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Abstract 

Phase Transitions and Connectivity in 
Three-dimensional Vortex Equilibria 

by 
James H. Akao 

Doctor of Philosophy in Mathematics 

University of California at Berkeley 
Professor Alexandre J. Chorin, Chair 

iii 

The statistical mechanics of collections of closed self avoiding vortex loops on a 

lattice are studied. The system is related to the vortex form of the three dimensional 

XY model and to lattice vortex equilibrium models of turbulence. The system exhibits 

vortex conneCtivity and screening effects, and models in vorticity variables the super:fluid 

transition. The equilibrium states of the system are simulated by a grand canonical Monte 

Carlo method. A set of geometric transformations for self-avoiding loops is developed. The 

numerical method employs histogram sampling techniques and utilizes a modification to 

the Metropolis flow which enhances efficiency. 

Results are given for a region in the temperature-chemical potential plane, where 

the chemical potential is related to the vortex fugacity. A line of second order transitions 

is identified at low temperature. The transition is shown to be a percolation threshold 

at which connected vortex loops of infinite size appear in the system. The nature of the 

transition supports the assumption that the lambda transition in bulk super:fluid helium is 

driven by vortices. 

An asymptotic analysis is performed for the energy and entropy scaling of the 

system as functions of the system size and the lattice spacing. These estimates indicate 

that the infinite temperature line is a phase boundary between small scale fractal vortices 

and large scale smooth vortices. A suggestion is made that quantum vortices have uniform 

structure on the scale of the lattice spacing and lie in the positive temperature regime, while 

classical vortices have uniform structure on the scale of the domain and lie in the negative 

temperature regime. 
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Chapter 1 

Introduction 

1.1 Background 

A full understanding of the physics of turbulent flow is one of science's great 

open problems, and has been sought by mathematicians, physicists and engineers for many 

decades. The Navier-Stokes equations are an accurate model of flow in an incompressible 

fluid, and many satisfactory computational algorithms exist for the solution of smooth 

flows. See for example [5] [11] [35] [24] [58]. Three dimensional turbulent :flows, however, 

are not currently well simulated. Since high Reynolds number turbulence contains motions 

on length scales covering perhaps five to fifteen orders of magnitude, a direct Navier-Stokes 

computation of the entire flow field would require something like (10 5- 15 ) 
4 

= 10 20 - 10 60 

points in a space-time volume. This computational effort is far beyond the reach of even 

the fastest parallel machines. A physical understanding of turbulence itself, beyond the 

underlying partial differential equations, is required for the effective simulation of fluid flow 

problems in complex machinery and in the oceanic and atmospheric environments. 

Turbulence is also of interest in quantum systems such as super:fluid helium. Su­

perfluids exhibit motions which are not subject to viscous energy loss; a super:flow once 

started will continue indefinitely [52] [139] [121]. This phenomena is of particular interest 

for its relation to resistanceless electric currents in superconductors [140] [104] [30]. In the 

superfluid case, even the underlying equations of motion have yet to be satisfactorily de­

termined [20] [21] [6] [95]. It is apparent in these.low temperature flows that mechanical 

. and thermal motions are coupled, and that thermal effects can cause resistance and dis­

rupt superfluid motion. The disruption of the superflow has been linked to the onset of 
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turbulence in the fluid [52] [59]. Thermal effects cause a phase transition in liquid helium 

known as the lambda transition which divides the superfluid phase from the normal fluid 

phase. A theoretical understanding of quantum turbulence may further the general theory 

of resistanceless flows and aid in the technological utilization of these quantum phenomena. 

There is experimental and theoretical evidence for the existence of a universal 

behavior of turbulence in classical fluids. Fully developed turbulence exhibits an inertial 

range of scales spanning the lengths at which viscosity effects are important to the lengths 

at which the large scale geometry dominates the flow. The inertial range has a characteristic 

structure and energy spectrum which is largely independent of the type of fluid and of the 

large scale flow [102] [94] [41] [129]. The universal properties of the inertial range suggest 

that the concept of large eddy simulation is basically sound; one may be able to explicitly 

compute the large scale, geometry dependent, portion of the flow and employ a sub-grid 

model to account for turbulent motions below the desired resolution. 

A sub-grid model should predict the response of the inertial range flow to outside 

stresses without resolving the specific turbulent motions. One way to simulate the inertial 

range without explicitly computing it is to make a stochastic model, in which the sub­

grid flow is probabilistic. The average effects on the grid scale can be computed from the 

probabilistic model, with the probability distribution depending in some way on the external 

stresses. 

While many approaches can be taken to study the probabilistic properties of tur­

bulence, the thermodynamic equilibrium approach is a natural starting point for several 

reasons. Formulating the thermodynamic equilibrium model is relatively uncomplicated; 

the equilibrium depends on the energy and the constraints in the system but not on the 

details of the time evolution [92] [122] [138]. While the equilibrium assumption is a great sim­

plification, it by no means trivializes the resulting model. Studies of various hydrodynamic 

equilibria have demonstrated a rich set of behaviors including order/disorder transitions 

and negative temperature states [23] [38] [39] [41] [61] [88] [97] [108] [109]. Thermodynamic 

equilibrium is well understood for many systems, so general experience with these systems 

can be brought to bear on the turbulence problem. The equilibrium model is also the foun­

dation of more complex theories of critical behavior in statistical physics. See for example 

[64] [54]. While both classical and quantum turbulence are likely to be more complex than 

a thermodynamic equilibrium model, an understanding of hydrodynamic equilibria can be 

useful in concert with other techniques in the construction of a full stochastic theory. 

.. 
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The assumption of thermodynamic equilibrium leaves considerable freedom in for­

mulating the model for turbulent flow. For example, both real-space and spectral variables 

have been used in theories and computations [116] [77] [41]. Vorticity variables in real-space 

have proved useful in dynamic computations of classical flows in the smooth regime and 

in turbulent approximations. See for example [4] [5] [120] [35] [67]. Vorticity can also be 

measured in physical experiments [4 7] [83] [103] [52] [117] [14 7], and figures in a number 

of non-equilibrium approaches to turbulence [8] [10] [14] [94] [84]. There is a considerable 

know ledge of the energetic properties of, and constraints satisfied by, vorticity representa­

tions of incompressible flow [7] [91] [44] [101]. Vorticity variables are therefore a reasonable 

choice for formulating an equilibrium model. Much is known of the vortex equilibria of two­

dimensional flow [23] [41] [55] [80] [108] [123], and investigations of hydrodynamic vortex 

equilibria have been extended to higher dimensions [31] [32] [38] [41]. 

The study of turbulence in classical and in quantum fluids is an effort proceed­

ing on many fronts. These nonlinear problems have aspects in a number of mathematical 

fields including, but not restricted to, differential equations, dynamical systems, numerical 

analysis, and statistical mechanics. Turbulence has given rise to a numerous and diverse 

collection of models whose properties have been compared to physical and computational 

experiments. The equilibrium properties of vorticity are only a small component of the tur­

bulence problem. Vortex equilibria nevertheless exhibit rich and complex behavior, much of 

which has direct applicability to turbulence in classical and quantum fluids. A better under­

standing of the statistical mechanics of vorticity may improve the theoretical understanding, 

and practical modeling of turbulent fluids and quantum devices. 

In this I have attempted to place the work of the present thesis in context, in 

particular by presenting classical and quantum turbulence as separate but not unrelated 

problems. The reader may refer to the references [41] [94] [102] for an overview of classical 

turbulence, and to [5] [11] [24] [35] [58] for a discussion of computational methods for the 

N avier-Stokes equations. Coverage of superfluidity and resistanceless quantum flows in 

general may be found in [51] [139] [121] [136]. Topics in statistical physics and critical 

phenomena are reviewed in [28] [78] [64] [92]. The list ofreferences is not encompassing, 

but represents an introduction to place the present study in a wider scientific framework. 
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1.2 Overview of the Thesis 

I consider in this thesis the properties of collections of three dimensional vortex 

loops in thermal equilibrium. Examination of this system brings together and extends 

several lines of research. The thesis extends to three dimensions a body of work on the 

equilibrium states of collections of point vortices in two dimensions [23] [61] [88] [108] [109]. 

It addresses issues of vortex geometry which are absent in the two dimensional setting. 

Numerical experiments on single three dimensional vortex filaments have been carried out 

for several years [32] [34] [33] [36] [43] [38]. The thesis extends these experiments to a 

dense collection of filaments having variable connectivity. The present simulation addresses 

the effects of connectivity among the loops in a vortex system on energy screening and on 

vortex geometry. The dense three dimensional system can also be compared to thermally 

excited vortices in liquid helium. Quantum vortices are observed experimentally in liquid 

helium [52] [117] [147], and are thought to drive a phase transition in the system [59] [127] 

[143] [145] [131] [86]. The XY model, which is believed to represent helium at the lambda -

transition, has been simulated in spin variables in three dimensions [75] [53] [85], and in 

vortex variables in 2! dimensions [39] [42]. A vorticity variable simulation of the three­

dimensional XY model has yet to be performed. The model simulated in the thesis differs 

from the vortex form of three-dimensional XY model only in that it constrains vortices 

to be self-avoiding, while XY vortices can intersect. The thesis simulation can therefore 

clarify the effects of self~avoidance in dense vortex equilibria. While some previous theories 

assume that XY vortices have self-avoiding properties [130] [131], other considerations [39] 

[42] cast doubt on the validity of the assumption. A comparison of the behavior of the 

self-avoiding model studied in the thesis to the properties of the XY model can cast light 

on self-avoidance and the relationship between classical and superfluid vortices. The dense 

three dimensional vortex system studied in this thesis provides a direct look at the effects 

of connectivity and self-avoidance in vortex equilibria. 

I present in this thesis -a computational method for determining the equilibrium 

properties of the vortex system. The method is a Monte Carlo simulation generating a 

random sequence of vorticity configurations. The algorithm employs a set of transformations 

~hich change vortex geometry, position, connectivity, and density. A modification to the 

Metropolis sampling method is introduced which enhances the efficiency of the algorithm. 

Histogram methods for thermodynamic simulation are employed; their performance and 
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reliability is analyzed. 

I demonstrate two phase transitions in the dense vortex model. The numerical 

simulation reveals a low temperature phase transition analogous to the superfluid lambda 

transition. Like the lambda transition, the vortex transition has no latent heat; the energy 

of the system is continuous across the critical temperature. The specific heat, however, 

grows with the system size at the transition. This indicates the presence of a divergence or 

cusp in the specific heat in the thermodynamic limit. This evidence is the first numerical 

demonstration of a three dimensional lambda-like transition in pure vorticity variables. The 

transition, furthermore, is shown to be a percolation threshold dividing systems containing 

infinite vortex loops from those containing only finite loops. I present observations on 

vortex connectivity, screening, and geometry at the transition, and place them in relation 

to existing vorticity-based theories of the lambda transition. 

A scaling analysis of the system indicates the existence of another transition at 

infinite temperature. This transition divides states with fractal vortices from states with 

smooth vortices. I make a conjecture on the nature of classical and quantum vortices in 

equilibrium, and present a speculation on the development of turbulence in classical fluids. 

The thesis is divided into six chapters. Chapter 1 contains an overview of the sub­

ject and a summary of the rest of the thesis. • Chapter 2 summarizes relevant background 

and terminology of thermodynamics. It also describes the effects of finite system size on 

general equilibrium models. Chapter 3 concerns the physics of vorticity and vortex equi­

libria. The chapter first defines the present self-avoiding vortex loops model in terms of 

classical flow. The discussion then turns to quantum mechanical vortices in liquid helium 

and the XY model. Theories of the role which vortices play in the lambda transition are 

reviewed. The relationship of the self-avoiding loops model to the XY model is discussed. 

Chapter 4 covers basic techniques for numerical simulation of thermodynamic 

systems. It reviews in detail histogram sampling methods, and gives an analysis of the 

Ferrenberg-Swendsen multi-histogram technique. Chapter 5 describes my application of 

the numerical techniques to the self-avoiding loops system. It lists the transformation set 

employed by the algorithm. It then describes my modification to the Metropolis sampling 

method, and comments on the performance of the resulting algorithm. 

Chapter 6 describes the thermodynamic behavior of the system of self-avoiding 

vortex loops . It first presents numerical evidence of a phase transition at low temperature. 

It describes the nature of the transition and shows how thermodynamic quantities vary with 
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the system parameters and the system size. It relates the observations to vortex theories of 

the lambda transition in the XY model. The chapter then presents an scaling analysis for 

the energy and entropy of the system of self-avoiding loops as the system size diverges. The 

analysis indicates that the infinite temperature line is a transition dividing fractal vortex 

loops from smooth vortex loops. Finally, comments are made on the nature of classical and 

quantum vortices, and on the nature of a universal equilibrium state. 

The remainder of this introduction presents an overview of topics discussed at 

greater length in the body of the thesis. The nature of vorticity and its relation to the 

energy of the system are reviewed. Previous work which on vortex equilibria and phase 

transitions is briefly discussed. The model studied in the thesis is described, and is related 

to the previous work. An introduction to the numerical method employed is given. Finally, 

the results of the thesis study are summarized. 

1.3 Vorticity in Classical and Quantum Systems 

The term vorticity arises from fluid mechanics [7] [44]; there the vorticity field {(x) 

is defined as the curl of the velocity field u(x): 

• 
{=Vxu 

The vorticity can be identified with rotation in the flow. Envision fluid circulating around 

in an eddy. Stokes' theorem indicates that the line integral of u · di around the eddy is 

equal to the integral of vorticity penetrating a surface through the eddy. The presence of 

circulation, § u · di, implies the presence of vorticity. Thus the common notion of a "vortex" 

such as a tornado or whirlpool can be thought of in terms of a concentration of vorticity on 

the axis of rotation. 

Since vorticity is a derivative of velocity, the presence of vorticity even in a small 

region may correspond to a flow in a large region. A flow in lR3 can be expressed up to the 

gradient of a scalar function in terms of the vorticity. field {( x) [ 91]: 

_( _) 1 J (x- y) x {(y) d _ 
U X=- y 

4:rr lx- yf 

Note that the velocity at a point depends on the vorticity strength and direction throughout 

all space. This formula also allows the energetic properties of the flow to be described in 

.. 
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terms of the vorticity. The kinetic energy of incompressible fluid in ~3 can be re-written as 

the Lamb i~tegral [91]: 

! J lu(x)l 2 dx = _..!._ J J (<
1

XJ · ~Y) dx dy 
2 . 811" X- y 

While the integrand ju(x)l 2 in the velocity form is positive definite, the integrand ((1~..:.~r) in 

the vorticity form can be negative if {(x) and {(Y) are anti-parallel. This can be physically 

interpreted as regions of anti-parallel vorticity screening each other to reduce the kinetic 

energy of the flow. 

Because of this screenip.g effect, the energetic properties of a flow field characterized 

by the vorticity are dependent on the direction of {(x) and {(Y) at pairs of points x, yin 

space. The spatial correlations of the vorticity field determine the average energy of a 

random flow. Some general characteristics of the vorticity correlation structure follow from 

the discretized form of the vorticity. Of course, in the full equilibrium problem the relative 

weights of the different configurations affect the correlation statistics. Nevertheless, an 

examination of the vorticity configurations alone gives some information on the statistical 

nature of the flow which they represent. 

A direct study of the infinite dimensional set of continuous vorticity fields { 

presents significant difficulties. One can model the continuous problem by first discretizing 

the vorticity field and then taking a continuum limit. An appropriate discretization of the 

vorticity field follows from constraints on the field in space and in time. Since vorticity is a 

curl, it must at all times be divergence free in space. 

v . {( x) = v . [V x u( x)] = o 

The time evolution of an inviscid flow, furthermore, has an interpretation in which vorticity 

of conserved "strength" is physically moved by the flow [44]. The conserved strength is 

more precisely expressed as the circulation around closed curves which move with the flow. 

Recall that the circulation is related by Stoke's Theorem to the integral of vorticity passing 

through the curve. A proper discretization of vorticity should consist of objects which 

satisfy the zero divergence condition and have constant circulation. 

Consider first the degenerate case of two dimensional flow in which the velocity 

is independent of the x3 coordinate direction and in which the x3 component of velocity 

is zero. The vorticity field in a dynamic calculation may be discretized into a collection of 
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pointlike vortices [35] which mov~ with the fluid and whose circulation is constant in time. 

In two-dimensional flow, the zero divergence condition is trivially satisfied. Configurations 

in a random model may consist therefore of independently positioned pointlike vortices. 

The energy in the model then depends on the circulations and distributions of the points. 

In three dimensions, however, the vorticity field generated by a collection of point­

like vortices may not satisfy the divergence free condition. This constraint can be satisfied 

by a discretization of vorticity into a collection of linelike objects having vorticity aligned 

along their axes. Helmholz's Theorem indicates that ·a discretized line of vorticity can nei­

ther end nor change strength; it must therefore either close on itself to form a vortex loop 

or stretch to infinity [44]. The circulation around any curve encircling the loop is constant 

along the loop and in time in a dynamic flow. Configurations in a random model may con­

sist therefore of collections of closed vortex loops or infinite vortex lines having conserved 

circulation. 

These vortex lines may be described on a lattice as directed walks which either 

return to their origin to form a vortex loop or stretch to infinity in both directions. Lattice 

vorticity points in the direction of the steps of the walks. The vortex-vortex correlations 

in the configuration are thus correlations among steps of the directed walks. In a random 

model, these correlations may depend significantly on connectivity and self-avoidance prop­

erties of the vortices. The vorticity at two points may correspond to two steps of the same 

walk: belonging to the same connected vortex loop, or to steps on different walks: belonging 

to different unconnected. vortex loops. Steps of lattice walks may be allowed to revisit sites: 

vortex self-intersection, or may be constrained to visit a site no more than once :vortex 

self-avoidance. Suppose for the moment that the degree of folding along a vortex loop is 

limited so that the loop tends to remain fairly straight. Then nearby steps along a lattice 

walk will tend to point in the same direction. A nearby portion of a separate, unconnected 

walk, however, may have a direction almost independent of the direction of the first walk. 

