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Abstract 

We introduce several ways in which approximate flavor symmetries 

act on fermions and which are consistent with observed fermion masses 

and mixings. Flavor changing interactions mediated by new scalars 

appear as a consequence of approximate flavor symmetries. We discuss 

the experimental limits on masses of the new scalars, and show that 

the masses can easily be of the order of weak scale. Some implications 

for neutrino physics are also discussed. , 

Such flavor changing interactions would easily erase any primordial 

baryon asymmetry. We show that this situation can be saved by simply 

adding a new charged particle with its own asymmetry. The neutral

ity of the Universe, together with sphaleron processes, then ensures a 

survival of baryon asymmetry. 

Several topics on flavor structure of the supersymmetric grand uni

fied theories are discussed. First, we show that the successful predic

tions for the Kobayashi-Maskawa mixing matrix elements, Vu&/Vcb = 
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Jm.,Jmc and "Vtd/Vts Jmd/m8 , are a consequence of a large class 

of models, rather than specific properties of a few models. Second, we 

discuss how the recent observation of the decay b -+ S/ constrains the 

parameter space when the ratio of the vacuum expectation values of 

the two Higgs doublets, tan/3, is large. Finally, we discuss the flavor 

structure of proton decay. We observe a surprising enhancement of the 

branching ratio for the muon mode in S0(10) models compared to the 

same mode in the SU(5) model. 

1 This work was supported in part by the Director, Office of Energy 
Research, Office of High Energy and Nuclear Physics, Division of High 
Energy Physics of the U.S. Department of Energy under Contract DE
AC03-76SF00098. 

2 On leave of absence from the Ruder Be>Skovic Institute, Zagreb, 
Croatia. Address after September 1, 1994: Department of Physics, 
University of Maryland, College Park 20742. 
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1 Introduction 

In the Standard Model[1], Yukawa couplings .A are defined as couplings between 

fermions and Higgs scalars: 

U"' - Ha D.;, - Ha E"'- Ha ) 
.Cy = (\i QiUi .J2 + \i QiDi v'2 + \i LiEi .J2 + h.c. , (1.1) 

where Qi and Li are SU(2) doublet quarks and leptons while Ui , Di and Ei are 

SU(2) singlets and i = 1, 2, 3 is a generation label. Ha are Higgs SU(2) doublets, 

and a = 1, ... , n, where n is the number of Higgs doublets. 

The Standard Model can easily be extended to accommodate neutrino masses. 

We can introduce higher dimensional operators itH H LiLj which give Majorana 

neutrino masses. We can also add SU(2) singlet neutrinos which can also have 

Majorana masses or Dirac masses similar to (1.1). Neutrino mass is then in general 

described by a 6 x 6 Yukawa matrix. 

As opposed to, e.g. couplings of fermions and vector bosons, Yukawa couplings 

are not constrained nor related to each other by any symmetry principle; i.e., they 

enter the Lagrangian as arbitrary complex numbers. These numbers are then 

only fixed by experiment, namely by measuring fermion masses and mixing angles. 
. . 

However, a glance at the Review of Particle Properties(2] shows that some of the 

measurements. are not easy at all. Although very good limits exist, neutrino masses 

and mixings have not yet been measured. Some quark masses and mixings have 

large uncertainties because of QCD. Also; the top quark has not been seen yet 
' ' 

(although it might be just a matter of months now). -

Therefore both theoretical and experimental motivations arise to go beyond 
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the Standard Model and to attempt to relate (or even set to zero) at least some of 

the couplings. Theoretically, this will reduce the arbitrariness of Yukawa couplings 

that plagues the Standard Model. Experimentally, predictions from the underlying 

theory might give clues as to where to look for new effects. 

As of today, no theory has been generally accepted as the right way to go 

beyond the Standard Model, and this is even more true for an explanation of 

Yukawa couplings. However, many attempts have been made and, judging on the 

successes of their predictions, one has the feeling that some of these ideas will 

survive and will be a part of the correct underlying theory. 

Several classes of models/ ansatze for Yukawa couplings exist today, and we 

list them below: 

• Approximate flavor symmetries[3]-[7], in which the entries in the Yukawa matrices 

are entered as small parameters by which the flavor symmetries are broken. 

• Flavor democracy models[8], in which all the entries in the Yukawa matrices are 

equal (Le., no flavor symmetry), and hierarchy comes from diagonalization and 

RGE running. 

• Fritzsch and/or GUT inspired models[9)-[20], in which some entries in the Yukawa 

mass matrices are assumed to be zero (e.g. by discrete flavor symmetry), and others 

may be related by some GUT relation. 

• String inspired models, composite models, ... 

This is in no way a complete list, of course. Also, most of the work done 

actually falls into several categories above, showing that there are common ideas, 

which will hopefully lead us to a certain trail beyond the Standard Model. 
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Approximate flavor symmetries are described in section 2. We start with the 
r 

basic observation that all fermion masses (except the top quark mass) are very 

small compared to the weak scale, suggesting that the Yukawa couplings are also 

small. This is easily understood in terms of the naturalness criterion[21], where the 

couplings are justified to be small if, in the limit that the couplings disappear, the 

theory gets a larger symmetry. And that is what actually happens; the Standard 

Model without Yukawa couplings has flavor symmetries. We introduce several 

ansatze for the way in which approximate flavor symmetries act on quarks and 

leptons and which are consistent with the observed masses and mixings. This 

leads us to interesting conclusions about the scale of flavor changing interactions 

and points ·us to which processes might be most promising for a discovery[4]-[6]. 

As soon as one allows flavor changing interactions, one might turn to cosmol-

ogy and ask for consequences on the production of baryon asymmetry as seen today. 

It turns out that flavor changing interactions with approximate flavor symmetries 

would still be large enough to erase any primordial baryon asymmetry. Several 

solutions exist, such as the popular weak scale baryogenesis[22] in which there is 

no need for a primordial baryon asymmetry. In section 3, a different possibility is 

explained[23]. It is shown that the primordial baryon symmetry, in the presence 

of flavor changing interactions, can be saved by simply adding a new charged par-

tide with its own asymmetry. Then, the requirement that the Universe is neutral, 

together with sphaleron processes, ensures survival of a baryon asymmetry. 

A revival of interest in supersymmetric grand unified theories (SUSY GUTs) 

[24] was recently ignited by the success of the sin20w prediction[25]. A number 

of models for Yukawa matrices were developed[15]-[19], and were shown to lead to 
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many successful predictions. Several aspects of these models are discussed in sec

tion 4. In particular, we will look at how general, regarding specific ansatze in these 

models, are the predictions for the relations among the Kobayashi-Maskawa mixing 

matrix[26) elements Vw/Vcb = /mu/mc and 'Vtd/'Vts = Jmd/ms. Also, the prob

lem of large tan(3 is discussed critically in light of recent b ~ S/ measurements[27). 

A large tan(3 can appear naturally in 80(10) models where the choice of flavor 

symmetries is such that the only nonzero renormalizable Yukawa coupling is that 

of the third generation. Finally, we discuss the flavor structure of several nucleon 

decay modes. We observe surprising enhancement of the decays in charged lepton 

modes[28), as opposed to more conventional SU(5) considerations. 
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2 Approximate flavor symmetries 

2.1 Introduction 

As more and more tests of the Standard Model confirm its predictions to ever 

higher accuracy, it becomes tempting to believe that new physics, especially if 

it involves flavor changing neutral currents, can only occur at energy scales very 

much larger than the weak scale. For example, t:!.S = 2 four fermion operators with 

coefficients 1/A2 give a ]{L- Ks mass difference t:!.mi</mi< ~ (fi<fA)2 implying 

that A > 1000 Te V. The purpose of this section is to show that it is perfectly 

natural for physics involving new heavy scalars to occur at scales as low as the 

weak scale, 250 GeV, and to show that rare leptonic B meson decays will provide 

an excellent probe of this new physics. 

In the Standard Model, the gauge interactions of the fermions 

.Co= iQJ)Q + iUJ)U + iDJ)D + iLf/JL + iEJ)E (2.1) 

have a global symmetry U(3)q x U(3)u x U(3)n x U(3)L x U(3)E , where Qi and 

Li are SU(2) doublet quarks and leptons while Ui ·, Di and Ei are SU(2) singlets 

and i = 1, 2, 3 is a generation label. The Yukawa couplings 

(2.2) 

break the symmetry by varying degrees down to U(1)e x U(1)~-' x U(1)T x U(l)B· 

The observed smallness of fermion masses (except maybe for the top quark) com-

pared with the weak scale tells us that the flavor symmetries are approximately 

holding. We can think of Yukawa couplings as some higher order effects that break 
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the flavor symmetries in the underlying theory (which we do not know). For exam

ple, Froggatt and Nielsen[3] generate Yukawa couplings from higher dimensional 

operato~s which were generated by integrating out flavorless heavy fermions with 

mass M, as shown in Figure 1. When the heavy scalars </>i, which carry the flavor of 

fermion fi, get their vacuum expectation value, the flavor symmetry is broken, and 

we are left with effective Yukawa couplings suppressed by the ratios € =< </>i > / M. 

However, here we are not interested in a specific model that generates Yukawa 

couplings. Rather, we will try to understand the general features of the idea that 

the flavor changing couplings between scalars and fermions are products of small 

parameters by which the flavor symmetries are broken. 

In this section we introduce several forms for the way in which approximate 

flavor symmetries act on quarks and leptons. We then use this as a guide to infer 

the expected size of couplings between the known fermions and hypothetical, heavy 

scalar particles. The scalar mass M is then the only unknown parameter in the 

coefficient of the four fermion interactions induced by the exchange of this scalar. 

We derive the experimental limits on M from a variety of rare processes. If we, for 

the moment, assume the couplings to be real, the most powerful of these limits are 

of the order of the weak scale, giving hope to the possibility that we may discover 

physics at the weak scale much richer than i:ri the minimal Standard Model. 

There are two important advantages of our general approach. The scalar 

mass limits depend only on symmetry arguments and not on any specific model. 

Secondly, we can identify the most promising processes for discovering new physics 

in the next few years. In particular, we find that rare leptonic B decays are a very 

powerful probe of these new scalar interactions. For the case of leptoquarks, these 
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B decays will probe masses far above the present experimental limits. Also, the 

tree level exchange contribution to neutral I< and B meson mass is at the level 

observed (or just below the current limit for ~Mv[5]) by experiment. 

An important application of our results is to flavor changing effects in models 

with many Higgs doublets[29]. We find that the approximate flavor symmetries, 

which we already know must be ~ part of any successful model of particle physics, 

are sufficient to make it natural to have any number of Higgs doublets coupling to 

up and down type quarks. In other words it is unnecessary to introduce discrete 

symmetries which act on Higgs doublets, as is so frequently done. 

However, couplings need not be real in general and approximate flavor symme

tries by themselves yield too much CP violation in the neutral kaon mass matrix. 1 

Hence in these theories CP must also be a good symmetry [5]. 

In the lepton sector, the masses are small indicating that the approximate fla

vor symmetries are preserved to a high degree of acuracy. Therefore lepton flavor 

changing interactions would be extremely hard to test [4]. Further, since the neu

trino masses and mixing angles have not been measured yet, one cannot estimate 

the corresponding values of fS without additional assumptions. Nevertheless we 

find it important to address the question of approximate flavor symmetries in the 

lepton sector, because many experiments which aim to measure or set better limits 

on neutrino masses and mixings are under way or being planned for the near future. 

Indeed, we find that statements can be made about the lepton sector, regardless 

of additional assumptions about the fs[6]. For example, while the MSW solution 

to the solar neutrino problem can be easily fit, the predicted neutrino masses are 

unlikely to close the Universe. We study two cases of neutrino masses. In the 
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see-saw mechanism [30] case we show that the neutrino masses and mixings are 

independent of the right-handed neutrino flavor symmetry breaking mechanism. 

We also include for completness the case of Dirac neutrino masses only (as in the 

case of charged fermions). Then we provide several ansatze for the lepton flavor 

symmetry breaking parameters and list their predictions in terms of ratios of neu

trino masses, and mixings. We study their relevance to the solar neutrino problem, 

atmospheric neutrino problem, closure of the Universe, etc. General features are 

noted which are independent of the particular ansatz used. 

2.2 Approximate Flavor Symmetries 

In the low energy theory flavor symmetries are broken by different amounts as is 

evident from the nonzero masses of fermions. We parametrize the lack of knowl

edge of the exact mechanism by which the symmetries were broken by a set of 

small parameters { €}, one for each of the chiral fermion fields, which describes the 

breaking of phase rotation invariance on each fermion. Thus .Af; is suppressed by 

both €Q; and £u1 • The idea is that the pattern of fermion masses and mixing angles 

can be described by the set { €}. However, this is not a precise numerical theory 

for fermion masses; equations of the form .Af; ~ €Q; €Uj are only meant to be order 

of magnitude relations. 

The lightness of the up quark tells us that flavor symmetries strongly suppress 

the {JI U1 operator. However, the mass eigenvalue does not allow us to infer whether 

this is because the approximate flavor symmetry is acting only on Q1 , only on U1 , 

or on both. However, we need to know whether the coefficient of a scalar coupling 

to Q1X (where X is any fermion other than U1 ) is strongly suppressed because 
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the up quark is very light. 

