
. ' .c: ~ ... 

I. 
r ' ' 

r 

LBL-35560 
UC-800 

1L tat Wlr® lffi ~® I8l® If t® ll ®y 1L 2l.b lOJ Jr2l.t «Jllry 
UNIVERSITY OF CALIFORNIA 

EARTH SCIENCES DIVISIO.N 

To be presented at the Fifth International High-Level Radioactive 
Waste Management Conference, Las Vegas, NV, May 23-26, 1994, 
and to be published in the Proceedings 

Approximating the Imbibition and Absorption 
Behavior of a Distribution of Matrix Blocks by 
an Equivalent Spherical Block 

R.W. Zimmerman and G.S. Bodvarsson 

March 1994 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

::0 
1'1'1 

(") '"T1 
.... om 
-sO::o 
01'111'1'1 
S::IIIZ _, (") 
QJZ!TI 
r+O 
ror+n 

0 
"tJ 
-< 

r
Cl .-

(") I 
0 w 
'0 1.11 
'< 1.11 en 
...... 5I 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain cmrect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any wan·anty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



.. 

LBL-35560 
UC-800 

Approximating the Imbibition and Absorption Behavior 
of a Distribution of Matrix Blocks by an Equivalent Spherical Block 

Robert W. Zimmerman and Gudmundur S. Bodvarsson 

Earth Sciences Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, CA 94720 

March 1994 

This work was carried out under Department of Energy Contract No. DE-AC03-76SF00098 for the 
Director, Office of Civilian Radioactive Waste Management, Office of Geologic Disposal, and was 
administered by the Nevada Operations Office, U. S. Department of Energy, in cooperation with the U. 
S. Geological Survey, Denver. 



APPROXIMATING THE IMBffiiTION AND ABSORPTION BEHAVIOR 
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ABSTRACT 

A theoretical study is presented of the effect of 
matrix block shape and matrix block size distribution on 
liquid imbibition and solute absorption in a fractured 
rock mass. It is shown that the behavior of an indivi
dual irregularly-shaped matrix block can be modeled 
with reasonable accuracy by using the results for a 
spherical matrix block, if one uses an effective radius 
ii = 3 V lA , where V is the volume of the block and A is 
its surface area. In the early~time regime of matrix 
imbibition, it is shown that a collection of blocks of 
different sizes can be modeled by a single equivalent 
block, with an equivalent radius of <a-t>-1, where the 
average is taken on a volumetrically-weighted basis. In 
an intermediate time regime, it is shown for the case 
where the radii are · normally distributed that the 
equivalent radius is reasonably well approximated by the 
mean radius <a>. In the long-time limit, where no 
eq~ivalent radius can be rigorously defined, an asymp
totic expression is derived for the cumulative diffusion 
as a function of the mean and the standard deviation of 
the radius distribution function. 

INTRODUCTION 

Yucca Mountain, Nevada, is the potential site of an 
underground high-level radioactive waste repository. 
The potential repository horizon is located above the 
water table, in a formation consisting of highly fractured 
volcanic tuff. Characterization of the hydrological 
behavior of the unsaturated zone at Yucca Mountain 
will require numerical simulation of transient infiltration ~ 
processes in a fractured rock mass. Modeling ·of the 
performance of the repository after waste emplacement 
will require simulation of radionuclide transport in frac
tured rock. Both processes involve flow through a frac
ture network, with slow diffusion into matrix blocks. 

For quasi-steady-state processes that occur on a 
sufficiently slow time scale, it is often assumed that· the 
fractured rock mass can be treated as an equivalent 
homogeneous porous medium. 1 For transient processes, 
such as infiltration of rainwater into the mountain, or the 
spread of radionuclides from a leaking waste canister, 
the "dual-porosity" nature of the medium must be 
accounted for. In a dual-porosity medium, the fractures 
provide most of the transmissivity of the rock mass, 
whereas most of the fluid storage takes place in the rela
tively impermeable matrix blocks.2 An important param
eter in a dual-porosity system is the characteristic length 
of the matrix blocks, which determines the time scale 
for which matrix effects are (or aie not) important. 3.4 In 
this paper, we study two aspects of the effect of block 
geometry on matrix diffusion: finding the appropriate 
characteristic length for a matrix block, and finding an 
equivalent block size that can be used to represent a col
lection of matrix blocks of different sizes. 