The connectivity pattern among different loops, therefore, affects the vortex-vortex corre­

lations and thus the energy. The self-avoidance property of vortex loops also affects the 

vorticity correlations. If a vortex loop is allowed to fold back on itself, it typically forms 

an extremely crumpled object similar to a random walk in which successive steps have 

independent directions. If, on the other hand, the vortex loop cannot revisit any site, it 

will tend to straighten out. The statistics of random walks which obey the self-avoidance 

cons~raint have been studied in the context of polymers [63]; the self-avoiding walks exhibit 
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fractal geometries. Studies of self-avoiding random walks as models of turbulent vortex 

filaments indicate power law correlations between successive steps of the walk, as opposed 

to the uncorrelated behavior of the purely random walk [34] [33] [36] [43] [38]. These fractal 

self-avoiding vortices are straighter than self-intersecting vortices but more crinkled than 

smooth vortices. The self-avoiding vortices accordingly have average energies between those 

of self-intersecting and smooth vortices. 

The vortex-vortex correlations of collections of three dimensionallinelike vortices 

have a complex geometric character absent in the two dimensional setting. Vortex fold­

ing and changes in connectivity can significantly alter the expected energies of a random 

collection of vortex configurations. Local connectivity and avoidance constraints can have 

significant effects on the overall flow. 

A vortex discretization for classical fluid flow is given in Section 3.2; classical 

vortices are self-avoiding. Vortices in quantum mechanical systems such as superfluid helium 

have a natural discretization. These vortices possess quantized circulation and are thus 

physically discrete entities [51] [121]. In the superfluid case, as in the classical case, vortices 

are pointlike in two dimensions and linelike with conserved circulation in three dimensions. 

While the hydrodynamics of superfluid helium is not fully understood, the XY spin model · 

is believed to represent the configurational and energetic properties of the superfluid [88] 

[13]. The XY model can be transformed into a vortex system [127]. The energy of a vortex 
( 

state, furthermore, has the same form for XY vortices as for hydrodynamic vortices. The 

XY vortices, however, can self-intersect. The suggestion has been made [130] that there 

is no significant difference between the self-avoiding and weakly self-avoiding models, but 

arguments have been made to the contrary [39] [42]. Since the vortex configurations in 

the thesis model differ from the configurations in the XY model only in the self-avoidance 

condition, the thesis simulation may shed light on the effect of self-avoidance on dense 

vortex equilibria. 

• 
1.4 Vortex Equilibria and Phase Transitions 

The thermal equilibria of vortex systems have been studied in several physical 

contexts. Thermally excited vortices are conjectured to underly the lambda transition of 
4He from a superfluid to a normal phase [59] [52]. Vortices have also been shown to play 

a role in the analogous transition in the three-dimensional XY model [86]. A number of 



10 CHAPTER 1. INTRODUCTION 

theories of thermally excited vortices in helium and in the XY model have been developed 

[88] [127] [143] [146] [130]. Onsager [115] suggested that two dimensional vortex equilibria 

could represent the turbulence of a classical fluid in the plane. He furthermore indicated that 

negative temperature was characteristic of the system. The negative temperature states of 
/ 

two dimensional vortex systems have since been studied by a number of researchers [23] [55] 

[80] [97] [108]. Chorin [32] [34] [33] [36] [38] has studied vortex equilibria in three dimensions 

as models for classical and quantum turbulence. For classical turbulence, Chorin and Akao 

[43] demonstrated a class of equilibria in a singe-filament model which exhibits the universal 

Kolmogorov energy spectrum and gave evidence that the infinite temperature equilibrium 

is an asymptotically stable state. 

Vortex equilibrium models are known to exhibit several types of phase transition. 

Kosterlitz and Thouless [88] [87] described a transition in the low temperature vorticity 

form of the XY model in two dimensions. The transition is thermodynamically weak, with 

all derivatives of the free energy remaining continuous, but is a threshold at which vortex 

pairs unbind to form a gaseous state. Caglioti [23] described a transition in two-dimensional 

negative temperature systems between smooth vorticity distributions and a collapsed state. 

Chorin [38] showed that a lone vortex in three dimensions undergoes a phase transition 

at infinite temperature. The vortex is collapsed into a three-dimensional object below the 

transition, and extends into a smooth one-dimensional object above the transition. The 

vortex is a fractal self-avoiding walk at the transition. Work by Shenoy et. el. [130] [146] 

indicates that the vortex form of the three-dimensional XY model undergoes second order 

transition analogous to the lambda transition in bulk superfluid helium. While the XY 

transition has been observed in spin variables [75] [53], and related to the existence of 

vortices (86] [131], it has not been directly observed in a vortex variable computation. 

Phase transitions can arise in stochastic models other than thermal systems. The 

transitions in other models, furthermore, can sometimes be related to transitions in thermal 

systems. An example of a class of non-thermal systems havhi.g phase transitions is perco­

lation [66] [134]. Percolation theory examines how collections of objects having random 

positions cluster into large structures. An example of a percolation system which typifies 

. the phase transition behavior follows. Suppose each site of an infinite lattice is occupied by 

a particle with probability q, and empty ~ith probability 1- q. There exists a critical prob­

ability qc which the system undergoes a phase transition. For all occupation probabilities 

q < qc the probability of the existence of an infinite cluster of nearest neighbor particles is 
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zero, while for occupation probabilities q > qc the probability of an infinite cluster is one. 

This percolation transition displays a set of scaling behaviors analogous to transitions in 

thermal systems. The probabilities for different sites to be occupied need not be indepen­

dent as in the example; the particles could have an interaction for instance. Dependent 

percolation has been linked to vortex equilibria by Chorin [39]. Percolation ideas are used 

in this thesis to describe the vortex behavior at a thermodynamic phase transition. 

1.5 The Self-avoiding Loops System 

This thesis considers the equilibria of dense collections of vortex loops in three 

dimensions. Individual vortices in the model trace out closed self-avoiding walks on a pe­

riodic lattice. Each vortex configuration contains a collection of vortex loops obeying the 

self-avoidance condition that no site can visited more than once, hence no two loops can 

touch. A typical configuration contains loops of many different lengths at separations com­

parable to the size of the loops. The model extends research done [32] [34] [33] [36] [38] on a 

model of single three dimensional self-avoiding vortices. The single vortex model simulates 

vortices whose separation is much greater than their characteristic length. Allowing multi­

ple loops exposes energy screening effects and addresses the impact of loop connectivity on 

the energy and on vortex-vortex correlations. 

In addition to allowing vortex lines to arrange themselves in many ways to form 

collections of loops, the multiple vortex simulation has a definite spatial volume and thus 

allows the definition of vortex line density. Variable density vortex systems have been 

studied in two dimensions, but the current work is the first three dimensional variable 

density simulation. Since vortex length and density are not conserved in either classical or 

quantum turbulence, the effect of density on the equilibrium states is of physical interest. 

The vortex system simulated in this thesis differs from the vortex form of the 

three-dimensional XY model only in that the vortices in the thesis model are self-avoiding 

while XY vortices can intersect. A simulation of the self-avoiding system is useful with 

regard to the XY system in several ways. To the extent that the models are similar, general 

characteristics of the phase transitions in the self-avoiding loops system may apply to the 

XY transition as well. The difference between the two models can clarify the effects of 

self-avoidance on vortex equilibria. A theory of the phase transition in the XY model [130] 

employs an assumption that large XY vortices have the same equilibrium statistics at the 
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critical temperature as equal probability (infinite temperature) self-avoiding walks. Other 

studies [38] [39] [42], however, indicate that self-avoidance has a significant impact on vortex 

statistics. The simulation of a model in which vortex self-avoidance is explicitly enforced 

can explore the distinction between self-avoiding vortices and self-intersecting XY vortices. 

Finally, the relation of the self-avoiding system to superfluid helium transition may cast light 

on the approximation process used to derive the XY model from physical considerations. 

1.6 Numerical Simulation 

The equilibrium states of the system of self-avoiding loops are simulated in this 

thesis by a grand canonical Monte Carlo algorithm. The algorithm employs a set of trans­

formations which change vortex loop geometry, position, number, and connectivity. The 

vortex geometry transformations are adapted from the self-avoiding walk computations of 

Madras and Sokal [100] [99] [25] [26]. The set of transformations consists of both local 

and global moves. A modified Metropolis acceptance algorithm is developed to efficiently 

handle different types of transformations. The modified algorithm allows the probability 

of accepting a move to depend on the type of transformation producing the move, while 

still preserving the detailed balance condition. This freedom allows the algorithm to make 

efficient use of expensive configuration energy computations. The modification may also be 

of use in general Monte C~rlo simulations which must overcome probability barriers near 

energy ground states. 

Histogram sampling and histogram merging methods are employed. The methods 

enable a single computation to provide information on the micro-canonical, canonical, and 

grand canonical ensembles. They also allow average quantities to be examined as functions 

of the thermodynamic potentials, rather than values at discrete potentials. A theoretical 

analysis is given of the Ferrenberg-Swendsen multi-histogram method [56] [57], and sugges­

tions are made for improving the algorithm. 

L. 7 Phase Transitions in the Self-avoiding Loops System 

Two transitions are described for the system of self-avoiding loops. The first is a 

phase transition at low temperature. While the energy and vortex density are continuous 

as functions of temperature across the transition, the specific heat has a peak at the critical 
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temperature. The phase transition is shown to be a percolation threshold; the probability 

of the existence of an infinite connected vortex loop is zero below the transition and one 

above the transition. The transition in the self-avoiding loops system is similar in nature 

to the lambda transition in superfl.uid helium and to the phase transition in the XY model. 

The observation of percolation behavior at the transition supports the use of percolation 

ideas in developing renormalization theories of the lambda transition. While the phase 

transition in the self-avoiding system has a similar character to the phase transition in the 

XY model, the two models may lie in different universality classes. Estimates of the fractal 

dimension of self-avoiding vortex loops did not match estimates [53] of the fractal dimension 

of XY vortices. A definitive conclusion on the difference between the self-avoiding and the 

XY phase transitions is not presently available; although a computation of the critical 

exponents for the self-avoiding system could help resolve the issue. 

The second transition occurs at infinite temperature. Vortex loops are shown to 

be fractal with structure of the size of the lattice spacing at positive and infinite tem­

peratures. The negative temperature states, however, contain smooth composite vortices 

made of parallel bundles of lattice vortices. These regions of aligned vorticity are of the 

size of the domain. A suggestion is made that negative temperature states correspond to 

classical vortices, while positive temperature states correspond to quantum vortices. The 

infinite temperature state may be accessible to both quantum and classical systems, and 

may represent a generic turbulent state insofar as the equilibrium model holds for true 

turbulence. 
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Chapter 2 

Thern1odynamics 

Thermodynamics provides a simplifying framework for studying systems having 

many degrees of freedom and complicated dynamical interactions. It gives information on 

average quantities for a system in its generic, or typical "state". It is applicable for systems 

where the properties of interest are essentially constant on a coarse enough measurement 

scale in space and time. I present the barest essentials of thermodynamics in this section. 

A physical view of thermodynamics and statistical physics is available in Reif [122], while 

a more mathematical introductory treatment is given in Thompson [138]. 

Consider as an example a gas of N molecules in a box. The most straightforward 

way of examining the behavior of an observable quantity would be to construct a dynamical 

model. The instantaneous configuration of the collection can be described by a vector c(t) 

with 6N coordinates: the positions (x, y, z) and momenta (px,Py,pz) of all the particles at 

time t. One could begin with a configuration c(O) and then evolve the system forward to a 

timeT, tracking the orbit in 6N dimensional phase space: 

c( t) ltE(O,TJ 

An observable function A(c) of the system could then be computed instantaneously, or 

averaged over the time period: 

11T <A>= T t=O A(c(t)) dt 

Although this approach is useful for simple systems, the difficulty of obtaining an appro­

priate starting point, understanding the time evolution, and solving the model, is immense 

,• 
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when N is on the order of 1023
• Even storing the information on 6 x 1023 degrees of freedom 

is wholly impractical. 

The thermodynamic approach replaces the temporal evolution and averaging with 

a probabilistic formulation. The set C of of all possible configurations of the system is 

formed. In the example C is the collection of all possible vectors c of positions and mo­

menta. The "state" of a system is defined· not in terms of a path through the space of 

configurations but in terms of probabilities assigned to the configurations. The dynamic 

orbit e(t)j is replaced with a probability distribution p(e)j . The form of the prob-
tE[O,T] cEC 

ability distribution is determined by defining an entropy functional on the space of all 

suitable distributions and choosing the Gibbs Distribution p which maximizes that entropy 

[92]. The underlying physical principle is that a system with many degrees of freedom and 

complicated dynamic properties will quickly reach an equilibrium state which has maximum 

entropy. The implication of this assumption is that averages over a sufficiently long time 

period are equal to probabilistic averages over C: 

<A>= Z
1 1 A(e)p(e) de 

cEC 

The probability of a configuration is in practice expressed as a relative weight p(e) and 

normalized by a factor 1/ Z. 

Z= f p(e) de 
JcEC 

The normalization Z is known as the partition function~ The thermodynamic equilibrium 

formulation eliminates the temporal component of the problem and replaces the dynamic 

average with a more tractable probabilistic average. Furthermore, the probabilities depend 

simply on quantities which are preserved by dynamics of the system. 

2.1 Thermodynamic Ensembles 

Differences in the manner of constituting C lead to different probability distribu­

tions. The pair {C, p} is called the thermodynamic ensemble. Consider first an isolated 

system, such as a box with insulating walls. Since the energy of the system remains con­

stant, C should consist of all sets of N positions and N momenta with a particular energy 

density £. The probability distribution with maximum entropy is then p(e) = 1; all the 

listed configurations are equally likely. This choice of {C,p} is known as the micro-canonical 

ensemble. 
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Suppose, though, that the system can exchange energy with another (infinitely 

large) reference system of energy density c. The set C thus contains configurations of any 

energy E(c). The probability function corresponding to equilibrium with the reference 

system is then: 

p(c) = e- r.;TE(c) = e-.BE(c) 

where j3 = k~T is a parameter which depends on the energy per unit volume c of the 

reference system. This choice of { C, p} is known as the canonical ensemble. Here T is the 

temperature of the system; j3 is inverse temperature. I wish to emphasize that temperature 
t 

is an arbitrary parameter arising through the equilibrium condition. While the familiar 

temperature corresponding to energy in the small scale motions of individual molecules is 

always positive, the temperature of equilibrium systems where other types of energy are 

present may be infinite or negative. In two-dimensional inviscid turbulence, for instance, 

where the internal molecular motions of the fluid are uncoupled from the the bulk velocity 

it(x), the temperature corresponding to the energy 

is typically negative [115] [109]. In this case the averaged "hydrodynamic" motions con­

tributing to the bulk fluid velocity it can come to an equilibrium which is decoupled from 

the equilibrium of the small scale molecular motions. The hydrodynamic system, therefore, 

can have two temperatures, the familiar temperature corresponding to individual molecular 

motions, and. a different temperature defined for the equilibria of the bulk flow. 

Some qualities of general temperature do follow a familiar pattern. For instance, 

higher positive temperature systems have a larger average energy, and energy will flow from 

a hotter system to a colder system if the two are placed in contact and allowed to come to 

equilibrium [92]. Since the parameter j3 is the inverse of the usual temperature T, systems 

become hotter as j3 decreases. The behavior for infinite and negative temperature may be 

seen from the expression for the average· energy in the canonical ensemble: 

(E)=_!_ 1 E(c) e-lc~TE(c) de=_!_ 1 E(c) e-.BE(c) de 
Z cEC Z cEC 

The coldest systems have small positive T, or large positive /3. The configuration weights in 

this case quickly decrease with increasing energy. The systems warm up as T--+ oo+, and as 

j3 --+ o+; high energy configurations are less severely discouraged. At infinite temperature, 
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T = ±oo, (3 = 0, all configurations have equal weight and the average energy depends only 

on the space of configurations. At negative temperatures, configurations with large energies 

·have a weight which is exponentially increasing with increasing energy. The highest energy 

configurations, therefore, are the most favored. Negative temperatures are thus hotter than 

positive and infinite temperatures. The hottest states correspond to T ~ o-, which is 

(3 ~ -oo. I use throughout most of this thesis the inverse temperature parameter (3. The 

average energy of a system is always increasing as (3 moves down from (3 = oo through 

(3 = 0 toward (3 = -oo. 

If the dynamics of the system conserve the number of particles N(c) as well as 

the energy, it makes sense to consider an open subsystem which can exchange energy and 

particles with a reference system of energy density £ and particle density 1J. The set 

of subsystem configurations then contains configurations c of arbitrary energy E(c) and 

arbitrary number of particles N(c). In this case, the equilibrium probability function has 

two parameters: (3 and J.L: 

p(c) = e-fJE(c) +(Jp.N(c) 

This pair { C, p} is known as the grand canonical ensemble. The parameter (3 is the inverse 

temperature and the parameter J.L is the "chemical potential" of the system. 

2.2 Finite Size Effects 

The thermodynamic ensemble {C, p} is formulated for a fixed system size, or vol­

ume V. We are interested, however, in the bulk properties of the system when the number 

of degrees of freedom is huge, on the order of 1023 • We therefore need to take the thermo­

dynamic limit: 

(A) oo = lim (A) v 
V-+oo 

Under most conditions, the thermodynamic limit is independent of the choice of ensemble. 

