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ABSTRACT 

Unusual, [uuw] and [uvO]-type easy axes of magnetization have been 

observed in some cubic rare-earth iron Laves compounds. The phenomerioL-

ogical treatment of the magnetic anisotropy requires the presence of 

ili . 
8 power cosine terms, in order to account for the presence of such 

directions of magnetization. The conditions imposed on the bulk magnetic 

anisotropy constants are de~ived. 

************* 

The magnetic anisotropy free energy of cubic materials can be 

expanded, according to the phenomenological treatment, into a power 

series of the direction cosines ai of the axis of magnetization with 

respect to the crystal axes. th Usually only terms up to the 6 power 

of cosines are retained, thus 

E = .K + K ( cl- ci + a2 ci + ci a2
) + K ( cl- ci a 2

) ••• 
a o 112 23 31 2123 

with ri + a2 + 
1 2 

d = 1, the K.-s being the bulk magnetic anisotropy 
3 1 . 

constants. It can be easily shown, by differentiation with respect to 

the angles B and y -1 (8 = cos a 
1 , 

-1 Y = cos a ) , that the only minima 
2 

for Ea occur for ai-s corresponding to the major axes of symmetry of the 
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cubic system, namely the [001], [011] and [lll].directions. Which of 

these directions becomes an easy axis of magnetization depends on the 

relative values of K and K 
1 2 

In recent years Mossbauer effect studies havebeen sucesssfully 

used, in order to determine the magnetic ardsotropy properties of cubic 

( ) · 1 · R1.R2 Fe 2,3 binary rare-earth R - ir<?n RFe 2 · and ternary x l-x 2 Laves 

compounds. In several instances we found that the easy axes of mag-

netization of these compounds were not parallel to any of the major 

cubic axes symmetry. We observed two ~in types of such behavior. 

1. 1 2 4,5 IIi ternary mixed compounds of type RxRl-xFe2'' in the course of 

spin orientations which took place upon change of either the compositions, 

or the temperature.· 2. In two binary rare-:-earth .iron Laves compounds 
6 . . 7 

CeFe
2 

and SmFe
2

. In most cases the departure of the axis of 

magnetization for the major axis of symmetry takes place within a 

relativelywide temperature interval. The purpose of this communi-

cation is to show that such cases can be analyzed within the framework 

of the phenom~nological treatment of the magnetic anisotropy energy. 

The analysis allows to establish the conditions required from the bulk 

magnetic .anisotropy constants, in order that the axis of easy mag-

netization should deviate from the major axes of symmetry. 

th Since the retention of the 6 power cosine terms only, yields E a 

minima associated with major axes of symmetry, we extend the power 

expansion to yet another term. Thus we start with 

r· 
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The conditions for an extremum in E are 
a 

dE 
a as- = 

dE a 
ay 

(1) 

0 (2) 

The extremum is a minimum if at point (Bi,yi,) which satisfies conditions (2) 

and the discriminant is definitely positive i.e. 

d~Ea(Bi,yi) 

dY2 

Applying (2) and (3) to the expression for E appearing in (1) we 
a 

obtain the necessary conditions imposed on the K.-s in order to obtain 1 . 

minima of E . The results indicate that such minima exist for direc
a 

tions of the easy axis of magnetization parallel to the major axes of 

symmetry and, in addition, for several directions of type [uuw] which 

(3) 
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correspond to angles B = y, and of type [uvO] contained in the (001) 

plane. The additional directions exis-t only for K > 0. For the sake of 
3 

conciseness, it is helpful to express K and K in units of K , 
1 2 3 

' ' appropriately we define K = K /K and K = K /K . A straightforward cal-
. : . - 1 1 3 2 2 3 

culaticm (see for details the Appendix) yields the conditions imposed 

' on the Ki-s for presence of axes of magnetization other than the major 

axes of symmetry. The condition for [uuw]-type directions are: 

-2 <' ' 1. K < 4 
2 

' 2)2 K' 2. -(K + - 1 
' 2 < K < 

24 1 2 

The conditions for a [uvO]-type direction are: 