We now argue that the approximate symmetries act both on left- and right

handed fields: 

• The flavor symmetries do not act just on the right-handed fields because 

otherwise u3 ~ tR couples to (aQ} + f3Q2 + IQ3) = tL and D3 ~ bR couples 

to (a'Q} + f3'Q2 + 1'Q3) = bL where a,/3,{,a',/3',1' are arbitrary mixing 

angles of order unity, so that tL and bL would have no reason to be very 

nearly in the same SU(2)L doublet. 

• The flavor symmetries do not act just on the left-handed fields because in 

this case the approximate flavor symmetries make no distinction between .Au 

and _xD. A large mt/mb ratio could be due to a large ratio of vevs ~v1 

in a two Higgs theory, but this would lead to an unacceptably large mu/md 

ratio. In addition the KM angles are given by linear mass relations such as 

Be~ md/m8 rather than the more successful square root form Be~ ..jmd/m8 • 

Therefore we conclude that the underlying theory must have approximate fla

vor symmetries that act on both left- and right-handed fields . 

The approximate flavor symmetries and the associated set of small symmetry 

breaking parameters { €} are defined on flavor eigenstates. In practice it is much 

more useful to know what suppression factors are induced on the mass eigenstates. 

Consider the up-type quarks. Assume that fQ; ~ fQi and Eu, ~ Eui fori < j, 

as suggested by mu; ~ mu; . Then the mass matrix is diagonalized by unitary 

rotations on the Qi by a matrix with elements IViil ~ EQ;/EQi (i < j) and on the 

Ui by a matrix with elements 1'\lifl ~ Eu)fU; (i < j). Relations between flavor and 
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mass eigenstates (Qi) are of the form Q~ = Q1 + 0(€QJ€Q2 )Q2 + 0(€QJ€Q3 )Q3. 

This shows the important result that the flavor breaking parameters { €} apply to 

mass eigenstates as well as to flavor eigenstates. For example, the three flavor 

eigenstate contributions to Q~ all carry the same approximate flavor symmetry 

suppression factor of €Q1 • 

The Yukawa matrices >..U, >P, )..L contain a great deal of information about the 

form of the breaking of flavor symmetry. The quark mass matrices can be con

structed approximately, under the assumption that they come from approximate 

flavor symmetries, from quark masses (i.e., the Yukawa matrices ;..u, )..D eigenval

ues) and the Kobayashi-Maskawa (KM) matrix[5). Alternatively, we can give a 

simple ansatz for the flavor symmetry breaking parameters that fits know1_1 quark 

masses and mixings. Unfortunately, we cannot reconstruct the lepton matrices 

from the information which can be obtained from experiments, namely from the 

charged lepton masses and upper limits on neutrino masses and mixings. This 

information is insufficient to derive the form of the approximate lepton flavor sym

metries which the underlying theory must have. Nevertheless it provides a strong 

guideline for giving simple predictive ansatze for the symmetry breaking para

maters. 

A simple predictive ansatz for all the symmetry breaking parameters is shown 

in Table 1. It involves both left- and right-handed fermions and is predictive 

because it only involves quark and lepton masses. The rationale behind our choice 

is as follows. For the leptons, the flavor symmetries on Li and Ei are equally 

responsible for suppressing the Yukawa couplings[31). For quarks, we have again 

tried to have both left- and right- handed flavor symmetries equally responsible 
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for suppressing Yukawa ·couplings. However since Qi appears in both up and down 

mass operators, we have taken the symmetry breaking parameter fQ; to be the 

geometric mean of that expected from mu; and that expected from mv;· Note 

that we have allowed for a two Higgs doublet model. With only one Higgs boson 

v1 = v2 = 250 GeV. The ansatz gives reasonable values for the CKM mixing angles. 

Vii::::::: EQ;/EQ1 ::::::: (mu;mv)mu1mvJi, i < j, which is correct at the factor of2level. 

We use our ansatz to estimate the size of the Yukawa couplings and then 

the corresponding rates for various processes induced by the effective four fermion 

couplings. In Table 2 we list the limits on the exchanged scalar mass [32] obtained 

from a variety of experiments. For now we assume the scalar exchange does induce 

each process and that the flavor symmetry acts only on fermions. Once again, we 

obtained these numbers using our ansatz to estimate the Yukawa couplings, so we 

expect the values to be reliable up to a factor of perhaps 2 or 3. 

The factor K represents the ratio of the matrix element of the new four fermion 

operator relative to its vacuum insertion value. Iri the radiative J..t decay, the 

r-lepton contribution dominates in the loop because it has the largest Yukawa 

couplings. 

First, we can see that these limits are nowhere near as strong as those for 

vector exchange [33]. Flavor non conserving theories at the weak scale are not 

ruled out at all. Secondly, if the Uncertainty factors of 2 or 3 go the right way, it is 

possible that the rare leptonic Bs decay will be the first place to discover this new 

physics, considering that branching ratios w-7 - lQ-8 will be obtained in the near 

future [34]. The branching ratio prediction for Bs - J..t+ J..t- is about 10-9 in the 

Standard Model, and in two Higgs doublet models with discrete symmetries[35]. 
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Also, we mention that the 6111D is expeCted to be close to its experimental limit, 

and that the exotic decays of the top quark t --+ bh+ and t --+ ch0 are expected 

to be large for small top quark masses and would probably prevent the t quark 

-
detection through the standard channel t--+ bW+[5]. 

There are cases where the scalar cannot induce all the processes considered, 

as in leptoquark models. The tree level exchange of leptoquarks generates four 

fermion operators which contain two quarks and two leptons. The limits from I< K 

and BE mixing are therefore removed. In this case our results are particularly 

important: the rare leptonic B decay modes provide the. most stringent test of 

models with scalar leptoquarks. 

We discuss briefly the case in which approximate flavor symmetries act on 

the exchanged scalar too. Such is the case in R-parity violating supersymmetric 

models [36] where the exchanged scalar is a slepton or a squark which carries the 

same approximate flavor symmetry as its fermion partners. Then in Table 2 all 

mass limits are lowered by an additional symmetry breaking factor fa, where the 

approximate symmetry of type "a" is carried by the scalar. It is even less likely 

that such theories could have been excluded. 

2.3 Many Higgs doublet model 

In this subsection we apply our results to the case of the minimal Standard Model 

extended only by the addition of an arbitrary number of Higgs doublets. In this 

case it is already known that, for the special case of Fritzsch-like Yukawa matrices, 

the additional scalars need not be heavier than a TeV [11]. However, our results 

are independent of the particular texture and depend only on the approximate 
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flavor symmetry. 

Let us look at a two Higgs doublet model (the generalization to many Higgs 

doublets is trivial). For example, the up quark Yukawa couplings are 

"' €Ql €U1 "' €Ql c:u2 "' €Ql €U3 Ut 

( Ql Q2 Q3) "'€Q2€U1 "'€Q2€U2 "'€Q2€U3 U2 !1.. 
..J2 

"'€Q3€U1 "'€Q3€U2 "'€Q3€U3 u3 

"'€Ql tul "' €Ql €U2 "' €Ql tu3 Ut 

+ ( Ql Q2 Q3) "'€Q2€U1 "' €Q2€U2 "'€Q2€U3 u2 
fb. 
..J2 

"' €Q3€U1 "'€Q3€U2 "'€Q3€U3 u3 
and similarly for down type quark matrices, keeping in mind that each entry in 

the matrices is uncertain by a factor of 2 or 3 (denoted by "'). 

Notice that because of the numerical factors in front of the ts, the matrices 

for H 1 and H 2 are not equal in general. That means that if we diagonalize lhe 

matrix of Ht, the matrix of H 2 will not be diagonalized and will keep the same 

general form as above. In particular, we can always choose H 1 to be the only 

doublet that acquires a vev (rotating the doublets will not change the form of 

matrices). Therefore we see that in the quark mass eigenstate basis, the new 

Higgs H2 couplings are not diagonal: we have flavor changing couplings. The 

nice thing now is that since the flavor changing couplings are small the stringent 

experimental limits on flavor changing neutral currents (FCNC) actually translate 

only into lower limits on the mass of new scalars, about 1 TeV, as we saw above 

for the plausible ansatz. 

To avoid problems with large flavor-changing neutral currents, Glashow and 

Weinberg [29] argued that only one Higgs doublet could couple to up-type quarks 
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and only one Higgs to down-type quarks. However, this naturality constraint, 

known as the Glashow-Weinberg criterion (or natural flavor conservation (NFC)), 

was based on an unusual definition of what is "natural." For them the avoidance 
-

of flavor-changing neutral currents was natural in a model only if it occured for 

all values of the coupling constants of that model. For us a model will be natural 

provided the smallness of any coupling is guaranteed by approximate symmetries 

[21], and we find that this implies the Glashow-Weinberg criterion is not necessary. 

Notice that if the matrix for H 2 is nearly equal to the matrix for H 1 , then 

diagonalization of the H 1 matrix will almost diagonalize the second matrix. In 

this case the flavor changing couplings become even smaller. This is of course 

no surprise, because if the two matrices were· exactly equal then only one linear 

combination of Higgses (H1 + H2 ) couples to the quarks: we have NFC! This is 

actually the starting point of Leurer, Nir and Seiberg [7]; i.e., use broken flavor 

symmetries in combination with weakly broken NFC. 

One potential problem arises from the smallness of the observed CP VIo-

lation, as noted by Hall and Weinberg[5]. The CP violating parameter fcp = 

Im(~MK)/J21~MKI would naively be expected to be of order unity in our case, 

contrary to the observed value of 10-3 • To avoid this problem one might go back 

to NFC, or, more in the philosophy of naturalness of small couplings, just say that 

CP is another approximately conserved quantity broken by fCP· 

2.4 Lepton sector 

By adding the right-handed neutrinos Ni, i = 1, 2, 3, to the particle content of 

the Standard Model we can allow for Dirac type masses. Under the action of 
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approximate flavor symmetries, whenever an Ni enters a Yukawa interaction, the 

corresponding coupling must contain the symmetry breaking parameter fN;. 

A natural way to justify the smallness of neutrino masses is to use the see-saw 

mechanism in which the smallness of the left-handed neutrino masses is explained 

by the new scale of heavy right-handed neutrinos. The mass matrices will have 

the structure 

(2.3) 

(2.4) 

(2.5) 

where mND and mE are the neutrino and charged lepton Dirac mass matrices, 

mNM is the right-handed neutrino Majorana mass matrix, VsM = 174GeV and 

VBig is the new large mass scale. The generation indices i and j run from 1 to 

3. In the following we assume a hierarchy in the €S (i.e. €L1 << €~ << f.Lg, 

etc.) as suggested by the hierarchy of quark and charged lepton masses. Then the 

diagonalization of the neutrino mass matrix will give a heavy sector with masses 

mNH; ~ €Jv; VBig and a very light sector with mass matrix 

(2.6) 

where the number Tr( €N( €N€N )-1€N) is assumed to be of order unity. We have 

the expected result: the heavy right-handed neutrino decouples from the theory 

leaving behind a very light left-harided neutrino. The masses and mixing angles 

are independent of the right-handed symmetry breaking parameters f.N;: 
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· mf :::::::: f.£; f.E; VSM (no sum on i) , 

( i < j) . (2.7) 

Therefore, besides the unknown scale VBig, only two sets of f.S are needed: f.L; and 

f.E;. In fact, the neutrino masses and mixings depend only on f.£; and they are 

approximately related through 

(2.8) 

Equation (2.8) reduces the number of parameters needed to describe neutrino 

masses and mixings by three; for example, given two mixing angles and one neu-

trino mass, we can predict the third mixing angle and the other two neutrino 

masses. These results are extremely general. They follow simply from the factor-

ization of the Dirac masses, regardless of the specific form of m_N~, which only 

contributes to set the scale. 

For completeness, we note that in the case of Dirac masses only, the neutrino 

and the charged lepton mass matrices become 

(2.9) 

(2.10) 

Their diagonalization yields 

(no sum on i) , 

mf :::::::: f.£; f.E; VSM (no sum on i) , (2.11) 

whereas the lepton mixing matrix is appro:x-imately diagonal with off diagonal 

elements of the order of 

f.£· Vii :::::::: -· (i < j) . 
f.£; 

(2.12) 

16 



Therefore in this case we need three sets of cs to explain niasses and mixings ( cf. 

Eqns.(2.11)-(2.12) ): fL., fNi and fEi· 

In addition to having one more set of (unknown) cs than the see-saw case, the 

Dirac only case has no natural explanation for the very low scale associated with 

the neutrino masses, i.e. that the flavor symmetries of right-handed neutrinos are 

much better preserved than for other fermions. It turns out that one typically gets 

the fNi of order 10-12 or so, compared to quark and charged lepton cs which are 

typically 10-3 and larger. Therefor~, in the following we will mostly concentrate 

on the see-saw case. 

While it was possible to fix quantitatively the flavor symmetry breaking pa

rameters in the quark sector from quark masses and mixings, in the lepton sector 

the situation is much more difficult. At this time direct laboratory experiments 

provide only upper limits on neutrino masses and mixings, although some indirect 

sources like solar neutrinos or cosmology point to some specific allowed ranges. 

Therefore, to estimate the sizes of lepton flavor symmetry breaking parameters cs, 

additional assumptions are needed. 

