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CHAPTER 12: BEAM INSTABILITIES 

M. FURMAN, J. BYRD AND S. CHATTOPADHYAY· 

12.1 Introduction 

Center for Beam Physics 
Accelerator and Fusion Research Division 

Lawrence Berkeley Laboratory 
Unive~ity of California, 

Berkeley; CA 94720, U.S.A. 

So far we have considered the motion of the particles in the accelerator in given 
external electric and magnetic fields. As the particles traverse the ring, however, they 
interact with their surroundings via the electromagnetic field created by their own charge 
and current This field extends for a certain distance behind the partiCles that created it, and 
is called the wake field. As an example of this interaction, the resistivity of the vacuum 
chamber causes ohmic losses as the wake field drags along the image currents in the wall of 
the chamber. In addition, the wake field can act back on the same bunch that created it 
and/or on the other bunches that come behind. Or, as a bunch traverses an RF cavity, it can 
excite one or more of its higher-order modes (HOMs); although the electromagnetic fields 
of these modes are mostly trapped inside the cavity, they typically resonate for a long time, 
and can therefore influence all the bunches in the beam as they, in turn, traverse the cavity. 
Thus in general, if certain conditions are met, the wake field can act back on the beam in 
such a way that an initial disturbance gets amplified and hence an instability is generated. In 
some cases, the disturbance grows indefinitely, causing beam loss; in others, the 
disturbance saturates, growing only until a new equilibrium situation is reached. 

The key signature for these phenomena is an intensity dependence: when the current 
is low the wake fields are weak, and the beam characteristics are dominated by single-:
particle dynamics. As the beam current is increased, the wake fields become stronger and 
can influence the beam dynamics, and hence the machine performance, significantly. Some 
of these phenomena depend smoothly on current, and some others have a well-defmed 
onset as the current exceeds a threshold value beyond which the wake field forces 
overcome the damping mechanisms. All of these phenomena arise because the beam, being 
a collection of charges, acts back on itself via the environment in which it travels; for this 
reason, these are called collective phenomena. 

In this chapter we present an outline of the typical instabilities observed or expected 
in light-source synchrotrons and the techniques used to avoid or mitigate them. Since the 
physics of instabilities is generic to all rings that store relativistic electrons or positrons, it is 

• Work supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, 
High Energy Physics Division, of the U.S. Department of Energy under Contract no. DE-AC03-
76SF00098. Fax: (510) 486-7981. E-mail addresses: miguel@lbl.gov,jbyrd@lbl.gov and chapon@lbl.gov. 
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important to note that the situation in light sources is very similar to what is found in other 
circular machines such as damping rings and e+-e- colliders . 

. At the core of any discussion on instabilities is the impedance of the machine, 
which is closely related to the wake field. Once the impedance is known, it is possible to 
calculate the thresholds and growth rates of the instabilities. The definition of impedance 
and a discussion of its properties and measurement techniques is presented later. 

We also describe briefly ion trapping, intrabeam scattering and Touschek scattering. 
Although these phenomena do not depend critically on the interaction of the beam with its 
surroundings, they are nevertheless intensity dependent, and in this sense they can be 
considered collective effects. 

12.1.1 Stability! 

The actual closed orbit in a real machine deviates from the ideal closed orbit due to 
inevitable errors in survey and alignment Typically, the maximum value of this deviation 
could range from a few rom to a cm, arising from a realistically achievable survey and 
alignment error of 0.1 rom. This is a time-independent, stationary configuration and can be 
improved by a closed-orbit measurement and correction scheme, employed in all modem 
storage rings. An irreducible residue of 0.1-0.5 mm in the maximum closed-orbit deviation 
is achievable after a convergent series of iterations. 

Machine operation would be simple if the orbit, the lattice functions and the RF 
parameters were independent of time and particle oscillations were linear to large 
amplitudes. The challenge of control of the photon source stems from the reality of time
dependent perturbations and the essential nonlinearity of the beam dynamics at large 
amplitudes. There is always long-term ground motion and various vibrations and noise 
sources at shorter time scales, and particles are subjected to large oscillation amplitudes at 
injection as well as during the rest of the lifetime of the beam by various scattering 
processes. In addition, there are other time-dependent processes, such as coherent beam 
instabilities, oscillations of trapped ions interacting with the beam, etc. The frequencies and 
time scales of these various processes, their sources, manifestations in the beam and ring 
properties, monitoring systems and possible cures can be grasped by a look at Fig. 12.1 

12.12 Overview of Instabilities and Their Effects 

Instabilities are usually classified into single-bunch and multi-bunch. Single-bunch 
instabilities are strongly influenced by short-range wake fields arising from small structures 
in the vacuum chamber such as bellows, discontinuities, vacuum ports, beam position 
monitors, etc. Multi-bunch instabilities are strongly influenced by long-range wakefields, 
or by localized wake fields that last for a long time. As mentioned above, the most 
important mechanism that gives rise to such wakefields is the excitation of HOMs in 
resonant structures, especially the RF cavities. The wake fields produced by the finite 
resistivity of the vacuum chamber are also important in this respect. 
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Instabilities can have two kinds of unfavorable effects: degradation of the beam 
lifetime, and degradation of the beam quality. These two effects are not mutually exclusive. 
Typical design goals of light sources are long beam lifetime, small beam emittance, short 
bunch length, small energy spread and stable orbits. Instabilities can cause bunch 
lengthening, increased energy spread, shortened beam lifetime or bunch-to-bunch jitter of 
the beam orbit or of the bunch arrival time. Examples of mechanisms that can affect the 
beam lifetime are the transverse mode-coupling instability and multi-bunch coupling. The 
first phenomenon is single-bunch, the second multi-bunch. IIi the coupled-bunch 
instability. all the bunches act together in such a way as to cause a resonance whose typical 
time scale is quite short. Therefore, unless a feedback system is active, a coupled-bunch 

3 



instability can lead to sudden beam losses. An example of instability that degrades the beam 
quality is the longitudinal microwave instability, which increases the energy spread and the 
bunch length. Longitudinal multi bunch oscillations can be stable (finite amplitude 
oscillations), but they cause a jitter in the arrival time of the bunches at a given point in the 
machine, thus having a detrimental effect on applications that are sensitive to time 
resolution. Similarly, stable transverse multibunch oscillations lead to an effective increase 
in the beam emittance and hence a degradation of the brightness of the emitted synchrotron 
light. 

12.13 Damping Mechanisms 
The most important way to mitigate single-bunch instabilities is by careful design of 

the vacuum chamber. Modem designs place ~ premium on its smoothness, since this leads 
to smaller impedance and hence a decreased chance for instabilities at a given bunch 
current. In practice, of course, it is not possible to have a perfectly smooth chamber, and 
hence certain compromises must be made. 

Two mechanisms that help damp instabilities exist naturally in any electron storage 
ring. The first and most obvious one is the damping provided by the radiation of the 
synchrotron light. Instabilities whose growth time is longer than the damping time (which 
is typically on the order of several thousand turns), do not manifest themselves as such and 
do not lead to a problem. The second mechanism, which is more subtle, is Landau 
damping. As explained in more detail below, this mechanism requires a spread in the 
oscillation frequency of the particles within a bunch. Landau damping effectively 
transforms the coherent motion of the beam into incoherent motion of the particles via 
phase mixing induced by the oscillation frequency spread. In the case of transverse 
oscillations, a frequency spread is provided naturally by the unavoidable machine 
nonlinearities which, in tum, lead to an amplitude dependence of the betatron frequencies. 
A longitudinal frequency spread also exists naturally due to the sinusoidal RF voltage, 
leading to nonlinearity of the synchrotron forces at large amplitude. If the natural 
nonlinearities are not strong enough (in the case of small-emittance beams, for example), 
there are artificial means of enhancing them, as discussed below. 

In any case, these damping mechanisms are typically not enough to eliminate all 
instabilities in modem light sources, at least not when these machines are operated in high
current, multi-bunch mode. Certain instabilities can be avoided by proper choice of 
parameters; for example, the Robinson instability is avoided by a slight detuning of the 
fundamental RF frequency away from hwo, where h is the harmonic number (see Chapter 
4) and Wo is the angular revolution frequency. 

Generally speaking, the design of most synchrotron light sources is such that 
single-bunch instabilities are avoided, or at least are not serious. Coupled-bunch 
instabilities are alleviated by damping the HOMs of the RF cavities, which can be achieved 
by clever design of the cavity shape, and by adding damping elements. However, it is 
typically impossible. to avoid all such instabilities by passive methods. An active feedback 
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system (see Chapter 13) is thus required that detects incipient unstable motion and applies 
appropriate compensating time-dependent forces to counteract it. Although it is in principle 
possible to design a feedback system that would eliminate single-bunch instabilities, in 
practice the power and bandwidth requirements on such a system would typically make it 
prohibitively' expensive. 

