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We propose a possible scheme to realize three-dimensional laser cooling of stored 

and circulating ion beams in a storage ring. The idea is based on creating a linear 

synchro-betatron coupling, such that the longitudinal laser cooling effect can be extended 

to transverse degrees of freedom through the coupling. The idea of indirect transverse 

laser cooling was recently studied employing a so-called coupling cavity as a source of 

the forced coupling. In the present paper, we theoretically explore the possibility of using 

natural dispersion of a ring·as a new coupling source, setting an ordinary RF cavity at a . 
position with non-zero dispersion. It is found that effect of the dispersion-induced 

coupling is essentially equivalent to that of the coupling cavity, and that the coupling can 

be considerably enhanced under resonance conditions. Cooling rates of longitudinal and 

transverse modes are evaluated. An approximate formula is derived to estimate an 

optimum value of dispersion at the cavity location. Validity of the present theoretical 

predictions is confirmed by tracking simulations demonstrating effective transverse laser 

cooling." 

PACS numbers: 29.20.Dh, 29.27.Fh 
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I. INTRODUCTION 

To date, several techniques are available to cool down the temperature of 'stored 

and circulating beam of particles. Electron cooling[ I] and stochastic cooling[2] are the 

well-known and well-established methods which have been widely employed to provide 

stored beams with very small emittances. These two techniques work fairly effectively in 

all three degrees of freedom, reducing beam temperatures typically to the 101-1()2 K 

range[3]. On the other hand, there exists a third promising method known as laser 

cooling[ 4], which is the result of velocity-selective photon-momentum transfer from a 

laser beam to a moving atom or ion. Effectiveness of this mechanism has already been 

experimentally demonstrated[5], achieving longitudinal temperatures in the mK range, 

the lowest ever reported, with a stored beam of 100 keV 7Li+ ions[6]. Laser cooling of a 

circulating beam is, however, limited to longitudinal motion. No effective damping of 

transverse emittances has, so far, been accomplished, in contrast with its successful 

operation upon longitudinal momentum spread. In fact, in the above-mentioned 

experiment, the transverse temperature of the laser-cooled 7Li+ beam was about 106 times 

higher than the longitudinal temperature. 

Recently, a method has been proposed to realize three-dimensional laser cooling 

in a storage ring[?]. The idea is based on forcibly developing a synchro-betatron 

coupling; namely somehow opening up a path which connects the longitudinal degree of 

freedom directly with the transverse ones such that the longitudinal damping action due 

to the laser cooling mechanism can be transferred into transverse directions. For this 

purpose, in the previous work, a so-called coupling cavity excited in the TM210 mode was 

introduced. The longitudinal electric field of the mode has a linear transverse-coordinate 

dependence which makes it possible to get an efficient coupling between longitudinal and 

transverse motions. It has been found that, to enhance the coupling, it was necessary to 
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drive the operating point of a storage ring onto a difference resonance. This idea, 

however, involves a difficulty in designing the coupling cavity itself when the energy of 

laser-cooled ions is very small. For a low-energy beam, a rather small operating 

frequency must be chosen because of some beam-dynamical reasons, but the cavity 

dimension may then become impracticably large due to its operating mode. The 

difficulty can be overcome by using a specially-designed cavity which might be a re

entrant type with lumped impedances supplied by a coil. 

In this paper, we explore a new scheme for three-dimensional laser cooling. The 

basic idea is the same as before, that is, developing a forced coupling betw~en 

longitudinal and transverse motion under a resonance condition, but here natural 

dispersion of a ring is considered as the coupling source. It is, in principle, always 

possible to induce a synchro-betatron coupling by putting some time-dependent or 

horizontal-coordinate-dependent potential at a position with non-zero dispersion. An RF 

cavity is again utilized for this purpose. The operating mode is, however, not a special 

one like TM 210 but a coaxial or TMo10 mode which has long been employed for ordinary 

accelerating cavities. 
1
Therefore, we do not have to worry about the cavity size problem 

even if the required RF frequency is low. The use of a coaxial-mode structure allows us 

to design a cavity of modest dimension. 

Compared to the idea of the coupling cavity, the significance of the new scheme is 

its simplicity. Clearly, there is no component we must newly devise, while, in the 

previous idea, design of the coupling cavity is not so straightforward and is left for future 

work. All we need to do under the present scheme is to design a proper lattice satisfying 

the theoretically required conditions and, then, to install an ordinary RF cavity at a 

position having a finite dispersion. Provided that the existing rings employed for laser 

cooling experiments, i.e. ASTRID in Denmark[6,8] and TSR in Germany[5], are 

sufficiently tunable and have a free section with non-zero dispersion, it is only necessary 

to set an additional cavity in the section or, simply, to bring the existing accelerating 

3 



.cavity to that section. As demonstrated later, the magnitude of dispersion at the cavity 

position is not essentially important, because cooling rates of longitudinal and transverse 

motions can be controlled with the strength of a skew quadrupole introduced .to give a 

horizontal-vertical coupling. 

In principle, the dispersive-coupling scheme enables us to cool transverse beam 

temperatures down to the same level as longitudinal temperature. In the ASTRID ring, 

the longitudinal temperature of 1 mK has already been achieved, so we can reasonably 

anticipate the same order of temperatures simultaneously in both horizontal and vertical 

direction. If this kind of ultra-cold beam becomes available, we might then consider 

some important applications of such a beam. First, analogous to electron cooling, the 

laser-cooled beam could be used to cool another beam to an extremely low temperature. 

Second, the achievable level of beam temperature should be theoretically sufficient to 

observe beam crystallization[9]. 