Our strategy is as follows: we list several plausible or GUT motivated ansatze 

which relate cs of different fields. This will enable us to estimate ratios of neutrino 

masses and mixings (listed in Table 3). If the mixings are consistent with the 

allowed range for the MSW solution[37] of the solar neutrino problem, we take this 

as a hint to fix the mass scale and predict all neutrino masses. We then look at 

further predictions. As is the case with any calculation based on these approximate 

flavor symmetries ([3]-[7]), the factors of two or three may ,contribute coherently 

17 



factors of an order of magnitude or so. In addition, the numerical results depend 

on the specific ansatz. What we seek are the general features of those results rather 

than the detailed numerical results themselves. 

I. As our first ansatz we assume that €£; = fE; [4]. This ansatz can be 

justified as follows [38]. Assume that in the lepton sector the only combination of 

symmetry which is broken is the vector flavor symmetry. This means that, instead 

of breaking separately left(L) and right(R) flavor symmetries, only the combination 

1-R is broken. Therefore we ne~d only one set of t:s, which are then determined 

from €£; ~ ;-.fj;. The Ve- vJ.J. mixing found in this w_ay is consistent with the small 

mixing angle region[39] of the MSW explanation for the Solar Neutrino Problem 

(SNP). The mixing angles for this and the other ansatze can be found in table 

3. We checked that for these mixing angles the third flavor does in fact decouple 

(see [40]). If this is indeed the solution for that problem, the mass of the muon 

neutrino must be around 3 x 10-3 eV. This then sets the scale for the new physics 

and the other neutrino masses at 

(2.13) 

? 

€£3 0-? J.T 
2 mv,. ~ 1 -ev . 
€~ 

(2.14) 

Taking into account the excluded regions due to the IMB experiment [41], the pre-

dieted muon to tau neutrino mixing (~m2 ~ 10-3 eV2
, sin2 (20J.J.T) ~ 0.2) is around 

a factor of five away from the parameters consistent with a vJ.J.- vT oscillation 

explanation of the Atmospheric Neutrino Problem (ANP) [42], and still two orders 

of magnitude away from the laboratory limits for this mixing. Finally, the small-
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ness of all three neutrino masses in this ansatz suggests that neutrinos cannot be 

responsible for closing the Universe. 

II. Another interesting ansatz is suggested by the fact that in the quark sector 

EQ, ~ Eu, i = 1, 2, 3, as found by Hall and Weinberg [5]. Inspired by an SU(5) 

~~rm~~oo~~~~~~anan~~~~ 

(2.15) 

In this ansatz we predict (using the numerical values of EQ, f.u and ED from [5] ) the 

ratios of charged lepton masses to be within factors of three of the measured values. 

We consider this an interesting result. Further, the mixing angles are consistent 

with the three flavour mixing explanations of the SNP [40] for squared masses of 

Vi.t and v,. of order w-4 eV2
• Therefore, the VIJ.- v,. o~cillation explanation of the 

ANP is unlikely. In addition this mass scale cannot be tested in the laboratory 

nor provide an explanation for Dark Matter. 

III. Finally, one might look for inspiration in the breaking of S0(10) into 

·sU(4) ®SU(2)L ®SU(2)n. We know that at the renormalization scale of 1 GeV we 

have been considering, the SU(2)n symmetry must be badly broken since mt >> 

mb and me > > mve. Further, assuming the ansatz €£1 ex EQ., EE; ex €Di, and 

EN; ex €u1 would lead to me/m~-' ~ 4.8 x 10-2
, which is wrong by an order of 

magnitude. Assuming that the SU(4) might still provide some useful information 

for the SU(2)L singlets we look at the ansatz 

(2.16) 

In this ansatz we again predict a Ve- v~-' mixing angle consistent with the small 

angle MSW solution to the SNP. Again, assuming that this is indeed the solution 
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for that problem fixes the see-saw neutrino masses at 

m,,.. ~ 10-3 eV , 

(2.17) 

We again find it unlikely that the values obtained can close the Universe or solve 

the ANP. 

2.5 Conclusion 

In this section we have introduced a simple ansatz for how the approximate flavor 

symmetries act on quarks and leptons, as shown in Table 1. It reproduces the 

KM matrix elements at the factor of 2 level. If the interactions of additional 

scalars respect these approximate symmetries, then the mass limits on the scalars 

from various experiments are shown in Table 2. From this viewpoint, new flavor 

changing physics at the weak scale is not excluded, and is natural. In particular, 

extra Higgs doublets can couple to both up and down type quarks; there is no 

need to impose additional discrete symmetries on the scalars. We find that rare 

leptonic B decay modes, such as B2 ~ p+ J.l-, could uncover this new scalar-

mediated physics in the coming years. 

We also extended the concept of approximate flavor symmetries to the lep-

ton sector. In particular we considered the see-saw mechanism_ as a source of the 

neutrino masses and showed that the predictions do not depend on the neutrino 

flavor s)rrnmetry breaking parameters. This yelds a simple relation (cf. eq. (2.8)) 

between neutrino masses and mixing angles which reduces the number of parame-
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ters needed to describe the lepton sector. The lack of information on the neutrino 

masses and mixing angles led us to propose several ansatze. These exhibit the 

following common features. They are consistent with the MSW solution of the 

SNP. The ANP is unlikely to be explained through v~-'- Vr oscillations and the 

scale of neutrino masses is too small to close the Universe. 
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3 Preventing the erasure of baryon asymmetry in the 

early Universe 

3.1 Introduction 

Various authors[43, 44] have placed cosmological bounds on the size of baryon 

and lepton number violating interactions in theories where baryogenesis occurs 

before the electroweak phase transition. The baryon asymmetry of the Universe is 

threatened by a combination of these interactions and a large electroweak instanton 

rate[45, 46]. Electroweak instanton interactions are expected to be in equilibrium 

for temperatures above Tmin, approximately the weak breaking scale, up to some 

very high temperature Tma:r: ~ 1012 GeV. Such reactions create SU(2)L transform

ing fermions out of the vacuum[45]. Lepton and baryon violating interactions such 

as R-parity breaking terms in supersymmetry[47] or Majorana neutrino masses, 

when in equilibrium simultaneously with instanton reactions, can break all linear 

combinations of conserved quantum numbers which involve baryon number. 

In the previous section the many Higgs doublet model had interactions which 

break all flavors. Let us check whether these interactions erase the primordial 

flavor asymmetry. A 4-dimensional interaction (like the interactions of scalars and 

fermions in the previous section) with coupling A have a thermal equilibrium rate 

r 4 ,....., A2T. This interaction falls out of ~quilibrium when its rate is less than the 

rate of the expansion of the universe r H "' 17T2 I A1p. In order to prevent a baryon 

asymmetry washout, such a flavor changing interaction must fall out of equilibrium 

before the sphaleron interactions do. The strongest limit on the coupling A then 

arises at the lowest temperature where the sphalerons· are in equilibrium, namely 
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about 100 GeV or so. This gives a limit of about .-\ < w-s. In the ·previous 

section the couplings which are smallest are the electron flavor changing couplings. 

However, the largest among them are still of the order w-3 - w-4 • 

Naively, one is led to believe that the baryon asymmetry of the Universe 

is therefore washed away. In this section we examine the general circumstances 

in which this outcome is avoided. We find that in many models there will be 

additional symmetries and, even though these symmetries apparently have nothing 

to do with baryon number, they automatically lead to a protection of it. 

It is well known th~t a symmetry which· involves baryon number itself, such 

as B- 3Li, can preserve the baryon asymmetry [44]. Approximate sylllrtletries 

involving B have been found in the minimal supersymmetric model which can 

be used to help prevent erasure of the baryon asyrnrnetry[48]. We have found 

that the protection of the baryon asymmetry is extremely common and is a typ-

ical feature of theories with extra symmetries, even when those symmetries do 

not transform quarks. We illustrate this by a very simple example: assume that 

there exists a particle, X, which carries hypercharge but not SU(2) or SU(3) gauge 

interactions[49]. Assume that reactions occurring at temperatures well above Tmin 

generate an asymmetry in the X species, and that at lower temperatures the reac-

tions which change X number are sufficiently weak that this X asymmetry persists. 

A crucial role is played by the requirement that the early Universe is hypercharge 

neutral. Because X particles carry hypercharge, the asymmetry in their number 

contributes to the hypercharge density of the Universe. The remaining particles in 

the theory must carry an opposite hypercharge density to cancel this. Chemical 

equilibrium equations specify how this hypercharge density is shared. A baryon 
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asymmetry can develop either through added B violating interactions or once the 

weak instanton becomes effective. In general any X asymmetry together with 

chemical equilibrium requires a baryon asymmetry[51]. This illustrates just how 

easy it is to preserve the baryon asymmetry and, to our way of thinking, puts 

the issue of direct detection of baryon ~nd lepton number violation back where it 

belongs: with the experimentalists. 

3.2 General condition for survival of a baryon asymmetry 

In this section we discuss, in a very general way, the conditions under which an 

extra U ( 1) symmetry preserves the cosmological baryon asymmetry. 

In thermodynamic equilibrium the number density of particle species i is de

termined by its chemical potential, J.li· If a given reaction, say p1 + P2 ;:: P3 + p4 , 

is in equilibrium then J.ll + J.l2 = J.l3 + J.l4 • It is straightforward, yet tedious, to 

solve all chemical equilibrium equations. One can simplify the process by noticing 

that these equations are the same equations one would write down to determine 

the U(l) symmetries of the equilibrium theory. One need only replace J.li with qi, 

the charge of particle i. Solving for qi determines the possible assignments of U(l) 

charge to each particle so that all equilibrium reactions conserve that charge. In 

general such U(l) symmetries need not be exact symmetries of the Lagrangian. 

They are symmetries of those interactions in thermal equilibrium at temperature 

T, and we refer to them as effective U(l) symmetries at this temperature. 

Thus, a solution to the chemical equilibrium equations corresponds to an 

assignment of effective U ( 1) charges to each particle, and the possible effective 

U(l)s in a given theory are usually easy to identify. Suppose that at a certain 
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temperature there are N such effective U(1)s: U(1)A, A = 1, ... N; then the most 

·general solution is 

/-Li = :L CAqf' (3.1) 
A 

where qf is the charge of particle i under U ( 1) A. The constant CA we refer to as the 

asymmetry constant for U(1)A· As soon as some interaction which violates U(1)A 

comes into thermal equilibrium, CA rapidly tends to zero: U(1)A is no longer able 

to support particle asymmetries. 

This general solution is restricted, however. We assume that the Universe 

is homogeneous and that no charge asymmetry has developed for the unbroken 

gauged U(1)s of the theory[52]. This forces the charge density for these U(1)s to 
I 

zero. We can write the charge density for U(1)A as 

QA = Lqfni, (3.2) 
i 

where ni is the particle asymmetry density of species i. If particle asymmetry 

densities are small then they can be written, forT>> mi, as 

T2 
ni ~ e;9i/-Li , (3.3) 

where 9i is the number of internal degrees of freedom of particle i, 9i, multiplied 

by a factor of two for bosons. (However, see reference [53] for an interesting look 

at small ma.Ss effects.) Under these conditions the charge density constraint is a 

simple linear equation in the /-LiS· QA can be written using ni from (3.3) and /-Li 

from (3.1): . 

(3.4) 

25 



where we define B · A by I 

(3.5) 
.. 

Should the diagonal generators of non-Abelian gauge groups, such as T3L, be 

included in the list of effective U(l)s? The answer is no, as can be seen easily from 

the above equations. Call such a generator a, then neutrality of the Universe with 

respect to this charge requires 

(3.6) 

where 

(3.7) 

When A refers to a U(l) generator (not embedded in a non-Abelian gauge group) 

then A· a = 0. This is because the gi and qf are the same for all components 

of an irreducible representation of a, and hence the sum in (3.7) can be written 

as a sum of zero terms, one for each irreducible multiplet of a. When A = f3 

is a diagonal generator of a non-Abelian group the orthogonality property of the 

generators within each multiplet ensures that Ei qfqf vanishes for f3 -=f. a. Hence 

the sum 'in (3.6) just has one term: caa · a = 0. Since a · a # o·, we have proved 

that ccx = 0 follows from Qcx = 0. This implies that such U(l)s need not be 

included in the list of effective U(l)s. 

Now let us apply this formalism. We are interested in the situation in which 

additional particles and interactions have been added to the Standard Model such 

that at temperatures T, Tc < T < T max, where Tc is the weak breaking tempera-

ture, there are just two effective U(l)s: Y and X, where Y = 2(Q- T3 ) denotes 
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hypercharge and X is an ungauged effective symmetry. The charge neutrality 

- condition (3.6) when applied to hypercharge gives 

(3.8) 

Using (3.8) in equation (3.4) the asymmetry in baryon number is just 

2 ( - - ) T X - X·Y- -
nB "' -C X - --Y · B - 6 y2 ' (3.9) 

where we have rewritten Q8 , the baryon density, as nB. This is the general result 

of this paper. Any effective U(l)x, whether or not it contains a piece of baryon 

number, will in general contribute to nB if ex =I 0. The extension of (3.9) to many 

extra X symmetries is straightforward. Providing such a U(l)x exists, there is no 

limit to how. large the B and L violating interactions can be. 

We will examine the case in which X particJes carry no baryon number them-

selves. Then 

T X . Y·B --2 ( - -) 
nB ~ 6C - y 2 X · Y·. (3.10) 

----2 
In the Standard Model Y · B /Y - 1

1
1 • Additional particles will change 

this, but would generally give some non-zero value whic~ we call a. Then nB ~ 

- ~2 
aCX (x · Y). Thus to obtain nB =I 0 we require that some particJes with 

Xi =I 0 have Yi =I 0. Hypercharge neutrality then forces other particles to have an 

asymmetry, some of which carry baryon number, thus providing a baryon asym-

metry. 