12.2 Wake Fields and Impedances 

122.1 Dejinitions2 

Whenever a relativistic charged particle travels near a material that is not perfectly 
smooth or not perfectly conducting, an electromagnetic field is created that extends for a 
certain distance behind it and lasts for a certain characteristic time before it dissipates. This 
is the wake field which, in turn, can act back on the particles traveling behind the one that 
created it. If the wake field lasts for a sufficiently long time, it will affect the particles in 
trailing bunches in successive turns. The impedance is essentially the Fourier transfonn of 
the Lorentz force caused by the wake field, and is thus a measure of the strength and shape 
of the frequency spectrum of this time-varying force 

In the simplest version, the "beam" consists of a single particle of charge q traveling 
at the speed of light c down a cylindrically-symmetric pipe. The beam trajectory is a straight 
line parallel to the axis but is offset transversely from it by x. We consider a "test particle" 
of charge e also traveling at the speed of light parallel to the beam at a distance Z behind it, 
with some transverse position of its own. The pipe need not be perfectly conducting or 
smooth; however, we assume that the lack of smoothness is not extreme, and the average 
pipe radius is b. From Maxwell's equations one can calculate in principle the transverse and 
longitudinal electromagnetic force on the test particle. If we integrate these forces over a 
distance L» b, we obtain, by definition, the wake functions Wn(z) and W 1. (z) 

r~ FII =-eqWII(z)+··, r~F 1. =-eqxW1.(z)+", Jo . Jo (12.1) 

where ... refers to terms of higher order in x and in the transverse position of the test 
particle, and where the integration variable s is the distance along the trajectory of the test 
particle. The corresponding impedances for the distance L are defined by the Fourier 
transform of the wake functions, and are given by 

ZII(liJ)=.!.Joo dze-icaz/cWII(z), Z1.(CO)=i..J"" dze-icaz/cW1.(z)· (12.2) 
c -00 c -00 

where the sign convention is that z < 0 means that the test particle is behind the beam. 
Obviously, the distinction between the beam and the test particle is a purely 

mathematical one that allows one to define wake functions and impedances. In a real 
machine, all particles play both roles, since they produce wake fields and are, in turn, 
affected by the wake fields of all particles. 
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Impedances summarize all the electromagnetic effects from the environment 
traversed by the beam. Thus the vacuum chamber resistivity, RF cavities, bellows, 
discontinuities, vacuum ports, flanges, curvature of the chamber, synchrotron radiation 
reaction, etc., all contribute to the impedance. For a circular machine, the distance L in 
(12.1) is usually taken to be the circumference, so that Eqs. (12.2) represent the whole-ring 
impedances. In reality, the forces on the test particle fluctuate as the beam and the test 
particle traverse the different structures along the vacuum chamber. A basic underlying 
assumption in the usefulness of the wake functions is that the forces on the test particle do 
not deviate much from their average value. In some cases, however, this averaging does 
not yield accurate results for certain instabilities such as those caused by coherent synchro
betatron resonances.3 In these cases, the localized nature of the impedance is important and 
special methods, such as simulation codes with a time-dependent Maxwell's equations 
solver, must be used; we will not be concerned with such a possibility here. Therefore, 
even though wake functions are defined in principle for arbitrary boundary conditions, their 
usefulness as analytical tools diminishes as the characteristics of the vacuum chamber 
become more and more complicated. Fortunately most modern accelerators do not fall 
under this category. 

Even for a point charge in a perfectly smooth cylindrical pipe, there is an infinite 
number of wake functions (and impedances) represented by··· in Eq. (12.1). These terms 
represent a power-series expansion of the transverse or longitudinal force in the transverse 
displacement of the beam and of the test panicle. The leading terms are those shown above, ' 
namely the monopole longitudinal wake function, usually labeled m = 0, and the dipole 
transverse wake function, usually labeled m = 1. The corresponding impedances ZII (£0) 
and Z.1(£O) in Eqs. (12.2) are also labeled m=O and m=1, respectively. The words 
"monopole" and "dipole" refer to the fact that the forces are produced by the monopole and 
dipole moments of the charge distribution of the beam, respectively (note that the forces on 
the test particle, Eqs. (12.1), are independent of its transverse position through dipole 
order). The higher-order impedances become important when the transverse size of the 
beam is comparable to the vacuum pipe diameter. We shall not be concerned here with any 
m's higher than 1 for the transverse case or higher than 0 for the longitudinal (the 
transverse m = 0 wake function vanishes by symmetry), and we will omit the label m. 

On the other hand, the longitudinal charge distribution does matter in many cases. 
Thus, for most purposes, we can view the beam as consisting of needle-like bunches, and 
the calculation of the electromagnetic force on the test particles requires a superposition 
over the longitudinal charge distribution, typically assumed Gaussian. The impedance 
resulting from this superposition is called the effective impedance. 

1222 Propenies and Basic Uses of Impedances2 

As implied by Eqs. (12.1), the wake functions are realfunctions. Therefore, by 
taking the complex conjugate of Eqs. (12.2) we conclude that ZII(£O)* = ZII(-£O) and 
Z.1(£O)* = -Z.1 (-£0). Therefore the real part of ZII(£O) is a symmetric function of £0, while 
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the imaginary part is antisymmetric; the transverse impedance Z.l (OJ) has the opposite 
parity properties, on account of the extra factor of i in its definition. These parity properties 
are generic of all impedances, not just those defined above. 

Another generic property of the wake functions is that they are causal junctions: 
since the forces ahead of the beam vanish, any wake function satisfies 

W(z) = 0 for z > O. (12.3) 

A fundamental theorem of the Fourier transform of causal functions then implies that the 
corresponding impedance is an analytic function in the upper half of the complex-OJ plane. 
One consequence of this is that the impedances satisfy a dispersion relation that relates the 
real and the imaginary parts: if the real part is known for all frequencies, the imaginary part 
is uniquely determined from the dispersion relation and vice versa. As a by-product of the 
dispersion relation, one concludes that any impedance must satisfy 

Z(OJ) ~ 0 as OJ ~ ±oo. (12.4) 

Even though there is no generally-valid relation between longitudinal and transverse 
impedances of different m's, qualitative arguments2 show that the m = 0 longitudinal and 
the m = 1 transverse impedances are related by 

2c 
Z.l (OJ) = -2-Z0(OJ) (12.5) 

. b OJ 

This relation is strictly valid for the resistive wall impedance of a smooth, infinitely long, 
cylindrical pipe of radius b. It is approximately valid for other impedances arising from 

"-
discontinuities in the chamber wall such as bellows, small cavity-like structures or other 
objects, provided their characteristic size is small compared to b. For larger objects, such as 
RF cavities, Eq. (12.5) is valid in an average sense, although it becomes more accurate at 
frequencies above the cut-off frequency OJc ' defined below. 

In calculating beam instabilities, the longitudinal impedance usually appears divided 
by OJ. Therefore, instead of ZII(OJ), it is customary to deal with the quantity Zo(OJ)/n, 
where n is defined by n == OJ/OJo' Thus ZII(OJ)/n has the opposite parity properties as 
ZII(OJ), and the approximate relation (12.5) reads 

Z.l(OJ) = 2R ZII(OJ) (12.6) 
b2 n 

where R is the average radius of the accelerator. 
Equations (12.2) imply that 2o(OJ) (and hence ZII(OJ)/n) is measured in !l while 

Z.l (OJ) is measured in !lIm. Modern storage rings, whether colliders or light sources, are 
typically designed for operation in high-current, multibunch mode. Stable operation 
requires that the impedance should be kept small, which implies the need for a smooth 
vacuum chamber. Typically, the broad-band average (defined below) of the impedance for 
these modem rings is IZi,/nlbb = 0.1- 2 !l. Older rings, which were not designed with 
these requirements in mind, typically have longitudinal impedance values IZid nlbb in the 
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range one to tens of n. Figure 12.2 shows a photograph of a joint in the injection region of 
the ALS vacuum chamber that exemplifies the attention paid to keeping the impedance low. 

Fig. 12.2. A transition joint in the vacuum chamber in the injection region of the ALS. The joint 
must be flexible in order to accommodate a b'a!lsverse motion of a few em during injection. The 
required flexibility and low impedance is achieved by a "wire cage" design (the entire assembly 
shown is enclosed in a large bellows in order to maintain the vacuum). If the joint had been left 
open, the discontinuity would have led to a large impedance. Photo courtesy of J. Corlett. 

The integral that defines the longitudinal wake function in Eq. (12.1) is also equal 
to the change of energy of the test particle in the distance L due to the wake fields, so that 

!J.E = -eqWn(z) (12.7) 

(the sign convention is that !J.E > 0 means that the test particle gains energy). For a bunch 
of particles, the total energy change in the distance L is given by a superposition over its 
longitudinal charge distribution p(z). Assuming that the bunch length and the range of the 
wake function are both «L one obtainsa 

fOO dOJ - 2 
!J.E = - -lp(m)1 ReZn(m) 

-00 2n 
(12.8) 

where p(m) is the Fourier transform of p(z). Only the real part of the impedance 
contributes to the integral because Ip(OJ)1 is an even function of OJ (this follows from the 

a If the bunch length or the range of the wake function are not small, the integral in this equation must.be 
replaced by a summation over the harmonics of the bunch frequency. 
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fact that p(z) is real). Since the beam as a whole can only lose energy, and this must be 
true for an arbitrary charge distribution, it follows that 

ReZII(co);;:: 0 for all co. (12.9) 

The energy loss of a bunch is often expressed in terms of the loss parameter (or 
loss factor) k, which is defined to be 

k=-IlE/q2 (12.10) 

where IlE and q are here the total energy change and the total charge of the bunch, 
respectively. The loss parameter is always positive, and its typical numerical value for RF 
cavities is -a few V fpC. In practice, the bunch-length dependence of the los~ parameter 
can give useful information about the j.mpedance of cavities or cavity-like objects. 