The paper is organized as follows. In Sec. II, we give the linearized equations of 

motion derived from the Hamiltonian including the potentials of an RF cavity and a pure 

skew quadrupole. Then, a simple model is presented to incorporate the laser cooling 

effect. The coupling caused by the skew quadrupole is investigated in Sec. III, switching 

off the RF cavity. In Sec. IV, we first confirm effectiveness of the longitudinal

horizontal coupling induced through dispersion at the RF cavity, leading to the results 

similar to those obtained in the previous work[?]. Three-dimensional effect is then 

studied, and an optimum operating point is theoretically predicted. In Sec. V, tracking 

results are given, demonstrating validity of the present theoretical predictions. Effect of 

finite dispersion at the skew quadrupole position as well as that of finite dispersion

derivative at the cavity are briefly discussed in Sec. VI. A second possible operating 

point for effective three-dimensional laser cooling is also described in the section. We 

then summarize the main results of the paper in Sec. VII. 
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II. EQUATIONS OF MOTION 

A. Linearized equations without laser cooling effect 

Since a single RF cavity and a single skew quadrupole turn out to be sufficient to 

achieve our final goal, we simply put Nb =1=Nq in the Hamiltonian (A 7) given in 

Appendix A to obtain 

2 A 2 

H _ 1 (A 2 ·A 2) 1 [K ( )A2 K ( )A2] (h) ~0W . 
4 -- p +p +- S X + S y - -2x y 2 x y R '2 

r (2.1) 
A (A hll w" ) q ~ ( ) q v h • [ A h ( A fA J ~ +y x-- -u s-s ---sm 'V-- llP -11 x)+'Vb u (s-sb) R R .p q p (t) R X p ' 

. 0 

where the new phase variable has been defined as '\if = ~ - 'V b with the synchronous phase 

'Vb· The ions susceptible to laser cooling are heavy particles for which the synchrotron 

radiation loss is negligible, so it is unnecessary to accelerate to compensate for energy 

loss. The RF cavity is then introduced here for two reasons; namely creating a 

longitudinal-horizontal coupling, and forcing particles to execute synchrotron oscillations 

as an origin of the resonance needed to enhance the coupling[ 10]. In addition, the energy 

of stored heavy ions is, in general, below transition, i.e. ~o<O, and 'Vb must then be 

positive in the definition adopted here. Accordingly, to make the RF bucket as large as 

possible, we choose the synchronous phase 'Vb=7t/2 in the following. We also assume 

throughout this paper, in the numerical work, that ~o=-0.947 and 27tR=40 m, 

corresponding to the ASTRID ring parameters. 

Scaling the canonical variables and changing the independent variable to 8 =siR, 

Eq.(2.1) results in the Hamiltonian 
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(2.2) 

where the dot denotes differentiation with respect to 8, sq=l1(8=8q)IR, sb=ll(&-=~)/R, 

~b = il(8 = 8b) I R, and the hats on the variables have been dropped. Here, the betatron 

motions have been smoothed introducing the one-tum tunes, Vx in the horizontal direction 

and Vy in the vertical direction. Note that all the canonical variables have now become 

dimensionless due to the scaling performed. Neglecting the higher order terms in 

Eq.(2.2), we reach the linearized Hamiltonian equations of motion 

· 21t~hVL2 r r s= x = Px + ~0 ('!' + ':.bx- l:.bPx)up(S- 8b), 

· 2 s= 21t~hVL2 r r s= Px = -vx X- r qY. up(8- 8q) + ~0 ('!' +~:.bX- ':.hPx)up(8- 8b), 

y= Py· 

Py =-v/y-rq(x-~qW)·8p(8-8q), 

\if= -~oW- I:' qSqY · 8p(8- 8q ), 

. 21tvL2 . 
w = ~0 ('If+ SbX- SbPx )Op (8- 8b ), 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

where vL2 = hql~oiVb I 21tp0P0c corresponding to the one-turn averaged tune of the 

synchrotron motion. A more accurate value of the longitudinal tune VL is evaluated under 

a thin lens approximation, and can be related to the averaged tune as 

(2.9) 

Specifically, vL gives roughly the same value as VL when the tune is small. 
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Provided that the phase spread of a stored beam is sufficiently small, we are well 

justified in starting with the linearized equations given above, since the terms ~bx and 

~bPx mostly take quite small values in our applications(ll]. Although the laser cooling 

mechanism itself does not require us to bunch an initial continuous beam, it may be better 

to bunch it first to get in the simple linear regime. For this purpose, the RF cavity 

originally intended for generating a synchro-betatron coupling can be employed without 

any severe nonlinear effect setting in. In fact, an RF cavity sitting at a position where 

1lb=2.72 m has been used in the ASTRID ring to bunch a beam of 100 keV 24Mg+ 

ions[12]. Further, tracking simulations indicate that an initial phase spread of even more 

than 100 degrees is acceptable, so the beam is not necessarily well-bunched. We recall 

. this problem in Sec.V, linking it to beam-size growths due to an initial emittance 

unbalance. 

B. Model 

We are now in a position to incorporate the effect of laser cooling into the 

equations of motion. Because of Liouville's theorem, damping of phase-space volume, 

i.e. cooling, is not possible as far as the given motion is derivable from a Hamiltonian. 

We must, therefore, take into account something additional which enables us to have a 

dissipative process like cooling. In our model, the cooling effect is expressed as a simple 

frictional force. Noting the fact that laser cooling operates only in the longitudinal 

direction, the damping term is added to Eq.(2.8), yielding 

(2.10) 

where Sent and Sext represent the 8-coordinates of the entrance and exit of the cooling 

section respectively, and E(8ent.8ext) is the step function defined by 
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To get a damping motion, the constant A must be always positive. The value of A can be 

determined by comparing simulation results with actual experimental data. 

Let us construct the transfer matrix of a laser cooling section. Eq.(2.10) together 

with Eq.(2.7) results in either \ji + A\jl = 0 or W + AW = 0 for 9ent:s;;9!:;9ext· Clearly, these 

equations have a damping solution when A>O. Since the betatron oscillations are 

completely decoupled in the section, the damping matrix can be written as 

MD(9o) = 

cos(vx9o) 

-vx sin(vx90 ) 

0 

0 

sin(vx9o) I Vx 

cos(vx9o) 
cos(vy9o) 

-vy sin(vy80 ) 

0 

0 

sin(vy80 ) IVy 

cos(vy8o) 

where 9o=8ext-9ent· This matrix is, of course, not symplectic. 