Cline et al. [50] point out that in the Standard Model right handed electron 

number is conserved down to a temperature of about 10 TeV, and thus can insure 

that baryon/lepton violating interactions do not wash away the baryon asymmetry 
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above this temperature. Thus the Standard Model already contains X particles in 

the form of right handed electrons. In section 3.3, we discuss another possibility, 

an X symmetry which does not transform any Standard Model particles. In this 

case (3.8) can be rewritten in terms of the hypercharge density carried by the 

Standard Model sector, QY(Sl\1), and by the X sector, QY(X) = Liqrnx;: 

In terms of QY (X) equation (3.10) becomes 

1 y 
nB""' --Q (X) - 11 . 

(3.11) 

(3.12) 

(We have assumed that T < 10 TeV so that right handed electrons are in equilib-

rium.) 

Equation (3.12) does not assume that X number density is small or propor-

tional to its chemical potential. Thus it is valid even when the temperature drops 

below the mass of certain X particles. When this happens the heavier species 

carrying X might decay into lighter ones. Nevertheless, providing the particles 

with X =I 0 possess a hypercharge asymmetry the baryon asymmetry will survive. 

In particular the X =I 0 particles must continue to carry such an asymmetry un-

til a temperature T0 , beneath which B and L violating reactions are sufficiently 

weak that a symmetry having a baryon number component has become an effective 

U(1). The resulting baryon asymmetry after X decay depends on the specifics of 

the model. In the least complicated scenario, in which baryon number is a good 

symmetry below T0 , today's baryon asymmetry is simply derived from (3.12) and 

entropy considerations. 
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We note that it is not necessary for our X sector to be neutral under SU(2). 

Adding additional SU(2) transforming fermions to the Standard Model will mean 

that these particles also take part in instanton mediated reactions. Nevertheless, in 

a consistent theory, instanton reactions will conserve the hypercharge asymmetry 

carried by the X sector of the theory. This is true. because ins tan tons neither 

violate hypercharge in the Standard Model sector nor in the theory overall, and 

thus must conserve hypercharge in the X -sector. 

In this section we have tacitly assumed that some component of baryon num

ber is a iood symmetry below Tc, the weak breaking temperature. If this is not the 

case, then, for temperatures T, To< T < Tc, the role of hypercharge is played by 

electric charge. In this case the X sector must carry an electric charge asymmetry. 

An intriguing possibility exists if the lightest X particle is stable and electri-

cally neutral. If this is the case, the particle is a candidate for the dark matter 

in the Universe [54, 55]. To realize such a scenario,the X sector would still have 

to maintain a hypercharge asymmetry for temperatures above T0 • (For conve-

nience,we have assumed T0 > Tc.) However, at a lower temperature, charged X· 

particles would decay to Standard Model particles plus these electrically neutral X 

particles. If !lx is tpe fraction of the critical density contributed by the electrically 

neutral X particles then their mass is given by 

(3.13) 

where (qx) is the appropriate average of X-particle hypercharges. Low-background 

-Ge detector experiments [56, 57] indicate that an electrically neutral dark matter 

particle with nonzero hypercharge ·must have a mass greater than "' 1000 GeV. 

Thus, we can effectively rule out a dark niatter X particle with nonzero hyper-
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charge. One possible candidate is the neutral component of a new hyperchargeless 

SU(2) multiplet. Such a particle is expected to interact via loop diagrams with 

nuclei and thus its cross section with Ge is approximately 10-35 cm2 or smaller 

[55], effectively evading relevant experimental limits [56]. Another candidate is a 

new particle with no gauge interactions whatsoever [54]. 

3.3 A simple model 

In this section we illustrate the general ideas discussed above with a very simple 

model. We add to the Standard Model a single fermion X, of mass mx, which is 

SU(2) neutral but has three units of electric charge. It is unstable, decaying to 

three charged leptons via the effective interaction 

+ h.c., (3.14) 

where ek is the right handed lepton field of flavor i, X is the X particle field, .c 
is the charge conjugation matrix, M is a constant with units of energy, and fijk 

( = fikj) is a flavor dependent constant of order 1. In addition we let our model 

include unspecified lepton and/or baryon violating terms which together with the 

instanton reaction break all linear combinations of B and L numbers. 

Both the mass of the X particle, mx, and the constant M are constrained by 

the various requirements of our theory. First we must insure that the X asymmetry 

develops before all baryon violating interactions fall out of equilibrium. Otherwise 

the X asymmetry has no effect on baryon number. Let Tx be the temperature 

at which X violating reactions drop out of equilibrium. Without specifying the 

exact scenario, we assume that an X asymmetry develops at some temperature 
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lower than Tx but above the temperature at which instantons freeze out (see [58] 

and references therein for numerous methods by which number asymmetries can 

develop). In this way the instanton reaction provides the baryon violation required 

for our mechanism to work. This is a convenient choice, but not a necessary one 

if other baryon violation exists in the theory. 

It is interesting to note that the only baryon violation required in this model 

is instantons. If an X asymmetry exists or develops during the epoch in which in

stantons are in equilibrium, then it will necessarily generate a proportional baryon 

asymmetry. 

In our example X particles will eventually decay into Standard Model parti

cles. Various constraints must be imposed on this decay. To make things simple we 

require X particles to survive past the temperature at which instantons freeze out. 

We assume that after this temperature baryon number is a good symmetry. Thus, 

the only possible effect on the produced baryon density comes from the change in 

entropy of the Universe upon X decay. 

The standard nucleosyn:thesis scenario places limits on this decay [58]. If X 

particles decay after nucleosynthesis, they must not dump more than a factor of 

"' 15 times the entropy density present at the time of nucleosynthesis. If they did 

then the observed baryon to photon density would be incompatible with standard 

nucleosynthesis. Also, if the mass of the X particle is larger than a few MeV, 

which it must be to avoid strict limits on the width of the Z boson, then energetic 

photons from X decay can destroy too· much deuterium. Further, depending on 

the era of decay, photons from X decay can destroy th~ uniformity of the cosmic 

microwave background radiation or contribute too. much to the diffuse photon 
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background. If X particles decay before nucleosynthesis, their mass and density 

prior to decay must be compatible with the known baryon to photon ratio, TJ, 

during nucleosynthesis. 

Let us examine our first constraint. The rate for X violating 4-fermion inter-

actions is given by 
49j27r5 rs 

rx ~ 12960((3) M 4 ' 
(3.15) 

where r is an average of terms like ftjkfzmn, and we have dropped terms of order 

!?!X. 
T 

The Hubble constant, H, is 17 J:. . The 4-fermion interaction drops out of 
p 

equilibrium when its rate falls below the Hubble expansion rate[59]. Calling the 

temperature at which this occurs Tx, we have 

(3.16) 

Although X number changing interactions freeze out at Tx, X particles stay 

in thermodynamic equilibrium below this temperature through their gauge inter-

actions. These gauge interactions freeze out at a much lower temperature given 

by the standard cold relic freeze out criteria. 

Now we examine the decay of the X particles. The decay rate for these 

particles is given by· 

(3.17) 

where we have ignored terms of order the temperature over mx since they will 

be seen to be negligible. The X particles decay when this rate is approximately 

equal to the Hubble expansion rate. Calling the temperature at which these rates 
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become equal Tv, we have 

(3.18) 

If significant entropy is generated by X decay then Tv is the "reheat" temperature 

after decay. 

Equations (3.16) and (3.18) can be combined to give 

(3.19) 

In Figure 2 we plot the allowed parameter space by considering the constraints 

discussed above. (We have assumed Tv < Tmin ~ 102 GeV and required Tx > 

10Tmin·) 

The diagonal dotted lines in this figure are lines of constant Tx and are labeled 

in GeV. The allowed region is divided up into three regimes. The first, correspond-

ing to Tv> 10-3 GeV, covers the case in which X particles decay before the onset 

of nucleosynthesis. In this case the X density just befor~ decay may be quite large, 

leading to an early matter dominated era and a significant increase in entropy den-

sity upon X decay. This is because for latge mx, X particle gauge interactions 

freeze out when there is still a large anti-X particle density. In this situation, the 

X number asymmetry is a small fraction of the symmetric relic freeze out density. 

A large symmetric relic density leads to large entropy dumping when X particles 

decay. Let us call the factor by which entropy is increased R. Since, in our model, 

today's observed baryon asymmetry is proportional to the X asymmetry divided 

by R, a large X asymmetry is required when R is large. We have plotted a dot

dashed line which corresponds to the onset of significant entropy generation when 

X particles decay. At this line entropy is increased by 10% upon X decay. As we 
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rise above this line the amount of entropy generated when the X particles decay 

increases. At the top boundary of our allowed region the X asymmetry required 

to generate today's observed baryon asymmetry becomes infinite. Above this line 

there is no way to generate enough baryon asymmetry. 

In the second regime 10-4 GeV <Tv< 10-3 GeV, during which nucleosynthe

sis is taking place, we impose the conservative requirement that X decay increases 

the Universe's entropy by less than 10%. This is shown as a dip in the top boundary 

of the allowed region. 

The last regime, Tv< 10-4 GeV, in which X particles decay after nucleosyn

thesis, is bounded on the left by the requirement that decay products don't destroy 

too much deuterium [60]. The curved line marked with an arrow takes account 

of this limit (We have used Lindley's rough calculation for heavy dark matter 

particles [60]). This constraint is more severe than those arising from cosmic mi

crowave background and diffuse photon background observations. The top limit 

of this region is determined by entropy dumping considerations. Since in this case 

X particles are still present during nucleosynthesis, we know that the required X 

asymmetry is equal to -
1
g
1
x times the baryon asymmetry at the time of nucleosyn

thesis. When X particles decay they can increase the entropy and thus decrease 

the value of 'fJ today relative to its value during nucleosynthesis. We allow at most 

a decrease by a factor of 15, and this gives us our top limit. Figure 2 illustrates 

how general our mechanism is. The X particle's mass can range over 12 orders of 

magnitude, from 45 GeV to 1012 GeV. 
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3.4 Conclusion · 

We have shown that in order to avoid the strict cosmological limits placed on 

lepton and baryon number violating interactions it is not necessary t~o resort to 

low temperature baryon generation or to the addition of new symmetries which 

affect baryons. Any syml?etry which allows one sector of the theory to acquire 

a net hypercharge density will suffice. This includes a symmetry under which 

Standard Model particles are neutral, as our example shows. The key observation 

is that, although this new symmetry seems decoupled from the rest of the theory, 

the gauged U(l) symmetries can connect it. Thus an asymmetry in X particles, 

because they are charged, is enough to ensure a proportional asymmetry in all 

charged particles independent of whether or not their particle number is conserved. 

If a scenario similar to the one proposed here was realized in the early Universe, 

than experimental searches for lepton and baryon violating interactions may prove 

successful. Such a success would not only directly signal exciting newLand/orB 

number violating physics, but would also indirectly signal the existence of a baryon 

number protection mechanism. 
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4 Topics on supersymmetric grand unified theories 

4 . .1 On the generality of certain predictions for quark 

. . mnnng 

A theory of fermion masses should explain both the values of the quark and lepton 

masses and the sizes of the four independent parameters of the Kobayashi-Maskawa 

(KM) mixing matrix[26]. In the Standard Model these quantities appear as free 

Yukawa coupling parameters and must be determined from experiment .. While we 

are far from a fundamental · understa.Q.ding of fermion masses, theories which go 

beyond the Standard Model can possess symmetries which reduce the number of 

free parameters of these Yukawa coupling matrices, giving relationships between 

the KM matrix elements and the quark masses. The first relationship so obtained 

in a gauge theory was the very successful prediction for the Cabibbo angle: I Vus I = 

~[61], where IV us I = 0.221 ± 0.002 and ~ = 0.226 ± 0.009[62]. Much interest 

has also centered around the relation IVcbl = ~obtained by Harvey, Ramond and 

Reiss[13] working with the form for the Yukawa matrices written down by Georgi 

and Jarlskog[12]. If this relation were valid at the weak scalethe top quark would 

be predicted to be too heavy[63]. However, inclusion of renormalization group 

(RG) corrections show that such a relation in a supersymmetric grand unified 

theory leads to a prediction of 130 < mt < 195 GeV([15]-[17]). 

We choose IVusl, IVcbl, \~::/ and ~~~~ as the the four independent parameters of 

the KM matrix. Of these IVusl and IVcbl are the two which are best measured. In 

this section we concentrate on predictions for \~:: 11 and ~~:1· These are predicted 

in several schemes for fermion masses in terms of ratios of quark masses((9],[64], 
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[63],[15]): 

IVubl E!;_ 
IVcbl = v ffic ~ 0.061 ± 0.009' (4.1) 

and 

:~:: = ~ ~ 0.226 ± 0.009' (4.2) 

where mass values from reference[62] have been used, keeping in mind that the 

values in the ratios must be taken at the same renormalization scale 1-l· In this 

section we make two comments about these relations: they are very successful, and 

they are quite generic, following from a simple pattern for the Yukawa matrices. 