The physical behavior of the macroscopic system is well represented by any of the ensembles. 

In practice, computer simulations are conducted for extremely small systems with 

tens to a few thousands of degrees of freedom. These systems, viewed probabilistically, 

attach significant probability to configurations with observable values away from the mean. 

This may be formalized as follows. Think of c as a random variable with probability 

distribution pj Z; we may then derive a corresponding random variable for an observable 
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A. Define the distribution function FA ( x) : R -t R: 

FA(x) = Prob(A(e)::; x) = f x(A(e')::; x)p(e')/Z de' 
Jc'EC · 

Then let P A ( x) = · tx FA ( x) in the distribution sense. Now A can be thought of as a 

random variable with probability density P A ( x). The thermodynamic average is the mean, 

or expected value of A: 

<A>= z1 f A(e)p(e) de= f xPA(x) dx 
JcEC j'R 

We may now consider the variance of A which gives an indication of the magnitude of 

fluctuations about the mean: 

The typical asymptotic behavior for the variance of an observable for V large is given by: 

Var(A) ex: e-V 

where the volume of the system V is proportional to the number of degrees of freedom. 

That is, the magnitude of fluctuations decreases exponentially with the system size. A 

schematic view of the probability densi~y for the energy E/V is given in Figure 2.1. The 

density becomes more sharply peaked as the volume of the system increases. For the very 

large systems observed in most physical situations, the magnitude of the fluctuations is tiny 

compared to the mean value of an observable. In most numerical calculations, however, the 

scaling of the fluctuations with the volume of the system is quite noticeable. 

The effect of taking the thermodynamic limit goes beyond the convergence of 

the mean values and the narrowing of the probability distribution. ·While the behavior 

of observables in a finite syste~ is a smooth (even a:Q.alytic) function of the equilibrium 

parameters {,8, /1-}, this need not be the case in the thermodynamic limit. In fact, many 

systems exhibit phase transitions in which the behavior of certain thermodynamic functions 

changes abruptly. Consider an order parameter 0 which is a function of the configuration 

c and which characterizes the phase of a system. For instance, a system of molecules may 

have O(c) = 0 for a liquid configuration and O(e) = 1 for a solid configuration. While 

the temperature dependent behavior of < 0 > f3 is smooth for any fixed system size, it can 

exhibit sharper and sharper gradients in larger and larger systems. A schematic example is 

given in Figure 2.2. After taking the thermodynamic limit,< 0 >(l exhibits a discontinuity 

.. 
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Order Parameter in the Thermodynamic Limit L=infinity 
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Figure 2.3: 
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at a critical temperature f3c where the order parameter jumps from 0 to 1. See Figure 2.3 

The thermodynamic parameters such as the average energy and its derivatives are also 

analytic as a function of /3 at any finite size but can have discontinuous behavior in the 

thermodynamic limit. Refer to [138] [133] [119] for a more quantitative presentation of finite 

size effects in thermodynamic systems. 

A phase transition at a critical temperature f3c is termed a first order transition if it 

has a latent heat associated- with it; that is, if the energy < E > '; has a jump discontinuity 

at /3 = f3c· See Figure 2.4. Even if < E >13 is a continuous function of temperature, so 

there is no latent heat, a derivative of< E >13 may be unsmooth. Consider, for example 

the specific heat: 

< C >= _ 13 a < E > 
8{3 

H the specific heat has a divergence or cusp at the criticai temperature the transition is 

called continuous, or second order. See Figures 2.5 2.6. 
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A broad class of analytical techniques known as energy/entropy arguments [138] 

[64] are used to make general statements about the nature of thermodynamic systems. The 

arguments have several variations, but all examine the balance between the number of con­

figurations having a given property and the Gibbs weight attached to those configurations. 

The arguments indicate if the configurations have a high probability or a low probability, 

and thus if the system as a whole has the property associated with the configurations. 

A quantity called entropy [122] [138] is used to indicate the number of configu­

rations having a particular property. Let the subset of configurations of interest be C*, 

so: 

Define the entropy S of the subset to be: 

S =log (1 de) 
cEC. 

The entropy is the log of the measure of the subset of configurations C* or, in the case 
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Energy <E> in a Continuous Phase Transition 
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of a discrete state space C, the log of the number of configurations in the subset. The 

energy/ entropy argument is named for its application in the canonical ensemble, but can 

be generalized to the. grand canonical ensemble. The argument states, in essence, that if 

the quantity: 

S- {3E 

increases as the system volume V increases, then the subset C* will have a high probability 

and the configurations of C* will characterize the system in the thermodynamic limit. If, 

on the other hand, the quantity S - {3E decreases as V increases, the subset will have a low 

probability and the configurations of c* will be insignificant in the thermodynamic limit. 

A sketch of the energy entropy argument follows. Suppose the space of configura­

tions is divided into two disjoint subsets: 

Also suppose that the energy E(e) of all configurations e E C1 is E1, and that the energy 

of all configurations in C2 is E2. Let the observable quantity A indicate the property of 

interest; let A(e) take the value A1 for all e E C1 and the value A2 for all e E C2. Now the 

canonical ensemble average of A is: 

(A) = _!_ 1 A( e) e-f3E(c) de 
Z cEC 

The integral can be broken up over the two subsets C1 and C2: 

(A) = _!_ J A1 e-f3E1 de+ 1 A2 e-f3E2 de 
Z cEC1 cEC2 

The expression can be rewritten in terms of the entropies S1 and S2 of the two subsets, 

since the exponential of the entropy is the measure of the subset: 

esl -1 de 
cEC1 

Making the substitutions for the entropy gives: 

(A) = ~ · [ A1 e s1-fJE1 + A2 e s2-fJE2] 

The relative probabilities of the subsets C1 and C2 are expressed as the weights, exp(S1-{3E1) 

and exp(S2- {3E2). Now suppose that the difference in energies and entropies between the 

two subsets can be estimated in terms of the volume V of the system: 

E2- E1 ~ JV 

s2- s1 ~ qV 



24 CHAPTER 2. THERMODYNAMICS 

The average of A is proportional to: 

Now if the quantity q- f3J is positive, then the weight of C2 will increase in relation to the 

weight of C1 as V ~ oo and thus (A)r; :::::: A2. If, on the other hand, q- f3J is negative, then 

configurations in C1 will dominate the system and (A) r; :::::: A1. This argument indicates the 

presence of a critical value of the inverse temperature, f3c = ql J, at which the behavior of 

(A) changes from A2 for /3 < f3c to A1 for /3 > f3c· 

This example of an energy I entropy argument indicates the presence of a phase 

transition in the system at a critical temperature f3c· The example is simplified by assuming 

that the configurations in the system have only two different energies. The energy I entropy 

argument can also be shown to hold in more general situations. Analyses based on the 

balance of energy and entropy form a basic class of tools for making general statements 

about thermodynamic systems. 
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Chapter 3 

Vorticity Models of Physical 

Systems 

Much of the vorticity terminology and context used in this thesis comes frem 

incompressible fluid dynamics. A number of physical systems, however, can be expressed 

in terms of vorticity. While the specific properties of each system are relevant to the 

formulation and interpretation of a vortex equilibrium model, the properties of the model 

may be considered separately from the individual systems. The physics of thermodynamic 

equilibrium depends only on the configurational and energetic properties of the model. In 

this regard, a vortex equilibrium model applies to any system having a description in terms 

of variables {(x) which are topologically linelike, which satisfy a zero divergence condition 

'V · { = 0, and for which the energy takes the form: 

J J {(x) · {(Y) d- d-

1
- -~ X y x-y 

Systems to which a vorticity model applies include magnetic field lines in plasm~s [45] [142] 

and in super-conductors [49] [104] [30], and topological defects in melting solids [72] [110] 

[112] [111] and in liquid crystals [62] [71]. Vortices have also been identified with monopoles 

in four-dimensional lattice gauge theories [90]. While vortex equilibria are pertinent to a 

wide range of physical systems, this thesis discusses only two: turbulence in incompressible 

fluids and the superfluid transition in the XY model of liquid helium. 

This chapter both reviews the formulation of vortex models for the two systems and 

describes how the equilibria of the models can be applied to the physical systems. The first 

part of this chapter, Section 3.1, formulates a class oflattice vorticity models of classical flow 
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following Chorin [32] [34]. The section gives a description of the lattice configurations and 

explains how vorticity conservation laws govern the set of realizable configurations. It also 

formulates an energy functional on the lattice vortices. The vortex self-avoidance condition 

natural to classical fluids is presented. The formulation of a similar lattice vorticity model 

for superfluid helium will be given later in Section 3.3 following Savit et. al. [127]. 

The second part of the chapter, Section 3.2, describes the self-avoiding loops model 

employed in the thesis. The model is a member of the class formulated in Section 3.1; the 

distinction between the present instance of the class and previous instances is detailed. In 

particular, the thesis model allows multiple vortex loops in a periodic volume. Previous 

models investigated by Chorin [32] [34] [33] [36] [38] and Chorin and Akao [43] allowed 

only a single vortex filament in free space. The extrinsic and intrinsic observable quantities 

in the thesis model are defined in this section. An order parameter based on ideas from 

percolation theory is also given. The relation of the thesis mo.del to the physics of slightly 

viscous turbulent flow is briefly discussed. 

The third part of the chapter, Section 3.3, describes the XY spin model of super­

fluid helium. It reviews the vortex form of the model in terms of a low temperature duality 

transformation [128] and in terms of topological defects [13] [88] [113]. It then discusses the 

Kosterlitz-Thouless [88] theory of a vortex driven phase transition in the two-dimensional 

XY model. The phase transition in the three-dimensional XY model which is analogous to 

the lambda transition in bulk 4He is presented; and analysis and computations in the spin 

variables are cited [124] [93] [75]. Efforts to extend the Kosterlitz-~houless type vorticity 

analysis from two dimensions to three dimensions are reviewed [127] [143]·[144] [146] [130] 

[131] [29] [43] [38]. Numerical evidence of vortex effects in spin based simulations of the 

three-dimensional XY model is given [53] [86] [85]. 

The fourth part of the chapter, Section 3.4, reviews the nature of percolation 

transitions. It discusses work by Chorin [39] [41] on vortex percolation in a 2!-dimensional 

model and indicates how percolation ideas may be used to develop a theory of the lambda 

transition. 

The last part of the chapter, Section 3.5, outlines how the model simulated in the 

thesis can be applied to the general theory of vortex equilibria, and how the model can 

address theories of turbulence and of phase transitions in superfluid helium and the XY 

model. 
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3.1 Classical Vorticity and Lattice Vorticity Discretization 

Lagrangian methods in vorticity variables have proved effective for solving the evo­

lution equations of incompressible flow [4] [5] [120] [35] [67]. Experience with these methods 

grounds the discretization of the vorticity field for a thermodynamic equilibrium model. 

The discrete model developed by Chorin [31] [32] [34] [33] [43] [38] respects invariants in 

space and time. Thermodynamics relates equilibrium averages in the discrete model to time 

. averages in the physical system; hence the collection of vortex configurations should pre­

serve the invariants of turbulent flow. The following discussion summarizes the formulation 

of a class of lattice vortex models; refer to [32] [38] [41] for the original treatments. 

Consider an incompressible velocity field it(x). The vorticity {(x) is the curl of the 

velocity field: 

{(x) = v x ii(x) 

We desire for the equilibrium model ·a discretization of the vorticity field into "particles" 

whose positions Xi and strengths ~~ will determine the flow. Consider first the degenerate 

case of two dimensional flow, where the velocity is restricted to the (x1, x2) directions and 

is invariant in the x3 direction. Then vorticity points only in the x3 direction. Take a small 

patch S of the (x1, x2) plane, and denote its counterclockwise oriented boundary by w. See 

Figure 3.1. The circulation r around the boundary is equal to the total strength of the 

vorticity through the patch: 

Now consider the patch as a material surface moving with the flow. The patch may deform 

but, assuming the flow is smooth, the patch cannot break apart. Furthermore, the area 

of the patch is conserved since the flow is incompressible. If the flow is also inviscid, the 

circulation r is preserved in time: 

dr =O 
dt 

The support of the vorticity field {( x) can be covered with a collection of disjoint patches 

Si with associated circulations ri. If the patches are sufficiently small, one can accurately 

represent them by discrete point-like "vortices" & with positions xi and fixed strengths ri. , 
The review in [120] summarizes the properties of discrete vortices in a discretization of the 

inviscid Navier-Stokes equations. 
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Xz 
s 

Figure 3.1: Two-dimensional patch of vorticity 

Xz 

Figure 3.2: Vortex tube 

For the purposes of an equilibrium model, two-dimensional flow can be represented 

by a collection of point vortices ~ with fixed strengths ri. The model may be regularized 

by restricting the positions Xi to the sites of a lattice. Since the patches Si have in classical 

incompressible flow a fixed area, it is natural to associate with the discrete vortices an 

exclusive area. This gives rise to the self-avoidance condition that no two vortices can share 

a lattice site. 

In three-dimensional flow the discretization is somewhat more complex. Consider 

again a small patch Sin the fluid, and now extend it into a tube by following all the integral 

curves of {which pass through S. See Figure 3.2. Helmholz's theorem [44] indicates that 

the circulations around any two closed curves w, w' encircling the tube are the same: 

1 a. dl = 1 a. dl = r 
L fw' 

This is a consequence of the constraint that the divergence of the vorticity is zero. The 

theorem furthermore indicates that the circulation about a tube is conserved in the dynamic 
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evolution of an inviscid fluid. Although the cross sections of the tube can vary in shape and 

size, the circulation and thus the strength of the tube are conserved. Vortex tubes are thus 

material objects which retain their identity in the flow. 

The vorticity field in three dimensions may therefore be discretized as a collection 

of linelike objects with vorticity along the axis of the lines. The preservation of circulation 

along a line constrains the connectivity of the lines; vortex lines cannot end and must 

form collections of closed loops. The preservation of volume in a vortex tube leads to the 

self-avoidance condition on a lattice that no two vortex lines can pass through any lattice 

site. 

Experience with the self-avoidance condition in the context of random walks on 

the lattice [63] indicates that self-avoidance has a significant effect on the statistics of the 

walks. The effects of avoidance constraints on vortex· equilibria are of particular interest 

since vortices in the XY model are not self-avoiding. See Sections 3.2 3.3. Chorin has 

suggested that the self-avoidance condition is one of the most significant differences between 

classical and quantum vortices [39] [42]. 

While the circulation r is conserved along a single vortex, distinct vortex tubes 

in a classical flow can have arbitrary circulations. Physical vortices may be dynamically 

modeled.,as bundles of discrete vortex filaments having the same r, [68] [69] [9] [65] however. 

The effect of artificially quantizing vorticity in a model of classical fluid appears to be slight 

[42], and is physically appropriate for quantum mechanical systems, see Section 3.3. It is 

therefore reasonable to assume a lattice model of vorticity in which all vortices have the 

same circulation. 

The properties of vorticity in incompressible, inviscid flow suggest a lattice dis­

cretization into collections of vortex lines of unit circulation. In order to make this picture 

rigorous, I define some terminology for the lattice. These terms are used to describe the 

lattice vortex configurations and later to describe a computational. algorithm. I refer to 

points on the lattice as sites and the lines between sites as bonds. Vortex lines perform 

directed walks along the bonds of the lattice; occupied bonds are called vortex links and 

the visited sites at the ends of the links are termed nodes. The faces of cubes of sites are 

termed plaquettes. See Figure 3.3 for examples. The basic "particles" of the vortex model, 

vortex links, have vorticity vectors·~ lying on single bonds of the lattice and have positions 

Xi at the bond centers. Vortex lines are collections of end-to-end links. Figure 3.4 shows a 

pair of vortex links on a (2 dimensional) lattice. 
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Figure 3.5: Vorticity constraint \7 · ~ = 0 

Figure 3.6: Vorticity ,constraint \7 · ~ = 0 

The conservation of circulation along a vortex tube in a continuous vorticity field 

follows from the constraint that \7 · { = 0. In discrete vorticity configurations, the zero di­

vergence constraint prevents vortex lines from ending or changing direction. See Figure 3.5. 

This implies that vortex lines form closed loops of head-to-tail links. The zero divergence 

constraint also prevents parallel links from sharing a lattice bond. See Figure 3.6. Vortex 

tubes in classical inviscid flow are material volumes which cannot intersect. This imposes 

an additional constraint, self-avoidance, on the lattice vortex lines. The self-avoidance con­

dition prevents the situation in Figure 3. 7 where two vortex loops touch at a lattice site. 

Note that the self-intersecting configuration is divergence free. A collection self-avoiding 

vortex loops is shown in Figure 3.8. Such collections form the basic class of discretized 

vortex configurations for classical flow. 

An equilibrium model requires both a collection of configurations and an energy 

functional on the configurations. In incompressible, inviscid fluid flow, the internal energy 

is decoupled from the bulk kinetic energy and may be neglected. Since the kinetic energy 

is conserved by the time evolution of the fluid, it is an appropriate measure of the energy 

for formulating the thermodynamics of the system. While the kinetic energy for a fluid of 
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Figure 3. 7: Intersecting vortex loops 

Self Avoiding Loops on a 3-D Lattice 

... 

Figure 3.8: 
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uniform density is generally defined in terms of the velocity [91], 

integration by parts can be carried out over a suitable domain to give an expression for 

the kinetic energy in terms of the vorticity [91]: 

where G(x) is the Green function for the Laplacian on the domain. In free space, 

G(x) = 4~ 1
!