0 

0 

1 [e-ABo -1]~0 I A 
0 e-ABo 

(2.11) 

Eqs.(2.3)-(2.8) indicate that a coupling between the longitudinal and horizontal 

motion can be induced through the dispersion ~b and/or its derivative ~b at the cavity 

position. Specifically, we do not have to make ~band ~b non-zero simultaneously. Thus 

we simply assume ~b = 0 in the following discussions. From a practical point of view, 

this simplification is quite reasonable, because most storage rings have straight sections 

with a flat dispersion, and that is the region where RF cavities are usually installed. In 

fact, the two storage rings, ASTRID and TSR, belong to the case. Moreover, if a finite 

value of ~b is employed, the cavity must then be set at the exact design position. The use 

of a flat dispersion allows us to avoid this extra effort. 
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Finally, for later reference, we give the approximate equations of the synchro

betatron motion studied here, averaging the damping term and longitudinal kick at the 

cavity over one-tum. Under the assumption ~b = 0, Eqs.(2.3)-(2. 7) and (2.10) lead to 

(2.13) 

(2.14) 

where Aav denotes the averaged damping constant. Note that we have replaced vL by VL 

to reduce the discrepancy between the real and averaged synchrotron frequency. 

III. COUPLING THROUGH SKEW QUADRUPOLE 

It is clear from the equations of motion that, even if the RF cavity is switched off, 

we still have synchro-betatron coupling, provided ~q;t:O. In this section, we briefly 

discuss the effect, checking whether the coupling caused by a skew quadrupole can be 

helpful to achieve transverse laser cooling. Without any averaging procedure, the 

equations of motion are written as 

x + v/x = -r qY · 8P(8 -8q), 

y +v/y = -r q(x -~q W)8p(8 -Sq), 

W + AW. £(8ent,8ext) = 0. 

(3.1) 

(3.2) 

(3.3) 

Eq.(3.3) can be readily solved, leading to a damping solution independent of any 

transverse parameters. Inversely speaking, this suggests that the betatron motions are not 
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affected by the longitudinal motion and, therefore, we will observe no cooling in the 

transverse directions. In fact, if the longitudinal damping motion could induce transverse 

damping effect through the coupling terms, the longitudinal damping rate must then be 

influenced by some transverse parameters. 

This observation can be proven by evaluating the eigenvalues of the coupled 

motion. Applying, for simplicity, a thin lens approximation to the damping matrix in 

Eq.(2.11) and then calculating the one-turn matrix M1, we find, from the characteristic 

equation det(M1-A.I)=O, 

(A -1)(/..- e -Ao )f(/..) = 0, (3.4) 

where Ao=A-8o, and f(A) is a forth-order algebraic equation involving neither ~q and A. 

While the root A=e-Ao obviously corresponds to longitudinal mode, the cooling rates of 

transverse modes are evaluated from the equation f(A)=O whose roots are totally 

independent of the parameter A characterizing damping motion. It can, therefore, be 

concluded that transverse damping is not achievable by means of the coupling originating 

from the skew quadrupole potential. 

IV. THREE DIMENSIONAL COOLING SCHEME 

We have found in the last section that the dispersion ~q can not be a source for 

transverse momentum cooling. The skew quadrupole is, therefore, introduced only for 
, 

the purpose of coupling the horizontal motion to the vertical motion. Thus we put, for 

simplicity, ~q=O in this section. ·The effect of ~q on cooling rates is briefly discussed in 

Sec. VI, showing that a finite ~q causes no remarkable change to the results presented 

below. 
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A. Longitudinal-horizontal coupling 

Let us now tum on the RF cavity. Unless there exist vertical bending magnets, 

dispersion-induced coupling occurs only between the longitudinal and horizontal 

direction. Since the skew quadrupole coupling has turned out to be useless in obtaining 

transverse cooling effect, the most important key is whether or not the coupling generated 

by the cavity dispersion ~b can provide sufficiently high cooling rates in the longitudinal 

and horizontal direction simultaneously. Thus we first try to investigate these two 

motions neglecting the .vertical betatron oscillation. 

From Eqs.(2.12) and (2.14), the starting equations read 

(4.1) 

(4.2) 

These equations are essentially equivalent to those discussed in Ref.[7] while the kick 

force at the cavity here has been averaged over one-tum. Similar damping properties can 

then be expected. Following the results of the previous work, the transverse-emittance 

damping induced through the dispersive coupling should be most enhanced under the 

condition of a difference resonance 

(4.3) 

Noting that (~bv0211~ol«l, Eq.(4.3) can be simplified, to a good approximation, as Vx-
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In our case, the best way to evaluate the damping rates is to use the matrix 

method. Because the kick force at the cavity is linearized here, we can easily construct 

the corresponding transfer matrix Mb as given in the Appendix B. Using Mb and the drift 

matrix Mo together with the damping matrix in Eq.(2.11), a one-turn matrix can be 

represented as 

(4.4) 

where, setting the origin of 8-coordinate at the center of the cooling section, 81 and 82 are 

defined by 81 =St,-So/2 and 82=27t-(8 1 +So). Neglecting the vertical motion which is 

decoupled right now, the equation det(MrA.I)=O yields the dispersion relation 

(4.5) 

27tVx vL 2~b 2 (1 1 )<"~ -Ao) . -0 
- ~0 - A. ,... - e sm Jlx - , 

where Jlx=21tVx, JlL=21tVL, and the thin lens approximation have been again applied to the 

damping matrix. The damping rates numerically evaluated from the matrix M2 are 

shown in Figs. I. Here, llb represents dispersion at the RF cavity, i.e.llb=ll(8=8t,), and v 

is the eigentune satisfying the relation A=ei21tY. The behavior oflm(v) as a function of the 

dispersion 11 b is quite similar to the previous results in Ref.[7] where lm(v) has been 

plotted as a function of the field strength of the coupling cavity. As mentioned above, the 

most effective cooling situation, where horizontal damping rate becomes roughly equal to 

longitudinal damping rate, is provided when the operating point is on resonance. 

