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ABSTRACT 

In part one of this paper we review the present status of neutron star matter 
calculations, and introduce a representative collect.ion of realistic nuclear equations 
of state which are derived for different assumptions about the physical behavior of 
dense matter (baryon populations, pion condensat.ion, possible t.ransition of baryon 
matter to quark matter). Part two deals with the theoretical determination of the 
minimum possible rotational periods of neutron stars, performed in the framework 
of general relativity, whose knowledge serves to dist.inguish between pulsars that can 
be understood as rotating neutron stars and those t.hat cannot. Likely candidates 
for the latter are hypothetical strange stars. Their properties are discussed in the 
third part of this contribution. 
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HADRONIC MATTER AND RAPIDLY ROTATING COMPACT STARS 

1. Introduction 

FRIDOLIN WEBER, CHRISTIANE KETTNER 
Institute for Theoretical Physics, University of Munich 

Theresienstr. 37jIII, 80333 Munich, Germany 

and 

NORMAN K. GLENDENNING 
Nuclear Science Division,Lawrence Berkeley Laboratory 

Berkeley, CA 94720, USA 

in the course of this conference, S. Nagamiya (see his contribution contained 
elsewhere in this volume) presented an overview of the enormous efforts that are 
made at various physics laboratories, like BNL or CERN, toward exploring the 
behavior of nuclear matter that is under extreme conditions of temperature and 
density. On earth, relativistic heavy-ion colliders provide the only tool by means of 
which such matter can be created and its properties studied. 

On the other hand, however, it is well known that nature has created a large 
number of massive stellar objects, i.e. white dwarfs and neutron stars, which contain 
matter in one of the densest forms found in the universe. Neutron stars, for example, 
which are associated with two classes of astrophysical objects - pulsars and compact 
X-ray sources -, contain matter in their cores which possess densities ranging from a 
few times the density of normal nuclear matter (2.5 x 1014 g/ cm3

) to about an order 
of magnitude higher, depending on mass. It is the purpose of this contribution to 
outline the present status of the investigation of the structure and stability of such 
massive stars, and what can be learned from such an attempt about the behavior 
of super-dense nuclear matter. 

2. Equation of State of Neutron Star Matter 

The equation of state (pressure as a function of density) of neutron star matter 
decisively links neutron stars with nuclear and particle physics (plus various other 
branches of physics). It is the basic input quantity whose knowledge over a broad 
range of densities, ranging from the density of iron at the star's surface up to rv 15 
times the density of normal nuclear matter reached in the cores of massive stars, is 
necessary when solving the Einstein equations for the properties of neutron stars. 



2.1. Non-Relativistic Models for the Equation of state 
The starting point when determining non-relativistic models of the equation of 

state is a phenomenological nucleon-nucleon interaction. In the case of the equa­
tions of state reported here, different two-nucleon potentials (denoted Vij) which 
fit nucleon-nucleon scattering data and deuteron properties have been employed. 
Most of these two-nucleon potentials are supplemented with three-nucleon interac­
tions (denoted Vijk). Hence the Hamiltonian is of the form 

(1) 

The many-body method adopted to solve the Schroedinger equation is based on the 
variational approach 1,2,3. 

1.2 Relativistic Models for the Equation of state 
Relativistic models for the equation of state of neutron star matter are derived 

from a lagrangian of the following type4 ,5, 

.c(X) .c~(X ) 
B=p,n,E±.O ,I\,':::O.-,~ ++.+.0.-

+ M=u,f,"",o {c~(X) + B=,n,~+++'- C13:M(X)} 
+ L .c>.(x)." (2) 

A=e- ,1"-

The quantities .c~, .c~, .c}3,tM and .c>. refer to the lagrangians of free baryons, free 
mesons, interacting baryons, and leptons respectively. Their explicit expressions. are 
given in Refs. 4,5,6. The summation index B extends over all charged baryon states 
whose thresholds are reached in dense neutron star matter7. The nuclear forces are 
mediated by scalar, vector, and isovector mesons. 

