 

(III-15) 

(III-16) 

The numerator of Eq. (III-15) .is the separative duty of the cascade defined in 

terms of the Cohen value function: 

t\0 = PV(X ) + WV(X ) - (P+W)'·v(x_) p w ' --y 
. (III-17) 

·where V(x)"= (2x-l) R.n[x/(1-x}] !!!. -R.nx (III-18) 

since p = 0L=L/(l+a), the denominator of Eq. (III-15) is the separative power of 

each separating unit (1) : 

(oU) = L(a-l)lna 
sym a+l 

(III-19) 

and the usual formula: 
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n 

L f1u 
c. = (oU) 1 

1 
sym 

(III-20) 

is recovered. The uriit product cost for the constant-a cascade is thus: 

(f1U/P) <c > = k c6u> · = 
P sym sym t _ ln(~.) + /XP- XF) 

k ~ '~- xw 
L*(a,a) (a-1)1na 

a + 1 

ln ( ::) ] UII-21) 

Comparison of the variable-a and constant-a ideal cascades involves 

evaluating the (C /k) values for each type. For the variable-a cascade, a series 
p 

of heads separation factors, a0 , •••••• an is selected from within the allowable 

cut and throughput ranges of the performance function. Exact values of X . and 
p 

X are calculated and the figure of merit C /k is computed from Eq. (III-12). w p 

Por the constarit-a cascade, the value of a which produces the largest separative 

power in symmetric operation is selected from the performance function plot. 

(C /k) is then calculated from Eq.(III-21) for this value of a and the values 
P sym 

of Xp and Xw determined in the variable-a cascade analysis. 



1. 

2. 

3. 

4. 

s. 

6. 

7. 

8. 

9. 

LITERATURE CITED 

IC. P. COhen, "The Theory of Isotope Separation as Applied to the 
Large Scale Production of U-235", McGraw-Hill, New .York (1951). 

' ' 

M. Benedict and T. H. Pigford, "Nuclear Chemical Engineering" I 
Chapter 10, McGraw-Hill, New York (1957) •.. 

D. R. Olander, Adv. Nucl. Sci. & Tech. ~, 105 (1972) • 

I • 
R. Jacques, · CEA Report R-4336 (1972) • 

J. Ginq, U~ .S. AEC Report UVA-198-62S (1962). 

W •. Bulang, W. . Groth, I. Jordan, . W. Kolbe, E •. Nann and K. H. Welge, 
Z. Phys. Chem. 24, 249 (1960). 

c. OUWerkerk and J. Los, u. N. Conf. on Peaceful .Uses of At. Energy, 
12, 367 (1964). 

R. P. amberg (HEDL), personal communication (1974). 

OR0-735, USAEC (Nov. 1973). 

28 



0 0 u 0 ,;:,:;1 ? 0 I ll'~. 
~-1 8 

l 

• - () .,. 

FIGURE CAPTIONS 

1. Variation of the magnitude of the circulatory flow (axial velocity 
component) with axial position in the rotor for three types of 
centrifuges. 

2. The performance function ~or the Type-A centrifuge in terms of 
Bulang's separative power. The CurVes within the envelope of 
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dashed lines represent contours at constant ou*.· The contour lines 
in the upper left hand corner of the envelope correspond to . the large 
oU* and those in the ·lower right hand corner are the smallest ou*. 
The values of OU* correspondirig to each contour line differ by one 
swu/yr. 

3. The performance function for the Type-B centrifuge in terms of 
Bulang's separative power. The curves within the envelope of dashed 
lines represent contours of constant ou•. The contour lines in the 
upper left hand corner of the envelope correspond to the largest ou* 

.. and those in the lower right hand corner are the smallest ou*. The 
values'of ou* corresponding to each contour line differ by one swu/yr. 

4. The performance function for the Type-C centrifuge in termS of 
Bulang's separative power. The small segments of contour lines near 
points A and A' represent the largest values of OU*. The ou* values 
associated with the remaining contour lines decrease towards the 
lower right hand portion of the envelope of dashed lines. 

5. Variable-a cascade constructed of Type-C centrifuges. 

6. Constant-a cascade constructed of Type-C centrifuges. 

7. Three stages of a recycle cascade. 
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