Equation (12.1) allows one to defme an impedance-induced voltage which is the 
potential energy change of the test particle in the distance L due to the wake field. For a 
beam described by a charge distribution p(z), this potential energy change is given by 

VII (z') =-l~p(Z)Wi'(Z' -'z) (12.11) 

where we make the same assumptions as in the derivation ofEq. (12.1). In the frequency 
domain this equation is usually written ' 

Vn(CO) = -/(co)ZII(CO) (12.12) 

where I(co) is the Fourier transform of the current, defined by I(z) = cp(z). 

1223 Resonator Impedance Model 

In practice it is impossible to accurately know the impedances for the ring as a 
whole. However, impedances of individual components can often be calculated or 
measured at least in a certain frequency range. More typically, one resorts to simple models 
with a few parameters for a given ring component; the parameters are then determined by 
fitting the model to the measurements. 

A simple and widely-used model for the longitudinal impedance of a resonant 
structure such as an RF cavity is the superposition 

ZII(CO) = IZI~r(CO) (12.13) 
r 

where ZII,r(CO) is a single-resonator impedance, defined by 

RSr 
ZjI,r(CO) = ( , ). 

1 +iQ cor _ CO 
r CO CO r 

(12.14) 

Here Qr is the quality factor, COr is the (angular) resonant frequency, and Rs,r is the strength 

9 



of the resonator, or shunt impedance (measured in Q). Eq. (12.5) allows one to define a 
transverse resonator impedance which is of the saIl.le form as Eq. (12.14) except for an 
additional overall CO-I factor. . 

The real part of the resonator impedance Zn.r(co) has peaks at CO == ±cor with 
FWHM= corfQr. The imaginary part changes sign as the frequency crosses its resonant 
value. By defmition, a broad-band resonator has a relatively low Q, typically Q == 1, and 
therefore wide peaks. A narrow-band resonator has large Q and hence narrow peaks. For 
example, the typical resonant modes of ordinary RF cavities have [l's of order 102 -104

, 

while those of superconducting cavities have Q's of order 106 -10 . By taking the Fourier 
transform of (12.14) one finds that the decay time of the excitation produced by a resonator 
is 'Cr = 2Qrfcor . Therefore, narrow resonances last for a long time and thus are a leading 
cause of coupled-bunch instabilities. ... 

The real part of any impedance is called the resistive component while the imaginary 
part is the reactive component. As shown above, only the resistive component can dissipate 
energy. IT the reactive part is positive, it is called capacitive; if negative, inductive.b This 
terminology arises from the fact that a pure inductor L has an impedance Z = -icoL, which 
is negative imaginary, while a pure capacitor C has an impedance Z = if me, Le., positive 
imaginary. In fact, a simple model for the single-resonator impedance is an RLC circuit in 
which all three elements are in parallel, and where the resistance is Rs. In this model the 
impedance is given by Z-1 = RSI +ifcoL-imC which is precisely of the same form as Eq. 
(12.14). The resonant frequency and the quality factor are given by cor = l/.JLC and 
Qr = Rs.JCf L , respectively. 

For a broad-band resonator with Q = I, the reactive part of ZII.r(m)/n is inductive 
and almost independent of frequency in the range -cor $ CO $ cor' while the resistive part 
has an approximately linear frequency dependence in this range. These properties are also 
true of ZJ.(co) on account ofEq. (12.6). 

The loss factor for a high-Q resonator impedance (Q» O'tCOr) traversed by a 
Gaussian bunch with rms bunch length O't (in time units) follows from Eq. (12.8), 

k = RS.rcor e-(Ut (J)r)2 • 

2Qr 
(12.15) 

Typically, the fundamental mode of a cavity has the lowest frequency, and is 
labeled by r = 0; this is typically the TMolO mode used to accelerate the particles or to 
replenish their energy that has been lost by the radiation process (see Chapter 4). HOMs, 
also called parasitic modes, are usually undesirable but unavoidable. Ideally, the Q' s 
should be large forr = 0 and small for r ~ 1. In practice, one tries to reduce the Q's of the 
HOMs as much as possible by cleverly reshaping the cavity or adding dampers. This is 

b Many authors defme the impedance with i replaced by -j in Eqs. (12.2). This can lead to confusion in the 
defmitions of capacitive and inductive. Whatever convention is used. the defining condition for a capacitive 
impedance is that the response is ahead of the excitation, while for an inductive impedance the response lags 
in phase behind the excitation. 
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called "de-Qing," or damping, the modes. Typically, it is impossible to de-Q all the HOMs 
to the point that coupled-bunch instabilities are absent, hence the need for a feedback 
system. A prototype RF cavity for the PEP-IT collider is shown in Fig. 12.3, which 
exhibits the three wave guides used to damp many HOMs. 

Fig. 12.3. Prototype of the PEP-II collider cavity. The three large rectangular wave guides 
emanating from the body of the cavity are terminated with ferrite, and are used to damp the HOMs. 
Photo courtesy of R. Rimmer. 

12.2.4 Impedance Beyond Cutoff . 

If an RF cavity (or any cavity-like structure) were closed it would have an infinite 
number of modes. In practice, there are at least two openings needed for the beam 
traversal. Therefore, those modes whose wavelength is smaller than the pipe radius are not 
trapped in the cavity and are not resonant. Thus there is a natural cutoff frequency, mc, 

above which there are no more resonant cavity modes. It is usually defmed bye 

mc == cjb (12.16) 

In modem storage rings and light sources there is an increasing demand for shorter 
and shorter bunch lengths. The shorter the bunch, the higher the reach of its frequency 
spectrum. If the bunch is short compared to the vacuum pipe radius, its frequency spectrum 
reaches be)'ond the cutoff frequency. Therefore the behavior of the impedance at these high 

C For a perfect cylindrical pipe the cutoff frequency is 2.405clb. Since, in practice, the geometry is much 
more complicated, the usual convention is to choose the numerical factor to be unity for simplicity. 
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frequencies can become important and needs to be examined. 
The source of impedance beyond cutoff is the interaction of the beam with the 

synchrotron radiation that propagates down the vacuum chamber which, in turn, interacts 
with the different structures in the chamber. In addition, the curvature of the trajectory can 
make particles resonate with waves having the same angular phase velocity as the particles. 

The high-frequency impedance of a curved toroidal vacuum chamber can be 
understood simply in terms of the far-field radiation in free space of a particle beam on a 
curved trajectory. Synchrotron radiation along a curved trajectory provides a dissipative 
mechanism analogous to resistive wall effects. The radiation reaction force follows from a 
longitudinal self-field that extracts kinetic energy. Neglecting the shielding provided by the 
vacuum chamber, the resultantfree space impedance is given by 

!.r(~) 
ZII(ro)jn= 2 2 ~3 (..J3-i)Zo (12.17) 

(3n ) 

where r(2/3) = 1.35 is the gamma function and Zo = 4nlc = 377 Q is the so-called 
vacuwn impedance. This formula is valid for frequencies below the critical frequency (see 
Chapter 1), given by merit/roo = 3'1/2 where r is the usual relativistic factor of the 
particle (for ro> merit the impedance falls off exponentially). The n1f3 -dependence of 
Zo(m) is a consequence of the well-known ro1/3 -dependence of the synchrotron radiation 
power at large frequency of a particle in circular motion. The real part of the free space 
impedance has the approximate numerical value 

ReZII(m) = 300 n1/3 Q. (12.18) 

The beam pipe, however, provides shielding for low frequencies: radiation is 
essentially suppressed for harmonics below a cutoff given by nc:::: (Rlb)3/2. This 
expression for nc is exact for a planar circular trajectory between two infinite conducting 
planes parallel to the orbit plane. As a result of this shielding, the maximum free space 
impedance is then given by 

121,~m)Lax = 300 nc-
2j3 Q= 3oo(!) Q. (12.19) 

This result happens to be approximately the same for a large class of shielding 
geometries. Since, typically, bl R = 0(10-4), this means that the shielded free space value 
of \Z1r1 n\ is rather small. Nevertheless, prudent ring designers typically assume Eq. (12.19) 
to provide a lower bound for the estimate of the impedance beyond cutoff. 

For vacuum chambers with cavity-like structures, several models have led to the 
generic behavior 21,(m) oc: m-P for the longitudinal impedance at high frequency. A crucial 
distinction has been established between a single isolated structure and an infmitely long 
sequence of cavities: for the first case, the power p has been found to be p = 1/2 while for 
the second, p = 3/2. 
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1225 Impedance Calculations and Measurement Techniques5 

The modeling and calculation of storage ring impedances has vastly improved over 
the past 20 years, mostly due to increased computer power and improved algorithms for the 
solution of Maxwell's equations; For example, electromagnetic modeling codes such as 
MAFIA 6 can calculate, in principle, the wake function and impedance of any three
dimensional geometty. In practice~ if the geometty of the object is sufficiently complicated, 
the calculations become limited by the power of the computer used to run the codes. 