EQUIVALENT RADIUS OF A NON-SPHERICAL 
MATRIX BLOCK 

The matrix blocks in the fractured units at Yucca 
Mountain are the regions of rock material that are 
formed by the sets of intersecting fractures. Since frac
tures are typically planar features, the matrix blocks will 
often be shaped like polyhedra. For example, parallel, 
orthogonal sets of fractures will give rise to matrix 
blocks that are parallelepipeds. The rate of imbibition 
'Of water into an unsaturated matrix block, or the rate of 
solute diffusion into a matrix block, will depend on both 
the size and shape of the block. Both processes are 
governed by diffusion-type equations, although for unsa
turated rocks the "diffusion coefficient" is typically 
saturation-dependent, and not equal to a constant.5- 7 

However, it is known that the imbibition of water into 



unsaturated matrix blocks behaves much like a 
constant-diffusivity process, with an ''effective 
diffusivity'' that depends on the initial saturation of the 
block, as well as on its hydrological properties. Hence, 
imbibition has often been modeled by a diffusion equa
tion with a constant diffusivity. 8•9 Although this 
simplification is not strictly correct, it is a reasonable 
approximation. Using this approximation, the following 
equation will govern imbibition or drainage of water, or 
solute diffusion, into a matrix block: 

1 ae 
V2 9(x t) = --, vat· (1) 

where x is the position vector of a generic point in the 
block, D is the diffusivity, and 9 is the water content 
(or the solute concentration). The boundary and initial 
conditions are 

9(x, t =0) = ei , (2) 

9(x E r, t > 0) = 0, (3) 

where r denotes the outer boundary of the block. Note 
that if the diffusion process is mathematically linear, we 
can always redefine the dependent variable e such that 
the boundary condition (3) is zero. Therefore, although 
the problem stated in eqs. (1-3) represents drainage of a 
block, it is mathematically equivalent to imbibition, and 
no distinction will be made in the remainder of the 
paper. 

For processes . that are governed by a linear 
diffusion equation, the diffusion rate is controlled by the 
diffusivity of the rock matrix, and by the geometric pro
perties of the block. However, the specific geometric 
properties that control the diffusion rate at early times 
are not the same properties that control diffusion at late 
times. At early times, diffusion proceeds inward from 
the entire outer boundary of the block in a one
dimensional manner, without any regard for the local 
curvature of the surface. It is clear that this will be true 
at ~ufficiently small times; 10 furthermore, it can be 
demonstrated explicitly, for example, for a sphere, by 
comparing the small-time solution for diffusion into a 
sphere with the solution for diffusion into a 
half-space. 11 Hence, at small times the flux out of the 
block will be proportional to the outer surface area of 
the block, A , whereas the gross geometrical shape of the 
block will be irrelevant: 11 

(4) 

Eventually, when the diffusion process is complete, the 
total cumulative flux out of the block must be equal to 
the product of the block volume and the initial water 
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content, i.e., ei V. Hence, at small times, the normal
ized flux out of the block will be given by 

q/V::: (AIV)..JD!Ttt . (5) 

The parameter ii = 3 V /A, which has dimensions of 
[length], can therefore be identified as a length scale for 
early-time diffusion; the factor 3 is included so that ii is 
equal to the radius when the block is spherical. Using 
ii as the length scale, the normalized flux can be 
expressed as 

(6) 

To study the imbibition rate at long times, and 
under quasi-steady-state conditions, we can formally 
analyze the solution to eqs. (1-3) in the time domain; an 
analogous analysis can also be carried out in the 
Laplace domain.4.1 2 Using the method of separation of 
variables, we search for solutions to eq. (1) that have 
the form 9(x,t)=F(x)G(t). The standard procedure13 

then leads to 

(7) 

where ' indicates differentiation with respect to time, 
and A. must be a constant that does not depend on x or 
t. The functions F (x) therefore satisfy the equation 

. (8) 

along with the boundary condition 

F(x) = 0 for all XE r. (9) 

The allowable values of A. are therefore the eigenvalues 
of the Laplacian operator for the region occupied by the 
matrix block, with Dirichlet-type boundary conditions. 