1 

If the vorticity field is divided into a collection of thin vortex tubes {Lm}, with circulations 

r m, the energy of the flow can be approximated by: 

up to some sort of regularization of the model as li- Y1 -t 0. 

In the lattice model, the integrals along the tube can be discretized into a sums 

over the links. Suppose there are a total of N vortex links in the configuration, This leads 

to a discrete energy [36]: 

The first term is a vortex-vortex interaction approximating the line integrals over distinct 

links (i,j). The double integrals over the same link depend on the regularization, and will 

be assumed to be equal to a parameter v, a vortex "self-energy". The total energy 

E = Etot = Eint + v N 

is a positive quantity, but note that the interaction energy can be positive or negative. 

Each pair parallel of vortex links contributes a positive term to Eint while each anti-parallel 

pair contributes a negative term. This property makes the total energy strongly dependent 

on the geometry of the vortices. Although the Green function is long range, decaying as 

1/r with distance, vortex links can arrange themselves so that anti-parallel pairs produce a 

long range cancellation or screening effect. 
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Consider as a final note on the class of lattice vortex models the number, N, of 

vortex links in the system. While the kinetic energy in a flow is preserved by the dynamics, 

the total length of vortex lines is not. Vortex links may be created spontaneously by 

stretching. One may consider, therefore, N as a free parameter, even in the "canonical" 

ensemble. The Gibbs weight p then has as variable parameters the interaction energy and 

the number of links in a configuration: 

Although the system can exchange only energy and not links with the outside reference 

system, the Gibbs weight has the grand canonical form: 

p = e-f3E+f3p.N 

where the interaction energy Eint takes the place of the energy and the loop self-energy v 

takes the place of the negative chemical potential. 

3.2 Definition of the Self-avoiding Loops Model 

The vortex model studied previously by Chorin in [32] [34] [33] [35] [36] [38] and 

Chorin and Akao in [43] is a dilute limit of the class of lattice vortex models defined in 

the previous section. The limiting model is defined by restricting configurations to those in 

which all the vortex links connect into a single loop: a closed self-avoiding walk. See Figure 

3.9. In practice, the equilibria of an open self-avoiding walk are computed; the closure 

condition does not significantly effect the statistics of a system containing large number of 

links [63]. The single self-avoiding walk represents a collection of loops whose spacing is 

large compared to the individual loop size. 

The single self-avoiding walk models a vortex tube which can reduce its interaction 

energy by folding but not by breaking·apart. Indeed, in inviscid flow vortex tubes retain 

their connectivity [44] [41]. The presence of even a small viscosity, however, allows nearby 

anti-parallel vortices to reconnect. [41] [94]. This process allows a sharply folded vortex tube 

to smooth itself by shedding vortex loops [37] [38] [40]. Chorin proposes vortex reconnection 

as a mechanism for preserving the infinite temperature "polymeric" state in turbulent vortex 

filaments [41] [40]. 
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Figure 3.9: Single self-avoiding walk 

The lattice model studied in this thesis allows a dense collection of vortex loops 

having arbitrary connectivity in a periodic volume. The model can thus manifest the 

equilibrium effects of vortex loops breaking apart or joining together. The model is also 

able to explore the equilibrium interactions between loops whose separation is of the order of 

the individual loop size. Finally, by enclosing the collection in a fixed volume and allowing 

the number of vortex links N to vary, the model can simulate density related effects in vortex 

equilibria. While the single self-avoiding walk computations were of a fixed-N ensemble, 

the number of links in the self-avoiding loops model may be allowed to come to equilibrium 

under the Gibbs weight: 

In this manner the effect of the inverse temperature· (3 and the loop self-energy v on the 

equilibrium density can be exhibited. 

The system simulated in this thesis will be referred to as the self-avoiding loops 

system to distinguish it from the single-loop self-avoiding walk system. Allowable vortex 

configurations in the self-avoiding loops model consist of arbitrary collections of vortex loops 

in a three dimensional periodic volume. The periodic boundary conditions are employed to 

reduce edge effects on the domain walls. See Figure 3.10 for a sample configuration over one 
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Figure 3.10: Self-avoiding loops configuration 

period. A vortex loop can "end" on the. boundary of the domain by exiting and re-entering 

on the other side. If the periodic copies of the configuration are combined on an infinite 

lattice, though, vortex loops always remain connected and the zero divergence condition is 

satisfied. 

The Green function for the Laplacian is calculated for a cubic region with periodic 

boundary conditions. The Lamb integral for the hydrodynamic kinetic energy on a periodic 

cube is the ener~ of the fluid in one period. It follows that the discretized energy is the 

energy in the cubic domain. The use of a periodic boundary also imposes a a consistency 

condition on the vorticity, namely that the sum of the vorticity in the domain must be zero 

in order for the energy to be finite [1] [79]. 

N 

2:::~=0 
i=l 
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Each link in a particular direction must have a corresponding anti-parallel link somewhere 

in the domain. 

The self-avoidance and connectivity (V' · { = 0) constraints on vortex links are 

local. The consistency condition for the energy constrains the directions of vortex links but 

not their connectivity pattern. Figure 3.11 represents in light of these constraints ·possible 

vortex loop behaviors in two dimensions. The figure shows four connected loops on an 8 x 8 

periodic lattice; they are labeled { A, B, C, D }. The boundary of the periodic domain is 

marked by a dotted line, and vortices belonging to other periods are drawn with dashes. 

Loop B is a single closed loop, and loop A is closed when the periodicity of the lattice is 

taken into account. The sum of the vortex links in each of loops A and B is zero. Loops C 

and D, however, form infinite lines through the periodically copied lattice. The vortex links 

in loop C which are contained in the period sum to (0, 8, 0). The consistency constraint is 

still satisfied, however, since the vortex links in loop D sum to (0, -8, 0). Hence the total 

sum of£ over all the vortex links in the period is zero. 

Let the length of a period in the cubic domain beL, and let the lattice step size 'be 

h. The domain [O,L) x [O,L) x [O,L) thus contains (L/h)3 1attice sites in a volume V = L3 • 

The interaction energy in a configuration c of N vortex links is: 

Each vortex has length h (the lattice step size) and thus strength 1£1 = rh = h. The 

.Green function for Laplacian on the domain approximates the free-space Green function as 

L --too: 

G (x) .~ __!__ 
1
:

1 
for lxl « L 

47r X 

The total energy is given by : 

where v = h€ for some fixed filament self-energy per unit length €. 

The computational algorithm described in Chapter 5 simulates both the variable N 

ensemble and the fixed N ensemble. In the former case, the Gibbs weight for a configuration 

c having N(c) vortex links is: 

p(c) = e-f3Ei"'t(c)- f3vN(c) 
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Figure 3.11: Periodic vortices 
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In the latter case, the self energy term vN is a fixed constant which is irrelevant to the 

equilibrium. In this ensemble, the Gibbs weight reduces to: 

The interaction energy Eint, total energy Etot, and number of vortex links N 

are extrinsic quantities which grow with the period volume V = L3• A pair of intrinsic 

quantities are defined as follows. The interaction energy density is given by, 

E = Eint;v 

while the vortex line density (or just density) is, 

1J = NhjV 

I also wish to characterize the size of a loop in the periodic setting. I define the 

extent of a loop having k links in the period to be the smallest cube needed· to enclose the 

loop when it is followed for k steps, even across periodic boundaries. Consider the four 

loops {A, B, C, D} in Figure 3.11. Starting anywhe!"e on loop A and moving 6 steps traces 

out a 1 x 2 loop with extent 2. Loop B also fits in a 2 x 2 cube and has extent 2. Loop C 

has 12 links in the period; following it for 12 steps forms an unclosed walk which fits in an 

8 x 2 box. ·The extent of loop C is thus 8. Loop D likewise traces a walk which fits in an 

8 x 4 box and has extent 8. 

It is possible to consider a threshold on the extents of the loops in a configuration 

to define an observable Perc( c) of a configuration cas follows: 

{ 
1 if any loop of c has extent ~ L 

Perc(c) = 
0 otherwise 

If none of the loops of c have extent at least L, then Perc( c) = 0, but if at least one loop 

has extent greater than or equal to L then Perc(c) = 1. The notation reflects the concept 

of percolation, which will be reviewed in SeCtion 3.4. The percolation observable is used to 

define an order parameter, the percolation probability: 

' 1 1 P =<Perc>= Z . Perc(c)p(c) de 
cEC 

This completes the description of the self-avoiding loops model. A similar system, 

the vortex form of the XY model, is described in the next section. 
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3.3 The XY Model and the Lambda Transition 

The lattice vorticity models discussed in Section 3.1 are derived from a discretiza­

tion of classical flow. Vortex like physics is also observed in quantum mechanical systems 

such as superfluid flow in liquid helium and resistanceless electric currents in superconduc­

tors [121] [139] [140]. While the physics of superconductors is of greater practical interest 

than the physics of liquid helium, the superconducting behavior is more complicated than 

superfluidity. Since there is still much about superfluid helium that is not well understood, 

it is practical to study superfluidity. The lessons learned can then be applied to the more 

difficult superconducting case. 

As liquid helium is cooled, it undergoes a phase transition at which non-dissipative 

superfluid currents begin to appear [139]. The transition is called the lambda transition after 

the lambda-like appearance of the specific heat curve as a function of temperature. The 

transition is a continuous [64], (sometimes called second order) phase transition in which 

the energy is continuous at the critical temperature but in which the specific heat has a 

cusp [96]. The order parameter for this transition is the superfluid mass fraction [139]. At 

zero temperature, all the helium atoms can move together in a supercurrent; the superfluid 

mass fraction is one. As the fluid is heated, however, the proportion of the atoms moving in 

the supercurrent drops. The remaining atoms can only flow with resistance as in a classical 

fluid. The mass associated with superfluid behavior is known as the superfluid component, 

while the remaining mass is known as the normal component. At the critical temperature, 

the superfluid mass fraction goes to zero and resistanceless currents no longer exist. The 

helium liquid above the lambda transition behaves as a normal, classical fluid with nonzero 

viscosity and energy dissipation. 

The lambda transition has been conjectured by Onsager [115] and by Feynman 

[59] to be driven by thermally excited vortices. While resistanceless supercurrents are 

associated with quantum mechanical ordering, vortices are associated with disorder in the 

system [132] and can dissipate energy in the fluid [70] [141]. It is conjectured that a sparse 

"gas" of small vortex loops generates the normal component of the fluid below the lambda 

transition. Feynman suggested that vortices become larger and more numerous as the 

critical temperature is approached, until a tangle of infinite vortices destroys remaining 

superfluid currents at the lambda transition [59]. Physical experiments on the behavior of 

mechanically excited vortex lines in 4He [52] [117] support the connection between vor~ex 
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turbulence and the breakdown of superfluid behavior. Study of the thermal equilibria of 

vortex systems may explain the behavior of thermally excited vortices. This can improve 

understanding of the physics of the lambda transition and the breakdown of resistanceless 

electric currents in superconductors. 

One wishes to develop a lattice model in vorticity variables for superfluid helium. 

The lattice vortex models discussed in the previous sections, 3.1 and 3.2, were derived 

using knowledge of vorticity evolution in classical incompressible flow. The evolution of 

vorticity in liquid helium, however, is not fully understood. Superfluid vortices interact with 

other excitations, such as second sound waves, in a complex manner [70] [141] [21]. While 

vortices in superfl.uid helium are known to possess quantized circulation [51] [147] and are 

thus in most situations distinct physical entities, the behavior at vortex-vortex intersections 

is controversial [20]. Theoretical work on quantum vortices in complex fields [114] [27] is­

beginning to address these issues. Nevertheless, it is uncertain from these considerations if 

helium vortices are self-avoiding, as are classical vortices. Superfluid vortices can also be 

created both by thermal and by mechanical effects. The derivation of a thermodynamic 

equilibrium model directly from the vortex properties is therefore problematic. 

In this thesis I circumvent these difficulties by considering a simplified lattice 

model for superfluid helium: the XY model. The XY model is believed to represent the 

configurational and energetic properties of superfluid helium [113], but disregards complex· 

dynamical issues. It admits a vortex description in both an intuitive [73] [88] and in a 

rigorous manner [128]. This section discusses the XY model in its native spin and in its 

vortex forms. Theoretical descriptions of the phase transition in the XY model which 

is analogous to the superfl.uid lambda transition are reviewed. The issue of lack of self­

avoidance in the rigorous definition of XY vortices is discussed; this distinction forms the 

difference between the self-avoiding loops model simulated in the thesis and the XY model. 

Computations which reveal vortices in the equilibrium states of the XY model are reviewed. 

The XY model is a spin system in which e~ch lattice site is occupied by a spin, §, 

with 0(2) symmetry [78]: §=(cosO, sinO) for -7r::; 0 < 1r. The two-dimensional spins are 

believed to represent in some sense the complex quantum-mechanical wave function of the 

superfl.uid. The Hamiltonian is given by: 

E({S}) = -J L §i. Sj 
<i,j> 

where < z,J > denotes nearest neighbor sites. The thermodynamic Gibbs weight of a 
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configuration of spins { S} is thus: 

The case of interest is the low temperature ferromagnetic regime, J > 0 and (3 » 0. At very 

low temperature the low energy states in which nearby spins are nearly aligned dominate 

the system. At higher temperatures, more disorderly configurations are allowed. 

The XY model is known to have in three dimensions a continuous phase transition 

[93] [75] in which the energy is continuous but the specific heat has a cusp at (3 = f3c· Long 

range spin ordering occurs at the transition; the spontaneous magnetization 

is zero above the critical temperature and non-zero below. This phase transition is believed 

to lie in the same universality class as the superfluid lambda transition. Computations of 

scaling exponents [124] [130] [93] [75], while not definitive, tend to support that belief. 

The ferromagnetic XY model admits stable topological excitations which can be 

heuristically identified with vortices in the following manner. Suppose the temperature in 

the system is cold enough that spins are locally almost aligned. Then the phase () is a 

slowly varying function of position. Discontinuities over the -tr = 1r boundaries may be 

removed by allowing the phase to be multiply valued with -oo < () < oo. Now let i1 denote 

a discrete gradient of the phase(}, this is a single valued function whose magnitude increases 

with increasing spin-spin interaction energy. The sum of i1 around a closed contour of sites 

is analogous to a circulation, and takes integer values [88]: · 

1 "' -- ~ u· dl = k , k E {0, 1, 2, ... } 
2tr 

A non-zero circulation, or wrapping number, k indicates the presence of a topological defect, 

or "vortex" passing through the contour. These defects are stable in the sense that a small 

perturbation of the spins does not change the wrapping number. In three dimensions the 

vortices are linelike, while in two dimensions they are point vortices [128]. The configura­

tional character of XY vortices is thus similar to that of hydrodynamic vortices. Since the 

circulation is stable to small oscillations of the spins, the line defects can be expected at low 

temperature to have a conserved circulation. This leads to a connectivity condition similar 

to the condition arising from V · { = 0 constraint in classical flow. 
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Topological defects in the phase field are termed excitations because their presence 

places a lower bound on the energy of the system. Berezinskii [13] used variational methods 

to write the approximate minimum energy of the spin system in terms of the positions and 

strengths of vortices. Since vortices in the XY model are defined in a low temperature 

context, and since vortices with high wrapping number imply a much higher energy than 

simple vortices, one may consider only defects with unit circulation k = ±1. In this low 

temperature approximation, the minimum energy has the same form as the hydrodynamic 

energy: 

E({) = [c, ~f.;;&· {jG(X;- X;)] + Nc, 

where ell c2 are positive constants depending on the coupling J. 

While the vortex defects in the XY model have an overall configurational and 

energetic character similar to vortices in classical fluids, examination of the heuristically 

defined defects does not reveal an avoidance condition on XY vortices. Since the defects are 

defined only for sufficiently slowly varying spin configurations, only well separated vortices 

can be considered and no information is provided on properties over distances on the order 

of the lattice spacing. The view of vortices as topological excitations of the spin system was 

made rigorous, however, by Savit, et. al. in work on the duality transformation of the XY 

system [128] [127] [60]. Savit performed an exact transformation of the three-dimensional 

XY partition function into a sum over a set of one dimensional fields defined on lattice 

bonds. By making a low-temperature approximation and fixing an appropriate gauge, he 

identified the new fields with vortices of unit strength interacting through a hydrodynamic 

Hamiltonian. The vortices defined by this duality transformation lie on bonds of the lattice 

and satisfy the same connectivity constraints as do hydrodynamic vortices. The XY vortices, 

however, are not self-avoiding. No two XY vortices can share the same lattice bond, but two 

vortex lines can intersect at a single site, as shown in Figure 3.12. Whereas hydrodynamic 

lattice vortices are collections of closed self-avoiding walks, XY vortices are collections of 

closed non-repeating walks. 

The only difference, therefore, between the self-avoiding loops model and the vor­

tex form of the XY model is the avoidance condition. The physics of the two models 

may therefore be expected to be qualitatively similar. Experience with the self-avoidance 

condition in systems containing single vortex loops, however, indicates that the constraint 

has a significant impact on the statistics of the systems. One may expect, therefore, some 
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Figure 3.12: XY vortex-loops 

difference between the dense vortex systems with and without the self-avoidance constraint. 

I note here that the self-avoidance condition places a different limit on the number 

of vortex links in the self-avoiding loops model than is present in the XY model. If we take 

the lattice step size h = 1, then there are in the domain £ 3 lattice sites and 3£3 lattice 

bonds. Each lattice site in the self-avoiding model can have only one vortex link entering 

and one leaving. In the XY model, in contrast, three vortex links can enter a site and three 

can leave; thus filling all the bonds ~erminating at the site. The XY model therefore allows 

configurations with three times the number of vortex links as can exist in the self-avoiding 

loops model. The reader should be aware that vortex density is thus defined differently in 

XY calculations [53] [86] [85] [39] [42] than in the self-avoiding loops model studied in this 

thesis. 

