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ABSTRACT 

A molecular-thermodynamic model is developed for salt-induced protein precipitation; the 

model considers the aqueous solution of globular protein molecules as a pseudo one

component system containing macroions which interact through electrostatic charge-charge 

repulsion, dispersive attraction, hydrophobic interactions, and forces arising from ion

excluded volume. Forces from ion-excluded volume take into account formation of ion 

pairs and ionic clusters at high salt concentrations; they are calculated in the context of the 

Percus-Yevick integral-equation theocy. Hydrophobic interactions between exposed non

polar amino-acid residues on the surfaces of the protein molecules are modeled as short-: 

range, attractive interactions between "spherical caps" on the surfaces of the protein 

polyions. An equation of state is derived using perturbation theocy. From this equation of 

state we calculate liquid-liquid equilibria. i.e., equilibrium between an aqueous phase dilute 

in protein and another aqueous phase rich in protein; the latter represents "precipitated" 

protein. In the equation of state, center-to-center, spherically symmetric macroion

macroion interactions are described by the random-phase approximation, while the 

orientation-dependent short-range hydrophobic interaction is incorporated through the 

perturbation theory of associating fluids. The results obtained here suggest that either free

volume or hydrophobic-bonding effects can precipitate proteins in aqueous solutions with 

high salt concentrations. 
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1. INTRODUCTION 

In research laboratories and in the biochemical industries, precipitation is commonly 

used to separate and isolate proteins from solutions. This technique has been applied to the 

recovery of proteins such as insulin, diagnostic enzymes, human growth hormone, and 

interferon (McGregor, 1983). Separation is achieved through addition of precipitating 

agents such as inorganic salts at high concentrations, nonionic polymers, polyelectrolytes, 
--

and organic solvents. (See, for example, Foster.et al., 1973; Haire et al., 1984; Shih et al., 

1992). 

In most previous studies, protein precipitation in concentrated salt solutions has 

been understood as phase separation resulting in a solid phase (i.e. the protein precipitate) 

and a saturated protein liquid phase. Traditionally, quantitative characterization has been 

expressed through the protein solubility, i.e., the protein concentration in the equilibrium 

liquid phase. Experimental data indicate that, at fiXed temperature, the concentration of 

protein in the liquid phase is a function of protein size and concentration, electrolyte 

concentration and type, pH of the solution (i.e., net charge on the protein), and 

interactions between exposed hydrophobic residues on the surface of the protein (Arakawa 

and Timasheff, 1982; 1984). 

However, recent experimental results (Shih et al., 1992) on bovine serum albumin 

and a-chymotrypsin suggest that salt-induced protein precipitation may be more 

appropriately viewed as phase separation resulting in two fluid phases: a light 

(supernatant) fluid phase lean in protein, in equilibrium with a dense (precipitate) fluid 

phase rich in protein but also containing appreciable amounts of water and salt According 

to this view, the degree of separation is appropriately characterized not by the protein 

concentration in the light phase but by the distribution coefficient, Ke, which is defined as 

3 

, ,. r. 



the ratio of the protein concentration in the dense precipitate phase to that in the light 

supernatant phase. 

To establish a rational basis for designing a protein-precipitation process, it is 

useful to develop a model to ·provide a theoretical framework for interpretation and 

correlation of protein-precipitation data. The apparent solubility of a protein has been 

successfully correlated by the Cohn equation, which gives a simple relation between the 

protein concentration in the light phase and electrolyte ionic strength (Melander and 

Horvath, 1977; Arakawa and Timasheff, 1984). Melander and Horvath showed that the 

functional form of the Cohn equation may be interpreted on the basis of solvophobic 

effects. Recent theoretical studies have been directed at developing more fundamental 

models that account for the diverse interactions between the constituents in the protein 

solution on a molecular level. For example, Mahadevan and Hall (1990, 1992) presented a 

model, based on Barker-Henderson perturbation theory, for protein precipitation by a 

nonionic polymer. Vlachy, Blanch and Prausnitz (1993) describe a model for liquid-liquid 

phase separation for solutions of colloids and globular proteins, based on the random

phase approximation. However, these recent theoretical studies are concerned with 

aqueous solutions where the electrolyte concentration is less than 0.1 molar. Experimental 

studies clearly show that protein precipitation by salts requires electrolyte concentration in 

the range 1-10 molar. 