The success of these relations has been magnified by the 1992 announcement 

by th~ CLEO collaboration[65] of lower values for \~!1'. They find central values 

of \~::/ of 0.053; 0.062, 0.065 and 0.095 in four phenomenological models used to 

analyze the data. The experimental uncertainty is about ±0.020. Also the value 

of the top quark mass obtained from precision electroweak data from LEP[66] 

mt = 145 ± 25 Ge V, is relevant be~ause I "Vtd I is probed experimentally via the 

B 0 - B0 mixing parameter xd which is strongly dependent on mt: 

Xd = 'Tb~ ( {ii;JB?mB'TJBm~S(yt)Re(V,'d"Vtb)2 

- 0.69( VB!B )2( 'TJB )( ffit )2(S(yt) )( ~ )2( IVcbl )2' 
0.17GeV 0.85 145GeV · 0.59 0.226 0.043 

(4.3) 

where Yt = m;JM(v, S(yt) = 1 - ~(r[!.~)~) [1 + 1::'Y:ln(yt)] and 'TJB is the QCD 

correction factor. From this it can be seen that by using central values for mt and 

other parameters, together with the experimental result that Xd = 0.70±0.10, the 

prediction of equation ( 4.2) is highly successful. 

Given the success of these two predictions, it is interesting to ask whether 

they result from just a few specific modds, or whether they are generic features 
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of a wide class of theories[67]. In the rest of this section we show that predictions 

(4.1) and (4.2) occur whenever two conditions on the elements of the Yukawa 

matrices are satisfied. We also show that CP violation measurements with neutral 

B mesons will provide a test of whether the relations (4.1) and (4.2) provide a 

correct understanding of I"Vubl and I'Ytdl· 

General constraint on the Yukawa matrices 

What conditions must the Yukawa matrices Y (Y = U or D) satisfy in order to 

get relations (4.1) and (4.2)? The observed hierarchy of quark masses and mixing 

angles leads us to the assumption that the entries in the Yukawa matrices have a 

hierarchical structure, with Y33 being the largest. We first take 'Yii to be real and 

later consider how the analysis is modified by CP violating phases. The matrices 

Y can be diagonalized by three successive rotations in the (2,3), (1,3) and (1,2) 

sectors (denoted by s23, s13 and s12 ) : 
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Yu 0 0 

0 Y22 0 

0 0 y33 

1 }'" 
-s12 0 1 0 y 

-s13 1 0 0 

y 
8 12 1 0 0 1 0 0 1 y 

-s23 X 

0 0 1 
y 

8 13 0 1 0 y 
s23 1 

Yi1 Yi2 Yi3 

X Y:n 122 123 X 

1:n 132 y33 

1 0 0 1 0 s'Y 13 1 s'Y 12 0 

X 0 1 s'Y 23 0 1 0 -s'Y 12 1 0 (4.4) 

0 ,y 
-s23 1 tY 

-sl3 0 1 0 0 1 

The small rotation, angles are given to leading order by 

(4.5) 

(4.6) 

(4.7). 

The successive rotations produce elements 

and 

(4.9) 
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(4.10) 

· The KM matrix which results from these rotations is 

1 u 
812 + 813823 

u 
813-812823 

V= -812 - 8fa823 1 823 + 8f2813 (4.11) 

-813 + 8gs23 -s23- 8gs13 1 

where 8 23 = s~- s~, 813 = 8fa- 8~ and s12 = sB--:- s~. 

To get relations (4.1) and (4.2) it is sufficient to have 

IVubl I U I d 1\'rdl I D I h• } • bt · d b • IVcbl = 812 an lvt.l = 8 12 w IC 1 IS o a1ne y 

(4.12) 

• 18~1 = ~and 18g1 = ~which is obtained by V me V m, 

(4.13) 

The conditions (4.12) and (4.13) on the Yuka.wa matrices U and D allow for a wide 

class of mass ansatze. It is possible that there are some other cases which will lead 

to (4.1) and (4.2) but we believe that they would be quite special, involving for 

example nontrivial cancellations. All proposed ansatze that we know of which lead 

to (4.1) and (4.2) satisfy the conditions (4.12) and (4.13). 

Now consider redoing the analysis with Yii complex. The sequence of rotations 

in ( 4.4) will now be interspersed with various diagonal rephasing matrices. This 

will change the above equations in several ways. For example, in (4.5), (4.6), (4.7) 

and ( 4.8) the right hand sides of the equations must be replaced by their absolute 

values. In equations (4.9) and (4.10) there will be relative phases between the 
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terms on the right-hand sides. Finally the phase rotations will affect the KM 

. matrix. \Vhile the phase transformations cannot induce any new terms in Vii, 

they can multiply any of the existing ones by phases. However, it is clear that 

even in this case equations (4.12) and (4.13) are the correct conditions for yielding 

the predictions (4.1) and (4.2). 

The conditions (4.12) and (4.13) are very simple; however, when expressed in 

terms of Uii and Dii via equations (4.5)-(4.10), they appear quite cumbersome. 

Nevertheless, a simple heuristic way of stating the-conditions on Uii and Dii is as 

follows: 

• Yi1, Yi3 and }31 must be small. 

While conditions (4.12) and (4.13) are the precise statement on the smallness 

of these elements, a feel for their meaning can be grasped as follows. The 

smallness and hierarchy of fermion masses and mixings can be restated in 

terms of approximate chiral and flavor symmetries which act on each fermion 

type([3)-[5]). From these approximate symmetries alone one finds that the 

inequalities of (4.12) and (4.13) become approximate equalities, thus ls13l ~ . . 

ls~s23 1, etc. Hence these approximate chiral and flavor symmetries are not 

sufficient to guarantee results (4.1) and (4.2). These results follow only if the 

11, 13 and 31 entries of the Yukawa matrices are constrained by some more 

powerful means, for example by some new exact symmetry. In many specific 

ansatze, family symmetries force these to vanish([9),[64),[63),[15]). 

• 1'Yi2l = Ifni usually.results, to sufficient accuracy, whenever IYi2l = IY:nl· 

While the 12 entries must be symmetric, other entries need not have any 

41 



symmetry. None of the models discussed in reference[19] has symmetric 

Yukawa matrices, but they all have predictions (4.1) and (4.2). 

The general conditions (4.12) and (4.13) are satisfied by many special forms 

for the Yukawa matrices, so that it is not possible to use them to derive a definite 

hierarchical structure for U and D. However, this can be done for the subclass 

of theories in which the Yukawa matrices are also symmetric, }ii = }ji, and the 

resulting hierarchical patterns are given in the Appendix A. 

The KM matrix 

We now study the KM matrix which results from Yukawa couplings which 

satisfy the conditions (4.12) and (4.13). In particular, the 11, 13 and 31 entries 

are found to be sufficiently small that they give only negligable corrections to the 

diagonalization of U and D, 

(4.14) 

by the unitary matrices 

1 -s2 0 ei<f>u 0 0 1 0 0 

Lt -u- s2 1 0 0 1 0 0 1 -su (4.15) 

0 0 1 0 0 1 0 \ 1 su 

1 0 0 1 0 0 

1 0 0 1 0 0 · 1 -SD 0 e-i<f> 0 , (4.16) 

0 0 1 0 0 1 0 sv 1 0 0 1 
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where su and SD are s23 rotations in the U and D, respectively, and ¢u,¢D and¢ 

are the necessary phase redefinitions. This gives the KM matrix 

eit/J s1 eit/J - s2ei<P -s~(sDei<P- su) 

V=LbLn= szeit/J - s 1 ei<P ei<P (sDei<P- su) (4.17) 

-sl(suei<P- sD) (suei<P- sD) 1 

where 1/J = <Pu- cPD· For this matrix to yield the predictions (4.1) and (4.2) 

we impose constraint (4.13), which implies ls1l = j!f!; and ls2l = ~- After 

an additional phase redefinition, the KM matrix can be brought into the form 

introduced in reference[15]: 

V= (4.18) 

where ¢ --+ 1/J - ¢ and s2 --+ -s2 • In (4.18) we do not lose any generality by 

choosing the corresponding angles fh, (}2 and 83 to lie in the first quadrant. 

This form is now seen to result directly from the straightforward diagonaliza

tion of a large class of Yukawa textures. It has the appealing feature that to a 

very good approximation s~, s2 and ¢ are renormalization group invariants, while 

s3 obeys a simple scaling law. Note that while·s1 = j!f!; and s2 = ~are given 

by quark masses and directly yield the predictions (4.1) and (4.2), s3 and ¢are 

determined from IVcbl and IKsl, giving s3 = 0.043 ± 0.007 and, using the numbers 

quoted in (4.1) and (4.2), sin¢= 0.98~:~;[68]. Hence we find that if the Yukawa 

matrices satisfy (4.12) and (4.13); the entire KM matrix can be determined quite 

accurately. 

Since all four independent parameters of this Kl\.f matrix have now been spec-
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ified by CP conserving magnitudes I"Yiil, a crucial question is whether the resulting 

prediction for CP violation agrees with data. Since Vu.s in (4.18) is not real, we 

use a rephase invariant result for the CP violating kaon parameter €(69]: 

(4.19) 

YiYi {[1 3( ) 1 3( ) 2 ] lnyi - X -
4 

+ - 1 - Yi - - -
4 

1 - Yi - + 
~ 2 w-~ 

+ (Yi-+ yi)- ~((1- Yi)(1 - Yi)t1
}, (4.20) 

and T/tt = 0.63, TJct = 0.34 are the QCD correction factors. Note that S(yt) = 

S(yt,Yt)· Using central values we find 

1<::1 _ 2.26 .1Q-3sin4>( v'IJKJK )2( Tnt )2(0.221)2 x 
0.16 GeV 145 GeV l~ul 

S(yt) s1 3 s2 s3 4 TJtt 
[ 0.59 <0.226) 0.061 <0.043) 0.63 + 

S(yc, Yt) St ) 3 s2 S3 2 TJct ] 
+ 0·12o.24. 1Q-3 <0.226 0.061 <0.043) 0.34 . (4.21) 

Here we used Jm(~i(~:)2 ) ~ 2sfs2sjsin4> and lm(~~t(e:?) ~ sis2s~sin<j>. We see 

that the experimental results indicate a large (CP violating) phase 4>, consistent 

with its determination from IVusl· An alternative way of stating the prediction for 

CP violation is via the quantity J [70]: 

= !!iii ~ VJ sin</> = (2.6 ± 0.9)10-5 sin</>. V m. V me 
(4.22) 
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CP asym1netries in B decays 
( 

A good test of this KM matrix comes from looking at the allowed valueS for 

the CP asymmetries in B decays[71). The asymmetries, given by sin2a (coming 

from Bd---+ 1r+1r-) and sin2,8 (coming from Bd---+ ?/JI<s), can be expressed in terms 

of the Cabibbo angle 8c = IVusl, 81 and 82[72): 

sin2a = -2 cos</> sin</>, (4.23) 

. 2,8 28t 82 sin</> ( 8 2 cos</>) 
sm = ., 1 + . 

5;; 81 
(4.24) 

In Figure 3 we plot the allowed region for sin2a and sin2,8. The dotted region 

is the region allowed by the Standard Model[73). The sin2a variation comes mainly 

from the uncertainty in 81 (i.e., from the uncertainties in d and s masses), while the 

sin2,8 variation comes mainly from the uncertainty in 8 2 (i.e., from the uncertainties 

in u and c masses)[62]. Precise measurements of sin2a and sin2,8 will reduce the 

experimental uncertainties on 81 and 8 2 , thereby providing a stringent test of (4.1) 

and (4.2). 

In conclusion, we have shown that ~~:!/ = ~ and ~~:/ = ff. are highly 

successful relations which result from a wide range of models: the Yukawa matrices 

U and D need only satisfy the constraints (4.12) and (4.13). This typically means 

that these matrices have small 11, 13, and 31 entries, and symmetric 12 entries. 

Given the generality of these results, one might question whether IVub/Vcbl and 

lvtd/vtsl c:an be used as a probe of specific mass matrix ansatze in future B-physics 

experiments. The answer is that they can, but only if these schemes are able to 

predict md/ms and mu/mc more accurately than they are currently extracted from 

experiment. 
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4.2 The decay b -+ S! and large tan/3 

Last year CLE0[27] announced the discovery of the decay B --+ J<*(892)-y with 

the average branching ratio 

BR(B--+ I\*1) = (4.5 ± 1.5 ± 0.9)10-5
. (4.25) 

This flavor changing decay is a stringent test of both the Standard Model and 

many theories beyond the Standard Model. In this section, we will study how this 

measurement constrains the parameters of the minimal supersymmetric standard 

model (MSSM) with large value of tan/3, the ratio of vacuum expectation values 

of the two Higgs doublets. 

Considerations of long distance effects show that the origin of this decay is 

most probably the quark level decay b--+ sr[74]. In the Standard Model b--+ sr 

happens at the one loop level via the exchange of a top quark and a W boson 

(Figure 4). Notice that this diagram also changes helicity so that the amplitude is 

proportional to ffib (in the limit ms = 0). 

The QCD corrections to this process can be very large. This is computed by 

running down the coefficients of all relevant operators for this process from the 

weak scale "' Mw down to scale of mb. Many calculations exist([74],[75]), with 

the general result that the rate for b --+ Sr is enhanced 3 to 5 times for top quark 

masses between 160 and 120 GeV. A consensus is that the Standard Model value 

is about[76] 

BRsM(b--+ sr) = (2- 4)10-4
• (4.26) 

However, the largest uncertainties come from the calculation of hadronization, 

i.e. the translation of the total decay rate for b --+ sr to the rate for B --+ I<* ( 892 h. 
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Here the calculations for the fraction of b -+ S! which end up in B -+ J<• (892)/ 

range from about 4% to 40%[77]. We think it is safe to conclude that this implies 

that CLEO's result translates into observed radiative b quark decay rate of 

BRoos(b-+ S!) = 10-3
- w-4 . (4.27) 

This agrees with the Standard Model estimate ( 4.26) and it is a stringent test for 

many theories beyond the Standard Model [78]. 