The XY model, which displays a continuous phase transition, transforms into a 

vortex system. One would like a theory of the phase transition in terms of the vortex 

variables. Such a theory would shed light on the role_ that vortices play in the superfl.uid 

lambda transition. While a vortex phase transition was described in the two-dimensional XY 

model by Kosterlitz and Thouless in 1972 [88], the role of vortices _in the three-dimensional 

transition has been controversial. - Nevertheless, theories and observations of vortices in · 

superfl.uid helium have fueled interest in a vortex variable study of the three-dimensional 

XY model [127] [128] [143] [144] [145] [130] [131] [29] [86] [85]. 

The two dimensional XY model differs from the three dimensional XY model 
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Figure 3.13: Vortex pair in the XY model 
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in that there can be no spontaneous magnetization or long range spin order at nonzero 

temperatures [76] [106] [105]. Kosterlitz and Thouless, however, described an infinite order 

phase transition in which the vortex behavior changes dramatically at a critical temperature. 

Below the transition, vortices are bound in anti-parallel pairs. Above the transition, the 

pairs disassociate into a plasma of free vortices. 

Vortices in two dimensions are pointlike, with vorticity of positive or negative 

sign. Consider an anti-parallel vortex pair with separation R. The spin configuration 

corresponding to such a pair is given in Figure 3.13. The energy of a lone pair of anti­

parallel vortices is approximately log(R/a) where a is a "core size" parameter on the order 

of the lattice spacing h into which the self-energy term is absorbed. 

At low enough temperature, the likelihood of a lone vortex pair of separation R 

existing in the system decreases sharply with the separation distance. While a small pair 

can be excited with relatively little energy compared to the entropy of creating the pair, a 

large pair is too costly in energy to be frequently excited. Kosterlitz and Thouless realized, 

however, that small pairs can act like dipole charges to produce a screening effect and reduce 

the energy required to excite a large pair. They constructed a real-space renormalization 

treatment, the K-T renormalization, which gives the following characterization of the two­

dimensional vortex unbinding transition [88] [87] [78]. A dipole gas of vortex pairs having 

separations less than a length R produces a dielectric screening effect which reduces the 

energy of a large vortex pair by a factor x(R). The K-T renormalization calculates the 

density of vortex pairs with separations R+8R by considering the entropy change of adding 
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such a pair to the system balanced against the screened energy required to excite the pair. 

The new screening effect x(R +oR) is then calculated from the density of vortex pairs with 

separation R +oR. By integrating this system as R-+ oo, Kosterlitz and.Thouless found 

that below a critical temperature the screened energy of a vortex pair of separation R scales 

as log(R) as R--+ oo. At the critical temperature, however, the screened energy of a vortex 

pair approaches a constant as R -+ oo. At the critical temperature, infinitely separated 

vortex pairs, free vortices, appear in the system. 

Because of the geometric complexity of 3D vortex loops, as opposed to point 

vortices in 2D, the K-T renormalization argument cannot be simply extended to three 

dimensions. Nevertheless, there is great interest in a vortex theory ofthe ordering transition 

in the three-dimensional XY model. Such a theory is desirable in order to shed light on the 

role vortices play in the bulk superfluid lambda transition. A number of authors accordingly 

have considered a K-T like renormalization for vortices in the three-dimensional XY model 

[127] [128] [143] [144] [145] [130] [131] [29]. The theories follow the Kosterlitz-Thouless 

treatment for the two-dimensional system in that they consider the energetic and entropic 

balance of adding a single large vortex loop to the system. A critical temperature is sought, 

below which large loops are improbable and above which arbitrarily large vortex loops are 

possible. The probability of adding a large loop to the system can be increased by taking 

into account screening effects which reduce the energy of the loop. 

Savit suggested in his papers on the dual transform of the XY model [127] [128] 

that if the interaction energy term in 

· could be ignored, an simple energy j entropy argument would indicate the presence of a phase 

transition from low vortex density to high density. The entropy of a closed walk of N links 

should scale as qN where q is a constant depending on the lattice coordination number [63] 

[98]. If the energy of a loop is simply the self-energy term c2N, then there should be a 

transition at f3c = c2/ q at which vortex lines can grow to infinite length. 

Wiegel studied the interaction energies of smooth vortex rings in three dimensions 

[143]. Following hydrodynamic treatments of vortex rings [91].he showed that the interaction 

energy of a smooth loop is log(Rja) where R is the radius of the ring and a is a small cutoff 

size. 
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Williams devised a K-T like renormalization procedure to incorporate the screening 

effects of small vortex rings on the energy of larger vortex rings [144] [145] [146]. The 

theory showed the existence of a transition at which infinite size vortex loops could be 

excited, although the critical exponents did not match the known values for the XY model, 

indicating that some aspects of the physics were not completely represented. 

Shenoy in 1989 augmented the Williams procedure with the recognition of another 

kind of screening [130] [131] [29]. The Williams renormalization accounted for the effects 

of small polarizable loops upon the energy of large loops, but assumed that all loops were 

smooth. Shenoy supposed that the large loops might be crinkled along their length, so 

that screening along the folds of a single loop could occur. Shenoy used this idea to make 

a divergent-core ansatz where ac was a screening length which diverged at the critical 

temperature. He then wrote the loop energy as log(R/ac) and gave a renormalization 

treatment in which the energy per vortex link was logarithmic with R below the critical 

temperature where ac remained finite, but was constant with R at and above f3c· The 

Shenoy renormalization recovers critical exponents quite close to the expected .values. 

One desires a theory of screening among the folds of a single vortex loop which 

can justify the divergent core ansatz. Shenoy suggested that the structure of a large vortex 

loop was that of a self-avoiding walk, and employed in the renormalization analysis the 

scaling behavior of the unweighted self-avoiding walk [130] [63]. Chorin [34] [33] [36] [43] 

[38] investigated the vortex-vortex interactions of a lone single self-avoiding walk. He found 

a phase transition at infinite temperature, f3c = 0, separating smooth vortices from fractal 

vortices [38]. At temperatures hotter than the critical temperature, (3 < 0, vortex lines are 

smooth one-dimensional objects with interaction energy scaling with log(N), where N is 

the number of vortex links. At the critical temperature, f3c = 0, vortices are fractal objects 

with interaction energy scaling linearly with N. See for example Figure 3.9. All possible 

self-avoiding walks are equally probable at infinite temperature; this state is termed the 

polymeric state for its relation to the configurations of dilute polymer chains [63]. The 

fractal dimension of the polymeric self-avoiding walk is 

D = 1/BsAw ~ 1.72 

where BsAw ~ 0.58 is the Flory exponent [63] [98]. 

The fractal dimension ofXYvortices at criticality is of interest because the interac­

tion energy per link has been shown to depend on the fractal dimension [43] [38]. Numerical 
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work by Chorin on self-avoiding walks with link interaction energies demonstrates that lone 

walks crumple up at low temperature and have higher fractal dimension than do polymeric 

self-avoiding walks. Increasing the fractal dimension allows different parts of the walk to 

screen long-range interactions more effectively, and reduces the interaction energy. 

There are a number of differences between the polymeric self-avoiding walk and 

XY vortices at the critical temperature. The XY vortices are not self-avoiding, although 

a collection of XY vortices could be (not necessarily uniquely) split at the self intersection 

points into a number of self-avoiding vortices. The XY vortices are also fairly dense at the 

transition, so the statistics of large loops may be affected by the presence of other loops. 

Finally, the XY system favors configurations of low energy at the critical temperature. The 

structure of XY vortices may be expected to differ from the structure of infinite temperature 

self-avoiding walks. It is possible, however, that interactions among different XY vortex 

loops are such that the large vortices are screened at the critical temperature so that they 

have structure similar to infinite temperature walks. The critical exponents derived from 

the Shenoy renormalization do not depend strongly on the fractal dimension of vortex loops, 

so small deviations from the polymeric behavior may not be important. 

Numerical simulations of the three-dimensional XY model have been carried out 

in the spin variables [75] [53] [86] [85]. Epiney [53] examined XY vortices in the spin 

configurations near the phase transition. Since the self-intersecting vortices do not form 

well-defined loops, Epiney employed a random method of resolving connectivity at multiply 

visited sites. The computations indicated that vortices indeed become more numerous as 

temperature is increased, and form a dense tangle of links at the phase transition. Epiney 

also measured the fractal dimension of individual loops at criticality. The computations 

indicated an inverse fractal dimension of 1/ D ~ 0.5, which is the value associated with , 

random walks of independent unconstrained steps. The result is in contrast to the Shenoy 

suggestion of the behavior of vortex loops at criticality: that the inverse fractal dimension 

would be the Flory exponent 1/ D ~ 0.58. Nevertheless, Epiney's computation provides 

some of the first numerical evidence linking vortices to the phase transition in the three­

dimensional XY model. 

Kohring and Shrock [85] [86] investigated numerically the role' which vortex ex­

citations play in the transition by adding a term to the Hamiltonian which enhances or 
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suppresses vortices, 

E({s}) = -J z::: si. sj + J.tN 
<i,j> 

where N is the number of vortex links in the spin configuration. The computations showed 

that suppressing vortices suppresses the transition and allows the system to remain or­

dered, with nonzero spontaneous magnetization, ?t higher temperatures. If configurations 

containing vortex links are sufficiently suppressed, the system remains ordered even at infi­

nite temperature. This behavior indicates that vortex defects are necessary to destroy the 

spin order at the XY phase transition. 

While it appears that vortices indeed drive the order/ disorder phase transition 

in the three-dimensional XY model as well as the K-T transition in the two-dimensional 

model, a number of questions remain open. Screening effects along the path of a large 

loop are important, but the structure of large XY vortices at criticality is unclear. There 

is confliCting evidence on the effects of low temperature and vortex self-intersection on the 

fractal dimension of the vortices. A three-dimensional computation in vorticity variables 

alone has not been performed for the self-intersecting vortices, although Chorin [42] has run 

a 2t-dimensional model. The vortex system simulated in the thesis differs from the vortex 

form of the XY model in that the self-avoidance constraint is imposed on the vortices, but is 

otherwise identical to the vortex form of the XY model. The results from the thesis model 

can cast light on the impact of the self-avoidance constraint on the vortex equilibria. 

3.4 Percolation and the Lambda Transition 

The success of the Kosterlitz-Thouless renormalization in the two-dimensional XY 

model has greatly influenced the vortex theories of the three-dimensional phase transition. 

Kosterlitz-Thouless type theories concentrate on a single large loop; the effects of smaller 

loops are incorporated in a screening effect. The renormalization proceeds by estimating 

the screened energy per vortex link and the entropy per vortex link of a large loop, the 

energy and entropy are used in turn to estimate the energy screening on even larger loops. 

These estimates are not with,out difficulties; the preceding section notes that the energy of 

a vortex loop may depend delicately on the loop structure. Entropy estimates also have 

uncertainty; for instance the number of ways of placing a large self-avoiding walk on the 

lattice may depend on the density of sites occupied by other vortices [63]. While K-T 
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Figure 3.14: Percolation achieved by reconnections 

style renormalization theories for the three dimensional XY model have provided valuable 

insights, it is desirable to have also other vorticity based theories of the transition. 

The algorithmic progression in the K-T renormalization from smaller to larger 

vortex loops leads to a dynamic viewpoint of creating an infinite loop through a stretching 

process. An alternate viewpoint which considers vortex loops of all sizes simultaneously has 

been raised by Chorin [39] [42]. The appearance of an infinite loop in the system may be 

thought of as a percolation phenomenon. Percolation theory [134] [66] studies how particles 

in a system coalesce into large structures; an infinite system is said to have percolated if 

it contains an infinitely extended connected structure. The name "percolation" refers to 

random defects in a porous media connecting in a continuous path that allows liquid to flow 

through the material. Percolation is a type of critical phenomena which exhibits scaling 

properties and for which renormalization techniques exist [134] [66] [81] [50] [126] [2] [118] 

[82]. The use of percolation ideas may therefore lead to a vorticity variable renormalization 

distinct from the Kosterlitz-Thouless style approach. 

Instead of taking the view of stretching a vortex loop to infinite size, one can · 

consider reconnecting existing small loops into an infinite structure. Figure 3.14 shows two 

small loops on a periodic domain being reconnected to form a pair of loops each extending 

through the whole domain. Chorin has performed percolation computations and analysis 

fot an XY model in which the vortices of a three-dimensional spin field are restricted to 

a plane [39] [42]. This leads to configurations such as the one shown in Figure 3.12. The 

2i-dimensional model exhibits percolation phase transitions which can be identified with 
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the lambda transition. 
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Many percolation models display a particular sort of finite size scaling [134]. Con­

sider the following simple model. Take a square lattice of side L and and a parameter 

q, 0 ~ q ~ 1. Create random configurations by taking each site independently and oc­

cupying the site with a particle with probability q, or leaving it empty with probability 

1 .:... q. Consider a configuration to have percolated if a connected set of nearest-neighbor 

occupied sites links opposite boundaries of the lattice. Such a connected cluster which is of 

the size of the lattice is called a percolating cluster. The black particles in Figure 3.15 are 

a percolating cluster. Let the percolation probability 'P be the probability, taken over all 

random configurations, of a percolating cluster existing. If q = 0 the lattice is empty and 

'P = 0. If q = 1 the lattice is fully occupied and 'P = 1. The percolation probability 'P rises 

smoothly as a function of q from zero to 1. As the lattice size L is increased, the function 

'PL(q) shifts more abruptly from zero to one. In the limit L ~ oo, the function 'PL(q) 

approximates a step function at a critical value of the parameter q. See Figure 3.16 for a 

view of percolation finite size scaling. The percolation probability is shown as a function of 

the occupation probability q for square lattices of sizes L = {8, 16, 64}. Refer to Stauffer 
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Figure 3.16: Percolation probability finite size scaling 

[134] and Grimmett [66] for the general mathematical struct'ilre of the percolation problem. 

The observable Perc( c) of the self-avoiding loops configurations indicates if a perco­

lating vortex loop exists in the configuration c. See Section 3.2. The percolation probability 

Pis thus the average value ofPerc(c). A connected loop is a percolating loop if it has extent 

at least the domain length. Loops C and D in figure 3.11 are percolating loops. Note that 

a loop can close in on itself and still be a percolating loop; the vortex loop in Figure 3.17 

has extent 7 on a 6 x 6 domain. The finite size behavior of P as a function of temperature 

can be used to test for the existence of a percolation threshold in the self-avoiding loops 

system. 

As a final note on percolation in vortex systems, observe that the percolation view 

does not immediately appear to apply to the two-dimensional system of point vortices. 

Vortic~s in two-dimensional flow, or in the two-dimensional XY model, extend out of the 

plane of the flow and thus never span the domain horizontally. The percolation concept 

does apply to the two-dimensional systems, however, with the use of a magnetization rep­

resentation [22] [48]. In magnetization variables an anti-parallel vortex pair is a connected 

string of tiny vortex dipoles, or "magnets". It is therefore possible that a percolation renor­

malization would apply to the vortex disassociation transition in two dimensions as well as 

in three dimensions. 
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Figure 3.17: Percolating vortex loop · 

3.5 Applications of the Self-avoiding Loops Model 

The equilibrium properties of the self-avoiding loops model can be interpreted in 

both the hydrodynamic and in the XY settings. Basic phenomena, such as interaction 

energy screening between vortex loops and along a single loop apply to both situations. In 

other respects the simulation can investigate differences between the classical and quantum 

situations. The vortex system simulated in this thesis differs from the vortex form of the 
\ 

XY model only in the self-avoidance condition imposed on vortices. Thus the effect of self-

avoidance on the critical behavior of vortex equilibria can be highlighted. The relationship 

that the self-avoiding loops model bears to both the single self-avoiding vortex model and 

to the XY model allows clarification of the effects of vortex connectivity and self-avoidance 

on the thermal equilibria. 

· In the case of classical fluids, the self-avoiding loops model is a variation of the 

single self-avoiding vortex model studied by Chorin in, for example, (32] [38] [41]. The 

self-avoiding loops model relaxes the constraint that vortex loops cannot merge or break 

apart. By allowing arbitrary vortex connectivity in a collection of loops the self-avoiding 

loops model can explore interactions among dense loops. Multiple loop interactions such 

as vorticity screening or intensification can be observed. The effect of reconnection on the 

geometry of large vortices can also be explored. 
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Note that while the,self-avoiding loops model is defined by relaxing a constraint 

in the single self-avoiding walk model, it does not in practice subsume studies of the single 

walk. In fluid turbulence vortex reconnection may not be in equilibrium with vortex folding; 

the self-avoiding loops model may allow more breakup of vortex loops than is physically 

appropriate. Perhaps more importantly, the length scale for which computational simula­

tions are feasible is significantly smaller in the dense collection of loops than in the single 

vortex model. The largest self-avoiding loops systems examined for this thesis were in a: 163 

volume containing about 2000 vortex links. The same number of links forms a single vortex 

walk stretching over perhaps 100 lattice sites. Since some vortex statistics can converge 

quite slowly with the linear dimension, the single walk model allows much greater accuracy 

from a comparable amount of computational work. 

Regarding the XY model, the self-avoiding loops system provides a purely vorticity 

variable simulation of a system which differs from the vortex form of the XY model only by 

the imposition of the self-avoidance constraint. The thesis study is relevant to the theories 

of the phase transition in the XY model in several ways. It is first a verification that a phase 

transition can occur in a vortex system without other spin excitations. Although the low 

temperature approximations which, prod1:1ce the vortex form of the XY model [128] imply 

that non-vortical spin-waves are not important to the critical behavior, the thesis presents 

the first fully three dimensional computation of a dense vortex system without spin effects. 