This work presents a molecular-thermodynamic model for protein precipitation by 

inorganic salts. Particular attention is given to highly concentrated salt solutions. The 

procedure employed here represents the ternary solution (protein, electrolyte, and water) as 

a pseudo-one-component system containing only a continuous solvent and globular protein 

molecules. The solvent is an aqueous salt solution. The effect of the solvent on protein

protein interactions is taken into account through the strong influence that it exerts on the 
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following: electrostatic (charge-charge) repulsion, dispersive attraction, ion-excluded

volume attractive forces, and interactions between exposed hydrophobic groups on the 

surfaces of two or more protein molecules. Despite its simplicity, the one-component 

representation has been successful in explaining some experimental properties of colloidal 

dispersions (Grimson, 1983) and globular-protein solutions (Vlachy, et al.; 1992). A 

powerful advantage of this representation is that f"mal results are based on analytical 

solutions to statistical-mechanical theories. 

Derivations of effective potentials are discussed in Section 2. Section 3 presents a 

derivation of the molecular-thermodynamic equation-of-state model for protein solutions 

based on the random-phase approximation and the perturbation theory of association. 

Section 4 gives some results of model calculations. 

2. PROTEIN-PROTEIN INTERACTION POTENTIALS 

In the one-component model, aqueous solutions of globular proteins are 

represented by an assembly of spherical macroions which interact via effective solvent

dependent potentials. The potential of mean force, W(r), between protein molecules (with 

diameter dp and net charge Zp) is given by the sum of five potentials: 

(1) 

where r is the center-to-center distance. Here, W hs(r) is the hard-sphere potential, W e~ec(r) 

is the screened Coulombic potential due to electrostatic repulsion, W .usp(r) is the attractive 

dispersion potential, and W a(r) is the potential due to excluded-volume effects. These 

four terms are spherically symmetric center-to-center potentials. Why (r, m) represents the 
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interactions between exposed hydrophobic groups on the surfaces of the proteins; this 

potential depends not only on r but also on molecular relative orientation. indicated by m. 

Hard-sphere and electrostatic repulsions between proteins are represented by: 

W11,(r) = 00 rS:dp (2a) 

=0 r>dp (2b) 

We~ec(r) = B exp( -l(r) r>dp (2c) 
-- kT r 

where B = z! LB exp(KliP)/(1 + Kll/2i and Bjerrum length LB = {3e2 I 4tre
0
e,. In eq. 

(2c) zpe is the charge on the polyion, f3 = 1/kT, k denotes Boltzmann's constant, e0 er 

represents the dielectric permittivity of the solvent, and rl is the Debye screening length. 

where JC
2 = 8nLBN,l and ionic strength I= 0.5(z!,pQif + z!,p-); N A is Avogadro's 

number. and Zan and Zcat are the anion and cation valences, respectively; and Pan and Pear 

are the ionic number densities. 

The attractive dispersion interaction wdisp(r) is given by the following expression 

(Verwey and Overbeek, 1948): 

(3) 

where H represents the Hamaker constant For large values of r, eq. (3) reduces to 

Wdis (r) = -.!!_ (dp)
6 

P 36 r 
for r >> dp~ (4) 
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Eq. (4) is the simplified large-r limit for wdisp(r). This form of the dispersion potential has 

been used successfully in modeling phase separation of colloidal systems (Grimson, 

1983). We recognize.that, as r approaches dp. eq. (4) underestimates the contribution of 

. dispersion forces to the total potential of mean force. However, upon using eq. (4) instead 

of eq. (3), we can obtain an analytic equation of state for calculating phase equilibria. 

Ion-Excluded· Vohime Potential 

The term WeJr) in eq. (1) accounts for the interaction between a pair of protein 

macroions due to the excluded volume of ions in solution. The literature has reported 

experimental and theoretical studies of the effect of volume exclusion by solvent or small 

solutes on macromolecular interactions (lsraelachvili, 1985; Henderson and Lozada

Cassou, 1986; Henderson, 1988). Henderson and coworkers computed the potentials of 

mean force for two large rigid hard spheres immersed in a one-component hard-sphere 

fluid (Henderson and Lozada-Cassou, 1986; Henderson, 1988) and the adhesive hard

sphere fluid (Jarnnik et al, 1991), in the context of the Percus-Yevick (PY) integral

equation theory. Their results reve~ that the PY theory provides semi-quantitative 

description of experimental results (Henderson, 1992). 

