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Time-scale and Branching Ratios in Sequential Multifragmentation 

L. G. Moretto, L. Phair, K. Tso, K. ling, and G. l. Wozniak 

Nuclear Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720 

Abstract: Experimental intermediate-mass-fragment multiplicity distributions are 
shown to be binomial at all excitation energies. From these distributions a single 
binary event probability can be extracted that has the thermal dependence p = 
exp[ -B/I]. Thus, it is inferred that multi fragmentation is a sequence of thermal 
binary events. The increase of p with excitation energy implies a corresponding 
contraction of the time-scale and explains recently observed fragment-fragment 
and fragment-spectator Coulomb correlations. 

At low excitation energies, complex fragments are emitted with low probability by a 
compound nucleus mechanism[1-3]. At increasingly larger energies, the probability of complex 
fragment emission increases dramatically, until several fragments are observed within a single 
event [4-9]. The nature of this multifragmentation process is at the center of much current . 
attention. In particular, the issue of sequentiality versus simultaneity is hotly debated 
theoretically[4-12], and is the object of intense .experimental study[13-21]. 

This polarization is evident even within the framework of statistical theories. On the one 
hand, sequential multifragmentation theories allow the fragments present at any stage to undergo 
additional binary decays with probabilities determined from more or less standard compound 
nucleus decay widths[22, 23]. On the other hand, chemical equilibrium-like theories generate 
fragments in chemical equilibrium, and release them simultaneously when the average density of 
the system falls below a critical freeze out valuerS, 8, 10,24,25]. 

Recent experimental work [26, 27] has shown that the excitation functions for the 
production of two, three, four, etc. fragments have a characteristically statistical energy 
dependence. However the issue of sequentiality versus simultaneity could not be resolved. 
Several efforts to settle this dispute have utilized the pairwise fragment-fragment correlations 
introduced by their mutual Coulomb interaction. Results have been presented showing a 
substantial dip in the probability of finding pairs of fragments at small relative velocities[IS-19] 
and small relative angles[13, 14, 20]. Simulations, performed with chemical equilibrium and 
sequential decay· codes,· were compared with experiment, and the rather short upper limits 
obtained for the decay time-scales were deemed consistent with a simultaneous break up. 

A recent experiment[201 has studied the "proximity" effect of the surviving partner, 
produced in a deep inelastic-like collision, on the angular distribution of the fragments resulting 
from the break-up of the other partner. In this experiment the measured total kinetic energy loss 
of the primary binary collision can be related to the excitation energy of the nucleus undergoing 
multi fragmentation. This remarkable experiment shows that at small excitation energies the 
"proximity" effects are essentially ab,sent, but become very pronounced at large excitation 
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energies. This onset of proximity effects was taken to signify a transition from "conventional" 
sequential multifragmentation to "true" simultaneous multifragmentation. 

The conclusions drawn from these experiments are predicated upon the tacit assumption that 
sequential decay always occurs on a very long time scale, so that the large space-time separation 
of sequentially emitted fragments makes their interaction negligible. This (incorrect) assumption 
has been consistently incorporated into simulations based upon sequential emission codes. "I~ 

In what follows we shall show three things. 

First, the usual thermal binary probabilities associated with sequential emission undergo a 
dramatic increase with excitation energy and the corresponding emission time-scale" contracts 
dramatically, in agreement with observation[16, 17, 19, 20]. This is a very relevant, though 
straightforward and in many ways somewhat trivial point 

. . " 

Second, the sequential time-scale ~d its contraction with excitation energy are directly 
related to the excitation functions for binary, ternary, quaternary, etc., decays through the 
elementary binary decay probability. " 

Third, we can extract this elementary binary decay probability and the corresponding time 
scale from the experimental excitation functions. 

The fIrst point is readily shown. For statistical decay one can rewrite the partial decay width 
r in terms of a partial decay time 't'. The partial decay width associated with a given channel can 
be written as: . 

r=n01 e-B1T 
o , (1) 

where 01
0 

is a frequency characteristic of the channel under consideration, B is the barrier 
associated with the channel, and Tis the temperature. For instance, in fission 010 is the collective 
frequency of assault on the barrier (- beta vibration frequency) and B is the fission barrier. 

The elementary probability p for a binary decay to occur at any given "try" defined by the 
channel period 'ro = 1/ 010 is: 

p=~=e-BIT 
n(J)· . 

o 
(2) 

The corresponding time is given by: 

(3) 

In the case of a compound nucleus, the total decay width is the sum of the widths of all 
channels, and the lifetime is calculated accordingly. This lifetime defInes the survival of the 
initial unmodified compound nucleus. For sequential multifragmentation, only the decay width 
and lifetime for binary fragment formation need be considered, while the abundant light particle 
decay can be treated as a background that progressively decreases the temperature and possibly 
the barrier. 
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Equation 3 shows that the decay lifetime is dramatically affected even by moderate changes 
in temperature. Fora binary fission-like decay with a barrier of approximately 20 MeV, a change 
in temperature from 2 to 5 MeV decreases the lifetime by a factor of 400 and increases the binary 
decay probability accordingly! Furthermore, as the temperature becomes comparable with the 
barrier, the binary decay probability approaches unity and the lifetime approaches the 
characteristic (dynamical) time constant of the channel, 'to. 