The transition character in the self-avoiding loops model can support theories of a vortex 

driven lambda transition in liquid helium. The thesis model secondly brings into focus the 

effect of self-avoidance on the geometry of XY vortex loops at the phase transition. The 

scaling behavior of infinite temperature self-avoiding walks has been assumed, in producing 

a successful renormalization theory, to hold for low temperature XY vortices also [130] [29]. 

A comparison of the self-avoiding loops properties to simulations which revealed XY vortices 

[53] [86] [85] can clarify the importance of self-avoidance in theories of the XY transition. 

Finally, the self-avoiding loops simulation can produce information helpful to the search 

for renormalization treatments of the lambda transition besides the Kosterlitz-Thouless 

methods. 

The simulation of the self-avoiding loops system can help answer questions on 

the nature of turbulence in classical fluids and on the breakdown of quantum order at 

the superfluid lambda transition. It can also expand the general understanding of vortex 

equilibria to aid in the study of more diverse defect systems. 
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Chapter 4 

Numerical Thermodynamic 

Simulation 

4.1· Monte Carlo Simulation 

Monte Carlo methods provide an efficient numerical means of estimating ther­

modynamic averages. The name refers to games of chance at Monte Carlo; the methods 

compute estimates by averaging over a sequence of random trials. This section reviews the 

basics of Monte Carlo simulation and of Metropolis sampling; the implementation for the 

vortex model will follow later. A summary of Monte Carlo simulation from a physical point 

of view may be found in Itzykson & Drouffe [78]. A broad review of the subject complete 

with recent developments is contained in Binder [15] [16] [17] [18]. Several mathematical 

details are covered in Hammersley and Handscomb [74], and in Chung [46]. 

For simplicity of notation consider a discrete set of configurations C. Sums then 

replace integrals in the expressions for the thermodynamic average and the partition func­

tion: 
1 

<A>= Z L A(c)p(c) 
cEC 

Z = LP(c) 
cEC 

' The thermodynamic sum could in theory be calculated by enumerating the configurations in 

C, but since the cardinality of C grows exponentially with the system size this is impractical. 

The essence of the Monte-Carlo method is the replacement of the sum over all configurations 



56 CHAPTER 4. NUMERICAL THERMODYNAMIC SilY.IULATION 

with a sum over a random sequence of configurations { c1, c2, cs, ... , c M}. The sequence is 

generated such that the eventual probability of each configuration c appearing is equal to 

its equilibrium weight p( c) I Z. The estimate for the average of A is then: 

1 M 
<A >(M)=- L A(ck) 

M k=1 

If the configurations Ck are chosen independently with the distribution function PI Z, then 

each A(ck) is an independent random variable with mean< A> and variance: 

Var(A) =< A2 > - <A >2 

Hence 
M 

<A>= lim <A >(M)= lim M
1 L A(ck) 

M~oo M~oo k 
=1 

with the expected error decreasing as 1IVM: 

I <A> - <A >(M) I < JPc_;;;(A) with probability Pc 

This algorithm is know as static Monte Carlo. In practice, it is difficult to generate inde­

pendent configurations with the correct distribution. Rather, a Markov chain is computed 

by using the configuration Ci to generate the next configuration ci+1 · Successive steps 

in the chain are thus correlated, but under a reasonable set of conditions listed below, 

the occupation-time distribution in the chain still converges to the equilibrium probability 

pI Z. Although the statistical errors in this dynamic Monte Carlo process decay more slowly 

than in static Monte Carlo simulation, practical algorithms for thermodynamic systems are 

almost exclusively of the dynamic variety. 

The sequence { c1 , c2, c3 , • •• , CM} has the Markov property if the conditional prob­

ability P ( Ci => Ci+I) to choose a particular Ci+1 as the next configuration given the current 

configuration Ci is independent of the chain's history {ell ... Ci-d· The set of probabil­

ities {P (c => c')}cEC,c'EC thus defines the Markov process. The following two conditions 

on the transition probabilities are sufficient, but not necessary, to assure that the limiting 

probability of c appearing in the chain is p(c)l Z. [74] 

Ergodicity: For each pair { c, c'} there exists a finite number k and a sequence 

{ c =co; c1, c2, ... , ck = c'} such that 

k-1 

II P (Ci => Ci+I) > o 
i=O 
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This states that every configuration should be eventually reachable from every other 

configuration. 

Detailed Balance: For each pair {c, c'}, 

P (c => c') p(c')/ Z p(c') 
P (d =>c) - p(c)j Z = p(c) 

Although this condition may be relaxed, the symmetry proves to be extremely con­

venient. Furthermore, by expressing the probabilities as ratios, the need to know the 

partition function Z is eliminated. 

Note that these conditions still allow tremendous freedom in defining and implementing 

the Markov process. This point is emphasized in [78]. There are several known classes of 

· algorithms which meet the conditions of ergodicity and detailed balance, but I only review 

Metropolis sampling in Section 4.2 and my modification to the Metropolis class in Section 

5.3. 

An important factor in the construction of the Markov process is its efficiency 

expressed in terms of the rate of convergence of the observabies. While the average quantities 

< A > {M) are ~uaranteed to converge to the thermodynamic average < A > in the limit 

M -t oo, the rate of convergence can vary greatly. Convergence of dynamic Monte Carlo is 

typically slower than that of static Monte Carlo by a factor known as the autocorrelation 

time r A. A heuristic characterization is that the chain needs on the order of 2r A, steps in 

order to produce a statistically independent value for A(c). The following formula for the 

error generally holds: 

I< A>-< A >(M) I<~~~~;;:} with probability Pc 

Sokal [25] [26] has carefully characterized the autocorrelation time and has developed a 

number of methods to minimize the statistical error as a function of computer time. Note 

that the autocorrelation times for different observables may be different. A typical value 

for r A may be on the order of 100 to 100, 000 steps and thus have_ a significant impact on 

the computational effort required. 

In thermodynamic simulation, if the successive elements of the Markov chain differ 

only locally on the physical domain being modeled, the autocorrelation time increases as 

the domain size increases. This reflects the many steps needed to make changes all over 

the physical system. Furthermore if the system is being simulated near a phase transition 
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point, another factor known as critical slowdown may increase r.A. This occurs as separated 

portions of the physical domain tend to become correlated. An enormous number of small 

changes may be needed to build and destroy these correlated structures in order reach an 

independent configuration. 

As a final note on the efficiency of dynamic Monte Carlo, I wish to make an ob­

servation on the "generic" nature of the configurations in the Markov chain in an effective 

simulation. A typical Monte Carlo run may produce average values accurate to 1% af­

ter 1,000 steps of the Markov process. The configurations of such a system may contain 

perhaps 100 degrees of freedom. The number of possible configurations, the cardinality of 

C, is thus on the order of 2100 ~ 1030 ! The sampled configurations in the Markov chain, 

therefore, are only an infinitesimal proportion of the state space C. The quick convergence 

of the observables rests not on the fact that each configuration c E C will be sampled in 

the Markov chain a number of times proportional to its weight p(c), but on the property 

that the chain is a "representative" set of configurations. In a practical Monte Carlo sim­

ulation, the vast number of configurations which are not sampled should have the same 

statistics as the Markov chain when viewed in terms of the observables: the same energy 

distribution, the same density distribution, etc. _Although the machinery for measuring the 

autocorrelation time is generally a reliable indicator of the rate of convergence, it does not 

in practice provide a certain bound on the error. The combined ergodicity and detailed 

balance conditions provide a convergence proof in the limit M -+ oo, but simulations are 

run far from this limit. Since the reliability of Monte·Carlo simulation relies on the few sam­

pled configurations having the same generic statistical properties as the system as a whole, 

and since this property is very difficult to prove mathematically, Monte Carlo simulations 

should be verified by multiple experiments and by theory, just as are physical experiments. 

When viewed in this light, Monte Carlo simulations are an effective experimental tool for 

the estimation of thermodynamic averages. 

4.2 The Metropolis Method 

The class of Markov processes known as Metropolis sampling methods satisfy the 

ergodicity and detailed balance conditions in a manner that leads to easily implemented 

algorithms. They separate the problem of creating a Markov chain which satisfies detailed 

balance into two simpler parts: transforming the configuration space and applying the 
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probability p. Metropolis methods first randomly transform the current .configuration c into 

a candidate configuration c' which is then accepted or rejected depending on the weights 

p(c) , p(c') ofthe current and candidate configurations. 

Begin by considering a set of random transformations, Q = { Qo:} , and define 

1l'o: (c) as the conditional probability of performing transformation Qo: given the current 

configuration c. The probability should depend only on the current configuration and on 

the transformation Q o: so that the Markov property is retained. Denote the transformed 

configuration c' = Qo:(c); the process of creating a random candidate c' is called making a 

move. Suppose the {Qo:} and {11'o:} satisfy versions of ergodicity and detailed balance: 

Transformation Ergodicity: For each pair { c, c*} there exists a finite number k and a 

sequence of transformations { Qo, Qb ... , Qk-1} such that 

with each 7l'i (ci) > 0 where Ci = Qi-1 · · · Q1 · Qoc is the ith configuration visited by 

applying the sequence of transformations. This condition is satisfied if the transfor­

mations can change any configuration to any other configuration. 

Transformation Detailed Balance: For each pair {c,c*}, let { ajQcrc=c*} to be the set 

of transformations which take configuration c to configuration c*. The transformation 

detailed balance condition is satisfied if: 

L 7l'o: (c)= L 1ro: (c*) 

This means that the probability of transforming c =} c* is equal to the probability of 

transforming c* =}c. The condition is easily met if each transformation Qo: on c has 

an "inverse" Qo:• so that 

with 

7l'o: (c)= 1ro:• (c*) 

These conditions can be implemented by assuring that the probability of a particular 

transformation changing c =} c* is equal to the probability of its inverse changing 

c* =} c. It is thus not necessary to enumerate all the possible ways of transforming 

one configuration into another in order to check the balance condition for the set of 

transformations, since the terms in the sums over a are pairwise equal. 
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Under these conditions, the chain created by choosing a transformation Qi at the ith step 

and letting Ci+1 = QiCi would eventually contain all configurations with equal probability. 

The following modification due to Metropolis [107] gives the configuration probability pj Z. 

At the ith step choose a transformation Qi, and let 

{ 

QiCi with probability min(1, p(QiCi))/ P(Ci)) 
Ci+l = 

Ci otherwise 

This algorithm splits into a transformation step producing a candidate configuration c' = 

QiCi followed by an acceptance/rejection step. Either c' becomes new element Ci+1 of 

the Markov chain or Ci is repeated. The transformation Qi is chosen independently of 

the probability distribution p, while the acceptance step is independent of the specific 

transformation: depending only on the initial and candidate configurations. 

Define the acceptance probability e(c, c') to be 

e( ') . ( p(c')) 
c,c = mm 1, p(c) 

Also define TJa (c, c*) to be the conditional probability of choosing transformation Qa given 

c and then of accepting or rejecting the candidate c' to produce the next step c*. The 

probability of producing the new configuration c' through the use of a transformation Qa 

in a Metropolis step starting from configuration c is thus: 

TJa (c, c') ='Ira (c) e(c, c') 

The complete transformation probability in the Markov process is given by: 

P (c => c') = L TJa (c,c') = L 'Ira (c') min(1,p(c')/p(c)) 
aiQ"'c=c' 

· with 

P (c' =>c) = L 'Ira' (c') min(1, p(c)/ p(c')) 
a'IQc:r,c'=c 

In the detailed balance ratio for the Markov process, the summations are equal by trans­

formation detailed balance and cancel: 

P (c => c') _ min(1, p(c')/ p(c)) 
P (c' =>c) - min(1, p(c)/ p(c')) 
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Now, since if p(c')jp(c) > 1 then p(c)jp(c') < 1, either the numerator or the denominator 

will be one, so the min's drop out to give the detailed balance result: 

{ 

p(c')(p(c) 

P(c=>c')_ 1 

P(c'=>c)-. 
1 

p(c)(p(c') 

4.3 Histogram Sampling 

if p(c') :$ p(c) } = p(c') 

. p(c) 
1f p(c') > p(c) 

Monte Carlo simulation generates a sequence of configurations with the property 

that the probability of each configuration c occurring in the sequence converges to its equi­

librium probability p(c)j Z at temperature /3. The simplest manner of utilizing this sequence 

is to store average values. Storing more information on the chain, however, can increase 

the efficiency of the method when thermodynamic averages are desired for a range of tem­

peratures. The idea is to record information beyond the mean values of the probability 

density of observables. Note that numerically recording the probability of each configura­

tion is an unmanageable task, but one can estimate the probabilities of suitable groups of 

configurations. Consider the Gibbs weight in the canonical ensemble: 

p(c) = e-/3E(c) 

Since the weight assigned to each configuration depends on the energy of the configuration, 

a natural way of grouping the configurations is by their energies E. A method taking 

statistics over configurations grouped by their energies allows the representation of the 

average observable quantities as functions of /3, rather than as averages at a single value of 

/3. Techniques using this idea are referred to as histogram methods because the programs 

store a histogram of the configurations over energy bins. The algorithm employed in this 

thesis implements the histogram in two dimensions (E, N) for the grand-canonical Gibbs 

weight, 

p(c) = e-!3E(c)+f3p.N(c) 

where E(c) is the energy of the configuration c and N(c) is the number of particles in the 

system. The following discussion is limited to one-dimensional histograms in E for the sake 

of clar.ity. The ideas presented here generalize simply to the two dimensional case. 
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Histogram type algorithms have seen occasional use for many years [3], [89], [12], 

[18] but have recently been revived and improved by Ferrenberg and Swendsen [57], [56]. 

The methods have been used to determine observables as functions of temperature in order 

to calculate critical exponents. They have also been employed to estimate thermodynamic 

quantities such as the free energy differences which are not average observables [12]. His­

togram methods are used in this thesis to paint broad-brush pictures of phase space, to 

locate critical temperatures, and to monitor and diagnose the performance of the Monte 

Carlo algorithms. This section reviews the histogram idea in some detail, and gives an 

analysis of the error which highlights some assumptions which are unclear in the literature. 

My observations and comments on the implementation of histogram methods are included 

at the end of this section; I point out some difficulties and suggest improvements. 

4.3.1 The Density of States 

The histogram methodology represents observables as functions of temperature by 

separating the f3 dependent weight from the portion of the thermodynamic average which 

is dependent on the configurations. The probability distribution of the energies of the 

configurations, known in physics literature as the density of states [92], lies at the heart of 

the method. Consider the expression for the canonical ensemble average of an observable 

A at temperature /3: 
<A >(3= _!.__ 1 A(e)e-f3E(c) de 

Z(3 cEC 

The density of states can be introduced by rewriting the expression for the average of A as 

follows. Begin with the partition function Zf3: 

Zf3 = 1 e-f3E(c) de 
cEC 

Split this expression by integrating first over configurations with a particular energy, and 

then integrating over the energies: 

Zf3 = { { e-f3E de dE 
}E }E(c)=E 

Now since the exponential no longer depends on the configurations, pull it outside of the 

integral de: 

Zf3 = { e-f3E [ { de] dE 
}E }E(c)=E 
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The temperature independent integral is the density of states: the measure of the set 

{ e E CIE(c}=E} 
D(E) = f de 

jE(c}=E 

This density of states condenses the information from the complicated configuration space 

into a function of ·the energy. Hence the process of factoring the integral for (A) f3 has 

separated the temperature dependent from the configuration dependent portions of the 

integral: 

z13 = ~ e-f3E D(E) dE 

Now proceed with the numerator in the ensemble average: 

<A >f3= ~ { e-f3E(c} A( e) de= ~ { e-f3E [ { A( e) de] dE 
Zf3 JcEC Z13 JE JE(c}=E 

Introducing the density of states in the numerator and the denominator yields: 

A = ~ { e-f3ED(E) { fE(c)=EA(e) de} dE 
< >{3 z13 }E D(E) 

where the quantity in braces {} is the micro-canonical average of A. Let A(E) be the 

micro-canonical average of A in a restricted ensemble containing the configurations of energy 

E(e) = E: 
_ fE(c)-E A( e) de 
A(E) = ---7~----

fE(c)~E de 

Making this substitution gives: 

Using the previously derived formula for Zf3 yields a complete expression for the canonical 

ensemble average in terms of one dimensional integrals over E, with the integrals over 

configurations written as functions of E: 

A _ JE e-f3E D(E)A(E) dE 
< >{3- fEe-f3ED(E) dE 

The dependence of < A > f3 on /3 can be better related to the Monte-Carlo algo­

rithm by writing the probability density for the energy E at temperature /3 in terms of the 

density of states: 
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Then 

<A >f3= ~ Pf3(E)A(E) dE 

where Pf3(E) is a normalized probability distribution: 

~ Pf3(E) dE = 1 

Suppose the probability distribution Pf3• (E) is known at a reference temperature /3*; then 

D(E) can be expressed in terms of the known probability: 

Now substitute into the formula for Pf3(E): 

The ratio of the partition functions can also be calculated from Pf3· (E): 

so finally: 
. e(f3* -f3)E Pf3• (E) 

Pf3(E) = fE, e(f3•-f3)E' Pf3• (E') dE' 

Although combining terms into the probability function P(3(E) may seem to complicate 

matters, it re-expresses the quantities D(E)and Zf3 ·in terms of a probability depending . 

on their ratio. Furthermore, the shift in P(E) from temperature /3* to /3 is simply the 

multiplication of the old probability density by an exponential weight and the normalization 

of the result; the integral over E' in the denominator of the expression for the shifted 

probability enforces the condition that JE P(3(E) dE = 1. See Figures 4.1, 4.2, 4.3 for a 

schematic view of this process on a numerical representation of Pf3· (E). Note the change 

in axis in Figure 4.2 The notation for shifting the probability densities can be simplified 

. somewhat by introducing the free energy at a temperature /3: 

A factor of /3 is dropped in the definition of the free energy to reduce notational complexity. 