The eigenvalues can be found explicitly only for 
geometrically simple shapes, such as spheres, cylinders, 
cubes, etc. There will nevertheless always be an infinite 
set of eigenvalues A.n , each corresponding to one or 
more eigenfunctions Fn (x). For a finite-sized body, th~ 
eigenvalues will be discrete and positive, and can be 
labeled as A.1 < '-2 < · · · . Although in certain cases an 
eigenvalue can have more than one independent eigen
function associated with it, this possibility is of no 
importance for our purposes, so we ignore it. From eq. 
(7), we find that the time-dependent parts of the solu
tions are given by Gn(t)=exp(-inDt). Hence, the gen
eral solution to eq. (1) can be written as 

~ -A. Dr 
9(x, t) = LCnFn (x)e n , (10) 

n=l 

.. 



where the en are constants. The en . are found from the 
initial conditions, although their precise values are not 
relevant to the present discussion. 

The important implication of eq. (10) is that, for 
large times, the term involving A1 will dominate the 
series, since the other terms, correl!ponding to higher 
eigenvalues, will be exponentially smaller. The long
time behavior of the matrix block is therefore dominated 
by the smallest eigenvalue, A1 ='-nun· These minimum 
eigenvalues can be found for various simple shapes from 
the solutions compiled in standard texts on heat conduc
tion or diffusion. 11

•
14 For example, '-nun = n2/a 2 for a 

sphere of radius a; '-nun = n2/L 2 for a thin sheet of 
thickness L ; '-nun= 3n2

/ L 2 for a cubical block of length 
L; and '-nun= z [ Ia 2 for a long cylinder of radius a, 
where z1 =2.405 is the first positive root of the Bessel 
function ]0 (z ). For more general block shapes, the 
minimum eigenvalue '-nun cannot be found explicitly, 
and so it would be useful to be able to estimate Anno by 
some approximate rule-of-thumb. We know that at small 
times, the characteristic length is given by ii = 3 V !A . It 
would be convenient to be able to use this same param
eter to quantify the long-time behavior of the diffusion 
process. For a spherical block of radius a, "-nuo=1t2/a 2, 

and 3V !A =a, so Anno can also be expressed as 

(11) 

The question now arises as to what extent eq. (11) 
can be used as an approximation to Anno for blocks of 
non-spherical shape. Although we cannot test this 
approximation for arbitrarily-shaped polyhedra, we can 
test it for blocks that are shaped like rectangularparal
lelepipeds, which will be the case if the fracture sets are 
orthogonal. For these shapes, the exact result is14 

· 

(12) 

where L 1, L2, and L3 are the lengths of the three sides 
of the matrix block. The volume of the matrix block is 
L 1L 2L 3, and its outer surface area is 
2(L 1L2 +L2L3 +L~ 1 ), so the approximation given by 
eq. (11) yields 

~prx = 41t
2 

[-1- + _1_ + _1_] 
2 

( l3) 
o 9 Lt L2 L3 

The ratio of the approximate value of Anno to the exact 
value is 

(14) 

The ratio in eq. (14) takes on maximum or minimum 
values when the ratios of the lengths take on their limit
ing values, i.e., L 1 =L2>L3, etc. Table 1 summarizes 
these extreme cases, along with one arbitrarily chosen 
example. The table shows that the approximation (11) 
is reasonably accurate, in the sense that in no case does 
it grossly underpredict or overpredict the value of Anno· 
In the worst case, which occurs for a long, prismatic 
block, the approximate method underpredicts Anno by 
55%. Since these cases cover a large range of aspect 
ratios of the matrix blocks, from sheets to cubes to long 
prisms, it seems reasonable to use expression (11) in the 
general case, when the fracture sets might not be orthog
onal. In this regard, it is worth pointing out that the 
exact shapes of the matrix blocks at Yucca Mountain 
will probably never be known; at best, only rough 
knowledge of fracture spacings will be available. It is 
therefore sufficient to know that eq. (11) will always 
give the correct order-of-magnitude estimate for Anno· 