Several bench impedance measurement techniques are used for testing actual or 
prototype beamline components. For nonresonant components, a wire is passed on axis 
and the transmission through it is measured as a function of frequency. For resonant 
structures, the strength of a mode is found by exciting it and measuring the resulting field 
pattern along the beam axis by introducing a small movable perturbing needle. The 
frequencies and quality factors of the resonant modes are found by measuring the 
transmission through the structure. Electromagnetic codes calculate quite accurately the 
R/ Q ratios; by combining these calculated values with the measured Q' s one can extract 
accurate values for the shunt impedances. 

The impedance of individual resonant modes with Q ~ 10 can be measured by the 
frequency-perturbation method. This is done by using beads or needles which shift the 
resonant frequency. From this one can measure the energy density on resonance and extract 
the R/Q ratios. In practice, since the dimensions of the perturbing object must be much 
smaller than the wavelength of interest, this technique cannot be used reliably at high 
frequency. 

The pulsed-beam method is conceptually the most attractive since it closely mimics 
the dynamics in the storage ring, and the definition of the wake field given by Eq. (12.1). 
This method consists of passing a pulse of electrons through the test object and measuring 
the energy loss or the deflection of the trajectory to get the real part of ~I or Z 1.. To obtain 
the full wake function, one can use a smaller "witness" beam to sense the delayed effects. 
One can also probe with antennas to study the excitation in the test object. The Wake Field 
T~st Facility at ANL is devoted to this method. 7 

Finally, of course, measurement of instability thresholds, bunch lengthening, etc., 
in operating storage rings may be the ultimate phenomenological tool to check calculations, 
predict behavior and evaluate cures. From these measurements one can, in principle, extract 
the ring impedance if the models used in the calculations are sufficiently complete and the 
measurements sufficiently accurate. ' 

122.6 Broad-Band Impedance Model 

In spite of the progress in the calculation and measurement of the impedance of 
individual components, the determination of the impedance of the storage ring as a whole is 
a challenging and typically imperfect task. Even more challenging is the calculation of the 
net effect on the beam given the individual component impedances. Experience has led to 
the development of the so-called broad-band impedance model to account for the entire 
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storage ring impedance. This model provides a simple conceptual and calculational tool and 
it adequately represents a wide variety of storage rings. It has been particularly successful 
in describing the beam behavior in storage rings with longer bunches. Machine design 
reports usually contain an "impedance budget" listing the connibutions of the different ring 
components to the impedance. In its simplest version, the longitudinal broad-band 
impedance model of the ring has three components: 

• A broad-band resonator with OJr and Q typically chosen to beOJr = (f)e and 
Q = 1. The shunt impedance Rbb is determined empirically from a fit ~o.the data. This 
broad-band resonator accounts for the impedance contribution of all vacuum chamber 
components such as bellows, joints, low-Q parasitic cavity modes, vacuum chamber 
discontinuities, etc. 

• A low-frequency connibution from the skin effect of the vacuum chamber known 
as the resistive wall impedance. 

• Various narrowband resonator impedances including the fundamental mode of the 
RF cavity and other parasitic cavity modes. d 

The connibution from the resistive wall impedance can be easily estimated for a 
typical vacuum chamber. For all frequencies of practical interest, the longitudinal 
impedance per unit length for an infinite cylindrical pipe of radius b is given bye 

ZII(OJ)/L= Zo (l_ie(OJ»O«(f)lrol (12~20) 
4nb c 

where e(OJ) is the sign function, O(OJ) = clJ2nalOJI is the skin depth of the vacuum 
chamber whose conductivity is 0: 

Determination of Rbb involves a wide variety of components. This shunt impedance 
is conventionally quoted as 121" nlbb , which is defined to be 

12111 == lim IZII(OJ)I= RbbOJO (12.21) 
n bb CI)~O n QOJr 

whose typical value for modern storage rings is in the range IZII/ nlbb = 0.1-1 n. For 
illustrative purposes we sketch the broad-band impedance for a hypothetical storage ring in 
Fig. 12.4. 

d Many authors exclude these narrowband components from the defmition of the broadband impedance 
modeL 
e This formula is not valid for frequencies so low that the skin depth is comparable to or larger than the 
thickness of the vacuum pipe. It is also not valid at extremely high frequencies. 
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Fig. 12.4. Sketch of the broad-band impedance for a hypothetical ring. The value of 121I/nl
bb 

relative to the shunt impedance of the narrowband resonators has been highly exaggerated.. 

12.3 Landau Damping 
As mentioned earlier, the synchrotron radiation provides natural damping: if the 

growth time of an instability is larger than the damping time of the ring, obviously it fails to 
materialize. A second damping mechanism, called Landau damping, is more subtle but just 
as important, and we sketch here the basic physics underlying it This mechanism requires 
a spread in the oscillation frequency, or tune, of the particles.8•9.2 

Consider a single particle executing transverse or longitudinal motion at low 
amplitude. The particle creates a wake field that acts back on itself, driving it on resonance 
and leading to an instability. This simple picture would lead one to expect essentially all 
particle motion in an accelerator to be unstable. Landau damping is one of the reasons why, 
in practice, this expectation is pessimistic. 

CQncretely, consider a single harmonic oscillator subject to a time-dependent 
sinusoidal force. The equation of motion is 

i+ (.()2x = AcosQt (12.22) 
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and we assume that the initial conditions are x(O) = x(O) = O. If the force drives the particle 
resonantly, i.e., if n = ro, then the amplitude of the motion grows indefinitely according to 

x(t) oc: AtsinOt. (12.23) 

Correspondingly its energy, which is proportional to (x2 ), grows like - t2 for large t. 
implying instability. 

An ensemble of particles (such as a bunch), however, can behave in a qualitatively 
different fashion even if the particles do not interact among themselves, provided their 
natural oscillation frequencies are spread over a certain range. Thus we assume that the 
oscillators have a narrow frequency spectrum p( ro) of width Aro, and that they are all 
driven by the same force, F = A cos ilt , where Q lies within the range of p(ro). For times 
t » 1/ Aro one finds that the centroid of the ensemble is given by 

(x)oc: A[cosOtPJ dro ~~~ + np(Q) sin Ot ] (12.24) 

where the symbol "P" instnicts one to take the principal value of the integral at the 
singularity and the spectrum is normalized such that J dmp(ro) = 1. One also finds that the 
energy of the bunch grows in time like 

(12.25) 

The ensemble case and the single-particle case behave qualitatively differently in 
that the power of t with which the amplitude and the energy grow is one less in the former 
than in die latter. This is the essence of Landau damping: the energy pumped into a bunch 
of particles goes into increasing its size rather than the amplitude of the motion of the 
centroid. In most practical cases, this increase in bunch size does not present a problem, 
and therefore the instability is avoided. 

If the oscillators are finite in number and their frequencies take on discrete values 
over the range Aro, Landau damping works qualitatively in the same way as for the 
continuum case, except for one difference: the mechanism ceases after a time - 118m, 
where 8ro is the minimum frequency spacing between the oscillators in the ensemble. The 
explanation is that, the system being conservative, the driving force and the oscillators 
exchange energy back and forth in a beating pattern whose period is -1/8ro (we assume 
that none of the oscillators is exactly on resonance). Therefore, after this time, the ensemble 
of oscillators comes back to its initial state and the process starts again. For a uniform 
distribution of N oscillators,8ro = Aro/N. Therefore, for a given finite N, this 
consideration puts a constraint on how wide Am can be for Landau damping to be 
practical. 

For a bunch of N particles, one expects 8m::::: Aro/ N and so the damping ceases 
after a time - N / Aro. In practice, however, since N - 1011, this constraint is not 
significant unless the frequency spread Am is very large. On the other hand, if Am is too 
small, the long-time limit (12.24) is effectively never reached, and the mechanism does not 
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take effect. The energy is not stored evenly within the bunch: it is selectively stored in 
particles with a continuously narrowing range of frequencies (J) near Q. The energy stored 
in these particles grows like t 2, but there are fewer and fewer of them as time progresses. 
If the driving frequency Q falls outside the ·range of p( (J), damping clearly does not take 
effect and the instability is not avoided." 

The analysis for a realistic case is more complicated than what is sketched above 
because the amplitude A of the driving force in Eq. (12.22) is itself proportional to the 
bunch centroid (x). Furthermore, the force is a superposition of all wake forces from all 
turns prior to time t. Either one of these two facts imply that the cos o.t and sin o.t terms in 
Eq. (12.24) get mixed. because the force is out of phase with x(t). In the frequency 
domain, this mixing is a consequence of the complex nature of the impedance. The fact that 
the driving force is proportional to (x) implies that a consistency condition must be 
satisfied by the solution. This condition takes the form of a dispersion relation. For 
transverse motion of a single bunch, we look for a solution of the form x oc: (x}exp(-io.t), 
in which case the dispersion relation reads 

1- . N cr/ZJ... fd p(m) 
-l 2 (J) . 