For concentrated. salt systems typically used in protein precipitation, ion pairs and 

larger ionic clusters are expected to form in the electrolyte solution (Robinson and Stokes, 

1959). These ionic aggregates have an important effect on the ion-excluded-volume 

potential of mean force, W a- ( r), between protein macro ions because the diameter of an ion 

cluster is appreciably larger than that of a single ion; cluster formation increases the ion

excluded-volume effect. This potential of mean force can be obtained from the radial 

distribution function g3irJ between two protein particles (denoted by subscript 3), 
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separated by a center-to-center distance r, in a system of ionic clusters. In our model, 

Wu(r) is obtained by solving for g3irJ, at infinite dilution, for two large hard spheres 

immersed in a binary system of much smaller ions (denoted by subscripts 1 and 2), with 

diameters d1 and d2, and number densities p1 and p2• The interactions between like ionic 

species, i.e., 1-1 and 2-2 interactions, follow the simple repulsive hard-sphere potential. 

Cation-anion interactions are described by the adhesive hard-sphere potential, which leads 

to formation of bonds between unlike species; the bonded species are ionic clusters. The 

adhesive hard-sphere (AHS) model (Baxter, 1968b) is defmed below in terms of the total 

and direct correlation functions, h;/r) and ciJ(r), respectively. This simple adhesive hard

sphere system is able to model aggregation of small "ionic" particles; it is used to mimic the 

formation of ion pairs and ionic clusters from anions and cations in the electrolyte solution. 

This simple calculation assumes that the electrostatics between ions are adequately taken 

into account through the electrostatic potential WereJr). The potential of mean force We.Jr) 

can be calculated from the protein-protein radial distribution function g3irJ from the 

following equation (McQuarrie, 1975): 

(5) 

where h3irJ is the total correlation function in the limit P3 = 0. 

To obtain WexCr), we consider the three-component system which consists of 

species 1 (ion), 2 (ion) and 3 (protein). The function g3irJ is obtained by solving the set 

of multi-component Omstein-Zernike (OZ) integral equations 

h;i(r) = cij(r) + LP~c J cik(s) hki(r-s) ds (6) 
/c 
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for finite values of p 1 and p2 and in the limit p3=0. To obtain a solution, we use the 

Percus-Yevick (PY) approximation. For the adhesive hard-sphere system considered here, 

the PY theory provides the following boundary conditions to the OZ equation: 

A.. d .. 
h.. (r) = -l+ __!L_!L o ( r - d .. ) ., 12 IJ 

(7) 

and 

ci;{r) = 0 r > dij (for all ij pairs) (8) 

where A,ii = 0 for ij :1: 12 or 21. Due to symmetry, A-12=~1• Equation (7) implies that the 

interactions between species 1-1, 2-2, 3-3, 1-3 and 2-3 are determined by hard-sphere 

potentials. Clustering between species 1 and 2 is explicitly accounted for by the Dirac delta 

function o(r- ~2 ) which is defined so that f f(r)6(r-d, 2 )dr= f(r=,;du>· Parameter A-12 
0 

takes into account the average number of 1-2 direct contacts that are formed in the system; it 

is related to N12 , the average number of species-2 ions that have direct bonds with a 

species-! ion by 

(9) 

where 7]2 = np2tJi /6. When ~2 = 1, each species-I ion, on the average, bas one species-

2 bonded neighbor. When the electrolyte is a symmetric salt, Nu = Nn. However, for 

asymmetric electrolytes, N21 = Nn(z21ZJ), where ZJ and Z2 are the ion valences. 

Because of the short-range nature of cJr), the OZ equation may be solved through 

the use of the. Wiener-Hopf factorization technique (Baxter, 1968a). The resulting equation 

for the protein-protein total correlation function h 3 j( r) is decoupled from the total 
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correlation function c3 j(r), and can be shown to follow the equation below (Perram and 

Smith, 1977; Barboy and Tenne, 1979; Chiew, 1991): 

2 d!l: 

rh3:lr)= -q;;(r) + 21r LA]dtqJk(t)(r-t)fza(r-t) 
k=l s.lk 

(10) 

where sij = (d;,-djj)/2. The functions h13(r) and h23(r) represent the protein-ion total 

correlation functions; they are obtained from 

2 da: 

rha(r) = -q~(r) + 21r LA J dtqil:ft)(r-t) hkJ(r-t). 
k=l Sit 

In the above equations, function q;/r) is given by 

- a; 2 2 d Aqd5 q .. (r)--(r -d .. )+b.(r- . .)+--
" 2 lJ I lJ 12 

= 0 

and 

=0 

for r>d·· I) 

for Sy< r < dij 

for r > dij 

(11) 