. In addition to the Standard Model contribution, in supersymmetric theories 

the decay b-+ S/ receives additional contributions from loops which involve su

persymmetric particles. In this section, we will study how CLEO's measurement 

constrains the parameter space in supersymmetric theories. In particular, there 

. might be substantial enhancements in comparison to the Standard Model for large 

values of tan/3 as is the case in some supersymmetric SO(lO) grand unified theo

ries. This in turn constrains the parameter space of the MSSM. A large tan/3 can -

appear naturally in SO(lO) models with one Higgs multiplet where the choice of 

flavor symmetries is such that the only nonzero renormalizable Yukawa coupling 

is that of the third generation. 

Let us now ask how the constraint ( 4.27) affects the MSSM parameters with 

the additional condition of large tan/3. 

MSSM has, in addition to Standard Model parameters, five more parameters: 

JJ, the coupling of H 1H2 in the superpotential; 771, the (SU$Y breaking) squark 

mass; Af, the (SUSY breaking) gaugino mass; A, the (SUSY breaking) trilinear 

scalar term; and B, the (SUSY breaking) coupling of H1H2 [79]. These parameters 
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are then run down to low scales and then compared to experimental limits in order 

to constrain the available phase space. Further reduction of parameters is possible 

by more constraints; for example, flat Kahler metric requires B = A - ih, or we 

might require that the low energy behavior must reproduce the correct scale of 

electroweak breaking. However, here we will not impose any further constraints 

on the five parameters and will keep them free. 

Let us see now how tan/3 is related to the MSSM parameters. The neutral 

direction of the Higgs potential at low energi.es is 

where J.Li,i = 1,2,3 are the parameter J.L scaled (differently) down from the GUT 

scale. The minimum of this potential is found for 

(4.29) 

where B and J.L are the MSSM parameters at the scale considered. 

Large tan/3 arises naturally in the simplest S0(10) theories where the Yukawa 

couplings of the heaviest generation come from a term 163 1016s at a GUT scale, 

where the 163 denotes the matter multiplet of the heaviest generation, and 10 is 

the scalar multiplet which contains the two SU(2) doublets responsible for giving 

the masses to fermions. Such coupling for the heaviest generation, but not for 

the lighter ones, was introduced in several SUSY GUT theories (see, for example, 

[15],[19]) by an ad hoc choice of discrete flavor symmetries. This unification of 

Yukawa couplings combined with the requirement that we obtain correct tau lepton 

and bottom quark masses, gives as a prediction a large value of the top quark mass 

(typically 160-180 GeV), and therefore a large value for tan/3:::::::: ~- From (4.29) 

48 



we have for large tan/3 

1 BJ.L 
tan/3 ~ J.LI + J.L§ • 

(4.30) 

We can explain large tan/3 by having small B or J.L[80]. However, this is not totally 

warranted by approximate symmetries and still requires fine tuning[81]. Therefore 

we still keep all MSSM parameters free even for large tan/3, and look to experiment 

instead. 

Let us see nciw how the observed rate ( 4.27) for the radiative b decay con-

strains the MSSM parameters. First, it is obvious that, for tan.B of order unity, 

no significant enhancement will occur in MSSM over the Standard Model. This is 

because we have, in the additional loops: 1) supersymmetric particles with masses 

of order Mw or larger, from experimental limits, therefore suppressing the loops; 

and 2) the couplings at vertices are certainly not larger than order unity, which the 

Standard Model couplings (g2 ) are. Therefore,· we will only concentrate on loops 

which can have large tan/3 in any of the couplings at the vertices. 

We did a computation of the ratio of the amplitudes of supersymmetric loops 

to the Standard Model contribution 

_ IAsuSYI 
r = IAsMI - (4.31) 

for various values of the MSSM parameters. The value of tan/3 was held large and 

fixed (tan/3 = 60). Since the Standard Model prediction for the decay b--+ S/ is 

within an order of magnitude of the measured value, we have chosen to call a part 

of parameter space "forbidden" when the ratio of the amplitudes was larger than 3 

(r > 3). On the other hand, if r < 3, the supersymmetric amplitude contribution 

is within the experimental and theoretical uncertaintjes of the observed rate, and 
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we call such a solution "allowed." 

There are two diagrams that grow with tan/3. The first one is the chargino ex-

change (Figure 5), where in the loop the fermion partner of charged Higgs doublets 

and the stop particle are exchanged. The vertices with quarks have the Yukawa 

coupling elements .A3s and ..\23 . The change of the helicity of the stop goes through 

a term proportional to A,\3J < H2 >. In order to compare this to the Standard 

Model contribution we must factor out the b quark mass. However, in the loop we 

have .X3s and < H2 >. This then gives a factor of tan/3 after mb = .X3s < H 1 >is 

pulled out. In Figure 6 the allowed and forbidden regions for A and m are shown 

for fixed plausible values of the other parameters (M = 200 GeV, mt = 180 GeV 

and J.L = 10 GeV(dashed line), J.L = 50 GeV(solid line), J.L = 350 GeV(dotted line)). 

The region to the right of the line has r < 3 (allowed), and the region to the left has 

r > 3 (forbidden). It is clear that, for large values of tan/3, the CLEO measurement 

starts to substantially enter the parameter space of the MSSM. The SUSY scalar 

mass parameter m appears to be pushed to higher values for a plausible choice of 

parameters. Numerical calculation show that there is not much dependence on M 

and mt but, as we can see from Figure 6, there is some dependence on J.L. 

It is well known that the down type squarks can receive substantial flavor 

changing contributions from renormalization group running[82]. This can change 

as into b with a factor 

(4.32) 

Therefore, a potentially large (with large tan/3) contribution can come from the 

diagram (Figure 7) with the gluinos and the down type squarks in the loop. The 
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scalar coupling J.lA~ in the diagram comes from the cross term in l8W/8H1l2 where 

(4.33) 

is the relevant part of the superpotential. This effectively couples the "wrong" 

Higgs H 2 to the down Yukawa couplings[83]. Hence in Figure 7, in order to pull 

out a factor of mb, we are again left with a factor of tan/3. An example of our 

numerical results for this contribution is shown in Figure 8 where the allowed and 

forbidden regions for 1\1 and i:h are shown. In this figure, we have again fixed a 

plausible set of the other parameters ( mt = 180 GeV and J.l = 10 Ge V (dotted line), 

J.l = 50 Ge V (solid line), J.l = 130 Ge V (dashed line)). The region to the right of 

the line has r < 3 (allowed), and the region to the left has r > 3 (forbidden). 

This diagram is not as powerful as the chargino contribution mainly because of 

the suppression by small 8mb
23

• However, some excluded parts of the parameter 

space are already comparable to best direct measurements. 

In conclusion, we showed that the CLEO measurement of B ---+ )<~(892)1 

already excludes substantial portions of the parameter space of MSSM, despite 

theoretical and experimental uncertainites that plague the extraction of the rate 

for b -+ s1. Therefore, b -+ S/ proves to be a powerful tool in constraining flavor 

changing models and it is important to further refine theoretical estimates as well 

as do more accurate measurements in the near future . 
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4.3 The flavor structure of proton decay 

In this section we want to study the flavor structure of couplings of effective four . 

fermion operators leading to proton decay in supersymmetric grand unified theories 

(SUSY GUTs). As is well kno\vn, in these theories an effective 5-dimensional 

operator is generated by the exchange of heavy color triplets between two pairs 

of fermions and scalar partners of fermions ( sfermions). Sfermions are converted 

into fermions by an exchange of a wino[84] (so called "wino dressing"), giving the 

effective four fermion operator responsible for the proton decay[85]. 

The couplings of the color triplets to fermions and sfermions define the flavor 

structure of proton decay because they come from Yukawa couplings of matter 

multiplets with Higgs multipets in SUSY GUTs. 

For example, in SO(lO), the simplest Yukawa coupling is a coupling between 

a Higgs of 10 and matter multiplets 16i 

(4.34) 

which is decomposed under SU(2) fields as 

hii { (uiQ; + ujQi + vf L; + v'jLi)HJ + (QiQi + eiuj + ejui- vfdj- v'jclf)He 

+(clfQ; + djQi + eiL; + ejLi)fiJ + (QiLj + Q;Li + uidj- ujclf)He },(4.35) 

where HJ, f!f, He, He are the SU(2) doublets and color triplets of 10, Qi, Li, uf, 

df, ef, vf are the fermion SU(2) doublets and singlets of 16i, and i 1,2,3 is the 

generation label. 

In SU(5), the simplest Yukawa couplings come from. 

(4.36) 
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where 1i and Fi are the SU(5) 10 and 5 matter mulltiplets, and Hand fi are the 

SU(5) 5 and 5 Higgs multiplets. Under SU(2), the multiplets decompose as 

fi{ (uiQ; + ujQi)HJ + (QiQi + eiuj + ejui)Hc} 

(4.37) 

The forms (4.35) and (4.37) are also useful in the case when the Yukawa cou

plings in the theory get generated by higher dimensional operators which reduce 

to effective forms (4.34) or (4.36). Suppose an S0(10) theory has a higher di

mensional operator 16i 45a-L 10 16;. After 45a-L takes a vev in the direction of 

B- L, the higher dimensional operator assumes form (4.34) where the 16i has all 

the fermion fields multiplied with their B- L value. 

Therefore we can write down the most general form of Yukawa couplings of 

matter fields to Higgs doublets and color triplets coming from effective couplings 

(4.34) (or (4.36) in SU(5)) (generation indices suppressed): 

(ucThuQ + vcThv L)HJ + (QThQQ + ecTheuuc _ VcThvddc)Hc 

(4.38) 

where the elements of 3 x 3 matrices hu, hd, ... are simply obtained from the matrix 

hand relevant Clebsches of the higher dimensional operator. 

We can simplify the couplings in (4.38) by going to the basis where up quarks 

and charged leptons are in their mass eigenstates. Matrices hu, hd, he and hv are 

diagonalized by biunitary transformations UaRhaU!L = h'J, a = u, d, e, v, and we 

choose to go to a basis where 

(4.39) 
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This also implies 

(4.40) 

and similarly for heu, hvd and hud. 

By integrating out the heavy triplets He and He from (4.38), we generate five 

dimensional operators in the superpotential 

(4.41) 

where A1e is the mass of the exchanged triplet. 

Dressing of the left handed part of {4.41) with winos produces the effective 

six dimensional operators which contribute to nucleon decays[84]: 

D1.ude - A~e 
2
: [U~Uft- uguft](uidj)(ukez)[f(cl~, vz) + f(ui, clD] 

Ludw - ~e 
2
: [Ui~Uft- uguft](d~ui)(d~vz)[!(uk, ez) + f(ui,clj)], (4.42) 

where d' = V d , and V is the Kobayashi-Maskawa matrix (at the weak scale) and 

u and d are the mass eigenstates of left handed up and down quarks, respectively. 

The f's are the triangle diagram factors, which are functions of scalar masses 

running through the triangle. For simplicity we assume all the scalars to be of the 

same mass, and we set from now on all the f's equal. Hence, 

Luude 1a Q TL Q L 
- Afe 21l"2f[Uik(V U )mz-(U V)imUkz](uidm)(ukez) 

Lt.tddv 1a TQ L TQ. TL 
- Ale 211"2/[(V U V)mnUjz-(V U )m;(V U )nt](dmui)(dnvz),(4.43) 

and we see that the proton decay will crucially depend on the flavor matrices UQ 

and UL, defined in {4.40). 
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===========-------------------~~----~---- ----- ------- --- ---

The Decay p -+ J(+ Vi 

Following the notation of [86]-[87], the rate for the decay p-+ /{+vi is given 

by 

where the chirallagrangian factors are estimated to be mB = 1150 MeV , D = 0.81 

and F = 0.44. The factors Care the coefficients of corresponding operators in the 

Lagrangian and from (4.43) we read off 

1 a T. Q L T Q T L 
- 1\!c 2rr 2f[(V U V)21U1i- (V U h1(V U hi] 

1a TQ L TQ TL 
- 1\!c 2rr 2f[(~ U V)I2U1i -·(V U )n(V -U hi]· (4.45) 

Evaluating the constants, we can rewrite ( 4.44) as 

( + ) 1 ( f3 )2 1 1 ( 2f 2 
r p-+ I< Vi = 2 81 X 1018 yr 0 003GeV3 ( '" ) 2 ( M, ) 2 1 TeV) X 

• • 130MeV l017GeV 

xI [cvruQ1lh~ut- cvruQh~cvruLhi] 0.44 + 

+ [(VTUQV)t2Ut- (VTUQ)n(VTULhi] 1.58 1
2 

• (4.46) 

The decay p -+ [(0 ei 

The decay p -+ /{0 ei 

(m2
- m]-)2 m 

r(p-+ K 0 ei) = 3; 3 [; IC(suuei)(1- -3 p (D- F))l2 (4.47) 
rrmP; mB 

gets a contribution from Luude in (4.43) and we write a formula similar to (4.46) 

. ( 0 ) 1 f3 )') 1 1 2f ') 
r P-+ K _ei = 2 81 1018 (o 003G V 3 - ( '1r · )2 ( M, )2(1T v)- x 

• X yr · e 130MeV l017GeV e 

(4.48) 

55 



Flavor structure 

To completely determine the decay rates we need to know the matrix elements 

inside the square brackets in (4.46) and (4.48), and those aregiven, via UQ and 

UL, by the flavor structure of the underlying SUSY GUT. 