. 2r{J)p To (J)-o.-le 
(12.26) 

where re = e2 / mec
2 :::: 2.82 X 10-15 m is the classical electron radius, r is the usual 

relativistic factor, To is the revolution period, e is a small number whose limit e ~ 0+ is to 
be taken after the integral is done, and 21.. is defined by 

00 

21.. = I,ZJ...(P{J)o+{J)p) (12.27) 
p=-oo 

where the summation is over all integers. In general, the solution for 0. is complex. In 
practice, Eq. (12.26) is used as follows: one assumes a certain form for p({J) (say a 
Gaussian), and one lets Q vary in the range (-00,00) through the real numbers. Then 21.. 
obtained from (12.26) traces out a line in the complex plane that divides it into two regions. 
Since 0. is assumed to be real, this line defmes a stability boundary. On either side of this 
boundary, 0. has a nonzero imaginary part. If the actual value of 21.. of the machine lies in 
the region containing the origin of the complex plane, then 1m 0. < 0 and the motion is 
stable, i.e., it is Landau damped. If 21.. lies in the other region, then 1m 0. > 0 and the 
motion grows exponentially in time (it is said to be "antidamped"), and an instability 
materializes if Imo. is larger than the damping time of the machine. Therefore, by making 
several reasonable assumptions about p({J), one gets an approximate criterion for the 
allowed values of 21.. that lead to stability. Note that this method establishes a stability 
criterion for .z 1.. and not for the impedance itself. 

For modern storage rings, the main constraint on the practicality of Landau 
damping is that the spectrum width !:1m is too narrow. A transverse tune spread is 
provided naturally by the magnet nonlinearities which produce an amplitude dependence of 
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the betatron tune. A longitudinal tune spread is provided by the nonlinearity of the 
synchrotron forces at large amplitude. However, modern light sources have small 
emittances and shon bunch lengths, and therefore the natural motion of the panicles is very 
linear. As a result, the naturally-existing nonlinearities may not be strong enough to 
produce an appreciable tune spread. If this is the case, there are means of enhancing the 
nonlinearities: for transverse motion, one can add octupole magnets; for longitudinal 
motion, one can add a low-power harmonic RF system that effectively distorts the 
harmonic-oscillator shape near the center of the RF bucket. Obviously, a delicate 
compromise is needed in these cases because nonlinearities introduce single-particle 
resonances or chaotic motion that tend to degrade the beam lifetime. 

12.4 Single-Bunch Issues lO 

Single bunch collective phenomena arise from the interaction of a bunch with itself 
via wake fields whose range is comparable to or shorter than the bunch length. The most 
ubiquitous single-bunch effect is the so-called longitudinal microwave instability, or 
turbulent bunch lengthening instability. This instability does not grow indefinitely: if the 
beam current is large enough that this instability is excited, the bunch length and energy 
spread increase until a new equilibrium situation is reached. In the transverse plane, the 
instability that, typically, has lowest threshold, is the transverse mode-coupling instability, 
or fast head-tail instability. This instability leads to fast beam loss; however, the current 
threshold is typically higher than for the microwave instability, and is easily avoidable. 

12.4.1 Calculation of Instabilities 

The calculation of thresholds and growth rates of instabilities and other collective 
effects is codified in codes such as ZAP.l1 However, a rough sketch of the procedure, 
applicable to most instabilities (single bunch and multi bunch), can be useful to illustrate the 
nature of the approximations involved. The first step is to assume that the low-amplitude 
particle motion (transverse or longitudinal) corresponds to a simple harmonic oscillator. 
One then adds the extra force produced by the wake field, and then one tries to solve the 
equation in lowest-order approximation. For example, the horizontal equation of motion for 
a single panicle reads 

(12.28) 

where W is the transverse dipole wake function, (J)f3 is the betatron frequency, and the 
primes mean derivatives with respect to the azimuthal position. One looks for solutions of 
the form x = Xo exp(-iso./c) and solves for the frequency 0. in lowest-order 
approximation in the impedance. 

The real part of 0. implies a frequency shift, which is not in itself detrimental. The 
imaginary part, however, signals a potential instability whose lifetime 1: is given by 

1:-1 = !mo.. (12.29) 
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If 'r < 0, the disturbance is damped and does not lead to any problems. But if 'r> 0 the 
disturbance is antidamped and potentially unstable. However, one cannot conclude from 
this analysis that the disturbance grows indefinitely because other forces may become 
important at large amplitude that stop it from growing further; this is precisely what 
happens in the longitudinal microwave instability. 

12.42 Parasitic Power Loss 

As mentioned earlier, the beam image currents dissipate energy into the vacuum 
chamber components in addition to generating wake fields. This is referred to as parasitic 
loss, and the dissipated power is proportional to the square of the bunch current. Although 
this power loss does not inherently affect the beam stability, it can effectively limit the 
bunch current (and hence the total beam current) because of the excessive heating of the 
vacuum chamber. This problem usually affects imperfect junctures in the vacuum chamber 
such as bellows. 

For a beam consisting of M identical bunches, one can generally write the power 
loss for the whole beam in the form 

(12.30) 

where the bunch current Ib is related to the total beam current 10 via 10 = Mlb , and where 
the loss impedance Zloss is nothing but the real part of the effective impedance that is 
causing the energy loss (ZI055' of course, is proportional to the loss factor). We are only 
concerned here with Gaussian bunches whose rms bunch length is ut (in time units). One 
can then calculate from Eq. (12.8) the loss impedance for various cases. 

For the case of a broad-band resonator with shunt impedance Rbb, quality factor Qr 
and resonance frequency OJr , the broad-band loss impedance Zbb is given by 

Z - R (1&OJr J -«(J)rUt)2 bb-bb-- e . 
QrOJO 

(12.31) 

This expression is valid provided the bunch is short compared to the bunch spacing, and 
th.e resonator bandwidth is large compared to the bunch frequency OJb == MOJo, namely 
OJrlQ,. »OJb. The bunches need not be equally spaced. 

There is also power loss due to the HOMs of the RF cavities. In this case the . 
resonators are narrowband, namely OJr/Q,. «OJb' and the formula is more complicated.f 
For a beam consisting of M equally-spaced bunches that are short compared to the bunch 
spacing, the na"owband loss impedance Znb is given by 12 

(12.32) 

f In this case one must replace the integral in Eq. (12.8) by a summation over harmonics of the bunch 
frequency. 
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where RS,r is the shunt impedance of the resonator, and Il. == 1UJ)r /2Qr(f)b' Since, by 
definition, Il.« 1, the above formula implies that the power loss is substantial only when 
lOr/(f)b is very close to (within -Il. of), an integer, namely when the resonance frequency 
of the HOM is very close to a hannonic of the bunch frequency. When this undesirable 
resonance condition is satisfied, the sin2-term in Eq. (12.32) vanishes, and the power loss 
is proportional to M2it =lg, which can be intolerably large. Fortunately, the very 
narrowness of the mode makes it easy to avoid this condition by a slight detuning of the 
HOM frequency. 

The ohmic losses due to the resistivity of the vacuum chamber are, typically, 
smaller than those from the broad-band resonator described above. The resistive wall loss 
impedance Zrw for a cylindrical pipe is obtained from Eq. (12.20) and is given by 

( )

3/2 

Zrw = rH)zo C)~~o») ~ (12.33) 

where 8«(f)o) is the skin depth at the revolution frequency, Gz is the rms bunch length 
(O"z = CGt), and r(3j4):::::: 1.23. The bunches need not be equally spaced. 

12.43 Longitudinal Effects 

It is possible for wake fields to drive coherent oscillations of the bunch shape and 
density. A general bunch distribution can be analyzed in terms of its radial and azimuthal 
moments in phase space. Radial moments are characterized by a radial variation of the 
distribution without an overall variation in shape, while azimuthal modes have the opposite 
characteristic. In Fig. 12.5 we sketch the first three azimuthal modes of oscillations in 
phase space along with the projection onto the time axis, which corresponds to the 
longitudinal charge· density. Because each electron in the bunch is oscillating at the 
synchrotron frequency (f)s' one can see that the m-th mode has a characteristic angular 
oscillation frequency m(f)s (this index m should not be confused with the index m that 
labels impedances). The characteristic signals for radial modes can be found similar to the 
azimuthal modes. 

As explained in Chapter 4, the synchrotron oscillations of individual electrons in a 
bunch are governed by the voltage in the RF cavity. However, the wake field leads, in 
effect, to a distortion of the RF voltage seen by the bunch. This is known as potential well 
distortion, and is sketched in Fig. 12.6. 

The effective slope of the bunch voltage depends on the characteristic wavelength of 
the longitudinal wake function and on the length of the bunch. It is typical to assume a 
Q = 1 resonator form for the longitudinal impedance with resonant frequency equal to the 
cut-off frequency, (f)r = (f)e == cjb. This implies that,2 for long bunches (O"z > b), the 
effective voltage is usually such that the bunch is lengthened and the wake function is 
eferred to a inductive. For short bunches, the bunch may be shortened, in which case the 
wake function is called capacitive. This is qualitatively illustrated in Fig. 12.7. The 
convolution of the m = 0 mode (which represents the distribution itself, rather than any of 
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the moments) of the bunch with the reactive part of the broad-band impedance determines 
the bunch distortion. If the bunch is long, its frequency spectrum is significant only near 
zero frequency, where the impedance is inductive and the bunch consequently lengthens. 
For short bunches, the bunch spectrum extends. beyond mc' where the impedance is 
capacitive. If the net effect is positive, there is bunch shortening. 

b) 

___ ....... _+_~I... t / 
m = 1, dipole m = 2, quadrupole m = 3, sextupole 

Fig. 12.5. Azimuthal bunch oscillation modes. The m-th mode has a characteristic frequency mms. 
The solid and dotted lines describe the distributions separated in time by rrlmms. a) Phase space 
distribution. b) Line density vs. time. 

Fig. 12.6. The bunch wake field changes the effective slope of the RF voltage and can lead to 
bunch lengthening or shortening. 