(12a) 

(12b) 

(13a) 

(13b) 

where A.ij = 0 for ij :t: 12 or 21. The PY solution provides the following expressions for 

parameters a; and b; (fori~ 1,2 and 3): 

a. = 1- H + 3diiG _ ~ §. _ ~ 0i
2 

I (1- H)2 (1 - H) il (1- H) 
(14a) 

b. = _ 3di~G + d;;l; o. + dii~ 0_ 
I 2(1 - H)2 2{1- H) I] 2(1- H) i2 

(14b) 

~; l),A/2( d: J . (14c) 
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(14d) 

(14e) 

(14f) 

and the inequality 

(14g) 

Here oij is the Kronecker delta, i.e., oij = 1 for i = j, and zero otherwise. The second and 

third terms on the right hand sides of eqs. (14a) and (14b) vanish if i :;t: 1 and 2, 

respectively. Eqs. (12) through (14a-14f) are the PY analytic solution of the OZ integral 

equation, i.e., eq. (6), subject to the boundary conditions given by eqs. (7) and (8). The 

PY solution further requires that the inequality given by eq. (14g) must be satisfied to 

ensure physically admissible solutions (Baxter, 1968; Barboy and Tenne, 1979); this 

means that lt12 or N12 depend on the density of the system and must be properly chosen for 

model calculations. The total correlation function h3 j(r) is obtained by IIrst calculating 

h13(r) and h2j(r) from eq.(ll), followed by solving h3jr) from eq.(10); these calculations 

can be performed using the simple numerical procedure proposed' by Perram (1975). That 

calculation is much simpler than solving the set of multi-component Omstein-Zemike 

integral equations (i.e., eq. (6)) simultaneously through a Fourier-transform technique. 

The potential W ex( r) is related to h 33( r) by eq. (5); it is independent of protein 

concentration, and depends only on the number densities of ions (species 1 and 2), ion 

diameters db d2, and parameter N12 that characterizes the degree of ion clustering. 

Densities p1 and p2 are related by the stoichiometric relation z1p1 + z2p2 = 0, where z1 and 

z2 are the valences of the ions. 
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Figure 1 shows the computed potential of mean force Wexfr)/kT plotted as a 

function of pro~in-protein center-to-center distance r for a salt solution containing ions 

with diameters d1 = 4.6A and d2 = 2.96A, lzJI = 2, lz21 = 1, at a salt concentration Cs = 0.5 

moles/liter, with dp = 40A, for different values of N12• Potential W exfr)lkT is attractive 

and the range of the potential increases with N12, the degree of ionic clustering. This 

behavior implies that at high salt concentrations, when ionic pairs and clusters are formed, 

the interaction between protein macroions becomes increasingly attractive; it is this 

attraction that has a major influence on phase separation. 

In this approximate calculation for the effect of the excluded-volume interaction of 

ions on g3 j(r), we have assumed that the electrostatics in the system are adequately taken 

into account by the screened Coulombic potential We~eJr) given in eq. (2c). Thus, at high 

salt concentrations, since the Debye parameter 'Kdp is large, electrostatic interacti<;>ns are 

essentially eliminated and should play a minor role in phase separation. In practice, 

however, as proteins approach contact, the discrete nature of the charges on the surface of 

the protein molecules may give rise to electrostatic interactions that cannot be accurately 

described by a simple screened Coulombic repulsion term. Since it has been observed 

experimentally that high salt concentrations are required to bring about phase separation, 

the contribution of anion and cation clustering to the excluded-volume interaction W e.ir) 

plays an important role in the phase separation of proteins; this role is explicitly taken into 

account through the adhesive hard-sphere model potentials outlined above. 
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Hydrophobic Interactions 

The hydrophobic interaction between exposed non-polar amino acid residues on the 

suifaces of the protein molecules is, in general, attractive, short-range, and orientation

dependent. Hydrophobic bonds are formed when two hydrophobic groups come into 

contact with each other, and cause association or aggregation of protein molecules in the 

system. In this work, hydrophobic interaction is represented by a potential model used for 

associati~g fluids (Jackson et al, 1988). The shapes of these hydrophobic groups are 

idealized as "circular patches" or "spherical caps" located on the surface of the macroion. 