For example, in minimal SU(5) we have from (4.37) 

(4.49) 

If we go to the basis of mass eigenstates for up quarks (hu = diag(Au, Ac, At)) and 

charged leptons (he= diag(Ae,A~,>..r)), hQ also becomes diagonal with the same 

values as hu, up to two phases (phases cannot be absorbed by redefinition of Q 

fields: their phases are already fixed by requiring the diagonal hu to be real), while 

hd = hLT = heVJ = diag(Ae, A~, A-r )VJ = diag(Ad, As, Ab)VJ. The index G on the 

Kobayahi-Maskawa matrix indicates that it is to be evaluated at the scale A1GUr, 

rather than the weak scale. Notice that, by (4.40), in the new basis UQ = hQ and 

uL = hL. To summarize, in SU(5) 

UQ = d,;ag(' .. eill> .. , 'ceill>e, 'teill>c), uL Tr•d"a (' \ \ ) " A~ A A = YQ ~ 9 Ad, As, Ab . (4.50) 

The square brackets of (4.46) are largest for i = 2 (p ~ J<+v~) and are about 

AcAs0babbibo ~ 1.5 X w-7
' giving for the partial lifetime about 3.1 X 1031 yr. The 

square bracket of (4.48) is largest for i = 2 (p ~ J{+Jl.), and is about AuAs ~ 

8.3 X lQ-9 , giving for the partial lifetime about 8.4 X 1034 yr, or a factor of about 

2.7 x 103 longer than p ~ ]{+v~ decay (86). Notice that the charged lepton mode 

in SU(5) is suppressed because UQ is diagonal, and therefore makes the square 

bracket in (4.48) proportional to the small parameter Au. This is a special property 

of SU(5), tracing it back to l8 being proportional to hu. 
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However, the SU(5) group does not predict realistic fermion masses[12]; thus, 

it is hard to believe that such a theory can reliably predict proton decay which, as 

we showed, depends crucially on flavor structure. 

A higher unified group which has realistic fermion masses, such as S0(10), will 

have general Yukawa couplings of the form (4.38). In general, different Clebches of 

triplet and doublet Yukawa couplings will cause hQ to not be proportional to hu., 

and we expect that the charged lepton mode may not to be so severely suppressed. 

Let us see what we can say in general about the decay rates before going to 

a specific example ([19]) in the next section. First, let us assume that all Yukawa 

matrices in (4.38) are of the hierarchical form (A>> B,E >>C)" 

0 z~C 
' 

o. 

hi= ZiG YiEei4> x~B 
' 

(4.51) 

0 XiB A 

where i = u, d, e, v are the ordinary couplings Higgs do:ublet couplings, and i = 

Q, L are the Higgs triplet couplings. Here, for hQ it is understood that a factor 

1/2 multiplies the left hand side. 

For simplicity we assumed the (1,1), (1,3) and (3,1) entries to be zero (most 

of the successful SO(lO) models have tllis property). The coefficients Xi, x~, Yi, Zi, zi 

are Clebsches coming from vevs of fields entering the higher dimensional operators. 

In the SU(5) limit (4.49), XQ =Xu = x~, YQ = Yu., zQ = Zu. =<,XL = xd = Xe, 
' 

By requiring the theory to predict realistic fermion masses and mixings we 

can fix combinations of A, B, C, E and Clebsches from hu. and hd. We require, for 

example, Vcb = (xd-xu.)BjA. The observed fact that Ac(At << As/)...b can easily be 
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~commodated if Yu is much smaller than Yd and E > > B 2 /A. Then As = ydEd and 

Ac = -xux~B2 /A. It also follows that because of the observed Au/ Ac < < Ad/ As, 

ls2l /¥ < ls1l !iiz' for zs of the same order, where s2 = _z!c = - 'f. fii and yzd_ Vzd. c yx;yz~ 

,s1 = z(; = /F.~· We can therefore in principle compute matrices UQ and UL 

responsible for the proton decay. 

The left handed rotations on hu and he are (following the notation of [19]) 

1 0 0 

0 1 0 (4.52) 

0 0 1 0 0 1 

1 0 0 

0 1 0 (4.53) 

0 0 1 0 0 1 

This gives for the proton decay flavor matrices UQ and UL in (4.40) 

1 rfl =-
2 

(4.54) 

(xL- xu)B 

A 

(4.55) 

that UQ is symmetric by definition. Notice that for reasonably small values of xs 

(x < 10), we can write Eb = E£ = Eeirl>. 
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The equations (4.54) and (4.55) are the central result of this section. Given a 

theory we would know the values of different Clebsches and therefore we would be 

able to compute the matrices UQ and UL from equations (4.54) and (4.55). This 

then leads to proton decay rates (4.46) and (4.48). 

The exact result of course depends on the Clebsches from the underlying 

theory that generates the Yukawa couplings. Before we go to a specific example 

in the next section with exact numerical results, let us try to get a feeling for how 

large the rates can be. 

Let us now look at proton decay rates to kaons and muon leptons (i = 2). 

Before estimating the matrix elements note that the neutrino mode ( 4.46) has 

chiral factors 0.44 and 1.58 inside the square brackets as opposed to 0. 70 in muon 

mode (4.48). The flavor structure matrices inside the square brackets wear the 

same indices (2112) both in the neutrino and the muon mode, and are expected 

to be of the same order for all Clebsches of order unity (barring some accidental 

cancellations) So, we expect the neutrino mode to be generally larger than the 

muon mode by at least the chiral factor (2.02/0.70)2 = 8.4. 

First, let us estimate the matrix elements when all the Clebsches are of order 

unity. Then our matrices UQ in (4.54) and uL in (4.55) are of the general form 

(4.51), up to the nonzero (1,1), (1,3) and (3,1) elements. Various multiplications 

of UQ or UL by the KM matrix V, as needed for computation of the decay reates 

(4.46) and (4.48), will not affect seriously sizes of ~heir matrix elements. Hence, in 

the case of Clebsches of order unity we expect fo-r the neutrino mode, from ( 4.46), 

(4.56) 
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and for the muon mode, from (4.48), 

(4.57) 

Thus, in the case of Clebsches of order unity the neutrino mode is larger than the 

muon mode only by the chiral factor 

f(p--+ J(+v~) 12.0212 

r(p--+ K 0 J.L) - I0.70I 2 = 8.4 
(4.58) 

instead of the minimal SU(5) factor of several thousand! 

On the other hand, a large ratio is expected for example if ZQ, the (1,2) element 

of hQ, were very small and other Clebsches of the same order. Whereas in this case 

the proton decay rate to neutrino will stay of the same order as above (,...., p,;sil2 ) 

due to the multiplications with the KM matrix, notice that the muon mode has 

always a UQ element with the row index equal to 1. Looking at the first row of UQ 

in (4.54) we see that, for small ZQ, the terms are proportional to s2. This means 

that 

f(p--+ J<+v~) p.;si2.02l2 . 
f(p--+ 1<0 J.L) - IA;sls20.70I2 = 

94
"
5' (4.59) 

I.e. the charged lepton mode would be considerably smaller but still larger than 

the SU(5) case. 

However, the experiments will not be able to tag the flavor of the neutrino, 

of course, so what we should do is compute the proton decay rate to all neutrinos, 

and then compare to the decay rate for p--+ K 0 J.L. We expect p --+ J<+ve to be 

small because it involves a lighter generation neutrino, but p --+ J<+v.,. need not 

be small, as we will show now[88]. Similar to the case of v~, we expect for the v.,. 

mode 

(4.60) 
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which is of the same size or poss~bly even larger than the v~-' mode (depending on 

the relative signs of the Clebsches). Vve therefore expect the total decay rate to he 

a factor of,.._, 15-20 larger than the J.L mode, rather than the 8.4 from only the vl-l 

mode, for Clebsches of order unity. 

It is interesting to note that if ZQ is small (which we saw is unfavorable for 

the J.l mode), it makes the V-r mode smaller by ls2/s112 ~ 10 as well. The reason 

that the V-r mode is proportional to s2s1 rather than si is as follows. If we look 

at the expression (4.46) for i = 3 we have terms with (VTUL)I3 , (VTUL)I3 and 

Ufs . Now, Ufs is already propqrtional to s2 7 and this is multiplied by (VTUQV)21 

which has a s 1 . (VTULh3 (or (VTUL)23 ) is proportional to sb but these terms are 

multiplied by UQ from the first column (or first row, because UQ is symmetric) 

which is proportional to s2 (for small ·zQ)· 

Previous discussion shows that the muon decay mode in SO(lO) is not expected 

to be hopelessly small as in the minimal SU(5) inode. Depending on the Clebsches 

this mode might be detectable in the near future if the total proton decay rate is 

close to the experimental limit today. Namely, the proposed new proton decay fa

cilities [89] should have an improvement of about a factor of,.._, 10 in rate detection. 

This should be added to the fact that the experiments are by a factor of ,.._, 3 more 

sensitive to the charged lepton mode than the neutrino mode. Again, however, the 

exact rate depends on the Clebsches, and it must be checked for each individual 

model. 

Depending on the model the muon mode may either completely dominate the 

total decay rate, or lead to about 10% for equal Clebsches, or be suppressed for 
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spec~fic choice of Clebsches (small ZQ)· This means that, by measuring the charged 

lepton mode,, or even by not seeing it, the experiments will be able to discriminate 

between different theories. 

Note at this point that the overall proton decay mode goes as p,;j2 rather 

than the naive SU(5) I.As.Acl2 behaviour, which could mean an overall enhancement 

in the decay rate. However, the overall rate depends on the sizes of the Clebsches 

as well as on how the colored triplet mass was generated[28]. 

Finally, we check in Appendix B the SU(5) limit (4.50) of the general expres

sions for UQ and UL in (4.54- 4.55). UQ assumes the diagonal form proportional 

to up quark masses, and UL receives the form as in (4.50), up to first order in 

relevant couplings. 

In conclusion, in a realistic S0{10} model the branching ratio of the proton 

decay to charged lepton mode might be significantly enhanced in contrast to the 

minimal S U {5} model. In particular, the matrix element uS now enters the charged 

lepton decay mode (4.48) and can be expected to be substantially larger than u~, 

on grounds of the underlying flavor structure. 

Let us now look at the class of predictive models discussed in [19]. 

Proton decay branching ratios in 80(10) theories of Anderson et al. 

[19] 

As an example of the discussion in the previous section let us look at the 

"22" texture models ,of [19], i.e. textures coming from four operators 0 33 + 0 23 + 

0 22 + 0 12 , where the indices denote generations. It is the minimal set of operators 
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consistent with fermion masses and mixings. 

There are 9 possible 0 23 and 6 possible 0 22 operators. Although all 6 022 

operators give the same Clebsch for up, down and charged lepton matrices, they 

give different Clebsches to hQ and hL. This means that iri principle proton decays 

could distinguish between those six models. For completeness we list in Appendix 

C the Yukawas for all 54 models. 

\Tile immediately note that zq = - 2\, so we expect the charged lepton decay 

mode to be suppressed as in (4.59). Also, it turns out that the vT mode was not 

too much suppressed. Although it is true that individual terms in the decay rate 

of proton to vT are somewhat smaller than the vJ.L mode term, addition of several 

terms of the same order make vT close to v J.L, and in some cases even slightly bigger. 

We did a full numerical computation of the matrix elements for all neutrino 

modes and the muon mode. Results for the most realistic models are shown in 

Table 4. The ratio of proton decay rate to all neutrinos over the proton decay rate 

to muon is typically between 100 and 200 for most of the models, with the lowest 

number being 96, for the model 022 = 5, 0 23 = 7. 

Although rates to the charged lepton mode are substantially higher in models 

of Anderson et al.[19] than in the SU(5) case, they are still small and will probably 

escape detection in the future proton decay experiments. The muon mode in this 

class of models is suppressed because of the two reasons mentioned above, namely 

small zq and the rates to vJ.L and vT being of the same order. But, in the general 

case as shown in the previous section, there is no reason to believe that the charged 

lepton mode is suppressed. Therefore, we strongly support the searches for charged 

lepton mode as they are a powe1ful method to distinguish between different models. 
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Appendix A. Forms of U and D with the additional con

straint IYiil = IYJil 

Let us try to find the most general forms of symmetric U and D which lead to 

(4.1) and (4.2), 

!Vwl ~ 
!Vcbl = v -.,;,c ~ 0.061 ± 0.009, (A.1) 

and 

(A.2) 

We neglect phases for simplicity. As mentioned before, we assume no accidental 

cancellations, so if a sum of two elements is small it is because they are both small. 