For azimuthal modes with m ~ 1, the wake fields also shift the coherent oscillation 
frequency away from its zero-current value mms. Like bunch lengthening, this frequency 
shift is determined by the convolution of the spectrum of the mode with the reactive part of 
the impedance. To first order approximation in the bunch current, this shift is not 
significant for the centroid of the bunch (m = 1 mode) because the wake field moves along 
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with the bunch. However, the effect can be observed by measuring the oscillation 
frequencies of higher azimuthal modes. 

1.0 

OS 
-.. c: -~ 0.0 ....... --
N 

-OS 

-1.0 

-20 -10 o 
Frequency (GHz) 

Broadband resonato 
ZIl/n=lQ 
~b=l 
fbb=3GHz 
Gz =lcm 

10 20 

Fig. 12.7. The bunch spectrum for bunch oscillation modes m=0, ... ,3. The effective impedance for 
each mode is the sum over the broad-band impedance weighted by the bunch spectrum. 

If the current is sufficiently high, the high-frequency components of the wake field 
can cause ripples in the longitudinal density that can amplify and grow exponentially, 
leading to an instability. For example, this happens to a coasting (unbunched) proton beam 
below transition energy (see Chapter 2) if the impedance is capacitive. This instability is 
called the negative mass instability. However, the energy spread in the beam leads to a 
spread in revolution frequency which, in tum, leads to Landau damping of the perturbation 
when the growth time is longer than the time necessary for the perturbation to dephase by 
180 degrees. The stability limit on the total beam current is given by 

21C17(E/e)( (JE/ Ef 
10 < (12.34) 

IZ"ln~b 
where e is the electronic charge, E is the beam energy, (JEIE is the relative rms energy 
spread, and '!1 is the phase-slip factor, related to the momentum compaction factor a by 
T1 = a -1/ r2 (see Chapter 2). This relation is commonly referred to as the Keil-Schnell 
criterion. 13 

For bunched beams, this instability is called the microwave instability, or turbulent 
bunch lengthening instability. The Keil-Schnell criterion can be used in this case if the total 
beam current 10 in Eq. (12.34) is replaced by the peak current, j = ~21C Ib/mo(jr. Thus 
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the threshold for this instability, expressed in terms of the bunch current, is given by 

I = ..J2n 1J OJo(Jt(Eje)( (JE/E)2 . (12.35) 
b, thr. I~d nlbb 

If the current exceeds thls threshold, both the bunch energy spread ~ld the bunch length 
grow. This phenomenon is referred to as turbulent bunch lengthening. However, this 
growth stops when the peak current falls below the stability threshold, at which point a 
new equilibrium situation is reached, and the instability is said to saturate. The bunch 
length above threshold is given by 

(12.36) 

where K is given by 
1JR3 

K = ..J2n(E/e)V; (12.37) 

and the energy spread is given by the usual formula, (J E / E = vsf32
0"z /1JR, where f3 is here 

the usual relativistic factor. 
Eq. (12.35) assumes that IZ,,(OJ)/nl is independent of frequency, in accordance 

with the Q = 1 broad-band resonator model. For the case of a more general broad-band 
impedance with a power-law frequency dependence of the form ZII(OJ) oc OJa, it can be 
shown2 that the bunch length has the dependence 

(Jz oc Kl/(2+a). (12.38) 

An example of turbulent bunch lengthening from SPEAR14 is shown in Fig. 12.8. 
The power law dependence of the bunch lengthening is clearly exhibited in the results, 
from which one can extract the value a=-Q.68. This power-law dependence of the 
impedance is referred to as "SPEAR scaling," and it is valid only within a limited range .of 
frequencies beyond cutoff. A similar measurement at the Photon Factory15 yields 
a = 0.976, showing that lZu(OJ)/nl is essentially independent of frequency in this case. 

12.4.4 Transverse Effects 
As in the longitudinal case, it is possible for wakefields to drive coherent transverse 

oscillations within the bunch. However, the situation for transverse oscillations is 
somewhat complicated by the constant exchange of the head and the tail of the bunch via 
longitudinal oscillations. Fortunately, this exchange provides a powerful mechanism for 
Landau damping of transverse oscillations. 

Consider an extremely simplified model of a bunch consisting of two electrons, one 
at the head of the bunch, the other one at the tail. Without longitudinal oscillations, the 
transverse betatron oscillations of the head would generate a transverse wake field that 
would drive the tail of the bunch resonantly, as mentioned in Sec. 12.4.1. In the case of 
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linacs, where the synchrotron motion is essentially frozen, this phenomenon leads to the 
dipole beam breakup instability. However, the longitudinal oscillations in circular 
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Fig. 12.8. Turbulent bunch lengthening measured at SPEAR. 

accelerators cause the head and tail of the bunch to exchange places over a synchrotron 
period. This continuous exchange does not allow the growth of the oscillation amplitude of 
the tail to accumulate as quickly, thus extending the stability threshold. Obviously, if the 
transverse wake fields are so intense that the growth time of the oscillation amplitude of the 
tail is less than half a synchrotron period, the bunch becomes unstable and is quickly lost. 
This instability is variously referred to as transverse mode-coupling instability, or fast 
head-tail instability, or transverse turbulent instability. The threshold for the bunch current 
is given by 

(12.39) 

where the denominator represents a ring average of the broad-band transverse impedance 
weighted by the lattice beta function. Typically, the threshold current for this instability is 
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higher than its longitudinal counterpart, given by Eq. (12.35). 
As in the case of longitudinal oscillations. it is customary to analyze the transverse 

oscillations of the bunch in terms of normal modes. referred to as head-tail modes. Each 
head-tail mode is specified by index m = 0.±1.±2 •... (not to be confused with the 
longitudin<ll index or with the index of the impedance) which indicates the number of 
betatron wavelengths per synchrotron period. For mode m = O. all electrons have the same 
betatron phase (rigid dipole motion). whereas for m = ±1 the head and tail have opposite 
phases. The dipole signal for these two modes over several turns is shown in Fig. 12.9 
(mode m has m nodes along the length of the bunch). Because of the constant exchange of 
the head and tail at the synchrotron frequency. each mode has a characteristic angular 
frequency wf3 +mws . The frequency spectrum of the higher modes peaks at higher 
frequencies. similar to the longitudinal case described above. 

m=l 

t 

Fig. 12.9. Sketch of the m=O and m=l vertical modes of oscillation. 

Under certain conditions. coherent bunch oscillations can be excited for currents 
below the instability threshold. An example of a coherent vertical head-tail oscillation 
observed at LEP with a streak camera is shown in Figure 12.10. 

If the chromaticity is not zero (see Chapter 2). the energy spread of electrons leads 
to a modulation of the betatron tune at the synchrotron tune. This frequency modulation 
creates a relative phase shift between the head and the tail of the bunch. Because of this 
phase shift. the wake field produced by the head of the bunch no longer drives the tail on 
resonance. The corresponding impedance has a resistive part that can lead to damping or 
antidamping of the tail oscillation. This effect is referred to as head-tail damping and is used 
quite often to damp coherent transverse motion. Above transition energy. which is the 
typical situation for electron storage rings. the rigid transverse dipole mode (m = 0) is 
damped by positive chromaticity while the m = ±1 modes (head and tail out of phase) are 
antidamped. However. the growth rate must exceed the radiation damping rate for the beam 
to become unstable. This allows most electron storage rings to operate stably with a slightly 
positive chromaticity. 
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Fig. 12.10. Turn-by-turn pictures of a bunch executing vertical head-tail oscillations in the 
electron storage ring LEP. The bunch is observed from the side. The synchrotron tune is -0.1. The 
horizontal scale is 1000 ps for the total image, not counting the table of numbers at the right. The 
vertical scale is uncalibrated, but the vertical nns beam size is -0.2 mm at the observation point. 
Photo courtesy of E. Rossa 

12.5 Coupled-Bunch Instabilities10,16 

12.5.1 Basics 

Wake fields whose range is long enough to couple the motion of the different 
bunches in the beam can cause coupled-bunch instabilities. These wake fields are typically 
produced by narrow resonances in the RF cavities. Even though they remain localized in 
the cavities, they last for a long enough time that the motion of any given bunch is 
perturbed by all its predecessors. These long-lasting wake forces can generate a transverse 
or longitudinal coherent structure in the bunch-to-bunch oscillations. If these coherent 
oscillations grow indefinitely, they lead to rapid beam loss. If they remain bounded, they . 
degrade the beam quality by inducing a larger effective beam size or oscillations in the 
arrival time. 

Although it is possible for wakefields to couple the bunch shape oscillations from 
bunch to bunch, the scope of this section is limited to dipole coup/ed-bunch oscillations 
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since these are the dominant concern for the design of a light source (or any other 
rilUltibunch circular machine). These oscillations are characterized by the motion of the 
bunches about their nominal centers as if they were rigid "macroparticles." A sketch of a 
coherent transverse coupled-bunch oscillation is shown in Fig. 12.11. 

Fig. 12.11. Sketch of a coherent transverse coupled-bunch oscillation. 