The equations of motion of the various baryon and meson fields, which follow 
from 

where X = 'l/;B(X); o-(X),WIl{X), ... , (3) 

are to be solved subject to the constraints of electric charge neutrality and gen­
eralized ,a-equilibrium of neutron star matter 4,5. Solving the equations of motion 
constitutes an extremely complicated problem. As demonstrated elsewhere, it can 
be accomplished on the footing of three different levels of complexity, i.e. the rel­
ativistic Hartree4

,\ relativistic Hartree-Fock5 and relativistic ladder (Brueckner­
Hartree-Fock type)13,17 approximation. 
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Table 1: Nuclear equations of state (EOS) applied for the construction of models of 
general relativistic rotating neutron star models. Their tabulated representations, i.e. 
pressure versus energy and baryon density P( (0, e), are given in Ref. 6. 

Label EOS Description (see text) Reference 

1 
2 

3 
4 
5 
6 
7 
8 
9 
10 
11 

12 
13 
14 
15 
16 

Relativistic field theoretical equations of state 
G300 H, J{ =300 
HV H,J{=285 

G~f8~2 Q, J{. 265, B 1
/

4 = 180 
G~6~M2 H, J{ =265 

Gjoo H, 7r,I{ =300 
G;oo H, 7r, J{ =200 

A~~nn + HV H, J{ =186 
G~2~Ml H, J{ =225 
G~f8~1 Q, J{ =225, B 1

/
4 = 180 

HFV H, ~, J{ =376 
A~oEA + HFV H,~, J{ =115 

Non-relativistic potential model equations of state 
BJ(I) H, ~ 

WFF(UV 14+ TNI) NP,]{ =261 
FP(V14 +TNI) N,I{=240 

WFF(UVI4+UVII) NP, ]{=202 
WFF(AV14+UVII) NP,]{ =209 

1.:; Collection of Nuclear Eq~tations of state 

8 

7,5 

9,10 

11 

8 

12 
13 
11 

9,10 

5 

13 

14 

15 

16 

15 

15 

A representative collection of nuclear equations of state, which are determined 
in the above described frameworks, i.e non-relativistic Schroedinger theory and rel­
ativistic nuclear field theory, is listed in Table 1. It is this collection that will be 
applied for the construction of models of general relativistic rotating neutron star 
models. The specific properties of these equations of state are described in the 
third column of Table 1, where the following abbreviations are used: N = pure neu­
tron; NP = n, p, leptons; 7r = pion condensation; H = composed of n, p, hyperons 
(~±,O, A, :=:0,-), leptons; ~ = ~1232-resonance; Q = quark-hybrid composition, i.e. 
n, p, hyperons in equilibrium with u, d, s quarks, leptons; J{ = incompressibility (in 
MeV); B 1/ 4 = bag constant (in MeV). Not all equations of state of this collection 
account for neutron matter in ,a-equilibrium (i.e. entries 13-16). These models treat 
neutron star matter as being composed of only neutrons (entry 14), or neutrons 
and protons in equilibrium with leptons (entries 13, 15, 16), which is however not 
the ground-state of neutron star matter predicted by theory7. In contrast, the rel­
ativistic equations of state account for all baryon states that become populated in 
dense star models constructed from them. An inherent feature of the relativistic 
equations of state is that they do not violate causality, i.e. the velocity of sound 
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is smaller than the velocity of light at all densities, which is not the case for the 
non-relativistic equations of state. Among the latter only the WFF(UV 14 + TNI) 
equation of state does not violate causality up to densities relevant for the construc­
tion of models of neutron stars from it lS . 