The above discussion shows that, to a reasonable 
approximation, diffusion into a matrix block can be 
quantified in terms of the characteristic length ii = 3 V !A, 
for both early and late times. Henceforth, we will use a 
to denote the "radius" of a matrix block, with the 
understanding that it actually represents 3VIA. 

Table 1. Relationship between matrix block geometry and Annn· The matrix blocks are parallelepipeds with sides of 
length Lt. L2, and L3. The exact value of Anno is given by eq. (10), and the approximate value is given by eq. (11). 

Fracture spacing Block shape ~ct ~grx ~grx1~ct 

Lt =L2=L3 cube 3n21Ll 4n2/Lf 4/3 

Lt=Lz>L3 thin sheet n21Lff 4n2/9Lf 4/9 

Lt >Lz=L3 long prism 2n2/Lf 16n2/9Lff 8/9 

L 1 =2L 2 =3L3 brick-like 14n2/9Lff 16n2/9Lf 817 

3 
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EQUIVALENT RADIUS OF A DISTRIBUTION OF 
MATRIX BLOCKS 

In a typical numerical simulation of flow and tran
sport processes at Yucca. Mountain, the computational 
gridblocks will be much larger than a typical matrix 
block. For example, in the three-dimensional site-scale 
model15 that has been developed for the the unsaturated 
zone at Yucca Mountain, the computational gridblocks 
range in volume from 104 m3 to 107 m3, whereas the 
typical matrix block size will be orders of magnitude 
less.16 Hence, each gridblock will contain a very large 
number of matrix blocks, whose radii will follow some 
distribution function. We now discuss the implications 
of having a distribution of radii, and examine to what 
extent, if any, these distributions can be replaced by 
some appropriate mean values. This analysis will be 
conducted for three cases: early time behavior using the 
exact solutions, early time behavior using the Warren
Root approximation, and late time behavior. 

A. Early Times, Exact Model 

Consider a computational gridblock that contains a 
certain number of discrete matrix. blocks, each being 
characterized by a certain "radius" a. Let 9(a, t) be 
the mean water content in a matrix block of radius a at 
time t , and let 9(t) be the mean water content of all the 
matrix blocks in that gridblock, each under the same ini
tial and boundary conditions. We now show that for 
small times, diffusion into a collection of blocks can be 
modeled as diffusion into a single equivalent block, by 
use of the proper choice of the equivalent radius, aeq . 

This case is actually of great practical interest, since it 
has been shown that tracer tests in fractured rock lasting 
as long as a few weeks can be successfully modeled 
using the "short time" assumption. 17 

At early times, which can be defined as the regime 
Dt Ia 2 < 0.01, the mean water content in each block is 
given by18 

this result can be found by integrating eq. (6), and 
applying initial condition (2). We now define two 
related distribution functions: n (a), which quantifies the 
distribution of the number of matrix blocks having a 
given radius, and v (a), which quantifies the distribution 
of the rock volume that is occupied by blocks having a 
given radius. Consider a computational gridblock having 
total volume V, or, more precisely, volume (1-<!>1 )V, 
where <l>t « 1 is the fracture porosity. The number of 
matrix blocks in this gridblock whose radii lie between 
a 1 and a 2 will be given by 

a2 

N(a 1 <a <az) = J n(a)da. (16) 
al 

4 

The total volume occupied by these matrix blocks is 
given by 

where v(a)=47ta3n(a)/3. The normalization conditions 
for these two distributions are 

00 00 3 

Jv(a)da=J 4~ n(a)da=V. (18) 
0 0 

The mean water content in the entire gridblock is 
then found by averaging 9(a, t) over all matrix blocks: 