Obviously, Fig.1(c) is the case. We see that, except for the region 1lb:::;;Q.25 m, both 

damping rates stay close to each other around a constant level. 
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Considering practical applications, we are interested in the smaller-~b region. We 

then approximately solve Eq.(4.5), employing perturbation analysis with respect to ~2. 

Assuming the resonance condition in Eq.(4.3) and again writing A.=ei21tV, the imaginary 

parts of the first-order solutions to Eq.(4.5) can be given by 

- 2r 2 ( 1 8 ) · lm(vl)===VxVL':>b ·. __ 1 smJlo 
· 2l~ol 1-<;!-Ao 21t 1-(1-cosJl0)~(1-~)' 1t 21t 

( 4.6) v 

Ao lm(v2) ===-- lm(v1 ), 41t 
(4.7) 

where, in order to let the tunes satisfy the simplified resonance condition Yx-VL=integer, 

we have put Jlx=Jlo and JlL=Jlo-2n1t (n=integer). Here, v1 denotes the eigentune of the 

horizontal mode ·while v2 corresponds to the longitudinal mode. 

Some examples of Im(v) under the resonance condition are illustrated in Figs.2. 

The dotted curves are obtained from Eqs.(4.6) and (4.7), yielding good agreements in the 

small-T\b region. Analogous to the results in Ref.[7], the damping rates of both modes are 
I 

rapidly saturated at the level Ar/81t which is exactly half of the longitudinal damping rate 

without the coupling .. Further, unless the dispersion T\b is too big, all damping rates 

remain po~itive and, accordingly, we can always observe, more or less, cooling effect in 

both directions. Of particular importance is the minimum dispersion value T\m desirable 

to achieve the damping rates close to the saturation level. T\m is readily estimated by 

. equating Eq.(4.6) with Eq.(4.7), resulting in 

I ~ IR 2 A 1- (1- cosJlo)~(l- ~) 
T\ 2 === 0 D , . 1t 21t (4.8) 

m 41tVxVL2 A0 - 1-(81 /27t) sinJlo 

where we have used the approximation e -Ao:::: 1- A0 . T\m gives an approximate value of the 

minimum dispersion at the cavity required for efficient horizontal laser cooling. 
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Eq.(4.8) also allows us to predict the preferable position for installing the cavity. 

The value of 81 minimizing 11m is evaluated as 

em 1 [ (Ao llo)2

] -=- 1- 1-A0 + -cosec- . 
2x A0 2 2 

(4.9) 

Eq.(4.9) implies that em always takes a value close to X except for the region COSilo==l 

because we usually have Ao« 1. Thus, to make 11m smallest, the cavity should be set at 

the position opposite to the laser cooling section. It is obvious from Figs.3 that the best 

situation has been actually established when e b=X. 

B. Three-dimensional laser cooling 

We now proceed to three-dimensional analysis. In order to evaluate the damping 

rates of the three modes, we first try to obtain a dispersion relation based on the general 6 

x 6 matrices given in Appendix B and Eq.(2.11). Since the damping rates are not so 

sensitive to the location of the skew quadrupole having a modest value of rq, we simply 

multiply M2 by Mq to introduce the one-tum matrix 

(4.10) 

Taking det(M3 -A.I)=0 yields, after considerable algebra, the dispersion relation 

I 
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(4.11) 

where Jly=27tV Y' and we have used the thin MD· Without the quadrupole coupling, i.e. 

rq=O, the vertical mode is, of course, decoupled, and Eq.(4.11) is reduced to Eq.(4.5). 

Similarly to the last subsection, the damping rates of all modes can be found through 

evaluating the eigenvalue A. Figs.4 shows some typical features of the damping-rate 

curves plotted as a function of the dispersion llb· 

As pointed out already, the resonance condition in Eq.(4.3) is required to increase 

horizontal damping rate. Here, in addition to the longitudinal-horizontal coupling, we 

must consider a coupling between the two transverse motions. Comparing the coupling 

terms in Eqs.(4.1) and (4.2) with those in Eqs.(2.12) and (2.13), it is readily recognized 

that, under the averaging approximation with ~q=O, the skew-quadrupole potential yields 

the effect mathematically equivalent to the linearized dispersive coupling at an RF cavity. 

An enhanced coupling between the horizontal and vertical motion is, therefore, 

anticipated under the condition 

(4.12) 

which can be approximated as Yx-Vy=integer. Provided that the resonance conditions in 

·Eqs.(4.3) and (4.12) are simultaneously satisfied, it is actually possible to establish an 
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ideal situation as seen in Fig.4(b), where the damping-rate curves of the three modes 

intersect roughly at a single point. The optimum dispersion of the example is 1lb==0.6 m. 

If one of the two conditions is completely failed, three-dimensional cooling is no 

longer achievable as suggested by Fig.4(c), where lm(v) of the vertical mode is almost 

equal to zero. Fig.4(a) shows a situation in case where both conditions are missed. 

Needless to say, the damping rates of both transverse modes are too small to accomplish 

efficient transverse cooling even if the coupling is strengthened. It should also be noticed 

that, in all cases, we do not have a negative damping rate which leads to exponential 

emittance growth. 