3. Rotating Massive Stars in General Relativity 

As outlined in the Introduction, neutron stars are objects of highly compressed 
matter so that the geometry of space-time is changed considerably from fiat space­
time. Thus for the construction of realistic models of rapidly rotating pulsars one 
has to resort to Einstein's theory of general relativity. In the case of a star rotating at 
its absolute limiting rotational periods, i.e. the Kepler (or mass-shedding) frequency, 
Einstein's equations, 

~ gK>' R = 871" T K>' (c, P( c)) , 
2 

(4) 

are to be solved in combination with the general relativistic expression describing 
the onset of mass-shedding at its equator: 19,20,21 

(5) 

The line element has the form 19,20 

ds 2 = - e2v(r,B;O)dt 2 + e21/J(r,B;n)( d¢ _ w(r, (); n)dt)2 + e2~(r,B;O)d()2 + e2>.(r,B;O)dr2 . 

The quantities R"A, g"A, and R denote respectively the Ricci tensor, metric tensor, 
and Ricci scalar (scalar curvature). The dependence of the energy-momentum ten­
sor TK>' on pressure and energy density, P and c respectively, is indicated in Eq. 
(4). The quantities w, v, and 'lj; in Eq. (5) denote the frame dragging frequency of 
local inertial frames and time- and space-like metric functions, respectively. The 
primes denote derivatives with respect to Schwarzschild radial coordinate, and all 
functions on the right are evaluated at the star's equator. All the quantities on 
the right hand side of Eq. (5) depend also on nK , so that it is not an equation for 
nK , but a transcendental relationship which the solution of the equations of stellar 
structure, resulting from Eq. (4), must satisfy if the star is rotating at its Kepler 
frequency. (For more details, we refer to Ref. 20.) 

4. Neutron Stars Rotating at the Kepler Frequency 

The computed general relativistic Kepler periods PK (= 271" InK), defined in 
Eq. 5, are graphically depicted in Fig. 1 for a representative sample of equations of 
state listed in Table 1. t The smallest rotational periods are obtained for WFF( A V 14 + 

t An investigation of the limiting rotational Kepler period of neutr~n stars that is performed without 
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Figure 1: Kepler period versus rotational neutron star mass. The labeling of the 
curves is explained in Table 1. Only pulsar periods P > PK are possible, which is 
consistent with the pulsar periods known to date. 

UVII) (label 16). Vve find that the relativistic equations of state lead in general to 
larger rotational periods than the non-relativistic ones due to the somewhat larger 
radii of the associated star models2o. The upper limit on the Kepler period is set by 
the relativistic HV (label 2) equation of state. The periods obtained from all other 
equations of state listed in Table 1 lie between curves "2" and "16". The rectangle 
in Fig. 1 covers both the approximate range of neutron star masses as determined 
from observations23 , as well as the measured rotational periods (P ~ 1.56 msec )24. 

One sees that all pulsar periods so far observed are larger than the absolute limiting 
Kepler values. 

Our investigation predicts limiting rotational Kepler periods for a M = 1.4 M0 
pulsar in the range 0.7 < PK/msec < 1.2, depending on equation of state. In as 
much as our collection of equations of state contains representatives from theories 
of non-relativistic sort as well as relativistic approaches at several levels of devel­
opment it appears that the observation of a pulsar with period below about 0.7 
msec would be hard to reconcile with theories of dense hadronic matter. As shown 
elsewhere25 ,2o,6, this conclusion is strengthened by investigating the onset of emis­
sion of gravity waves from rotating neutron stars which sets an even more stringent 
limit on rapid rotation than mass shedding. In short it is found that the latter 

taking recourse to any particular models of dense matter but derives the limit only on the general 
principles that (a) Einstein's equations describe stellar structure, (b) matter is microscopically stable, 
and (c) causality is not violated has only recently been performed by Glendenning22 . He establishes 
a lower bound for the minimum Kepler period for a M = 1.44 M0 neutron star of PK = 0.33 ms. 
This value sets an absolute limit on rotation on any star bound by gravity. Of course, the equation 
of state that nature has chosen need not be the one that allows stars to rotate most rapidly, so the 
above is a strict model independent limit. 
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instability confines stable rotational neutron star periods to be larger than about 1 
msec. Half-millisecond periods, for example, are completely excluded for pulsars 
made of baryon matter. Therefore, the possible future discovery of a single sub­
millisecond pulsar, rotating with a period of say'" 0.5 msec, would give a strong 
hint that such an object is not a neutron star, but a rotating, self-bound strange 
star, and that 3-fiavor strange quark matter is the true ground-state of the strong 
interaction, as pointed out by Glendenning22.26 (see Sect. 5). 