1. ' 1 
0 > K >--

1 . 2 

' 2. 2 < K 
2 

' ' Figure 1 is a graphical representation in the K , K plane of the 
1 2 

regions with the different possible axes of magnetization. Within 

the approximately triangular region ABC, the axis of magnetization is 

of type [uuw]. 
-1 Within this region the angle e = cos a , defined as 

3 

the ~8.-_J:?.gle between the direction of magnetization and the [001] axis, lies 

between 0 and 54.4°. Lines of constant 8 have been plotted in the ABC 

· region. The change of 8 is continuous only across the AB boundary but 

8 jumps discontinuously, when crossing the AC or BC boundaries. The 

.. cross-hatched region in the neighborhood of A corresponds to a region 

of local minima of E for [uuw] types of magnetization. Such directions 
a 

will therefore not be stable. Region CED is similar to ABC, in that 

• 
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the directipn of easy magnetization is of type [uuw], the angle 8 within 

this region varies between 54.4 and 90°. Between pointE and G there 

is again a very narrow band corresponding to non-stable (local minima 

of E ) axes of type [uuw]. Region DBML is part of the area in which a 

the direction of magnetizatl.on is of type [uvo], i.e, e = 90° and 

!P = tan- 1 (v/u). Lines of constant !P have also been plotted in this region, 

which continues indefinitely towards the right, bounded by the straight 

I I 

lines K = 0 and K = - 1/2. 
1 1 

The variation of the angle e as function of .temperature, deduced 

from Mossbauer effect measurements in CeFe
2 

and SmFe
2

, is shown in Fig. 2. 

In SmFe2 the direction of magnetization rotates continuously from the 

[110] axis at 140 K towards the [111] axis at 240 K. In CeFe2 the axis 

of magnetization is parallel to the [001] direction up to 150 K, above 

this temperature it changes to type-[uuw] with e :::< 20°. Just below 

_the Curie temperature at 230 K,· this angle increases to 30°. In some 

5 ternary compounds, such as Ho
0

.
5

Er
0

.
5

Fe2 , the behavior is more complex. 

With increasing temperature the direction of magnetization goes through 

the sequence [ uuw] -+ [110] -+ [ uvO] -+ [ 100]. 

The phenomenblogical treatment developed above accounts for all 

types of behavior. In the case of CeFe
2

, the values of K , K and K 
1 2 3 

vary in such a way with increasing temperature that their projection in 

I I 
K

1
, K

2 
plane follows the heavy arrow (a) in Fig. 1. For SmFe2 the 

same projection is represented by arrow (b) whi.ch crosses region CED 

going from region [110] towards region [111]. This occurs during the 

.·temperature increase from 140 to 240 K. In Ho0 _5Er0 . 5Fe2 the projection 

follows reverse arrow (b) at low temperatures and then after the general 

direction of arrow (c). 
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Examination of Fig. 1 also indicates that a spin reorientation involv'-

ing the [ 111] direction, namely of type [ 1111~ [ 100] or of type [ 111 ]:t[ 1101, l 

will not necessarily take place through a transition region, if K 
l 

and K 
2 . 

are sufficiently large, relative to K
3

• On the other hand for a [lOO]t[llO] 

spin reorientation, there will always be a transition region, with axes 

of magnetization of type [uvO], even for very small values of the bulk 

magnetic anisotropy constant Ks·. 

Recently a rhombohedral distortion has been reported for TbFe 2. 
8 

This distortion is probably associated with extremely strong magneto

elastic interaction present in TbF~2 and also in SmFe2 . 7 In principle 

therefore, a distortion from cubic symmetry• if present in SmFe 2 , 

would detract from the validity of the use of Eq. 1 in a non-cubic 

material. This however, would not be the case for CeFe2 , which is a 

ferromagnet with its magnetic anisotropy exclusively due to the iron 

sublattice. 
4+ . 

The tetravalent Ce ion, has no 4f electrons which may 

give rise to magnetoelastic interactions leading to a distortion from 

cubic symmetry. No detectable distortions have been observed in either 

HoFe2 or ErFe
2 

8 - it can be assumed that the cubic symmetry is retained 

in the (HoEr)Fe2 compounds. 