Writing Jlx=Jlo, J.iy=Jlo-2m7t, and J.1L=Jlo-2n7t (m,n=integer) on the assumption of 

the two resonance conditions, Eq.(4.11) becomes 

Here, we have put 81 =7t, since, as mentioned in the last subsection, this cavity location is 

most preferable to reduce the required minimum value of the dispersion llb· We see that 

the longitudinal mode is nearly decoupled in the region Sb«l, while the two transverse 

modes almost degenerate. As before, Eq.(4.13) can be approximately solved treating the 

term proportional to s b 2 as a perturbation applied to the non-perturbed decoupled 

motions. After some' algebra, the first-order solutions of the transverse damping rates are 

found to be 
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(4.14) 

We now have enough information to estimate the optimum dispersion value Tlopt· 

It is unnecessary to know the explicit functional form of the longitudinal-mode curve if 

we notice the fact that the sum of the three damping rates should always be equal to the 

maximum achievable damping rate, Ao'47t, the same as the longitudinal one without the 

coupling. Under the two resonance conditions, the damping-rate curves generally show 

the property similar to Fig.4(b); i.e. the curves of two transverse modes grow initially as 

'Tlb2 • staying close to each other, and they eventually intersect the longitudinal-mode curve 

at roughly the same point. The maximum damping rate is then distributed almost equally 

to all three modes. Therefore, at the optimum point, the three modes should be given 

one-third of the maximum rate, namely 

(4.15) 

Equating Eqs.(4.14) with Eq.(4.15) gives an approximate formula for the optimum 

dispersion 

11 2:::: ~~oiR2 (A 2 + rq 2 Jcot llo' 
opt 67tV V 2 0 V V 2 

X L X y 

(4.16) 

where we have dropped some small terms, assuming that Ao«1 and r q I ~vx Yy «1. 

Although the value of'Tlopt predicted by Eq.(4.16) may not always be sufficiently accurate 
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because of the first-order approximation, it permits us to make an initial estimate of the 

optimum dispersion. 

In Figs.S, we show several examples of damping rates with the parameters 

simultaneously satisfying the two resonance conditions. The dotted curves are obtained 

from Eqs.(4.14) while the broken line parallel to the abscissa indicates the level in 

Eq.(4.15). The validity of Eqs.(4.14), (4.15) and (4.16) has been beautifully confirmed in 

the present examples. 

Eq.(4.16) also gives us important insight into the parameter-dependence of the 

optimum operating point. In particular, the equation indicates the controllability of Tlopt 

by means of the skew quadrupole strength rq (see Fig.6). Thus, even if the actual 

dispersion deviates from its design value, it is straightforward to recover an optimum 

operating situation, compensating for the error. All we need in the case is simply to 

increase or to decrease the skew quadrupole gradient. 

V. TRACKING RESULTS 

We now show tracking results, confirming the validity of the theoretical 

predictions given so far. Apart from the laser cooling section, the particle motion 

governed by the nonlinear Hamiltonian in Eq.(2.2) is simulated in the tracking code 

employed here. To incorporate the laser cooling effect, the matrix in Eq.(2.11) is used. 

Damping rates are related substantially to the product of A and So, i.e. Ao, rather 

than A itself. The value of An ret1ecting actual experimental results can not be uniquely 

determined because it strongly depends on the initial state of a stored beam[ 13]. The 

fundamental feature of the damping-rate curves in Figs.S is, however, not affected even if 

a different value of An is chosen. Only the magnitudes of the damping rates are changed, 

maintaining the similar figures. Thus the value of An is not essential to how transverse 
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damping rates are enhanced, although cooling time is indeed altered depending on Ao. In 

the present paper, we assume that A=0.2 and 81)"27t=0.05 representing a cooling section 

of two meter length. 

First of all, let us consider the parameters adopted in Figs.4, checking whether the 

dispersion relation enables us to correctly predict the damping properties of the three 

motions. The corresponding simulation results are shown in Figs.?. In all cases, the 

dispersion Tlb is fixed at 0.6 m, which approximately agrees with the optimum value 

indicated in Fig.4(b ). Eq.( 4.16) actually gives 1lopt=0.57 m. It is obvious that the results 

are in accord with the expectations drawn from Figs.4. 

It is practically important to know how much error around the resonance 

conditions is allowable to keep the damping rates of all three motions sufficiently high .. 

We do not have to pay much attention to dispersion error, since the shift of the optimum 

operating point due to the error is adjustable with the skew quadrupole gradient as 

pointed out in the last section. As an example, we here investigate the case given in 

Fig.5(a), slightly changing the transverse tunes around the shown values. The damping 

rates are plotted in Figs.8 as a function of the longitudinal tune VL. Specifically, Fig.8(a) 

indicates that the optimum VL is 0.12. Slight shifts are now applied to the transverse 

tunes, fixing Tlb at 1 m. The deviation lvx-Vyi:::;;0.004 appears to be permissible to ensure a 

high level of damping rate for all modes. In the case (c) and (e) where lvx-Vyi=0.006, 

lm(v) of one mode seems too small, while it still remains positive. These figures also 

suggest that the rigorous tuning of VL is not necessary. The VL-error of, say ±0.002, looks 

acceptable[ 14]. 

The tracking results corresponding to Figs.8(a)-(d) are shown in Figs.9. We 

observe that even the case (c) is fine while the vertical damping is a little slow as 

expected. Notice that, in these simulations, the initial parameters different from those 

used in Figs.? have been adopted. When assuming a 100 keY 24Mg+ ion and the 

harmonic number h=26, the employed initial parameters represent a beam having the 
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transverse radius of -5 mm, the divergence of -0.8 mrad, and a momentum spread of 

about op/p0-4xi0-5. These values are even larger than those of the actual beams injected 

into ASTRID. As for the initial phase spread 0'\jf, we have taken O'\jl-±25 degrees, but 

much larger phase spread is allowable. 

Phase space configurations are illustrated in Figs.lO, starting with the parameters 

identical to Fig.9(a) except for the twice larger phase spread. The initial emittances of all 

three directions have been remarkably compre~sed after 300 turns. It has been confirmed, 

in additional simulations, that a total phase spread greater than 100 degrees is still 

acceptable, and that the theoretical predictions based on the present linear approach hold 

quite valid even for such a beam. 

Compared to Fig.7(b), much more significant initial growths of transverse 

emittances are observed in Figs.9. This is due to the larger initial phase spread assumed. 

Fig.ll demonstrates emittance oscillations when the longitudinal emittance is initially ten 

times greater than the transverse emittances. Since operating point must be set on or 

close to the coupling resonances to enhance transverse cooling rates, a considerable 

amount of emittance exchange takes place whenever there exists an emittance unbalance. 