The fact that any successful model for the nuclear equation of state must ac­
commodate pulsars with rotational periods of (at least) 1.56 msec and masses larger 
than typically rv 1.5 M0 leads to an overall constraint on its density dependence 
(double constraint of fast rotation and a large enough neutron star mass): it must 
behave soft in the vicinity of the density of normal nuclear matter and intermediate 
nuclear densities in order to lead to small enough rotational pulsar periods, but 
rather stiff at high nuclear densities to account for large enough massesP3,27.28 

5. Strange Quark Matter as the true Ground State of Matter 

The hypothesis that strange quark matter may be the absolute ground state of 
the strong interaction (not 56Fe) has been raised by Witten in 1984 (d. Fig. 2)29. 
If the hypothesis is true, then a separate class of compact stars could exist, which 
are called strange stars. They form a distinct and disconnected branch of compact 
stars and are not part of the continuum of equilibrium configurations that include 
white dwarfs and neutron stars. In principle both strange and neutron stars could 
exist. However if strange stars exist, the galaxy is likely to be contaminated by 
strange quark nuggets which would convert all neutron stars that they come into 
contact with to strange stars26,30,31. This in,turn means that the objects known 
to astronomers as pulsars are probably rotating strange matter stars, not neutron 
matter stars, as is usually assumed. 

6. Neutron Stars versus Strange Stars 

6.1. Mass-Radius Relationship 
The mass-radius relationship of strange stars with crust, whose inner density is 

equal to neutron drip, is shown in Fig. 332,33. The solid dots denote the maximum­
mass stars of the neutron (NS) and strange quark star (88) sequence. The arrows 
indicate the minimum-mass star of each sequence ('a': strange star, 'b': neutron 
star). White-dwarf-like strange star configurations ('sd': strange dwarfs) terminate 
at the crossed point labeled 'd'. The symbol 'wd' indicates the region of ordinary 
white dwarfs. A value for the bag constant of Bl/4 = 145 MeV has been chosen. 
This choice represents strongly bound strange matter with an energy per baryon 
rv 830 MeV, and thus corresponds to strange quark matter being absolutely bound 
with respect to 56Fe. 

Since the crust is bound by the gravitational interaction (and not by confine­
ment, which is the case for the strange matter core), the mass-radius relationship of 
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Figure 2: Comparison of the energy per baryon of 56Fe (i.e. nuclear matter) with those 
of 2-flavor (u,d quarks) and 3-flavor (u,d,s quarks) quark matter. The latter system, 
also referred to as strange matter, is always lower in energy than 2-flavor quark matter 
due to the extra Fermi well, accessible to strange quarks. The vertical arrow roughly 
comprises the possible range of the energy per baryon of strange matter as predicted 
by theory. It should be noticed that it can be even smaller than the energy per baryon 
of 56Fe, in which case strange matter would be more stable than ordinary matter. 
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Figure 3: Mass versus radius of strange star configurations with nuclear crust (solid 
curve) and gravitationally bound stars (dotted curve). The following abbreviations 
are used: NS=neutron star, SS=strange star, wd=white dwarf, sd=strange dwarf. 

7 



strange stars is qualitatively similar to the one for neutron stars. The radius being 
largest for the lightest and smallest for the heaviest stars in the sequence. Just as for 
neutron stars the relationship is not necessarily monotonic at intermediate masses. 
The radius of the strange quark core is proportional to M 1/ 3 which is typical for 
self-bound objects. This proportionality is only appreciably modified near the mass 
where gravity terminates the stable sequence. 