00 

- 1 
9(t) = -Je(a,t)v(a)da 

Vo 

1
= ei[J.-jv(a)da- (36Dtln) 112 _!_jv(a) dal 

V 0 V 0 a J 

(19) 

This expression has the same form as that for the single 
matrix block, eq. (15), so we see that the appropriate 
aeq is <a-1>;1

, where the subscript v indicates that the 
average is taken with respect to the distribution function 
of the volume of the matrix blocks as a function of 
block radius. If we use the distribution function n (a), 
on the other hand, eqs. (15, 17) can be used to show that 
the equivalent radius is <a 3>nl<a~n. This expression 
for aeq is identical to that which has been derived for 
the early-time behavior of a bed of spherical particles 
that had a surface-resistance term that was modeled 
using an analogy to convective heat transfer. 19 Han et 
al.20 pointed out that this parameter represents (aside 
from a numerical constant) the ratio of mean block 
volume to mean surface area, and used it to correlate 
their experimental measurements of solute dispersion. 

B. Early Times, Warren-Root Model 

In many dual-porosity models for flow or diffusion 
in fractured rock masses, the Warren-Root approxima
tion is used to model the flux between the fractures and 
the matrix blocks. 3 This model is based upon the 
assumption of quasi-steady-state behavior, and can be 
derived18 from an analysis that utilizes the most-slowly
decaying mode in the Fourier series solution, as in eq. 

.• 
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(10). Hence this model is accurate in the late stages of 
matrix imbibition, but has been found to be very inaccu
rate at early times.21 (Note that in studies of the 
reservoir-scale behavior of fractured rock masses, the 
terms "early time", "intermediate time", and "late time" 
are used with different meanings than in the present 
work). Nevertheless, because of the simplicity afforded 
by assuming that the flux is linearly proportional to the 
difference between the potential at the outer boundary of 
the matrix block (i.e., in the fractures), and the mean 
potential in the matrix block, \ji, the Warren-Root 
approximation is widely-used.9 It is therefore of interest 
to derive an expression for the equivalent radius of a 
collection of matrix blocks, at early times, using the 
Warren-Root model for the fracture/matrix interactions. 

Strictly speaking, the driving force in the Warr~n
Root model is the potential difference between the 
matrix block and the adjacent fractures. Since we are 
assuming linear diffusion processes (in order to make 
the· analysis tractable, and at the same time to focus on 
geometrical effects), there is no need here to make a 
distinction between saturation and potential. According 
to the Warren-Root model, then, the mean value of the 
water content in a matrix block of radius a, for the 
problem stated by eqs. (1-3), will at early times be 
given by18 

(20) 

Following the integration procedure that was shown in 
detail in the previous section utilizing the exact solution, 
we see that the early-time approximation to the mean 
water content in the entire gridblock will be given by 

= - [ 2 2l S(t)- 9i 1-(1t Dtlaeq)J, (21) 

where the equivalent radius is given by 

(22) 

which is to say aeq =<a-~;"2 . Rao et al. used this 
expression, without derivation, to rationalize their exper
imental results on solute transport in aggregated soils. 22 

Except in the exceptional case where all matrix blocks 
have the same radius, the appropriate equivalent radius 
for the Warren-Root model in the early-time limit will 
therefore not be the same as that for the exact model. 

C. Late Times, Exact or Warren-Root Model 

The analyses given in the two previous sections 
show that, for early times, a collection of matrix blocks 
can rigorously be replaced by a single, equivalent matrix 
block of radius aeq , where aeq is defined in terms of 
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certain moments of the block-size distribution function. 
We now examine whether or not an equivalent radius 
exists in the long-time, quasi-steady-state regime~ Since 
the Warren-Root approximation is derived so that it 
gives the correct behavior in the long-time limit, we see 
immediately that the results in this regime will not 
depend on whether or not the exact solutions, or the 
Warren-Root approximation, is used. For completeness, 
we will base our analysis on the exact solution for 
diffusion into a sphere, which leads to the following 
expression 11 for the mean water content in a matrix 
block of radius a : 