First, because of symmetry, expressions (4.5)-(4.10) simplify: s~ = s~ = f: and 

therefore 

and 

- - y23 
Yl2 = Y:n = Yl2- Yl3y

33 
, 

- - y23 
Yl3 = Y:n = Yl3 + Yl2y

33
, 

y ,y Yi3 
S13 = 8 13 =-' y33 

Y 1Y Yi2 
5 12 = 5 12 = y33 ' 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

We will express all mass matrix elements in terms of their eigenvalues (recall that 

m 1 = Y11 , m 2 = f;2 and m3 = Y33). Because of our assumption of no accidental 

cancellations we divide possible forms into two categories: either }'22 < < m 2 and 
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Now we use conditions (4.12). and (4.13). Let us first use condition (4.13) 

because it does not depend on whether Y is U or D. It tells us that 

Yl2 = y'm1m2, (A.8) 

(A.9) 

(A.lO) 

Since Y23 < y'm2m3 (from m2 = 'P22), it follows from equations (A.8) and (A.10) 

that }12 = y'm1m2 and }13 << y'm1m3. Therefore the symmetric U and D that 

obey (4.13) must tal.;:e one of the following forms: 

y;2 
where 1'22 < < Va;, or 

where }'22 >> ~· 

(Yl3 < < y'm1m3) 

(Y23 << y'm2m3) 

(A.ll) 

(A.12) 

Let us now use the constraint ( 4.12) which will further constrain some of the 

bracketed elements in (A.ll) or (A.12). Using reasonable values for quark masses 

we see that in (4.12) the more stringent constraint is 

(A.13) 

r 
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where s.13 = sg- sfs and s23 = sg- sfs .. \:Ve use u1 = 1nu, u2 = me, etc. In 

particular, both sf3 and sfs must be less than .jif£s23: 

(A.14) 

(A.15) 

Notice that consistency of solutions. is automatically obeyed since ydd, d2 < < fiii 
3 V u2 

and Ju1u2 << &. for reasonable quark masses. Therefore, we conclude that 
11.3 v tl2 

limits on U13 and D 13 may be somewhat stringent: 

(A.16) 

(A.17) 

If U or D is of type (A.l2) somewhat stringent limits on U23 and D 23 are also 

possible: 
") 

u23 <<min{~, u:;s23} = c, 
u2 , 

(A.18) 

(A.l9) 

We can now write possible forms of symmetric U and D which lead to success-

ful predictions (A.l) and (A.2). There are four possibilities depending on whether 

U or D take on the form (A.ll) or (A.12)[90) 

1) 

U= (A.20) 
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D= 

2) 

D= 

3) 

4) 

~ (D13 << ~l¥!i) (Du << di) 

~ (D22 << d2 ) ~ . (A.21) 

(D13 << ~l¥!i) 

(U13 << ..jU'i'U3) 

(U23 << Ju;U3) 

(U13 << ..jU'i'U3) (U23 << Ju;U3) U3 

~ (Du << di) 

~ (D22 << ~) 

(DI3 << ~/ff) 

~ 

(DI3 << ~/ff) 

(Uu << u1) 

U= yUlu2 

(UI3 <<a) 

(Du << d1) 

D= ~ 

U= 

~ 

(UI3 <<a) 

(D13 <<b) 

(D23 <<d) 

yUlu2 (U13 <<a) 

(U23 <<c) 

(U13 <<a) (U23 <<c) u3 

(Du << d1) 

D= ~ 

(Dt3 <<b) 

(D23 <<d) 

(D13 <<b) (D23 <<d) d3 
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(A.22) 

. (A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 



where a,b,c and d are given in equations (A.l6)-(A.l9). 

In the above it is understood that U23 and D23 cannot be simultaneo~sly equal 

to zero since they are constrained by the Condition Vcb = S23. 

Some specific mass matrix ansatze can be recovered by setting the bracketed 

elements to zero. For example, 1) contains the Fritzsch scheme[9], while 2) is 

the generalization of the Harvey, Reiss and Ramond form[13]. Nevertheless, it is 

important to notice that although the bracketed elements can in many cases be 

set to zero, they need not to be. As long as they obey the limits, relations (A.l) 

and (A.2) will follow. For example, Y}3 can be as big as Y}2 ! 

Appendix B. SU(5) limit of matrices UQ and UL 

Let us look at the SU(5) limit of (4.54-4.55). We can rewrite UQ in terms of 

quantities that vanish in the SU(5) limit (4.49): ~XQ = xq- x~,~xu = x~- xu, 

(B.l) 

where Au = Zu~:c2 , Ac = YuEu, At = A, S2 = -1~ = /f./f., and ~~ -
· ~z +~z "4> Q Q ·4> B2 

-s2Ac 9
zu "et u + s2~U22 , and ~U22 = ~YQEet - ~XQ x,A. . 

Similarly, we rewrite UL in terms of ~XLd . x~ - xd, ~YLd 
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(B.2) 

h Z4C _ /Id fg;{ ~ _ ( (1 + .O.z,.d))~ U.L _ A E i<f> w ere sl = A4 - V ~ V zd' S2e = - As- - -sl . zd As-' 22d - t..J.YLd e -

(!:::,.x.£dXd + l:::,.xedXd + 6xLd6Xed) .a; and U§2e = 6yLeEei<P - l:::,.xLeXe ~
2

• 

We can easily check the SU(5) limit (4.50) (all 6s going to zero); UQ assumes 

the diagonal form proportional to up quark masses, and U L receives the form as 

in (4.50), namely UL ~ Vadiag(.Xd, ..\8 , .Xb), up to the leading order in relevant 

couplings. 

Appendix C. Yukawa matrices for the ''22" textures of 

(19] 

Here we list the mass matrices as well as hQ and hL of the 6 0:22 and 9 0 23 models 

in. the "22" texture of [19]. It is interesting to note that although mass matrices 

hv.,hd and.he do not disinguish between the 6 0 22 models, hQ,hL and hv do. ~lso 

note that ZQ is small. 
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0 

hv = 125C 

0 

hu= _c 
27 

0 

125C 

(_2 2 6 2 6 _..2..)Eei<f> 
5'5' '5' ' 25 

0 

0 (1, -1, 1, -1, -4, -4, 1, -1, 1)B 

0 c 

0 (-3,-9,1,3,-18,6,1,3,9)B 

c 
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0 

(0, 0, 0, 0, 0, 0, ~, -~, 1 )B (C.1) 

A 

0 

( --:4,-4,-4, -4, -4, -4, 1, 1, 1)B 

A 

0 

(-2,6, -2,6,6,6, ~, -~, l)B (C.3) 

A 

0 

A 

(C.4) 



0 c 0 -27 

1 
hQ =- c ( _2 _2 _! 2 ! ~)Eei<P (1, 1, 1, 1, 1, 1, 1, 1, 1)B (C.5) 

2 -27 4' 2' 2'2'2'4 

0 (1, 1, 1,1, 1, 1, 1, 1, 1)B A 

c 0 

( -~, 1, -~, 1, 1, 1, ~' -1, 1)B (C.6) 

0 ( -3, -3, 1, 1, -3, 1, 1, 1, l)B A 
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Figure 1: A model for Yukawa couplings. The fi are the matter fields of flavor i, H 

is the Higgs doublet and </>i are some scalars which carry flavor i. When the heavy 

ferrnions of mass A1 are integrated out we are left with an effective interaction 

r:}2 (fi4>i)H(Ji4>;) (we assumed that the coupling at the vertices in the figure are 

of order unity). When the scalars </>i assume their vacuum expectation values, the 

flavor symmetries get broken, and we are left with an effective Yukawa. coupling 

fifj, where fi =< </>i > fl\1. 
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Figure 2: The allowed parameter space in our example is shown, bounded by 

solid lines. We have assumed Tv < Tmin ~ 102 GeV and required Tx > lOTmin 

and mx > 45GeV. The diagonal dotted lines are lines of constant Tv, and are 

labeled in GeV. Our parameter 111 is also constant on these dotted lineS, 111 = 

2.9 x 104 
( 6Jv) 314 

GeV. On the dot-dashed line the entropy of the universe is 

increased by 10% \•vhen X particles decay. In determining this line as well as the 

top boundary line we have assumed that X particle gauge interactions freeze out 

according to the standard cold relic freeze out criteria. Vve have made conservative 

assumptions in determining the relative increase in entropy upon X decay, allowing 

the cosmic scale factor to scale as tn where n ranges from 1/2 to 2/3. V-/e have 

used a. value for 17 at the time of nucleosynthesis equal to ( ~1 ) 3 x I0-10 . 
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Figure 3: The allowed region (solid line) for CP asymmetries sin2a: and sin2/3 using 

relations Vub/Vcb = )mu/mc and 'Vtd/'Vts = Jmd/ms. The dotted region is allowed 

by the Standard Model. 
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l¥ 

Figure 4: Standard Model contribution to the decay b -+ S/'. A photon is under

stood to be attached to any of the lines. 
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Figure 5: Leading chargino contribution to the decay b --+ S"f when tan/3 is large. 

A photon is understood to be attached to any of the lines of the charged particles. 
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1njGeV 

Figure 6: Limits on the MSSM parameters m and A from the chargino loop con-

tribution to radiative b decay when t.an/3 is large. The lines represent. 1· = 3 for dif-

ferent values of J-L: J-L = lOGeV (dashed line), J-L = 50GeV (solid line), J-L = .350GeV 

(dotted line), tanf3 = 60; mt = 180 GeV and !11 = 200 GeV. There is not much de

pendence on mt (when varied between 150GeV and 180GeV) and !11 (when varied 

between 100 GeV and 400 GeV). 
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Figure 7: Gluino contribution to the decay b - S'"'f. The flavor changing scalar 

vertex 8m~23 comes from renormaliza.tion group running. A photon is understood 

to be attached to any of the lines of the charged particles. 
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Figure 8: Limits on the MSSM parameters m and A1 from the gluino loop contribu-

tion to radiative b decay when tanB is large. The lines represent r = 3 for different 

values of p.: p. = 10 GeV (dotted line), J-l = 50 GeV (solid line), p. = 130 GeV 

(dashed line), tan/3 = 60 and 1nt = 180 GeV. There is not much dependence on 7nr 

(when varied between 150 GeV and 180 GeV). 
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t 

FIELD FLAVOR SYMMETRY BREAKING PARAMETER 

Qi ..fiiift 

ui ~1]" t 

Di JF:~i 

Li, Ei R 1 

Table 1: The ansatz for flavor symmetry breaking pa.rama.ters associated with the 

chiral fermion fields. 17i = ;mu: and ti = f"'i'iii. . v -;;:;- . v --;;-
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process !11 jGeV(250GeV/vi) 

J.L ~ 3e 1 

J.L ~ e"f 4 

p.N ~eN ' 10 

/{0 ~ JL±e':f L . 20 

Bd ~ r+r- 20 eo-~)~ 
B.R. 

Bs ~ J.L+ J.L- 70 eo-")~ 
B.R. 

D.m(B~- B~) 400 ..fo. 
D.m.(/{o _ f<O) 500 ..fi 

Table 2: Experimental lower limits on the exchanged scalar masses. 
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ansatz sin2 (20es.<) sin2 (2Ber) sin2 (2Bs.<r) 

I 2 x w-2 w-3 0.2 

II 0.2 0.1 0.8 

III 2 x w-3 8 x w-6 2 x w-2 

Table 3: Neutrino mixing angle predictions in the three ansatze introduced. As 

noted in the text, these results are meant as estimates rather than precise calcu

lations. 
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22modcl 23model 
q,. ,,- ..... ) I'!;• ,,~ ••. .] I'(,,_,, "•1 L: q, ". "·I 
I .. (P· 1\.~c,, n,. ;.-o., nr>- ;.;o,, l'(p--J{O,. 

I 1 2.26 67.6 43.4 113.3 

I 3 2.41 72.6 57.9 132.9 

1 4 3.47 95.9 73.0 I72A 

1 6 3.35 92.3 102.3 198.0 

1 7 4.45 106.3 104.1 214.9 

I 8 3.36 83.7 86.3 173.3 

2 1 2.55 69.4 48.3 120.2 

2 3 2.69 73.3 63.1 139.1 

2 4 3.85 100.6 80.0 184.4 

2 6 3.89 101.8 118.2 223.9 

2 7 4.44 107.8 104.2 216.4 

2 8 3.01 74.6 77.2 I54.8 

3 I 1.5I 53.1 47.9 I02.5 

3 3 1.63 58.1 62.6 122.2 

3 4 3.65 108.3 96.2 208.I 

3 6 0 3.63 I07.4 139.6 250.6 

3 7 5.92 139.6 128.I 273.6 

3 8 2.8I 70.3 73.2 I46.2 

4 1 4.0I 92.0 40.2 136.2 

4 3 4.IO 93.8 53.4 I51.3 

4 4 3.57 83.7 54.2 141.5 

4 6 3.41 / 79.9 75.0 158.3 

4 7 2.86 72.0 77.1 151.9 

4 8 3.79 93.1 95.3 192.2 

5 I 5.52 115.6 28.2 149.3 

5 3 5.52 114.6 39.2 159.3 

5 4 3.12 67.6 33.1 103.8 

5 6 2.75 59.4 41.7 103.9 

5 7 1.58 41.8 53.2 96.6 

5 8 6.08 148.1 149.1 303.3 

6 1 3.72 87.4 42.4 133.5 

.6 3 3.83 89.6 56.0 149.4 

6 4 3.66 87.3 . 59.4 150.4 

6 6 3.55 84.8 83.7 172.1 

6 7 3.15 78.8 82.3 164.2 

6 8 3.54 87.1 89.4 180.0 

Table 4: Ratios of proton decay rates to neutrinos over the rate to muons in models 

of [19). 
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