Then 
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0.2 0.4 1.2 1.4 

Figure 4.1: Pf3• (E) 

• 

0.5 

0.2 0.4 1.4 

Figure 4.2: Pf3• (E) exp( (,8* - ,B) E) 

Figure 4.3: Pf3· (E) and Pf3(E) 
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The new probability can be written as the reference probability multiplied by exponential 

shifts: 

4.3.2 The Histogram Monte-Carlo Method 

Assuming that integration over the reals can be easily performed, the remaining 

numerical task is the estimation of the probability density and of the desired micro-canonical 

averages as functions of E. Recall that for a Markov process generating the sequence 

{ c1 , c2, ... , CM} of configurations, the derived sequence {E(cl), E(c2), ... , E(cM)} is assumed 

to have the probability distribution Pf3(E) in the limit M--+ oo. Thus the probability may 

be approximated by a histogram of the sequence of energies. Consider a Monte Carlo run of 

M configurations at temperature {3*. Break up the energy line into a collection of intervals 

of width D.E centered at values Ei. Over the course of the run record a histogram n(Ei) of 

the number of configurations which fall in each enerw bin. Also keep track of the sum of 

A( c) of configurations in each bin Ei in a list of accumulators Aacc(Ei)· This process gives 

the following estimates: 

A(E-) ......_ _(E-) = Aacc(Ei) 
t ......-a t n(Ei) 

Note that the normalization condition is automatically satisfied at {3* with Pf3• (Ei) absorb­

ing the factor of D.E: 

"" (·E·) _ 2:E; n(Ei) _ l 
~Pf3* t - -

E; M 

The thermodynamic average may be approximated as follows: 

Note that for {3 = {3*, this simply reduces to the standard Monte Carlo average: 
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The average may be approximated at f3 # !3* by shifting the probability density to p13 (Ei) 

and reapplying the summation formula for <A >13 in terms of p13(E): 

<A >13~ LP13 (Ei) a(Ei) 
E; 

where 

I will henceforth simplify the notation by dropping the subscript on Ei. Summations over 

E will implicitly be over the bins of the histogram. Now define the numerical free energy 

shift by: 

fl.Ff = -log ( ~ e(!3"-!3)Ep13• (E)) 

The shifted numerical probability density can then be written in terms of exponential 

weights: 

If the numerical probability density p13.(E) were equal to the true probability density 

p13• (E)fl.E, theri the following equivalence would hold up to numerical integration errors: 

!3* {3 z 
ellF13 = e-AF13• = eFf3-Ff3• = __!!:_ 

z/3 
In reality, free energy estimation can be one of the most troublesome aspects of the histogram 

method. The free energy difference may be viewed as the log of the average value of the 
t 

function g( E) = e(/3* -!3)E at temperature {3*. This function, however, can vary by many 

orders of magnitude over the support of the numerical distribution p13.(E). Furthermore, 

over the range of the histogram, g takes its maximum value in the tail of the numerical 

distribution where statistical error is greatest. As a rule of thumb, the free energy difference 

can be considered accurate if the product of the probability p 13 (E) and the shift e(!3"-f3)E 

falls off at the tails of the distribution. The peak of the shifted distribution is then within the 

sampling range of the original histogram. If this is not the case, and the new probability 

maximum is at the end of the original histogram, then the accuracy of the free energy 

difference and of the shifted probability are highly suspect. If the peak of the true shifted 

probability P13(E) lies outside of the histogram sampling range, then the histogram provides 

no information on the shifted distribution. The shifted numerical probability p13 (E) and 

the free energy estimatefl.Ff will then be wildly inaccurate. Figure 4.4 is a representation 
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Figure 4.4: Logarithmic view of probabilities 

of the shift shown in Figures 4.1, 4.2, and 4.3, on a single logarithmic axis. In terms of 

the logarithm of p13 (E), the application of temperature shift is a the addition of the linear 

function (/3* - f3)E, while the vertical distance between the weighted and new distributions 

is the free energy difference D.Ff. Note the evidence of statistical error near the tails of the 

distribution. Too large a temperature shift would significantly weight one tail and generate 

significant error in the observable averages. This error is already visible on the right side of 

the new distribution p13 (E) in Figure 4.5, the reproduction of Figure 4.3. 

4.3.3 Combining Multiple Histograms 

·Since a single. Monte Carlo run can only provide accurate results over a limited 

region of temperature values, the need to make multiple runs at a set of temperatures 

spanning a region of interest still exists. Several questions then arise when using the his-
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Figure 4.5: Pf3· (E) and Pf3(E) 
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togram method to compute average values over a large range of temperatures: for instance, 

how should the different values from various runs be interpreted? The numerical probabil­

ity distribution functions from two Monte Carlo runs will differ when shifted to the same 

temperature because of statistical error. One desires a method of interpolation between 

histograms taken at different reference temperatures; furthermore, one would like to benefit 

from the sampling of multiple runs when histograms taken in the runs overlap. Ferren­

berg and Swendsen have devised a method of making a weighted average of a collection of 

histograms which optimizes the use of computational effort and provides a smooth interpo­

lation between reference histograms [57]. This section gives what I believe is an equivalent 

presentation of their method, along with my observations on its use and performance. 

Suppose a sequence of R Monte Carlo simulations is performed at temperatures 

f3\f3 2 , ••• ,j3R, containing Ml,M2 , ••• ,MR trials respectively. Let n1(E),n2 (E), ... ,nR(E) 

be the histograms collected over the same energy bins for the set of runs. Similarly, let 

A~cc(E), A~cc(E), ... , A~cc(E) be accumulators of the observable A for trials falling in bin 

E. The micro-canonical averages can simply be computed over all the runs for each bin E: 

Now for each run we have an approximation to the probability density at temperature j3i, 

each of which may be shifted to any new temperature /3: 

The Ferrenberg-Swendsen algorithm constructs an approximation p13(E) as the weighted 

sum over the shifted approximations, where the weights wi(E) can be optimized for each 

ene!gy bin E: 
R 

p13 (E) = L wi(E) Pb(E) 
i=l 

where for each E: 

i=l 

The following analysis gives an optimal choice for the weights. In order to minimize the error 

in each entry of p13 (E), we should minimize the statistical variance Var (p13(E)). Suppose 
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for the moment that the variance Vi(E) of each component is known: 

Then the quantity to minimize is: 

Var (P(3(E)) = L ( wi) 2 
Vi(E) 

i 

The method of Lagrange Multipliers gives the weights: 

2wi Vi- A= 0 

. 1 
wJ ex:-. 

VJ 

71 

So the weight of the ith density at each energy should be inversely proportional to the 

variance of the density. The normalization condition can be satisfied by taking: 

. 1/Var (p~(E)) 
wt(E) = . 

L:j 1/Var (~(E)) 

The following analysis, which duplicates the Ferrenberg/Swendsen result, assumes that the 

free energy differences D.F{ can be computed without statistical error. In that case: 

Var (P~(E)) = var ( eaFt e-(f3-.BiJE pi(E)) = [eaFt e-(f3-.BiJEr Var (Pi(E)) 

Now take the following model for the statistical error in pi(E). Associate with 

each trial k of the ith Monte Carlo run a random variable 'r/k(E), which takes the following 

values: 

{ 

1 with probability P(3;(E)D.E 
Tik(E) = 

0 otherwise 

For each trial k and each energy bin E, assume a hit in the Eth histogram bin and increment 

ni(E) by one if 'r/k(E) = 1. So 
M; 

ni(E) = L "'k(E) 
k=l 

Now 'r/k(E) has mean< 'r/ >= Pf3;(E)D.E and variance 
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when P13; (E)Ll.E « 1. If all the TJk(E) were independent for successive trials k, we would 

have: 

The effect of correlation between trials can be estimated by multiplying with the autocor­

relation time TE: 

Since the unshifted probability is: 

the variance of the unshifted probability is: 

Thus we have an estimate for the error in each element of the ith distribution where we 

have neglected the constraint :EE ni(E) = Mi in making the model for "1· If Mi » ni(E) 

for each E, however, the model should be fairly accurate. 

Now return to the formula for the variance of the shifted probability distribution: 

Substituting in the expression for the variance of the unshifted probability gives: 

It is now helpful to use the formula for P13(E), which is exact if Ll.Ft = F13- F13;, 

to move the probability from (3i to (3 for all i, giving: 

Returning to the formula for the weights: 

. 1/Var (p~(E)) 
w~(E) = . 

:Ei 1/Var (~(E)) 
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we have 

i Mi [eLlFt e-(.8-.B;)E] -
1 

[P,a(E)b.E(l + 2TE)r1 

w (E)= !3i -1 

Lj Mi [eLlF{3 e-(.8-.Bi)E J [P,a(E)b.E(l + 2TE)]-1 

where the probability densities at temperature (3 cancel to leave: 

. Mi [ eLlFt e-(.8-.Bi)E J -1 

w~(E) = [ f3i ] -1 
Lj Mi eLlF{3 e-(.B-.Bi)E 

At this point pause to consider the degenerate case where all the (3i = (3. Then the weights 

reduce to: 
. Mi 

wz(E) = Lj Mi 

The formula for the probability density approximation is: 
R 

P,a(E) = L wi(E) p~(E) 
i=1 

so 
E = L,i Mi pi(E) = L,i Mi ni(E)/Mi = L,i ni(E) 

P,a( ) L,j Mi Lj Mi Lj Mi 

The optimal combination of the histograms into a single probability gives the same result 

as if the runs were concatenated in a single long Monte Carlo run of Lj Mi trials. The 

optimal combination results in the equal weighting of each trial's histogram hit over all the 

trials in the R runs. 

Now, returning to the general case of arbitrary /3is, we can perform simplifications 

on the weighted densities: 

wi(E) i (E) = Mi pi(E) = ni(E) 
P,B [ f3i . ] -1 [ !3i . ] -1 L,i Mi eLlFf3 e-(.8-.BJ )E L,i Mi eLlF{3 e-(.8-.BJ )E 

Taking the summation over the different runs gives the complete expression for the proba-
1 

bility density at temperature /3: 

R Li~(E) 
P,a(E) = L wi(E) p~(E) = f3i _ 1 

i=1 L,i Mi [eLlF13 e-(.B-.Bi)E J 
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This is an optimal expression assuming that the free energy differences are known exactly, 

and that _the histogram b~s are sufficiently populated to justify the analysis of the variance 

of ni(E). The question remains of how to compute the free energy differences: 

Experience with the single-histogram method indicates that the free energy calculated by 

shifting a single histogram is only accurate over a short range. Ferrenberg and Swendsen 

proposed to replace the estimate for the free energy difference, 

tl.Ff =-log(~ eCf3;-f3)Epi(E)) 

with its inverse calculated from the combined probability density p13 (E), since thecombined 

probability should be accurate over the entire range of temperatures. 

Since the combined probability density depends in turn on the free energy differences, the 

Ferrenberg-Swendsen method computes a set of free energy differences, 

{fl.Fi ~ F13- F13; }I. 
t=l, ... ,R 

which are a fixed point of the following set of R + 1 equations: 

(E)= Li ni(E) . 
P/3 Li Mie-b..FJ eCf3-f3')E 

The fixed point can in most cases be computed by iteration of the above set of free energy 

and probability equations, with initial free energy guesses tl.FJ computed from the individual 

histograms: 

fl.Fj = -tl.F{ = log ( ~ eCf3;-f3)Epi(E)) 

This method has the convenient property that the fixed point {fl.Fi} is independent of 

the temperature {3. It is therefore possible to apply the fixed point iteration once with a 

reference temperature f3 = !3* to obtain a reference probability p13.(E). The observable 
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averages can then be computed as functions of f3 by using the single histogram method to 

shift the combined reference probability p13• (E) to each temperature (3. The computational 

effort required for this shifting is modest· compared to the original Monte Carlo runs, since 

it involves only multiplying the histogram by an exponential function and dividing by the 

new sum to normalize the new probability. 

Figures 4.6, 4.7, 4.8, 4.9, show the results of combining three Monte Carlo runs 

into a single probability distribution. Figure 4.6 shows the three raw histograms ni(E) 

before shifting. Figure 4. 7 shows on logarithmic axes the three shifted histograms adjusted 

with the fixed point free energy differences: 

Figure 4.8 is a logarithmic view of the combined probability distribution: p13 (E). Note that 

it is smooth over a larger range than any of the individual distributions. Figure 4.9 shows 

the new distribution on standard axes. 

The fixed-point method does not always produce appropriate free energies, how­

ever. Indeed, it is possible that the fixed point is not unique for arbitrary histograms. My 

experience indicates that the iteration method can fail when attempting to incorporate his­

tograms taken over a very large temperature range. Suppose some histograms come from 

runs near the reference temperature (3* at which the combined probability p13.(E) is to be 

computed, while other histograms are taken ,at temperatures far from the reference. The 

histograms far from the reference temperature cover energy regions far into the tails of the 

reference probability P13• (E) and should have little effect on the probability peak. Thus, 

the histograms ni(E) in the tails of the reference probability should be suppressed by a 

large negative free energy difference t;:,.pi when shifted to the reference temperature: 

i (E) - ll.F; -(f3-f3i)E ni(E) 
Pf3 - e e Mi 

Recall however, that the starting guesses for the free energy differences come from the 

original histograms and are extremely inaccurate for large shifts; refer to Section 4.3.2. 

The initial free energy inaccuracy can allow the greatly shifted histograms to produce a 

large error in the initial combined probability. The Ferrenberg-Swendsen iteration of the 

free energy and the combined probability equations cannot always recover from large initial 

errors. 
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The problem of overly large temperature shifts can be circumvented by restricting 

the set of histograms to be combined to those taken at temperatures near the region of 

interest. The method is also sensitive, however, to very small errors in the tails of the 

individual histogr~ms. This sensitivity makes it imperative to choose an initial configuration 

for the Monte Carlo run having energy near the peak of the expected histogram, or to discard 

enough initial trials to reach an equilibrium before beginning the histogram recording. If 

this procedure is not followed, the initial conditions can result in a few histogram hits far 

from the peak of the distribution. While these hits do not affect the average values at the 

temperature at which the histogram is taken, they can be exponentially magnified after 

shifting. The fixed point free energies can be sensitive to hits far from the probability 

peak; the following figures are an example of this sensitivity. Figure 4.10 shows a pair of 

histograms, each containing 5 million trials. Combining them with the fixed point method 

at a temperature between the two gives a reference probability visually identical to the 

result in Figure 4.9. Suppose the right histogram, however, is contaminated with a single 

hit at energy E = 0.005. One hit out of 5 million has no noticeable effect on the unshifted 

averages. Running the fixed point iteration to combine the histograms, however, results 

in a significant error in the free energies, evidenced by the vertical gap between the two 

shifted probability densities in Figure 4.11. The combined probability density then contains 
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an .bump where the weight shifts from the right histogram to the left, Figure 4.12. This 

results in a significantly skewed probability, on the left of the correct result in Figure 4.13. 

4.3.4 Observations on Combining Histograms 

Although the histogram shifting and multi-histogram machinery is not highly ro­

bust, the methods still retain several advantages over traditional Monte Carlo algorithms 

which store only mean values. The process of extracting information from Monte Carlo 

simulation is in general an experimental science rather than a set procedure. One of the 

greatest advantages of using the histogram machinery is that it allows the easy creation 

of a broad-brush painting of parameter space. A few runs may be made for very small 

systems where finite size effects will broaden the histograms. A modest number of trials 

suffices since the autocorrelation time decreases in smaller systems, so the initial runs are 

very inexpensive compared to the effort required to do a thorough study. This first picture 

provides information on how to concentrate further runs with larger systems. Histograms 

for systems at the next size level give a somewhat more accurate view, and againguide the 

placement of longer runs. It is thus possible to build up a more and more refined map of pa-
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rameter space without wasting large, long runs in uninteresting regions. This is particularly 

useful in the process of identifying phase transition points. 

The histograms also give a qUick look at the performance of the Markov process 

in the Monte Carlo algorithm. The magnitude of statistical errors are more easily judged 

from the roughness of the histogram then from the drift of the mean values over the run. 

The shapes of shifted probability densities p~(E) also provide a check on the Metropolis 

sampling. I found an early violation of the detailed balance condition in my vortex algorithm 

by noting that shapes of histograms from different runs did not match up after shifting 

them to a reference temperature. The histogram sampling also gives an indication of the 

algorithm's performance over different regions of phase space. 

If carefully monitored, the multi-histogram method can reduce the computational 

effort required to compute observable quantities to high precision. The accuracy of the 
' 

free energy differences can be checked by viewing the shifted densities on a logarithmic 

scale. The shifted densities should lie on top of each other, as in Figure 4.7. Visual checks 

of shifted probabilities can also prevent the combined density from being shifted into the 

statistical tail at the ends of ~overage. Convergence can be checked by comparing the results 
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obtained from different sets of parameter runs. If several histograms overlap, the removal 

of one from the combined density should not affect the results drastically. 