As indicated in Figure 2, interaction potential W~~y(r12 ) between hydrophobic "patch" A on 

the surface of particle 1 and hydrophobic "patch" Bon the surface of particle 2 is defmed 

such that 

= 0 ; otherwise (15) 

where diK represents the vector joining the center of particle i to the center of patch K 

(located on the surface of particle i). The quantity r 12 denotes the vector joining the center 

of molecule 1 to the center of molecule 2. The vector dot product du. • r12 = cos81 where 

angle 81 denotes the angle between r12 and d1K. Angle 82 is defined in a similar manner. 

Hence, two hydrophobic "patches" on two different particles are considered to form a 

"bond" if the centers of the two particles ar~ within a distance r12,c from each other, and the 

two hydrophobic groups satisfy the orientation constraints d1,A • r12 S cos81,c and 

-d2,8 • r12 S cos82,c. The quantities r l2,c• 81 ,c• and e2,c characterize the range of the 

hydrophobic interaction and the sizes of the hydrophobic groups. 
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3. EQUATION OF STATE 

Having established and defined pertinent potentials of mean force, it is now 

necessary to construct a molecular-thennodynamic model which relates these potentials to 

macroscopic thermodynamic properties. In this work, that model is based on perturbation 

theory. The center-to-center spherically symmetrical electrostatic, dispersion and excluded

volume interactions are incorporated into the model in the context of the random-phase 

approximation. The orientation-dependent hydrophobic interaction is included through the 

first-order perturbation theory of associating fluids fonnulated by Wertheim (1986, 1987). 

The Random Phase Approximation (RP A) has been used previously to model the 

phase transition and structure factor of colloids (Grimson, 1983), and to describe liquid

liquid phase separation of proteins due to addition of polymers (Mahadevan and Hall, 

1990, 1992; Vlachy et al, 1993). In the RPA, an assembly of hard spheres is used as the 

reference system, while the remaining spherically symmetric interactions are treated as 

perturbations. Following Grimson (1983) and Vlachy, et. al (1993), the compressibility 

factor Zsym due to spherically symmetric potentials within the RP A is expressed as 

p z =-
sym pkT 

= Z + z = phs + pU 
'hs pert pkT 2kT 

(16) 

Here P~~s represents the pressure of the hard-sphere fluid; p=pp is the number density of 

protein molecules; and the energy per unit density U is given by 

(17) 

Because U is an energy per unit density; it is assumed to be independent of protein density; 

U depends only on potentials of mean force between protein molecules. The residual 
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Helmholtz energy per molecule ares I kT is defined as ( alkT)10taJ- ( alkT)id~l gas at the same 

temperature and density; it is given by 

ares ares ares ares pU . - = --l!L + _!!!!!.. = _j}£_ + --. 
kT kT kT kT 2kT 

(18) . 

For the pressure and residual Helmholtz energy of the hard-sphere reference system, the 

Carnahan-Btarling expressions are used, 

and 

P. . I+ , + ,2 _ 113 
___};]£__ = __ '.:.,._ 1...:.' I___,........;' I:.,_ 

pkT (1-7])3 

ares 4n - 3n2 
--l!L = __;..''--=''::-
kT (I-71)2 

(19) 

(20) 

where the volume fraction of protein is 7J = 7Jp = trpPd; I 6. Energy per unit density U is 

found from eq. (17); it is given by 

(21) 

where U ~ = 4tr Jwu(r)r 2dr is the contribution to U from .the ion-excluded-volume 

interaction. 

The contribution of the non-spherically-symmetric hydrophobic interaction to the 

residual Helmholtz energy and pressure of the system are evaluated using the first-order 

perturbation theory of associating fluids formulated by Wertheim (1986, 1987), extended 

to mixtures by Gubbins and co-workers (Jackson et al, 1988). At a given protein or 

particle number density p and temperature T, this theory gives the Helmholtz energy of ~e 
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associating system relative to that of the non-associating reference system. The reference 

system is an assembly of non-aggregating protein macroions that interact through the 

spherically-symmetric potentials. For a protein molecule consisting of M equivalent or 

identical exposed hydrophobic sites interacting via the potential given by eq. (15), the first

order perturbation theory yields the following contribution to the Helmholtz energy due to 

hydrophobic association (Jackson et al, 1988): 

Here, 

aassoc X 1 
- = M[lnX--+-]. 

kT . 2 2 

X= -1 +11 +4MpL1 
2MpL1 

V = 
3 

[1- cos(81c)] [1- cos(82c)] (1j2,c - dP) 

2n dp 

(22) 

(23a) 

(23b) 