Unfortunately the bulk properties of models of neutron and strange quark stars 
of masses that are typical for neutron stars, 1.1 ~ M/M0 ~ 1.8, are relatively simi­
lar, as can be seen from Fig. 3, and therefore do not allow the distiction between the 
two possible pictures. The situation changes however as regards the possibility of 
fast rotation of neutron stars and strange stars. This has its origin in the different 
mass-radius relationships of neutron stars and strange quark stars34. As a conse­
quence of this the entire familiy of strange stars can rotate rapidly, not just those 
near the limit of gravitational collapse to a black hole, as is the case for neutron 
stars. For example, in Sect. 4 it has been pointed out that the minimum possible 
rotational period of a neutron star possessing a typical pulsar mass of M '"'-' 1.4 M0 
is larger than '" 1 msec. The minimum possible Kepler periods of strange stars of 
the same mass, carrying a nuclear crust whose inner density is equal -to neutron 
drip, was found to lie in the range,...., (0.6 - 0.8) ~sec, depending on bag constant32 . 
Strange stars without nuclear cursts can rotate even faster, possessing Kepler peri­
ods of 0.6 - 0.7 msec35 . 

The sequence of strange stars has a minimum mass of "" 0.015 M0 (radius of 
"" 400 km) or about 15 Jupiter masses (label 'a'), which is smaller than that of 
the neutron star sequence, about 0.11110

36
. These low-mass strange stars may be 

of considerable importance since they may be difficult to detect and therefore may 
effectively hide baryonic matter. t Furthermore, of interest to the subject of cooling 
of strange stars is the crust thickness of strange stars43. It ranges from "" 400 km 
for stars at the lower mass limit to a fraction of a kilometer for the star at the 
maximum mass32 . Those strange stars which result from solving the Oppenheimer­
Volkoff equations for central star densities that are smaller than the corresponding 
central density of the minimum-mass star, but larger than the smallest possible one 
(determined by t = 3 Pdrip + 4 B, Pdrip denotes the drip pressure) are shown too in 
Fig. 3. The cross refers to that particular star whose strange-matter-core radius 
has shrunken to zero, thus possessing mass and radius values of an ordinary white 
dwarf star44. 

tPromising in this respect are microlensing searches which can give definitive results on dark objects 
in the mass range 10- 5 to 102 MO 37,38. In fact the presently performed searches may eventually 
be sensitive to the entire theoretically possible range of baryonic dark matter, 10-9 to 106 MO 39. 

If the dark matter consists of these objects, these experiments should find it! 40. Only recently the 
observation of the effects of an invisible object at least as massive as the planet Jupiter has been 
reported independently by the MACHO and French collaboration (for status reports, see Refs. 41 

and 42, respectively). 
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6.2. Pulsar Glitches 
A crucial astrophysical test of the strange matter hypothesis is whether or not 

strange quark stars can give rise to the observed phenomena of pulsar glitches. In 
the crust quake model an oblate solid nuclear crust in its present shape slowly comes 
out of equilibrium with the forces acting on it as the rotational period changes, and 
fractures when the built up stress exceeds the sheer strength of the crust material. 
The only existing investigation which deals with the calculation of the thickness, 
mass and moment of inertia of the nuclear crust that can exist on the surface of a 
rotating, general relativistic strange quark star has been performed by Glendenning 
and Weber32. It was found that the data on relative frequency changes f:.n/n 
of observed glitches (n denotes the star's rotational frequency) and the measured 
values of the ratio (f:.n/n)/(f:.D../D..) for the Crab and Vela pulsars can be understood 
from the computed crustal moment of inertia of strange stars. 