Although a circulating beam is, in principle, stable on a difference resonance, even such a 

resonance might be avoided between longitudinal and transverse motions in most high 

energy synchrotrons, because the longitudinal emittance of an accelerated beam is usually 

much higher than the transverse emittances and, as a result; a rapid increase of the 

transverse beam size occurs leading to a beam loss. 

In our case, the beam-size growth due to resonant emittance transfer is avoidable 

simply by pre-cooling the longitudinal temperature with a laser cooler. During the pre

cooling process, longitudinal tune is set at an off-resonance value by supplying a proper 

RF power to the cavity. Once the beam is bunched and pre-cooled to a longitudinal 

emittance comparable to the transverse values, we then adjust the tune so as to generate a 
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synchro-betatron resonance for three-dimensional cooling, increasing or decreasing the 

RFpower. 

Even if emittance oscillations with large amplitudes arise as seen in Fig.ll, the 

emittances have reached, after 400 turns, a level of more than 100 times smaller than their 

initial values. It is interesting to note that the longitudinal emittance always takes its 

minima around the timing when the sum of the transverse emittances comes to its 

maxima. This implies the existence of a constant of motion in the absence of the laser 

cooling term. 

Finally, we plot, in Fig.l2, the RF-voltage amplitude Vb as a function of the 

longitudinal tune VL. While longitudinal tunes of rather large values have been used in 

the examples so far, the corresponding RF voltages are always within a reasonable range 

owing to the small velocities of laser-cooled beams. 

VI. SOME ADDITIONAL REMARKS 

A. Effects of ~q and ~b 

We here briefly explore the effects of finite ~q and ~b neglected so far. Let us 

first assume a non-zero ~q. which is of practical importance because we often have finite 

dispersion everywhere along the circumference of a storage ring. In fact, the dispersion 

functions of both ASTRID and TSR never vanish. Further, provided that the value of ~q 

suitable for three-dimensional cooling is uniquely determined, or strongly dependent 

upon other ring parameters, a rigorous restriction might be imposed on lattice design. 

Fortunately, Fig.13 gets rid of this concern. In the figure, the dispersion l1b at the cavity 

is fixed at 1 m approximately equal to the optimum value indicated in Fig.5(a). It is seen 
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that the damping rates are almost unchanged even if the value of the dispersion Tlq=R-~q 

is varied over a wide range. 

Effect of dT}t/ds= ~b is now investigated neglecting Tlq· Figs.14, employing the 

same parameters as Fig.5(a), illustrate the Tl b-dependence of damping rates with various 

values of the derivative dT}t/ds. No noticeable change is observed when dT}t/ds takes a 

small value. However, as the derivative becomes larger, the three modes tends to be split 

up and, eventually, completely spread out as seen in the case (c) and (d). A large value of 

dT}t/ds must, therefore, be avoided to make sure of a sufficiently high cooling rate in each 

mode. 

It is worth while plotting Im(v) as a function of the derivative dT}t/ds. The results 

are given in Figs.l5, assuming several different values of the dispersion Tl b· It is 

interesting to note that Figs.15 are quite similar to Figs.14. Analogous to the pattern 

illustrated in Figs.l4, the damping-rate curves are gradually split out with the increasing 

Tlb· In particular, note that case (a) shows exactly the same characteristic as the curves in 

Figs.5. This corresponds to the fact that the coupling originating from ~b is equivalent to 

that from ~b· It is actually clear from the Hamiltonian (2.2) that, apart from constant 

coefficients, the mathematical roles of ~b and ~b to the horizontal canonical variables are 

symmetric. 

B. Another possible operating point 

Careful numerical calculations reveal the existence of another possible operating 

point which enables us to have the damping rate in Eq.(4.15) in all three modes 

simultaneously. Again, the three motions must be close to the coupling resonance, but 

the resonance conditions are not exactly satisfied. We give a typical example in Fig.16 

assuming the parameters of Figs.5. Although the tunes are almost identical to those of 
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Fig.5(a), the fundamental feature of the graph appears to be completely different. 

Clearly, the optimum point is not predictable based on the first-order analysis. 

Plotting Im(v) as a function of the longitudinal tune v L, we obtain Fig.17 rather 

different from Fig.8(a). While Fig.8(b), 8(d), and 8(f) are somewhat similar to it, the 

employed dispersion Tlb is 1.9 m twice larger than the value assumed in Figs.8. Notice 

that the optimum point described here is also controllable by changing the skew 

quadrupole strength rq as demonstrated in Figs.l8. However, there exists a lower limit in 

the optimum dispersion TloJ:>t adjustable with rq. Although we can decrease Tlopt by 

reducing rq, the use of too small r q causes a sudden split-off of two modes seen in the 

case (a) considerably affecting the damping rate of a transverse mode. 

VII. SUMMARY 

It has been shown that the dispersion-induced coupling at an RF cavity is a 

possible way to extend the longitudinal laser cooling effect to transverse degrees of 

freedom, based on the idea of enhanced synchro-betatron coupling. We have found that 

the dispersive coupling is, under a linear approximation, mathematically equivalent to the 

coupling generated by a coupling-cavity potential, but the present scheme has turned out 

to be more useful when considering practical applications. In fact, the scheme can be 

applied, without any difficulty, to very low~energy beams, while design of a coupling 

· cavity is not so easy for such a beam. In addition, the previous scheme requires us to 

provide two different RF cavities; i.e. a coupling cavity operating in TM210 mode, and an 

ordinary bunching cavity for the purpose of creating an RF bucket. A single ordinary 

cavity introduced here plays the roles not only of the coupling cavity but also of the 

bunching cavity. Further, the synchrotron oscillation induced by the cavity field is 

beneficial to simplifying laser cooling system. It has been experimentally proven in the 
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ASTRID ring that the ions executing synchrotron oscillations can be cooled with only 

one laser as efficiently as with two lasers co-propagating and counter-propagating with 

the stored beams[12]. 

The RF cavity can also be utilized, with a laser cooler turned on, for preventing 

undesirable nonlinear effects as well as a large amount of emittance transfer from 

longitudinal to transverse directions. After the pre-cooling process, the longitudinal 

phase space of an initial continuous beam is compressed achieving a small emittance with 

a small phase spread. Consequently, we can make a simple linear regime set in. 