The mean water content in the entire gridblock is then 
given by23 

As the matrix block radius a appears in the denom
inator of the argument of the exponential terms, it is 
difficult24 to extract any general results from eq. (24) 
that are independent of the distribution function v (a). 
To proceed further to estimate the effect of having a 
distribution of radii, we must choose a specific form for 
the distribution function v (a). Although a lognormal 
distribution is more commonly observed in geological 
studies, 25 in order to simplify the subsequent analysis we 
will follow Ruthven and Loughlin23 and others in 
assuming that the radii of the blocks follow a Gaussian 
distribution of the form (Fig. 1) 

(a-!l)2 

v -
v(a) = --e 2cs2 

'l/21tcr 
(25) 

where Jl=<a>v is the mean radius, and CJ is the stan
dard deviation. Although this distribution has often 
been used to represent particle sizes, it is not strictly 
admissible, since it is not properly normalized if one 
imposes the additional constraint that a must be posi
tive. However, as long as the "narrowness" parameter 
s = f.l/CJ is greater than about 3, the fraction of the distri
bution that has a <0 will be negligible (<0.001; see Fig. 
1), and eq. (25) can be used for a >0 only. Moreover, 
we expect on physical grounds that the actual block size 
distributions will go to zero very rapidly as a ~ 0, so 
that the cases that may occur in practice will have s ~ 3. 

Use of the distribution (25) in eq. (24) leads to 
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Fig. 1. Normal distribution of matrix block volume as a 
function of radius, as given by eq. (25), with mean 1.1. 

and standard deviation a. If s = IJ.fa 2: 3, the area under 
the curve that lies within the physically meaningless 
range a <0 is negligible, in which case eq. (25) is a per
missable distribution function. 

We now nondimensionalize the integrals appearing in 
eq. (26) by letting z =a!Jl and s =IJ.fa, to arrive at 

At this point we restrict our attention to large values of 
t, in which case we retain only the first term in the 
summation: 

(28) 

The integral_ appearing in eq. (28) cannot be 
evaluated in closed form. But as we have already 
assumed that s = IJ.fa > 3, we can use the fact that s is 
never small to develop an asymptotic expansion26 for 
the integral as a function of the "large" parameter s2. 

To accomplish this, we first note that as the term in the 
integrand that involves s 2 will be very localized in the 
vicinity of z=l, we can extend the lower limit of 
integration to -oo. We then expand the other term in a 
power series in the variable (z -1 ); a straightforward 
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Fig. 2. Normalized mean saturation in a collection of 
matrix blocks, with boundary and initial conditions 
given by eqs. (2,3). The block radii follow a normal dis
tribution, with mean radius J.l, and standard deviation 
a=!lfs. Exact results are calculated from eq. (27), and 
approximate results are from eq. (32). 

application of Taylor's formula yields 

where 't=1t2Dtl!l2. By letting (z-1)=y, eq. (28) can be 
written as 

= "'~ 
9(t) 6se-'t J - [ J 
--::: --

2 
e 2 1+2'ty+T(2't-3)y 2+ · · · dy.(30) e i ...t2i 1t ...,., 

We now make use of the known result27 

"'f 2n (- 2 212)d = 1x3x · · · x(2n-1)..J2i (3 l) y exp s y y 2n+l , 

-- s 

along with the observation that the terms involving odd 
powers of y will integrate· out to zero. Hence, the mean 
water content will be given by 

e(t) ::: 6e-'t [1 + 't(2-r-3) .. ·] ' (32) 
9; 7t2 s2 

where 't = 1t2Dt!J.1.2. The leading term in eq. (32) agrees 

('. 
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with the result that would be obtained in the s ~ oo 

limit, which corresponds to an infinitely sharp distribu
tion centered at a = Jl. The second term is a correction · 
which reflects the existence of a finite value of the 
parameter s = J.l}cr. Note that eq. (32) is an asymptotic 
expansion in terms of the parameter s , and becomes 
more accurate as s increases, for any fixed t. It is not 
strictly meaningful to hold s fixed and let t ~ oo. 