6.S. Stability of Quark Stars against Radial Oscillations 
Below we give the equations that are to be solved to obtain the eigenfrequencies 

and eige,nfunctions of radial normal modes of a star. The analysis is carried out on 
the basis of Einstein's field equations for a metric of the form 

(6) 

The adiabatic motion of the star in its nth normal mode (n = 0 is the fundamental 
mode) is expressed in terms of an amplitude un(r) by 

(7) 

where 8r(r, t) denotes small perturbations in r. The quantity wn(t) is the star's 
oscillation frequency, which we want to compute. The eigenequation for un(r), 
which governs the normal modes, has the Sturm-Liouville form 

(8) 

The functions n(r), Q( r), and W (r) are expressed in terms of the equilibrium 
configurations of the star by 

n 

Q 

HI 

e(,\+ 31') r- 2 r p , 

_4e(.\+3v) r- 3 dP _ 87re3().+v) r- 2 p (c + P) 
dr 

+el '+3") r-2 « + P)-J (~~r ' 
e(3).+ v) r- 2 (c + P) 

(9) 

( 10) 

(11 ) 

The quantities c and P, in Eqs. (9) - (11) denote the energy density (total mass­
energy) and the pressure of the stellar equilibrium configuation as measured by a 
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local observer. The pressure gradient, dP/dr, is obtained from the Oppenheimer­
Volkoff equations. The symbol r denotes the varying adiabatic index at constant 
entropy, given by 

r = (c + P) 8P 
P 8c 

The boundary conditions for Eq. (8) are 

at star's OrIgm, r = 0 

o at star's surface, r = R 

(12) 

(13) 

(14) 

Solving Eq. (8) subject to the boundary conditions (13) and (14) leads to the 
frequency spectrum w; (n = 0,1,2, ... ) of the normal,radial modes of a given stellar 
model. As a characteristic feature, the eigenfrequencies w; form an infinite discrete 
sequence, i.e. w5 < wi < w~ < .... We compute them for the sequence of strange 
stars exhibited in Fig. 3. As a side issue, the stability of charm stars (hydrostatic 
equilibrium configurations composed of u, d, c, s quarks) against radial oscillations 
is treated too. 

The four lowest-lying eigenfrequencies of massive strange stars and strange 
dwarfs, whose inner crust density is equal to neutron drip, are shown in Fig. 4. 
A comparison with the mass-central density relationships of strange stars44

•
45 shows 

that these equilibrium configurations possess a characteristic mode of vibration of 
zero frequency (w; = 0) when and only when 8M/ace = 0, that is, only when the 
star's mass attains an extremum (critical point associated with an inflection point 
of mass). What is not known from the theorem however is which mode is possessing 
a zero point. (Of course, it must be the lowest-lying one, which was previously stac 
bIe, i.e. 0 < w;.) We find that it is the n = 0 mode which becomes zero first at two 
different density values, which correspond to the maximum- and minimum-mass 
strange star configurations labeled 'a' and 'b' in Fig. 3 (for details, we refer to Ref. 
44). The n = 0 mode passes through zero at 'b' and remains negative for all densities 
down to the central density of the strange dwarf at the termination point (cross). 
This is of decisive importance for the question of stability of these strange dwarfs 
against radial oscillations: Since w5 < 0 is associated with an exponentially growing 
mode of oscillation, all these strange dwarfs are unstable against radial oscillations. 
This finding now enables us to make the very important statement that no stable 
strange dwarfs located between 'b' and the sequence's crossed termination point 
can exist in nature! The higher modes shown in Fig. 4, n = 1,2, and 3, form a 
discrete sequence, i.e. these obey wi < w~ < wj, as enforced by the mathematical 
structure of the eigenequation (8). 