Until coming close to an ultra-cold beam state, the linear analysis described in the 

paper holds very well. Space-charge force will not affect the present results because the 

stored beams employed so far for laser cooling experiments have very low intensity. 

However, once an ultra-low temperature is reached, the beams get in a space-charge

dominated state. Effects of intra-beam scattering and so on, which is generally negligible 

for a low-intensity beam with a normal temperature, become important[ 15]. 

The space-charge dominated state of a low-intensity ultra-cold beam may be 

considered as a first stage toward a crystalline beam. Theoretically, a crystalline beam 

forms a continuous structure[16], while a laser-cooled beam obtained under the present 

scheme has been bunched. It is, however, an easy matter to debunch the beam as we have 

an RF cavity already set on the ring. A procedure to observe a beam crystallization may, 

therefore, be as follows. First of all, tum on a laser cooling system as well as an RF 

cavity without the condition in Eq.(4.3) satisfied. After the beam is bunched and 

longitudinally pre-cooled to some degree, adjust the RF power supplied to the cavity such 

that the longitudinal tune satisfies the resonance condition. We now also tum on a skew 

quadrupole magnet and increase the field strength up to the optimum level theoretically 

predicted. After a temperature in the mK range is achieved, tum off the laser, and switch 

the synchronous phase to a debunching one. During the debunching process, we may 

hopefully transform the beam-plasma to a liquid state or, eventually, to a crystalline state. 
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APPENDIX A 

HAMILTONIAN OF THE SYSTEM 

Since the Hamiltonian including effect of an RF cavity has been derived in 

previous works[17], we only outline the derivation here for completeness, considering 

additionally the potential of pure skew quadrupole magnets. 

Let us consider a storage ring of the average radius R. Our starting point is the 

general Hamiltonian of the form 

H = c (Ps -qAs) +(p -qA )2 + (p -qA )2 + m 2c2 [ 
2 ]1/2 

1 (1 +X I p)2 X X y y 0 , 
(Al) 

where mo and q are, respectively, the rest mass and charge state of ions, p is the local 

curvature of the ring, and A=(Ax, Ay, As) represents the total vector potential of the 

system. We now install RF cavities at the positions s=sb(n) (n=1,2,-··,Nb) and skew 
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quadrupoles at s=sq(n) (n=1,2,-··,N q) where s is t~e distance along the reference particle 

orbit. The vector potential of the n-th RF cavity is given by 

(A2) 

where Vb(n) and <!>b(n) (n=1,2,···,Nb) are, respectively, the voltage amplitude and initial 

phase of the n-th cavity. From a practical point of view, all the cavities have been 

assumed to be identical, writing the common RF angular frequency as ro. Taking the 

distance s as the independent variable, instead of time, and considering only dipole and 

quadrupole magnets installed on the ring, the Hamiltonian H 1 can be approximated, 

together with Eq.(A2), as 

where rq<n) is the coupling strength of the n-th skew quadrupole, Kx(y)(S) is related to the 

quadrupole field strength, Op(s) denotes the periodic delta function whose periodicity is 

the ring circumference 21tR, and the total momentum p is expressed as p=[(W/c)2-

mo2c2]1/2 with the total particle energy W. In the following analysis, quantities with the 

subscript 0 are used to represent those corresponding to the reference particle. 

We now introduce the canonical transformation from the variables (x,y,t;px,Py· 

-/1W = W- W 0 ;s) to (x,y, t;px,py,-11W;s) yielded by the generating function 
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where 11 (s) is the dispersion function of the ring, P and y are the usual relativistic 

parameters, and the prime stands for the derivative with respect to s. After applying this 

transformation to Eq.(A3), we scale the canonical momenta to obtain 

(AS) 

The Hamiltonian H3 is further transformed with the generating function 

(A6) 

The use of F2 leads to the Hamiltonian 

( )
2 ~ " 2 ( )Nq r (n) 

- ~ '":JOW +y x- hllW '~ (s-s (n)) 
R 2 R LIR P q 

n=l 

(A7) 

where h is the harmonic number of the cavities, ~o is the so-called phase slip factor 

defined as ~o=a.-1/yo2 with the momentum compaction a., and 

(A8) 
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APPENDIXB 

TRANSFER MATRICES 

Here, we give the explicit expressions of the transfer matrices employed in the 

paper. Based on Eqs.(2.3)-(2.8), the transfer matrix at an RF cavity located at a position 

with non-zero dispersion can be represented as 

1+ A~h~h -A~h2 A~b 0 
0 

A~h2 1- A~b~b A~b 0 
Mb= 0 I 0 

0 0 1 0 
(Bl) 

A~b -A~b 
0 

A 1 

/ 

where A= 27tVL2 I ~0 , and I and 0 denote, respectively, the 2 x 2 unit matrix and zero 

matrix. Similarly, the pure skew quadrupole matrix Mq and the drift matrix Mo can be 

given as 

0 0 
I -r 0 

0 
. q 

0 0 0 0 
M = -r 0 

I 
0 ~qrq , 

(B2) q 
q 

-~qrq 0 
0 I 

0 0 

cos(vx80 ) sin(vx80 ) I Yx 
0 0 

-vx sin(vx80 ) cos(vx80 ) 

Mo(So)= 0 
cos(vy8o) sin(vy80 ) IVy 

0 
-vy sin(vy80 ) cos(vy80 ) 

1 -~o8o' 
0 0 ; 0 1 
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·• 

(B3) 

where So is the angular extent of a drift space. Needless to say, all these matrices are 

symplectic. 
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Figure Captions 

Fig.l. Imaginary part of the eigentunes describing longitudinal and transverse motions as 

a function of the dispersion llo at the RF cavity position. The horizontal tune Vx is 

chosen to be Vx=2.17 in all cases. The cavity is set at the location opposite to the 

laser damping section which has the cooling rate Ar/27t=0.01. We use, in all figures 

presented in this paper, the slip factor ~o=-0.947 roughly corresponding to the recent 

ASTRID experiments for 100 keY 24Mg+ ions. In addition, we assume the 

circumference of the storage ring to be 40 m, the same as in the ASTRID ring. 