(23c) 

where M is the number of hydrophobic groups on the protein surface, MX is the fraction of 

hydrophobic sites that are not bonded, gPP(dP) is the radial distribution function of the non-

aggregating system, e I kT represents the characteristic energy of the hydrophobic 

interaction, and the dimensionless parameter V corresponds to the volume of interaction 

between two attractive square-well hydrophobic sites divided by the volume of a single 

protein particle. Because we do not know e1,c and 02,c• which characterize the size of 

exposed hydrophobic groups, and r l2,c• which characterizes the range of hydrophobic 

interaction, parameter V, given by eq. (23c), can be used to quantify the "hydrophobic 

association" volume. Hence, the hydrophobic interaction is characterized by two model 
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parameters, viz. association energy e and association volume V. The function gPP (dP) for 

the non-agglomerating protein macroions (which interact through the hard-sphere, 

electrostatic, dispersion and ion-excluded-volume potentials) is estimated using the EXP 

approximation (Konior and Jedrzejek, 1985): 

(24) 

where ghi dp) is given by the contact value of the Camahan-Starling expression for the 

hard-sphere radial distribution function: 

(25) 

The first-order perturbation theory of association assumes that the interactions 

between hydrophobic sites on different molecules are independent of each other and that no 

ring structures (only tree-like structures) are formed in the protein aggregates. Combining 

contributions to the residual Helmholtz energy and compressibility factor from spherically 

symmetric and non;.symmetric interactions, Le., eqs. (16), (18), (19), (20) and (22), it 

follows that ares/ kT and Z are given by 

(26) 

and 

z = _!_ = 1 + 11 + 77
2 

-17
3 

+ pU + M{!_ _ !._} ( iJX) 
pkT 0-77/ 2kT X 2 

11 
CJr] T 

(27) 

The chemical potential f.! I kT can be obtained from eqs. (26) and (27) through the 

thermodynamic relation f.! res lkT =ares lkT + Z -1 , and the ideal-gas chemical potential, 

J.!i&fkT = J.!'lkT + lnp, where Jl' is a function only of temperature. We obtain 
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.;...J.l_-....;,.J.l_' = lnp + _Jlhs_ + _p_u + M{znX- x +!.. + Tl(_ax) [.!...- !..J}. 
kT kT kT 2 2 dr] T X 2 

(28) 

Here, 

J.lhs - T]( 8- 9TJ + 3TJ2
) 

kT- (1-17i 
(29) 

and J.l' lkT = In( A3
) where the de Broglie wavelength A = h/(2mnkT/12

• Energy per unit 

density U, given by eq. (21), gives the effects of electrostatic, dispersion, and ion

excluded-volume interactions. At equilibrium, protein concentrations in the supernatant 

and dense-fluid phases are calculated from eqs. (27) and (28) based on the classical 

equilibrium conditions: 

(30a) 

(30b) 

Here, subscripts s and d denote the equilibrium supernatant and dense protein phases, 

respectively. 
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4 . RESULTS AND DISCUSSION 

We first examine the effect of salt concentration on the phase behavior of the 

system. Figure 3 shows the reduced pressure PvofkT, computed from eq. (27), plotted as 

a function of the protein volume fraction 7] for HlkT = 9.6, lzanl = 2, lzcarl = l,lzpl = 5, dp = 
40A, dan= 4.6A, dcat = 2.96A, N12 = 1, and different values of salt concentrations Cs, in 

the absence of hydrophobic interactions. Here v0 represents the volume of a single protein 

molecule. The pressure increases monotonically with protein volume fraction 77 at the two 

low salt concentrations. However, when Cs = 1.6 moles/liter, the pressure curve exhibits a 

van der Waals loop, indicating that the system undergoes a fluid.;.fluid phase transition. 

This result suggests that rising electrolyte concentrations increase the excluded volume 

attraction between proteins, leading to phase separation. Further, distribution coefficient 

Ke increases with N12, a measure of the degree of ionic clustering. Because ionic 

clustering enhances attraction in Weir), clustering increases the protein concentration in the 

precipitate phase and lowers the protein concentration in the supernatant phase. 

The distribution coefficient Ke of the protein system can be obtained from the 

equilibrium conditions, i.e., eqs. (30a) and (30b), through the use of eqs. (27) and (28). 