Fig. 2 shows a comparison between the approximate 
results found from the asymptotic expansion (32), and 
the exact results obtained from numerical evaluations of 
the full solution, which is given by eq. (27). The com
parisons are shown for the cases s =3, 5, and 10. The 
"long time" approximations become accurate when 
Dt!J12 >0.l; their accuracy is greater for larger values of 
s. The results for s = 10 are essentially the same as 
would be found for s ~ oo, in which case the curve 
approaches a straight line on the semi-log plot, as the 
curve drops off exponentially. Note, however, that the 
effect of having a finite variance in the distribution 
function causes the curves for s < oo to have a qualita
tively different form for large times: the curves for finite 
s cannot be fit with an exponential function by any 
choice of an equivalent radius aeq. On the other hand, 
it is worth noting that the divergence among the various 
curves does not become appreciable until a dimension
less time of about 0.2, at which time the diffusion pro
cess is about 90% complete. As t ~ 0, the approximate 
curves extrapolate back to 6/tt2=0.608 instead of 1.0, 
reflecting the neglect of the n > 1 terms in the summa
tion. Note that the early-time regime, which was dis
cussed in a previous section, corresponds to 
Dt!J12 <0.01, and so is not clearly discerned in Fig. 2. 
However, there is an intermediate time regime extending 
from about 0.01 <Dt!Jl2<0.2 for which the curves are 
very close together when f.! is used as the length scale. 
Hence for most of the process, the (volumetric) mean 
radius, f.!, provides an acceptable value for the 
equivalent radius aeq. 

SUMMARY 

The effect of matrix block geometry on water imbi
bition and solute absorption, including the effect of 
block size distribution, has been studied from a theoreti
cal point of view. In order to make the mathematics 
tractable, and to focus attention on the geometrical 
effects of matrix block size and shape, absorption and 
solute diffusion were both assumed to be governed by 
linear diffusion equations. First, it was shown that at 
early times, diffusion into a single block of volume V 
and surface area A is characterized by a length scale 
a = 3 V lA . It was then shown that the long-time 
imbibition/drainage of polyhedral matrix blocks can be 
reasonably well approximated using this length scale, 
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and the exact results for a spherical block. 

Analyses were then conducted of the effect of hav
ing a distribution of matrix block sizes. It was shown 
that at early times, a collection ·of blocks can rigorously 
be replaced by an equivalent block whose radius is 
given by <a-1>;1

, where <·>v denotes an average taken 
on a volumetrically-weighted basis. If the Warren-Root 
approximation is used, however, it was found that 
aeq =<a-2>;112

• Finally, an analysis was given for the 
long-time behavior of a collection of matrix blocks of 
different sizes, under the assumption that the block 
volume is normally distributed as a function of radius. 
An asymptotic expression was found for the diffusive 
behavior as a function of the parameter J.l}cr, where f.! is 
the mean and cr is the standard deviation of the distribu
tion of block volume as a function of radius. Although 
it does not seem that such an aggregation of blocks can 
be rigorously replaced by any equivalent matrix block, it 
was found that through most of the diffusion process, 
the collection does behaves like a single matrix block 
having an equivalent radius aeq =<a >v . It remains to 
be seen if the results are similar for the case of a log
normal distribution. 

Based on numerical simulations of flow in fractured 
media, it has been concluded that once a collection of 
absorbing matrix blocks is coupled to the macroscopic 
flow field in the fracture network, the effects of any 
variance in the block size distribution are greatly miti
gated. 28 Results for solute transport, on the other hand, 
seem to indicate that the variance in the block size dis
tribution cannot be ignored when calculating break
through curves. 29 The theoretical results derived in this 
paper provide a basis for the investigation of the effect 
of block size and shape distribution on dual-porosity 
behavior. These results should therefore be useful in 
future systematic studies of the effect of block size dis
tribution on transient infiltration and radionuclide tran
sport at Yucca Mountain. 
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