We argue that this dramatic decrease of the decay lifetime with increasing excitation energy 
10) is the effect observed in Refs. [16, 17, 19, 20], and that this effect is inherent to the energy 

dependence of sequential decay, rather than ·a transition from sequential to true 
multifragmentation. If this is indeed the case, there is no need for a separate theory of 
multifragmentation, since this process is reducible to a sequence of binary decays that can be 
described in a standard way. 

\, .. J 

Asa second point, we note that the elementary binary probability p (or the time 1') can be 
directly related to the experimental branching ratios for binary, ternary, quaternary, etc., decay. 
For simplicity, let us assume that the system has the opportunity to. try m times to emit an "inert" 
fragment with constant probability p. The probability P:of emitting exactly n fragments is given 
by the binomial distribution: 

pm = m! p"(l- pr-" 
"n!(m-n)! . (4) 

The average multiplicity is then 

{n)=mp (5) 

and the variance 

a; = (n)(l- p) (6) 

Thus, from the experimental values of (n) and a; one can extract values for p and m, at any 

excitation energy. Alternatively, one can extract p from the ratio of any pair of excitation 

functions P: (T): 

1 l' P: m-n 
-.=-=---+1 
p 1'0 P::'l n+ 1 

(7) 

We now proCeed to verify the above predictions by comparison with experiment.. References 
[28,29] report values of {n} and cr; for the reaction 36Ar + 197Au at 80 & 110 MeV/u (available 
center-of-mass energy of 2.4 and 3.3 GeV, respectively) as afunction of the transversal energy 
EE of the event, 

E = ~ e.sin2 8. t~, " (8) 

3 



where ej is the kinetic energy of each fragment and 6j is the angle between the fragment and the 
beam direction. In choosing the transversal energy as our observable, we assume that it is 
proportional to the excitation energy of the source EI30] . 

(9) 

From Equations 5 and 6, we extract the elementary probability P and m from the mean and "\" 
variance of the experimental multiplicity distributions[28, 29] for the 36 Ar + 197 Au reactions at 

. E/A=80 and 110 MeV. At this point we need to consider the effect of the device efficiency e on ~f 
the fold probabilities, the mean multiplicity and its variance, and finally, on the observed 
probability Pobs. Disregarding details associated with anisotropies, multiple hits, etc, we can 
estimate that the true probability p is simply related to the observed probability Pobs by the 
relationship: 

Pobs = ep (10) 

This observed probability Pobs should combine exactly like P in the binomial expressions 
(Equations. 4 - 7). The geometric efficiency of the Miniball is 0.89 [31] and represents an upper 
limit for the device efficiency in the experiment quoted above. The derived values of Pobs 'should 
be corrected by the device efficiency e to obtain the physical probability p. 

In Figure 1 we plot m as a function of. E, for the intermediate mass fragment (3 s; Z s; 20) 
multiplicity distributions (circles) and the total charged particle multiplicity distributions 
(diamonds). In Figure 2, we plot In lip vs. E,-~ for the fragment distributions. If the probability p 

is statistical, as given in Equations (2), this plot ought to be linear[26] since Toe.JE. The 
linearity of this plot over two orders of magnitude is stunning, and leaves little doubt regarding 
the "thermal" nature of p. 

Th~ dramatic contraction of the time scale down to values close to the characteristic channel 
time shows that the onset of fragment-fragment or spectator-fragment interactions at high 
excitation energy is a natural consequence of Equations (2) and (3). The difference in slope for 
the two bombarding energies strongly suggests that the simple proportionality law of Equation 
(9) is well satisfied. 

One could also extract p "differentially" (Equation (7» by considering the ratios P" I P"+l 
from the unpublished experimental excitation functions[32]. Although we have not been granted 
permission to use these unpublished data, we can state that up to n = 8 all of the experimental 
excitation functions tightly collapse onto the two straight lines shown in Figure 2, when 
subjected to the above procedure. We can however show the calculated excitation functions (see 
Figure 3) using the values of m and P from Figures 1 and 2 and vouch for the extraordinary 
quantitative agreement between the calculations and the experimental data. 