Distribution coefficient Ke is given by the ratio of the equilibrium number density of protein 

in the dense phase to that in the supernatant phase. Neglecting hydrophobic interactions, 

Figure 4 shows predicted distribution coefficients Ke plotted as a function of ionic strength 

for HlkT = 9.6, lzanl = 2, lzcatl = 1, lzpl = 5, dp = 40A, dan = 4.6A, dcat = 2.96A, and two 

values of N12. Coefficient Ke increases monotonically with electrol}rte concentration. 

Again neglecting hydrophobic interactions, Figure 5 shows the variation of 

distribution coefficient Ke as a function of Zp• the net charge of protein, for HlkT = 8, lzanl 

= 2, lzcatl = 1, lzpl = 5, dp = 40A, dan= 4.6A, dcat = 2.96A, N12 = 1, and I= 6.0 and 6.6 
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moles/liter. Distribution coefficient Ke is insensitive to zp because charge-charge 

electrostatic repulsion between protein molecules is screened out in highly concentrated salt 

solutions. Since the protein charge Zp is directly related to the pH of the solution, this 

prediction further implies that pH has little influence on phase separation in our modeL In 

contrast, Figure 5 shows that ionic strength has a strong impact on protein precipitation. At 

a fixed value of zp, distribution coefficient Ke increases by nearly a factor of two as the 

ionic strength increases from 6.0 to 6.6 moles/liter. This increase in Ke is due to the 

enhanced effect of the ion-excluded-volume contribution. 

We now present calculations on the effect of hydrophobic interactions on protein 

, phase separation. The contribution of the hydrophobic interaction to the thermodynamic 

properties of the system is primarily characterized by M, the number of hydrophobic sites, 

and e/kT and V, the characteristic energy and volume of hydrophobic attraction, 

respectively. Figure 6 shows distribution coefficients Ke as a function of FAT, for HlkT = 

6, N 12 = 1, lzcatl = I, lzanl = I, lzpl = 8, dan= dcat = 3.4A, dP = 40A, V = 0.006, and I = 

2.5 moles/liter, for two different values of M. Distribution coefficient Ke increases with 

elkT, because as the strength of hydrophobic .attraction rises, protein molecules tend to 

form aggregates. Protein aggregation raises the protein concentration in the precipitate 

phase, and lowers the protein concentration in the supernatant phase. At a fiXed FAT, 

distribution coefficient Ke increases with M, the average number of exposed hydrophobic 

sites. 

We now examine the effect of Hamaker constant HlkTon the phase separation of 

proteins. Figure 7 shows distribution coefficient Ke as a function of ionic strength for lzcatl 

= 1, lzanl = I, lzpl = 8, dan= dcat = 3.4A, dP = 40A, V = 0.006, M = 4, elkT = 4, N 12 = 1, 

and three reduced Hamaker constants HlkT. Distribution coefficient Ke increases with 

rising HlkT at fixed /. Figure 8 shows distribution coefficient Ke as a function of protein 
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diameter dp for lzcarl = 1, lzanl = 1, lzpl = 8, dan= dear= 3.4A, H/kT = 6, V = 0.006, M = 

4, e/kT = 4, I = 2.5 moles/liter, and N12 = 1. Distribution coefficient increases with 

increasing dP, consistent with experimental observations. 

Finally, we study the variation of Ke with ion diameters. Figure 9 shows the 

distribution coefficient Ke as a function of ion diameter for a monovalent electrolyte with 

dion = dan = dcat• dp = 40A, lzcatl = 1, lzanl = 1, lzpl = 8, HlkT = 4, M = 4, e/kT = 4, V = 

0.006, N 12 = 1, and two values of/. As expected, Ke increases with the ion diameter, 

especially .at high salt concentration, indicating once more the importance of the ion

excluded-volume contribution. 

In summary, we have derived an approximate statistical-mechanical equation-of

state model for salt-induced protein precipitation. In this model, proteins are considered to 

be macroions which interact with electrostatic repulsion, dispersion attraction, ion

excluded-volume attraction, and hydrophobic interactions. Thennodynamic properties of 

the system are derived using perturbation theory. The model indicates that (i) distribution 

coefficient Ke is insensitive to net charge of protein due to strong electrostatic screening at 

high salt concentrations, (ii) concentration of the electrolyte plays a major role in affecting 

phase splitting in protein solutions; distribution coefficient Ke increases monotonically with 

salt concentration, (iii) distribution coefficient Ke is particularly sensitive and rises with ion 

diameters, protein diameter and ionic clustering, and (iv) aggregation of protein due to 

hydrophobic interaction may play an important role in the precipitation of proteins; the 

extent of aggregation is a strong function of M, the average number of exposed asSociating 

sites. 