Fig.2. The same as Fig.l, but now the tunes are chosen in each case such that the 

resonance condition, Vx-VL=integer, is satisfied. The solid curves are obtained from 

solving 4 x 4 determinant while the dotted curves result from Eqs.(4.6) and (4.7). 

Fig.3. The dependence of the damping rates on the RF-cavity position. The location of 

the cavity is varied fixing the tunes at VL=0.29 and Vx=2.29. This value ofvx· is the 

same as the vertical tune of the ASTRID ring. The center of the laser cooling section 

is located at 8=0°. The dotted curves again correspond to the results from Eqs.(4.6) 

and (4.7). 

Fig.4. Imaginary part of the eigentunes evaluated from the 6 x 6 one-turn transfer matrix 

vs. the dispersion llb at the cavity position. The origin of 8-coordinate is taken again 

at the center of the laser cooling section which has the cooling rate Ar/27t=O.Ol. The 

RF cavity sits at 8b=7t, the position opposite to the cooling section, while the 

quadrupole location is 8q=37t/2. The quadrupole coupling constant is fixed at 

rq=O.l. Only the case (b) satisfies the two resonance conditions given in Eqs.(4.3) 
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and (4.12) simultaneously. Note that, in the case (a) and (c), one of the two 

transverse modes is nearly decoupled having the imaginary part almost equal to zero. 

Fig.5. The same as Fig.4, but the longitudinal and horizontal tune are here set at the 

values identical to those adopted in Figs.2. In addition, the vertical tune is chosen 

such that the resonance condition, Vx-Vy=integer, is satisfied. The dotted curves 

represent the first-order theoretical solutions given in Eqs.(4.14), yielding close 

agreements with the numerical results in all cases. It is shown, as expected, that 

three curves always intersect at the level Im(v)=AD"127t. 

Fig.6. The optimum dispersion evaluated from Eq.(4.16) vs. the skew quadrupole 

strength rq. The same parameters as used in Fig.5(a) are chosen. The magnetic- · 

field gradient corresponding to a specific value of rq depends on various parameters, 

'but it can be shown thai, as far as the ions employed so far for laser cooling 

experiments are concerned, rq of the present range can be easily realized with a 

single skew quadrupole. 

Fig.7. Tracking 'results, i.e. the solutions of the nonlinear equations derived from the 

Hamiltonian in Eq.(2.2), in which 500 particles are followed and, from them, 

longitudinal (solid line) and transverse (broken lines) RMS emittances are evaluated. 

The employed parameters in each figure are identical to those in Fig.4, but the 

dispersion is fixed at Tlb=0.6 m approximately corresponding to the optimum value 

indicated in Fig.4(b). Initially, particles are randomly distributed inside the three 

phase-space circles whose scaled radius is 0.1 (See Fig.1 0.): 

Fig.8. Imaginary part of the eigentunes evaluated from the 6 x 6 one-turn transfer matrix 

vs. the longitudinal tune VL. The horizontal tune Vx and the vertical tune Vy are 
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varied around the values shown in the case (a), fixing the dispersion Tlb at 1.0 m 

which is approximately equal to llopt· Other parameters, except for the tunes, are 

identical to those in Fig.4. The case (a) represents the best case where Vx and v y 

satisfy the resonance condition. Clearly, the optimum situation is achieved when 

VL=0.12. 

Fig.9. Tracking results exactly corresponding to the case (a) to (d) given in Fig.8. The 

longitudinal tune VL is fixed at 0.12. In horizontal and vertical phase-space, the 

assumed initial beam has a circular shape with the scaled radius of 0.02, which is 1/5 

of the injection beam radius in Fig.?. The longitudinal phase-space projection is an 

ellipse having the total phase spread of 0.8 radian and the maximum absolute W of 

0.001. 500 particles are randomly distributed in the initial state. 

Fig.IO. Phase space configurations. (al), (bl), and (cl) represent two-dimensional phase

space projections of an injection beam, while (a2), (b2), and (c2) are those after 301 

turns. The employed parameters are exactly the same as those in Fig.9(a), but the 

initial phase spread is taken twice as large. 

Fig.11. The same as Fig.9(a), but here the initial transverse emittances are set at 1/4 of 

Fig.9(a), while the longitudinal emittance is taken ten time larger than the transverse 

value. 

Fig.12. The voltage amplitude Vb of an RF cavity vs. the longitudinal tune VL. The 

following RF frequency has been assumed for each curve; i.e.-581kHz for 100 keV 

24Mg+, -1.24 MHz for 100 keY 7Li+, -46.7 MHz for 7.29 MeV 9Be+, and -103.6 

MHz for 13 MeV 7Li+. 
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Fig.l3. Dependence of damping rates on the dispersion llq at the skew quadrupole 

position. The same parameters as employed in Fig.5(a) have been assumed fixing 

the dispersion llb at 1.0 m. 

Fig.l4. The same as Fig.l3, but lm(v) is now plotted as a function of the dispersion llb· 

Finite values of the dispersion-derivative at the cavity position have been assumed 

neglecting llq. 

Fig.l5. The same as Fig.l3, but lm(v) is plotted as a function of the derivative of 

dispersion, dll b/ds, at the cavity position, varying the dispersion llb· 

Fig.l6. The same as Fig.l4, except that the employed transverse tunes are slightly 

different 11 q and dll b/ds are both neglected here. 

Fig.l7. The same as Fig.l4, but lm(v) is now plotted as a function of the longitudinal 

tune VL. The dispersion has been chosen as llb=1.9 m close to the optimum value 

indicated in Fig.l6. 

Fig.l8. The same as Fig.l4, but the skew quadrupole strength is varied around f'q=O.l. 

The optimum dispersion in the case (b) is shown to be about 1.85 m while, in the 

case (d), it becomes around 2.05 m. 
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