The single-ion model, which accounts successfully for the main 

features of the magnetic anisotropy properties of the rare-earth iron 

. 3 
Laves compounds, is unable to explain the presence of [ uuw] type axes 

of easy magnetization. The localized 4f electrons of the rare-earth 

ions do not yield 8th power cosine terms in the magnetic anisotropy 

energy expansion. The non-negligible presence of K · terms in the 
3 

power expansion of transition metals !;las previously been observed in 
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the course of careful torque measure~ents on Ni metal.
10 

In the present 

case they might tentatively be attributed to the intrinsic magnetic 

anisotropy of the iron sublattice. 
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APPENDIX 

Starting with Eq. 1, substituting a 2 = 1- a 2
- a2

, changing the notation 
3 1 ' 2 

to a = cos Band a = cos Y and applying conditi~ns (2) for the extremum 
1 2 

we obtain 

<1E 
as a = 2 sinS cosB (2 cos 2 8-1 + cos 2y)[\ + K2 cos 2y 

oE . a 
--= 

ay 
2 siny cos? {2 eos 2y- 1 + cos 2 8)[K + K 

1 2 

2K (cos 4y- cos 2y + cos 2 ycos 2 8 + cos 4 8)] = 0 
3 

Each derivative is a product of 4 factors. These derivatives· will 

simultaneously satisfy conditions (2) whenever one of the 4 factors 

(not necessarily the same in the two expressions) will vanish. We 

distinguish several cases. 

1. sinB = siny = 0 

This case corresponds to the <100> axes of magnetization. 

2. cosB = 0 and 2 cos 2y - 1 + cos 2 8 = 0 
or 

cosy - 0 and 2 cos 2 8 - 1 + cos 2y = 0 

This corresponds to the <110> axes of magnetization. 

3. 0 and 

Corresponding to the <111> axes of magnetization. 
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Substituting the values cos8 ·and cosy __.in each case in the quadratic form 

I 
(Eq. 3) yields the limiting values of K 

. 1 

I .. 

and K (assuming K 
2 

>0) for which • 
the above mentioned major axes of synunetry become easy axes. magnetization. '·· 

4. The non major axes of easy magnetization are obtained by the vanish~ 

ing of the 2nd and 4th factors respectively in the 2 derivatives. i.e., 

cosB = 0 

this yields the <uvO> directions, the angle <P between the direction of 

magnetization and the [100] axis being in this case sin2 2<P = sin2 2S 

2K 
-

1 (again K >0). K 3 . 
3 

-3 K 2 

The magnetic anisotropy free energy E 0 = --
4 

--K1 

uv 
3 

5. Finally the vanishing of the 3rd factor of one derivative and the 

4th in the second or, the vanishing of both 4th factors i.e. 

2 cos 2 8 - 1 + cos 2y = 0 
and 

K + K cos 2 8 2K (cos'+Y - cos 2y + cos 2ycos 2 8 + cos'+S) 
1 2 '3 

or 

K + K cos 2y - 2K (cos'+S - cos 2 8 + cos 2 Scos 2y + cos'+y) 
1 2 3 

and 

·yields the minima for the <uuw> directions. The angle 8 (see Fig. 1) 

in this case is e = cos - 1 (1 - 2cos 2 8) 

and cosS = 
(K + 2K ) + I(K + 2K ) 2 + 24 K K 

2 3 2 3 13 

12K 
3 

= 

= 

0 

0 

substituting in (3) and taking into account th<H 1 ~ cos 2 8 ~ 0 we obtain 

the boundaries of regionABDGECA in Fig. 1. The expression for the energy 
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in this case is complicated. Numerical computations show that the shaded 

area near A and in the narrow strip between G and E the minima for a [uuw] 

direction are local minima only or in otherwords, the magnetic ansotropy 

free energy:has lower values in these regions for the major axes of 

symmetry. 
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FIGURE CAPTIONS 

' 
1. Boundaries of regions with different easy axes of magnetization 

in the K' = K /K and K' = K /K plane. For details see text. 
1 1 3 2 2 3 

2. Temperature dependence of the angle of inclination 8 of the axis 

of magnetization with respect to the [001). axis in CeFe2 SmFe2• 
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