Preliminary analysis of two additional experiments [33, 34] with different target-projectile 
combinations and bombarding energies confirms the general applicability of this description. The 
rigorous applicability of the binomial distribution is very powerful evidence for the reducibility 
of the n-fold probabilities P" to the elementary binary probability p and for the sequential 
structure of the multifragmentation event. The linearity of the extracted elementary binary 
probability plot (see Fig. 2) over two orders of magnitude iS'truly stunning, and indicates the 
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thennal nature of the process at all excitation energies. The associated time-scale demonstrates 
the expected smooth contraction in time with increasing excitation energy without any indication 
of a new mechanism appearing at the highest energies. 

The more directly interpretable physical parameter contained in this analysis is the binary 
barrier B (proportional to the slope of the data in Figure 2). One may wonder why a single binary 
barrier suffices, since mass asymmetries with many different barriers may be present. This is an 
old problem. Let us consider a barrier distribution as a function of mass asymmetry x·of the 
form: 

(11) 

where Bo is the lowest barrier in the range considered. Then, 

_ r _ J' -Bif -azir _ (T)Yn -Bif 
p - -- - e e dx= - e 

lim, a' o 
(12) 

Thus the simple form of Equations (1) and (2) is retained with a small pre-exponential 
modification. 

The detailed accuracy and the broad applicability of the binomial distributions is somewhat 
disconcerting. For instance, what is the significance of the parameter m? In, the present 
description the system is given m chances to emit a fragment, with fixed probability p, after 
which the emission is shut off. One might have guessed that, the probability p would decrease 
progressively as a function of time due to evaporative cooling, and that m is just an approximate 
cut-off made necessary by the constant p in the binomial distribution. This hypothesis, however, 
may not be correct. A simple evaporation calculation shows that during the time t = m'!o 

(1imo =1 MeV) the system has little time to cooL Therefore p is truly constant and one is led to 
attribute a more physical significance to m. What switches the emission off after m tries must 
remain here a speculation. Let us venture to say that dynamics may be responsible for such an 
effect. Could it be that the fragments are statistically emitted while the system undergoes an 
expansion phase [35] only to be shut off as it reverts to nonnal density? If it were to be so, this 
would be the first significant dynamical feature in an otherwise utterly thennal picture. 

In support of this view are the results of the same analysis on the total charged particles 
emitted in the same reactions. From the reported means and variances, [29], one obtains values of 
m almost four times larger than those obtained for the fragments (see Figure 1). This suggests 
that the light charged particles are emitted over a much longer time which is in good agreement 
with the calculated cooling time. 

We have tried to find alternative explanations for the binomial distributions with thermal 
probabilities. An obvious model is a chain of m links with probability p that any of the links is 
broken. The probability that n links are broken is given by Equation (4). This result is, of course, 
strictly dependent on the dimensionality of the model, and its relevance to multifragmentation is 
unclear. Nevertheless, it stresses again the fundamental reducibility of the multifragmentation 
probability to a binary breakup probability. 

In summary: 
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1) The multifragment emission probability is rigorously binomial and is reducible to an 
elementary binary probability applied sequentially. 

2) This binary elementary probability is "thermal", as demonstrated by its characteristic energy 
dependence. 

3) The time scale of sequential emission contracts rapidly with increasing excitation energy as 
demanded by point 2). This contraction naturally explains the observed rapid onset of the 
fragment-fragment Coulomb interaction with increasing excitation energy and obviates the 
need for "simultaneous" multifragmentation as a distinct process. 

4) The parameter m could be truly a physical quantity rather than an artificial cutoff. It may 
indicate a dynamical time interval during which fragments are 'thermally emitted with high 
probability (transient expansion phase?) 
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Figure Captions 

Figure 1: The extracted values of m = (n)2 / (n) - cr;) as a function of the transverse energy 

E, for the reaction 36Ar + 197 Au at E/A=SO MeV (open symbols) and 110 MeV (solid symbols). 
The circles correspond to m values extracted from the intennediate mass fragment distributions 
(3 ~ Z ~ 20 )[2S] while the diamonds correspond to m values extracted from the total charged 
particle distributions[29]. 

Figure 2: The reciprocal of the binary decay'probability 11 p or the ratio 'C / 'Co (calculated 

from the mean and variance of the intermediate mass fragment distributions) as a function of E;* 
for the reaction 36Ar + 197 Au at E/A=SO MeV (open circles) and 110 MeV (solid circles). The 
solid lines are linear fits to log (1 I p). 

Figure 3: The calculated probability to emit n intermediate mass fragments (3 ~ Z ~ 20) as 
a function of E, for the reaction 36Ar + 197Au at E/A=SO MeV (lower panel) and 110 MeV 
(upper panel). For numbers of fragments n=O-S, P(n) is calculated assuming a binomial 
distribution (see Equation (4» with the values of m and p shown in Figures 1 and 2. 
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