Precipitation of proteins by salts may result from ion-excluded-volume effects or 

from hydrophobic-bond aggregation, or both. Using physically reasonable parameters, 
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either excluded volume or aggregation can be used to interpret protein-precipitation data. 

The relative importance of these effects can be estimated only from experimental studies. 
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Figure Captions 

Figure 1. Ion-excluded-volume potential of mean force W ex(r)lkT as a function of protein 
center-to-center distance for three values of clustering parameter N 12. Other 

parameters are: dll. = 40A, dan = 4.6A, dcat = 2.96 A, IZanl = 2, IZcatl = 1; and 
salt concentration (,s = 0.5 moles/liter. 

Figure 2. Schematic of the short-range orientation-dependent hydrophobic interaction. 

Figure 3. Reduced pressure as a function of protein packing fraction 17 for three salt 
concentrations. Other parameters are: d2 := 40A, dan= 4.6A, dcat = 2.96A, lzpl 
= 5, lzanl = 2, lzcatl = 1, H/kT = 9.6, and N 12 = 1. 

Figure 4. Distribution coefficient Ke as a function of ionic strength I for two values of 
N12. Other parameters are: dp = 40A, dan= 4.6A, dcat = 2.96A, lzpl = 5, lzanl 
=: 2, lzcatl = 1, and HlkT = 9.6. 

Figure 5. Distribution coefficient Ke as a function of net charge of protein zl!. for two ionic 
strengths. Other parameters are: dp = 40A, dan= 4.6A, deal= 2.96A, lzanl = 2, 
lzcatl = 1, HlkT = 8, and N 12 = 1. 

Figure 6. 

Figure 7. 

Distribution coefficient Ke as a function of hydrophobic interaction energy ElkT 
for two values of M. Other parameters are: dp = 40A, dan = dcat = 3.4 A, lzpl 
= 8, lzanl = 1, lzcatl = 1, HlkT = 6, I= 2.5 moles/liter, V = 0.006, and N12 = 
1. 

Distribution coefficient Ke as a function of ionic strength I for three values of 
HlkT. Other parameters are: dp = 40A, dan = dcat = 3.4 A, lzpl = 8, lzanl = 1, 

lzcatl = 1, HlkT = 6, ElkT = 4, M = 4, V = 0.006, and N12 = 1. 

Figure 8. Distribution coefficient Ke as a function of protein diameter dp. Other 
parameters are: dp = 40A, dan= dcat = 3.4 A, lzpl = 8, lzanl = 1, lzcatl = 1, 

HlkT = 6, I= 2.5 moles/liter, ElkT= 4, M = 4, V = 0.006, and N12 = 1. 

Figure 9. Distribution coefficient Ke as a function of ionic diameter for two ionic 
strengths. Other parameters are: dp = 40 A, dan = deal = dion• lzpl = 8, lzanl = 
1, lzcatl = 1, HlkT = 4, ElkT = 4, M = 4, V = 0:006, and Nn = 1. 
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Notation 

a =Helmholtz energy, J/mol 

ares = residual Helmholtz energy, J/mol 

cij(r) =direct correlation function of i-j pair 

Cs = salt concentration of solution, moJ/L 

di =diameter of a molecule, A 

e =elementary charge, 1.602xi0-19 C 

gy-(r) =radial distribution function of i-j pair 

hij(r) =total correlation function of i-j pair 

H = Hamaker's constant, J 

h =Planck's constant, 6.6252x1Q-34 J-sec 

I = ionic strength of solution, moJ/L 

Ke = distribution coefficient 

k =Boltzmann's constant, 1.3804x1Q-23 J/K 

L8 = B jerrum 's length, A 

NA =Avogadro's number, 6.023xtQ23 moi-l 

N12 = ionic clustering parameter 

m = mass of the molecule 

M = number of hydrophobic sites per protein molecule 

P = thermodynamic pressure, Pa 

r =interparticle center-to-center distance, A 

T = absolute temperature, K 

V = dimensionless association volume 

W(r) =potential of mean force, J 

z = valence of ion 

Z =compressibility factor 
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Greek Letters 

/3= 1/kT 

Er = relative permittivity 

Eo = permittivity in vacuum, C/Vm 

e = association energy 

7J = volume fraction 

K= inverse Debye length, A-1 

Jl = chemical potential, J/mol 

p = number concentration 

Subscripts 

I= ion 

2=ion 

3 =protein 

p =protein 
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