In analogy with the problem of coupled hannonic oscillators, it is best to analyze 
the motion of multibunch modes rather than that of individual bunches. The simplest case is 
that of a beam of M rigid, identical electron bunches spaced equally around the ring. For 
either transverse or longitudinal oscillations, each multibunch mode is characterized by a 
bunch-to-bunch phase difference of AlP = 2tcl/M, where the mode number 1 can only take 
the values 1 = O,I, ... ,M -1. The net phase advance around the ring is constrained to be a 
multiple of 2n; when observed from a single point in the ring, each multibunch mode is 
associated with a characteristic set of frequencies given by 

wp = (pM ± (I + v»wo (12.40) 

where p is some integer and v is either the synchrotron tune Vs or the transverse tune v f3' 
depending on whether the oscillations are longitudinal or transverse, respectively. 

A snapshot view of a multibunch mode in the ring is illustrated in Fig. 12.12 for the 
case of M = 3 bunches. In this case, the longitudinal oscillations have relative phases 
AlP = 2tc/3 or AlP = 4tc/3 (multibunch modes 1 = 1 and 1 = 2, respectively). The 
corresponding waves are shown in Figs. 12.13a and 12.13b, and the resulting frequency 
spectrum in Fig. 12.14, where the modes appear as sidebands separated from the 
revolution harmonics by v. . 
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Fig. 12.12. Snapshot of a three-bunch beam executing multibunch oscillations. 
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Fig. 12.13. An illustration of the characteristic signal at a flxed location in the ring for each 
multibunch mode. (a) Mode 1=1. (b) Mode 1=2. The dots represent the signal sampled at the 
detector. The thick dashed lines show the motion of individual bunches. The narrow, high 
frequency line shows the lowest frequency wave that flts the sampled measurement points. 
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Fig. 12.14. Coupled-bunch mode spectrum for 3 bunches corresponding to Eq. (12.40). The 
sidebands are labeled with the corresponding coupled-bunch mode index. If the oscillations are 
longitudinal, the sidebands are split from the harmonics of the revolution frequency by ± vs; if 
transverse, by ± v p • 

1252 Longitudinal Coupled-Bunch Instabili(y 

It is useful to give a physical picture of a simple longitudinal coupled-bunch 
instability. Consider a single rigid bunch executing synchrotron oscillations; this bunch is 
in a storage ring containing an idle RF cavity with a single resonant mode whose frequency 
can be tuned over any desired range. In addition, the ring is assumed to have at least one 
other RF cavity that supplies power to the beam but has no other effects. For the sake of 
illustration, assume that the resonant frequency of the idle cavity is tuned to about twice the 
revolution frequency. As the beam passes through this element on some arbitrary turn, it 
induces a voltage that oscillates at the resonant frequency, as shown in Fig. 12.15a (a 
negative voltage implies deceleration of the bunch; the beam-induced voltage from 
subsequent passages of the bunch is not shown). During the half of the synchrotron 
oscillation when the energy of the bunch is smaller than the design energy, the revolution 
periodg is shorter than nominal, and the bunch arrives at the idle cavity earlier than an on
energy bunch. The opposite is true during the half of the synchrotron oscillation when the 
energy of the bunch is greater than the design energy. In either case, the bunch sees the 
induced voltage from the previous turn as indicated 

In a first example, we assume that the frequency of the resonant mode of the idle 
cavity is slightly smaller than twice the revolution frequency. When the energy of the bunch 
is smaller than its design value, the bunch sees less decelerating voltage than when its 
energy is above the design value. Therefore, over the course of several turns, the energy 
oscillations of the bunch grows smaller and smaller. Thus the interaction with the resonator 
damps the oscillations and the motion is inherently stable. This effect is usually referred to 
as Robinson damping 17 when the resonator is the fundamental mode of the RF cavity. 

In a second example, let the frequency of the resonant mode be tuned slightly above 

g We assume that the ring is operated above transition energy since, in practice, this is the typical case. 
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twice the revolution frequency. The relative arrival times are shifted relative to the previous 
case, as shown in Fig. 12.15b. In this case, the below-energy bunch loses more energy 
than the above-energy bunch resulting in an unstable oscillation (if the ring happens to be 
operated below transition, the two cases are reversed). 
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Fig. 12.15. A time-domain view of a resonator voltage driving a longitudinal coupled-bunch 
instability and the corresponding frequency domain view. The sidebands of the revolution 
harmonics represent the phase modulation of the beam current resulting from the synchrotron 
oscillations. and the dashed line is the resistive part of a resonator impedance. 

Although this simplified description gives a view of the interaction of the bunch 
with its own voltage over the course of two revolutions, it is inadequate for the deSCription 
of the multi-turn cumulative effect. For instance, the net beam-induced voltage in the 
example above might sum to zero over the course of many turns, or the beam-induced 
voltage from other bunches in the beam might cancel the voltage from the first bunch. The 
above treatment also implies a point-like charge. In reality, electron bunches have a 
distribution in their energy, position, and synchrotron frequency, and beam wake fields can 
affect the electrons within the bunch. 

The obvious difficulties of understanding the summation of beam-induced voltages 
and the resulting effects on a bunched beam over many turns are greatly simplified by 
analyzing the problem in the frequency domain. Consider the frequency spectrum of a 
single bunch and the resistive part of a resonator impedance as shown in Fig. 12.15. The 
revolution frequency of the bunch increases (decreases) when its energy is greater than 
(smaller than) the design energy, corresponding, respectively, to the lower and upper 
sidebands. The energy absorbed by the resonant mode is proportional to the resistive part 
of the impedance at the frequency of the sideband. When the idle cavity is tuned to the RF 
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frequency, it absorbs the same energy from the upper and lower sidebands. In other 
words, it absorbs the same energy from the bunch when it is below energy as it does when 
the bunch is above energy. When the cavity is tuned below a multiple of the revolution 
frequency, as shown in Fig. 12.15a, it absorbs more energy from the bunch when it is 
above the design energy than when it is below, and is thus stable. But if the resonant mode 
is tuned above a multiple of the revolution frequency, as shown in Fig. 12.1Sb, the 
situation is reversed and the energy oscillations of the bunch are antidamped. 

In general, as mentioned earlier, the interaction of the beam with the wake fields 
leads to both an amplitude growth and a frequency shift of the longitudinal beam 
oscillations. For coupled-bunch mode I the complex coherent frequency shift is given by 

/1Q1 - i TJhOJolo [Z]l (12.41) 
11- 4mtAEje) II eff. 

where the effective impe&nce is the sum of the impedance weighted by the beam spectrum, 
and is given by 

(12.42) 

and where OJp == (pM + 1+ vs)OJo. 
The real part of Ml yields the shift in the oscillation frequency of the mode, and is 

driven by the reactive part of the impedance. The imaginary part is the growth rate of the 
oscillation, and is driven by the resistive part of the impedance. Note that higher frequency 
resonators have a stronger effect on longitudinal motion because the phase modulation of 
the beam is larger at higher frequencies. The motion becomes unstable when the growth 
rate is positive and exceeds the sum of the radiation and Landau damping rates. 

For example, in the case of a single high-Q resonator tuned near the frequency 
pM mo, a bunch whose length is short compared to the wavelength of the resonator has a 
growth rate given by 

TJ hOJOIOReff.II,1 
-= 

4mts (Eje) 
1 (12.43) 

where 

Reff.II,1 = Re[ZII]~ff. ,., (pM + I + vs) Re ZiI(pM + I + vs)OJo)/h- (12.44) 
(pM -1- vs)ReZiI(pM -1- vs)OJo)/h. 

In other words, the growth rate is proportional to the difference in impedance between the 
upper and lower sidebands of the coupled-bunch mode in question. This agrees with the 
qualitative argument given above. 

In actual storage rings which observe longitudinal instabilities, the oscillations 
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typically grow to an amplitude where some other damping mechanism such as Landau 
damping limits further growth. Finite-amplitude longitudinal oscillations18 can affect the 
average beam size at a point in the lattice with dispersion and thus the average brightness of 
the photon beam. Furthermore, because of the high magnetic quality of modem insertion 
devices, the spectral width of higher harmonics of the synchrotron light is sensitive to 
energy oscillations, even if there is no effective increase in the transverse beam size, as 
exemplified in initial measurements at the ALS shown in Fig 12.16. The top graph shows a 
measurement of the electron beam spectrum from a BPM sum signal near several revolution 
harmonics with all RF buckets filled. The central peaks are revolution harmonics with 
phase modulation sidebands indicating large amplitude coupled-bunch longitudinal 
oscillations. The bottom graph shows significant spectral broadening of the synchrotron 
radiation at the undulator third harmonic in multibunch mode vs. single bunch mode. 
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Fig. 12.16. The ALS electron beam spectrum near several revolution harrrionics with all RF 
buckets filled indicates large amplitude longtitudinal coupled-bunch oscillations. The central peak 
in each graph is the signal at the nth revolution harmonic above the RF frequency and the phase 
modulation sidebands are oscillations of various normal modes of the beam. The bottom graph 
shows initial measurements of the undulator 3rd harmonic taken under similar conditions during 
the commissioning of an ALS undulator. A marked increase in the spectral width of higher 
harmonics of the synchrotron light results from the coupled-bunch energy oscillations. 
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1253 Transverse Coupled-Bunch Instability 

Transverse instabilities are driven by narrow-band dipole HOMs of the RF cavity 
and also by the resistive wall impedance. For low frequencies, the skin depth is relatively 
large and hence the wake field can last for a sufficiently long time to couple the motion of 
different bunches. Since the transverse impedance scales with the chamber radius as b-3 

. (viz. Eqs. (12.6) and (12.20)), it is of particular concern for future light sources which 
require small chamber sizes to accommodate strong insertion devices. 