The eigenfrequencies and the locations of the zero frequency vibrations of mas­
sive strange stars possessing central densities up to those at which even charm quark 
states become populated in their dense interiors (charm stars), are shown in Fig. 4 
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Figure 4: Pulsation frequencies of the lowest four (n = 0,1,2, and 3) normal radial 
modes of strange matter stars as a function of central star density, The labeling of 
the y-axis is an abbreviation for sign(a) log (1 + abs(a)), where a == (wn/sec- 1 )2. The 
cross refers to the termination point of the strange dwarf sequence (d. Fig. 3). 

too. Each density for which w~ = 0 corresponds to an extremum of mass. The sec­
ond zero point of the n = 0 mode is located at that density at which the strange star 
sequence attains its maximum mass (solid dot in Fig. 3). Since w6 remains negative 
at all densities larger than this one, it follows that no quark matter stars can exist 
in nature that are more compact than the hypothetical strange stars. Specifically 
this rules out the possible existence of charm stars. In fact, as one sees from Fig. 4, 
going to higher and higher central star densities leads to the successive excitation 
of more and more unstable modes(w~ < 0, n = 1,2,3, ... ), and thus no quark stars 
more massive than strange stars fulfill the condition w~ > 0 for all n 2: 0, which is 
necessary for stability. This situation is analogous to that of hydrostatic equilibrium 
configurations in the neutron star sequence with central densities above that of the 
maximum-mass neutron star. 

7. S!lmmary 

The main issues of this contribution can be stated briefly under two categories, 
the one concerning the determination of the minimum possible rotational period of 
gravitationally bound neutron stars, and the other concerning the properties of any 
new pulsar whose rotational period lies considerably below that limit. 

1. The minimum stable rotational period of (gravitationally bound) neutron stars 
of mass M '" 1.4 M0, constructed for a collection of realistic nuclear equations 
of state is' about 1 msec. From this it follows that the nature of any pulsar 
that is found to have a shorter period, say 0.5 msec, must be different from the 
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one of a neutron star. According to our present understanding of superdense 
matter, the hypothesis that most comfortably fits such objects are rapidly 
rotating strange stars (composed of u, d, s strange quark matter). 

2. Concerning the structure and stability of strange stars, it is found that: 

(a) Strange stars can carry nuclear crusts of thickness ranging from I·,...., km 
to ,...., 103 km, depending on mass. Thick crusts on strange stars might be 
of great relevance to their cooling behavior. 

(b) Strange stars possess masses in the range,...., 2 M0 down to ,...., 10-4 M0 . 

The latter value, which refers to the minimum-mass star of the sequence, 
depends on the value of inner crust density of the nuclear crust. Such a 
small mass is even smaller than Jupiter's mass (which amounts 10-3 M0). 
The important astrophysical implication of the existence of such light 
objects would be that they occur as natural stellar candidates which 
effectively hide baryonic matter, linking light (as well as massive) strange 
stars to the fundamental dark matter problem. 

(c) Since mass and radius values of,...., 10-4 M0 and", 103 km are completely 
excluded for both neutron stars as well as white dwarfs, they may serve 
as additional signatures for hypothetical strange stars (besides small ro­
tational periods). 

(d) The computed crustal moment of inertia of strange stars can account for 
the observed relative frequency changes of pulsars (glitches). 

(e) From the Oppenheimer-Volkoff equations one obtains strange matter con­
figurations, carrying nuclear crusts, whose masses and radii are similar 
to those of white dwarf stars. We thus call such objects strange dwarfs. 

(f) Strange dwarfs carrying a nuclear crust whose inner crust density is equal 
to neutron drip are unstable against radial oscillations. 

(g) Charm stars, composed of u, d, sand c quarks, are unstable against radial 
oscillations. 

There remain many fascinating aspects of fast pulsars that need to be worked out 
in detail, a few of them are alluded to above. By means of marrying nuclear physics 
(and various other branches of physics) with astrophysics, the rapid increase of the 
body of data on newly observed millisecond pulsars opens up the unique possibility 
to learn about the behavior of super-dense nuclear matter as well as the true ground 
state of the strong interaction. As noticed by M. A. Ruderman and W. A. Fowler, 
this intimacy is still fairly new. What will come out of it, while not forseeable, is 
likely to be lively, entertaining, and perhaps even beautiful 46. 
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