The physical mechanism for the transverse coupled-bunch instabilities is similar to 
that for longitudinal instabilities. The transverse complex frequency shift for coupled-bunch 
mode I and dipole head-tail mode (rigid bunch shape) is given by 

Ani =-i molo,B.L [Z t (12.45) 
.L 4n(E/e).L efI. 

where 

[z ]1 ~ Z.L(mp)e _«())~0"/}2 
.L eff. = £..J 

(12.46) 
p=-oo 

Here mp == (pM + I + v.L)mo, ltJ~ == (pM + I + v.L - ~/1])mo, ~ is 1h:e chromaticity, ,B.L is 
the beta function (x or y) at the location of the impedance, and v.L is the transverse tune. In· 
the case of a single high-Q resonator tuned near the frequency pMltJo, with zero 
chromaticity and a bunch length short compared to the resonant wavelength of the 
resonator, the growth rate is given by 

ltJoIORefI . .L,1 
--= 

4n(E/e) 

1 (12.47) 
'r'1.,1 

where 

(12.48) 

125.4 Coupled-Bunch Instizhility Cures19 

The most obvious remedy for coupled-bunch instabilities is to eliminate or reduce 
the strength of the HOMs in the design of the RF cavity. However, this reduction usually 
comes at the expense of the strength of the fundamental mode, thus requiring more total RF 
power to supply the requisite voltage to the beam. Tuned antennae can be used to couple 
energy out of the cavity if there is only a single troublesome HOM. Another method is to 
adjust the frequencies of the HOMs such that they lie in between harmful beam resonant 
frequencies. However, because the minimum spacing between these frequencies is ltJo, 
this method is possible only for HOMs with bandwidths much smaller than mo. 
Furthermore, the HOM frequencies shift with changes in the cavity temperature and the 
position of the tuning rod, thus making them difficult to control. For a storage ring with . 
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multiple RF cavities, it is possible to arrange the HOM frequencies of each cavity so that 
they do not coincide with each other, thus reducing the scale of the problem. Another 
method is to increase the effect of Landau damping by increasing the effective synchrotron 
or betatron tune spread. This can be accomplished in the longitudinal plane by either 
running the RF cavity at lower voltage and thus at longer bunch length, or by adding a 
higher harmonic RF cavity. The tune spread in the transverse plane can be increased by 
adding octupole magnets to the storage ring lattice. A variation on this scheme is to create a 
bunch-to-bunch synchrotron or betatron tune spread by modulating the RF voltage or by 
using an RF quadrupole.20 A bunch-to-bunch synchrotron tune spread can also be 
generated by transient beam loading effects induced by gaps in the beam. Finally, the most 
powerful method is to add an active feedback system which senses the oscillation of each 
bunch and provides a corrective kick on the following tum. The cure for coupled-bunch 
instabilities in a storage ring is usually a combination of all of the above. 

12.6 Trapped Ions and Beam Lifetime Issues 

12.6.1 Trapped lons21 

Positive ions are created when the beam ionizes the gas molecules remaining in the 
vacuum chamber. Since the beam is negatively charged, the ions remain trapped in the 
electric potential well of the beam. Possible consequences from this are: reduced beam 
lifetime due to multiple scattering, tune spread, emittance increase, and electron-ion 
coherent oscillations. Ion trapping is a poorly understood phenomenon, and has been 
observed in all synchrotron light sources operating in multibunch mode and in many other 
electron storage rings. An obvious way to avoid ion trapping altogether is to use positrons 
rather than electrons in the beam. This solution, however, requires a positron source, 
which is typically quite expensive. More typical solutions are described below. 

Near the beam center, a trapped ion with net charge Ze and atomic number A 
oscillates vertically in the potential well of an electron beam of total current 10 with an 
average angular frequency given by 

ro2 = _2_Ze_. _..,--l~o _~ 
y mpcA o"y( ax + (jy) 

(12.49) 

with a corresponding horizontal frequency obtained from the above by the exchange oy ~ 
ax. In this expression mp is the proton mass and (jx and a y are the horizontal and vertical 
rms sizes of the bunch, respectively, at the ring location where the ion is trapped. By 
applying linear transport theory to the motion of the ions, one can derive a condition for the 
ions to be stably trapped. For a beam with a uniform bunch population, the condition is 

(12.50) 

where ~t is the bunch separation in time (it is only necessary to consider the vertical 
oscillations because, typically, ay « ax and therefore roy» rox ). This condition implies 
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that all ions with a rriass-to-charge ratio larger than a critical value, 

A (A) 1tRNrp 
Z> Z c = MO"y(O"x+O"y) 

(12.51) 

will be trapped. Here r p == e2j mpc2 ::::: 1.535 x 10-18 m is the classical proton radius, N is 
the number of electrons per bunch, and M is the number of bunches in the beam. 

If no steps are taken to clear the ions, they progressively accumulate and neutralize 
the electron beam. As a result, the value of N in Eq. (12.51) effectively decreases and 
(A/Z)c becomes smaller, so that ions with lower and lower A/Z ratios can become 

. trapped in turn. This phenomenon is known as the ion ladder. 
Since O"y « O"x the potential well is much deeper in the vertical direction than in the 

horizontal, and it is deepest where O"y is smallest, namely near the defocusing quadrupole 
magnets in the ring. As a result, ions tend to get preferentially trapped at these locations. 
One way to eliminate these ions is·by means of clearing electrodes, typically placed near the 
defocusing quadrupoles. For low beam currents, a DC voltage of a few kV is usually 
sufficient to pull the ions away from the potential well. For large beam currents the required 
voltage might be too large and thus this technique might be impractical or detrimental to the 
electron beam. In this case, ion clearing is more effective if the electrode voltage has an AC 
component whose frequency is equal to the ion frequency given .by Eq. (12.49), in addition 
to a DC component In addition, for beams with many bunches, another method to clear 
ions is to leave a gap in the bunch train typically equivalent to -10% of the beam. This ion
clearing gap leads to instabilities in the ion motion that are analogous to the betatron motion 
stop bands arising from resonances in a particle beam. In practice, a combination of all these 
methods is required. 

12.6.2 Intrabeam and Touschek Scattering22;23 

As time progresses, the particles within a bunch in a stored beam scatter off each 
other via the Coulomb force, exciting transverse and longitudinal oscillations. As a result of 
multiple small-angle scattering, particles diffuse in phase space causing a redistribution of 
all three emittances. This emittance redistribution is usually referred to as the intrabeam 
scattering effect. In addition, on rare occasions, the scatt~ring involves wide angles and, as 
a result, a particle can fall outside the dynamic aperture or the energy acceptance of the 
machine, and gets lost This beam lifetime limitation due to occasional large-angle Coulomb 
scattering is usually referred to as the Touschek effect. Obviously there is no conceptual 
difference between the two effects. However, since they lead to different manifestations in 
the beam dynamics, they are traditionally analyzed separately. In the case of the intrabeam 
scattering effect, the quantities of interest are the damping (or growth) rates for the three 
emittances; in the case of the Touschek effect, the quantity of interest is the beam lifetime. 

Clearly, both effects have a strong dependence on beam energy, becoming more 
pronounced at lower energies. This can be qualitatively understood by noting that, in the 
Lab frame of reference, the electric and magnetic forces on any given particle almost cancel 
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each other out at high energies, leaving a net Lorentz force proportional to r-2 (ris here 
the usual relativistic factor). As a result, typically, neither the intrabeam effect or the 
Touschek effect leads to significant problems in the operation of storage rings at energies ~ 
1 Ge V. However, both effects scale unfavorably with the beam density Nj GxGyGz ' where 
the a's are the nTIS beam sizes. Therefore these effects can become important for modem 
light sources, which emphasize intense, small bunches. 

In all light sources, and indeed in all storage rings built so far, the particle motion 
is, on average, nonrelativistic in the beam rest frame. In this frame, typically the horizontal 
and vertical energy spreads are larger than the longitudinal. Therefore small-angle Coulomb 
scattering predominantly transfers energy from the transverse motion to the longitudinal, 
leading one to expect damping of the transverse emittances at the expense of growth of the 
longitudinal. However, a change in the particle energy excites, in turn, horizontal motion 
due to the dispersion in the ring. Typically, this effect more than compensates the damping 
of the horizontal emittance, and the net result is a damping of the vertical emittance and 
growth of both horizontal and longitudinal emittances. During this process, the quantity 

-T/(GE/Ef +£x/f3x +£y/f3y (12.52) 

remains invariant, where the e's are the emittances and the 13 's are the ring-averaged beta 
functions. 

The Touschek lifetime is given by 

1 r;cN . F(8) 

'! = 8nr a;,GxGyGz 8 
(12.53) 

where Gx ' is the nTIS of the beam divergence, and 8is defined by 

8 = (llP/P)2 
rGx' 

(12.54) 

where I1p / P is the momentum acceptance of the machine, which is determined, in tum, by 
the smallest of the RF bucket height or the energy aperture of the ring. The function F (8) 
depends weakly on 8 for small 8. For the range 8 $ 10-2 , which is typical, it is given by 

where re = 1. 78 is Euler's constant 
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