Although the fixed point iteration of Ferrenberg and Swendsen seems to be the best 

method currently available for calculating the free energy differences and combining several 

histograms, I believe there are several avenues open for improvement. A re-examination of 

Figure 4.11, where the fixed point method failed, indicates that the shape of the curves is 

essentially the same over their regions of statistical confidence. On the logarithmic axes, 

an experimentor could determine the free energy shift by manually moving the shifted 

histograms up or down until they matched visually. See Figure 4.14. It is conceivable that 

an algorithm for determining the free energy shifts could be based on matching the shapes 

of the histograms, rather than the on the analytical formula: 

One could take the idea further by assuming a degree of smoothness to the underlying 

density of states D(E). In this case, the free energy differences could be determined from a 

statistical fit of the histograms to a smooth function. Something along these lines has been. 

proposed by Bennett [12]. Such a fit would be less vulnerable to statistical outliers than the 

fixed point iteration. A representation of the probability distribution as a smooth function 

also raises the possibility of a higher order integration rule. Although the integration error 

from estimating the functions P13(E) and A(E) as step functions with step size t:::..E is 

typically small compared to overall statistical error, a higher order representation could 

ensure that integration error is truly negligible and improve accuracy in the tails of the 

distribution. 

Although the histogram methods require careful analytical and graphical moni­

toring to ensure their reliability, I believe they are an invaluable tool for thermodynamic 

simulation. The computational overhead involved in the histogram processing is minimal, 

and one always has the option of recovering the standard Monte Carlo averages as a de­

generate case. Besides the potential savings in computer time, the density of states ideas 

can be useful in and of themselves. The histogram method gives approximations to the 

micro-canonical averages for free. The methods also give an approximation to the den­

sity of states; the density of states concepts can provide an additional avenue for coupling 

numerics to statistical mechanical theory. 
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Chapter 5 

N urnerics for the Self-avoiding 

Loops System 

This chapter describes the implementation of a grand canonical Monte Carlo sim­

ulation for the self-avoiding loops system which was described in Chapter 3. The use of 

vorticity variables presents a set of challenges for numerical simulation very different than 

the problems of spin simulation. Section 4.1 described the construction of a Markov process 

for a Monte Carlo simulation. The process requires a suitable set of random transforma­

tions Q0 : C -+ C. These transformations Qa must be able to generate a sequence of 

states through the region of representative, (that is probable), configurations with reason­

able efficiency. Developing a set of transformations which move vorticity "particles" ~~ while 

enforcing the geometric constraints on the vorticity field is a problem quite different from 

that of updating spin configurations. 

For spin systems such as the XY model, the configurations are typically trans­

formed by changing the direction of a single spin, which is a single degree of freedom, while 

keeping the other spins fixed. A few recent methods modify groups or blocks of spins [137] 

[19] [125] but they all rely on the relative independence of local spins to the configuration 

as a whole. In vorticity variables, however, the geometry of the configurations becomes of 

paramount importance. In particular, the zero divergence and self-avoidance constraints 

prevent the alteration of a single vortex link as an independent variable. While the modifi-
' cation of a single spin in a field model results in an acceptable configirration, a vortex link in 

the middle of a loop cannot simply be moved elsewhere or even have its direction changed 
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without violating the constraints. A set of transformations must therefore be developed 

which respect the geometric constraints of the problem. Fortunately, much of this geomet­

ric machinery has been developed for the simulation of the self-avoiding walk. In particular, 

the pivot algorithms used by Madras and Sokal [25] [26] [99] offer a highly efficient set of 

moves appropriate for changing the geometry of individual loops. These moves can serve 

as the base for a set of transformations which work on collections of loops. 

A further complexity is introduced by the variability of N in the simulation. This 

leads to a "grand canonical" simulation which must include moves to increase and de­

crease the number of links in the configurations. Provisions must also be made for the 

re-arrangement of the links into configurations with different numbers of loops. 

Finally note that a direct calculation of the interaction energy of a configuration 

requires on the order of N 2 operations, where N is the number of vortex links in the 

configuration. Since vortex links interact through a long range Green function, modifying 

a single link affects N - 1 interactions. If many links are altered by a transformation, the 

energy calculation is of order N 2 at each step. Although fast algorithms exist to calculate 

the energy in order N steps [135], the overall efficiency of the Monte Carlo simulation is 

strongly dependent on the efficient use of the energy calculations. 

Section 5.1 of this chapter describes a set of transformations which change the 

shapes of individual vortex loops, re-arrange different loops, change loop connectivity, and 

change the number of vortex links in the configurations. Transformations which add or 

delete vortices to produce a particular effect on the energy of the system are also described. 

These transformations are shown to satisfy the transformation detailed balance condition 

given in Section 4.2. A possible lack of ergodicity for the set of transformations and. its 

effect on the simulation is discussed in the Section 5.2 of this chapter. 

Section 5.3 introduces a modification to the Metropolis sampling method of Sec­

tion 4.2. The modification allows the computationally expensive energy calculations to be 

used efficiently in the presence of a diverse set of types of transformations. It employs 

composite transformations made of moves which need not individually satisfy· the detailed 

balance condition. The generation of a new member of the Markov chain proceeds at each 

step in two phases: the first phase generates in several intermediate steps a candidate con­

figuration, while the second enforces the detailed balance condition by accepting or rejecting 

the candidate. Transformation types which are not expected to greatly change the energy 

of the configuration can proceed in the first phase without the recomputation of the en-
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ergy. Several ofthese transformations can occur in the first phase, producing collectively a 

configuration which differs greatly from the previous member of the Markov chain. Moves 

made in the first phase need not satisfy detailed balance, so the energy of intermediate 

steps need only be calculated when a move is expected to produce a large change. The sec­

ond phase computes the energy and enforces the detailed balance condition of the Markov 

process. Energy calculations are thus used sparingly; the energy is recomputed only when 

the result of the calculation is expected to significantly effect the probability of accepting a 

configuration. The modified sampling method, termed split-phase Metropolis, is described 

in this section. A proof that the method preserves the detailed balance condition is given. 

The split-phase algorithm used for the simulation of the self-avoiding loops system is then 

described. Finally, the method is generalized and suggestions are made for its use in general 

Monte Carlo simulations. 

Section 5.4 of this chapter discusses the implementation of the Monte Carlo algo­

rithm and the performance of the method. The order of the number of operations required 

for portions of the algorithm is discussed, and the data structures required to achieve this 

performance are described. The convergence of the estimator for the probability density 

function is examined. Finally, the effectiveness of the split-phase method is discussed. 

5.1 Transformations 

Configurations in the self-avoiding loops model consist of collections of closed loops 

of vortex links. The links lie on the bonds connecting the sites of a periodic lattice; the 

self-avoidance condition prevents any lattice site from being visited more than once. The 

configurations are described in detail in Section 3.2. 

This section gives an algorithmic description of the set of transformations on the 

set of self-avoiding loops configurations. Information on data structures and computational 

implementation will be given in Section 5.4. The entire Monte Carlo algorithm which 

employs the transformations will be described in Section 5.3. The transformations are 

divided into types: pivots, translates, reconnections, elementary addition/ deletion, and · 

elementary excitations. Pivots change the shape of individual loops, translates change the 

arrangement of loops in a collection, reconnections change the partitioning of vortex links 

into separate loops, and elementary addition/ deletion changes the number of vortex links 

in the configuration. Elementary excitations add or delete vortices in a way that reduces 
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or increases the energy of the resulting configuration. 

The action of each transformation type depends on random choices. The condition 

of transformation detailed balance presented in Section 4.2 states that each transformation 

should have an inverse such that the probability of moving configuration c to c' should 

equal the probability of moving c' back to c. The existence of an appropriate inverse will · 

be given for each transformation and the probability balance will be justified. Algorithmic 

descriptions will be set in typewriter font where indentation and, if necessary, braces 

{ } indicate dependent operations. 

5.1.1 Pivots 

The transformations in the "pivot" class described here are used to change the 

geometry of individual loops. They are adapted from the self-avoiding walk algorithm de­

scribed and analyzed by M~dras and Sokal in 1988 [100]. The transformations are modified 

to work on single vortex loops, which are closed self-avoiding walks. Madras in 1990 [99] 

studied an equivalent modification, and additionally gave a complete analysis. Pivots are 

augmented with moves called "inversions" after the terminology used by Sokal [26]. The 

pivot moves alter the loop by first choosing an arc: a connected sub-sequence of links. The 

loop is then "broken" into two rigid pieces at the endpoints of the arc, and the arc is "repo­

sitioned" at the endpoints to form a new loop which has been "bent" at the endpoints of the 

arc. By rigidly preserving the arc, and by reattaching at the endpoints, the connectivity of 

· the loop is preserved. The self-avoidance of the bent loop is checked a-posteriori; if the repo­

sitioned arc intersects another part of the configuration then the move is rejected and the 

. identity transformation is substituted in its place. In practice, the fraction of self-avoiding 

bends tends to a constant for large arcs, leading to an algorithm which can generate a nearly 

independent N link configuration in order of N computer time [100]. 

An arc of a loop can be described by the .position of the first node in the arc and 

the list of vector steps {~~} that trace out the arc. Figure 5.1 shows an arc of six steps 

between the nodes marked by black circles; the first node is at (a) and the list of steps is, 

from left to right: 

0 

[ 

1 0 1 

0 1 0 -1 

0 0 0 0 

0 0 l -1 -1 

0 0 
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Figure 5.1: Pivot preserving link order 

A pivot move changes only the selected arc of the loop, while the rest of the loop remains 

fixed in place. The movement of the arc can be expressed as an orthogonal matrix S. 

The new arc is formed by taking the list of link vectors {~} and making a new list {S~} 

by multiplying each link by S. The new positions of the nodes of the arc are calculated 

by starting at the first node and following the new list of steps, wrapping· across periodic 

boundaries if necessary. In the example shown in Figure 5.1, the matrix S is: 

The new sequence of link vectors {S~~} is: 

0 1 1 1] 
-1 0 0 0 

0 0 0 0 

The node positions for the arc are reconstructed by incrementing with the new vectors from 

point (a). 

The matrix Sis chosen from the set of 48 orthogonal matrices which preserve the 

cubic lattice. These matrices represent the symmetry group of the cubic lattice. In practice 

the choice of the matrix must be restricted so that the new arc fits back into the loop. The , 

end-to-end vector .& of the arc is computed and a matrix S is chosen randomly from the 

set of-matrices for which s;& = .&. In the example in Figure 5.1, S preserves the end-to­

end vector .& = (2, -2, 0). If the vector .& does not lie an a symmetry axis of the lattice, 
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Figure 5.2: Arc inversion 

Figure 5.3: Pivot reversing link order 

then only the identity matrix will preserve ..&. In this case, the arc is inverted' by rever~ing 

the order of the steps in the arc before reconstructing the node positions. An example of 

arc inversion is given in Figure 5.2. Inversion may also be performed in concert 'with a 

non-trivial matrix transformation. An example of adding inversion to the pivot. move of 

Figure 5.1 is given in Figure 5.3. Finally note that pivots can alter _the shape of the loop 

in three dimensions, as in Figure 5.4. Note that all four examples produced self-avoiding 

configurations; if the alterations had caused two nodes to lie on the same lattice site the 

loop would revert to its original shape. 

The full algorithm is given in Table 5.1. An explanation of detailed balance must 

show that for each transformation c -t c' performed through the pivot/invert class on 

configuration c, there exists a pivot/invert transformation c' -t c on c' which reverses the 
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Figure 5.4: Pivot in three dimensions 

move. Furthermore, the conditional probability of employing the forward transformation 

on c must equal the conditional probability of employing the reverse transformation on c'. 

The probability of performing a non-trivial pivot move begins with the probability 

of choosing the pivot class. This is multiplied by the probability of choosing a particular 

loop and a particular arc. Since the pivot class moves do not change the number of loops 

nor the number of links in each loop, the probability of a pivot class inove selecting an arc 

of a loop in c is equal to the probability of a pivot class move of selecting the same arc of 

the same loop in c'. If the endpoints of the arc, which are not changed by the original move, 

do not lie on a symmetry axis then inversion is performed by the pivot class on both c and 

c'. Since twice reversing the order of links in the arc recovers the original arc, the inversion 

step of the pivot class move is its own inverse and the probability of transforming c to c' by 

this class is equal to the probability of transforming c' back to c by the class. 

If the endpoints of the arc do lie on a symmetry axis, the probability to perform 

a particular move is the probability of choosing the arc times the probability (50%) of 

inverting or preserving the link order, times the probability of choosing a particular Sa such 

that Sa iS. = iS.. The group structure of { S} guarantees the existence ·of a unique inverse 

matrix Sa' such that Sa' Sa = I. The since both Sa and Sa' preserve iS., the probability of 

choosing Sa' during the reverse move is equal to the probability of choosing Sa during the 

forward move. The link order inversion commutes with multiplication of the links in the 

arc by an S, so the pivot class moves change c to c' and c' to c with equal probability. 

5.1.2 Translates 

Translates change the relative positions of individual loops by rigidly translat­

ing a single loop by a random lattice vector B. The algorithm is described in Table 5.2. 

Translation does not change the n11mber of loops in the configuration, so the probability 
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Table 5.1: Arc pivot/invert algorithm 

(choose randomly a loop from the collection) 

(choose randomly an ordered pair of nodes in the loop: 

the links between them are an arc) 

(compute the sum.&= (aX,aY,aZ) = l::iearc~~) 

(if .& lies along a symmetry axis of the cube then pivot) 

(choose randomly an s such that s.& = .& ) 

(choose randomly to invert or not invert the arc) 

(if invert chosen then) 

(apply S to the ~ in the arc) 

(reverse the order of the links in the arc) 

(construct new node positions by incrementing from 

the first endpoint) 

(else) 

(apply S to the ~ in the arc) 

(construct new node positions by incrementing from 

the first endpoint) 

(else if .& is not on on a symmetry axis then invert only) 

(reverse the order of the links in the .arc) 

(construct new node positions by incrementing from 

the first endpoint) 

(if the resulting configuration is not self-avoiding then) 

(revert to original configuration) 

(else) 

(take modified configuration) 
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Table 5.2: Translation algorithm 

(choose randomly a loop from the collection) 

(choose randomly an translation vector B E [0, h, 2h, ... , L - hj3 ) 

(add B to all node positions in the loop) 

(periodically vrap node positions back into the first period) 

(if the resulting configuration is not self-avoiding then) 

(revert to original configuration) 

(else) 

(take modified configuration) 

of choosing the translation class times the probability of .choosing a particular loop is un­

changed by the forward move. The distribution of the random translation vectors { B} 

assigns equal weight to B and to -B (modulo the periodicity of the domain) so moves in 

the translation class satisfy the balance condition. The probability of translating a loop of 

a configuration c to a new position is equal to the probability of translating it back in the 

changed configuration c'. 

5.1.3 Reconnections 

The pivot moves alter individual loop geometry and orientation, and translations 

alter the arrangement of the various loops. I have developed a set of reconnection moves 

which change the partitioning of links among the different loops. Reconnections change 

, the connectivity pattern to break one vortex loop into two or merge two vortex loops into 

one. See Figure 5.5. The algorithm maintains a list of plaquettes which are "full", that 

is, all four lattice sites at the corners of the plaquette are occupied with nodes (ends of 

vortex links). A full plaquette is classified as eligible for a reconnection move if its border is 

occupied by anti-parallel links on two sides and is unoccupied on the remaining two sides. 

A reconnection move relinks the nodes so that the links move to the previously empty sides 

of the plaquette. 

If the anti-parallel links originally belonged to the same loop, a new loop is split 

off, while if they originally belonged to different loops the two are merged. Figure 5.5 
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Figure 5.5: T'Yo reconnection moves 

Table 5.3: Reconnection algorithm 

{ 

(choose randomly a plaquette from the set of full plaquettes) 

(if the plaquette is eligible then reconnect) 

} 
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shows on the left a loop configuration containing 7 full plaquettes, marked by circles. Two 

are bordered by only a pair of anti-parallel links and are eligible for reconnection moves. 

These are marked with filled circles. The configuration resulting from performing the two 

reconnections is shown on the right. Table 5.3 gives the reconnection algorithm. Since 

a reconnection event changes only two links, compared to the number of links in an arc 

changed by a pivot move and the number of links in a loop changed by a translation move, 

a number of reconnection attempts KR are made at each invocation of the reconnection 

class. Note that while the number of full plaquettes is unchanged by a reconnection, the 

number of eligible plaquettes is not necessarily fixed. In the example, the merging of two 

loops makes a previously ineligible "hairpin turn" into an eligible plaquette. In order to 

preserve detailed balance, therefore, it is necessary to choose a plaquette randomly from 

the collection of full plaquettes, rather than from the collection of eligible plaquettes. This 

procedure insures that the probability of of reconnecting a plaquette of a configuration cis 

equal to the probability of reconnecting at the same spot in configuration c' and of reversing 

the move. 
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Table 5.4: Link addition/ deletion algorithm 

(choose randomly a plaquette in the domain) 

(if the border has a single link then) 

(add a hairpin) 

(else if the border has a hairpin then) 

(delete the hairpin) 

(else if the plaquette is empty then) 

(choose randomly an orientation {CW or CCW}) 

(add an elementary loop of chosen orientation) 

(else if the border is an elementary loop) 

(choose randomly an orientation {CW or CCW}) 

(if the loop matches the orientation, delete it) 

(else leave it unchanged) 

(else the plaquette is ineligible for addition/deletion) 

5.1.4 Elementary Addition/Deletion 

. Pivots and translations change the geometry of vortex loops, and reconnections 

change the partitioning of the existing vortex links into different loops. None of these trans­

formations, however, change the number of links N in the configuration. I have developed 

a set of transformations for the variable-N simulation which add or delete links. In order 

to manage the detailed balance condition so that each addition and deletion should have 

an equal probability inverse, the "elementary" moves are restricted to adding or deleting 

links about a single plaquette. The additions and deletions fall into two classes, adding 

or deleting a "hairpin" which follows three sides of a plaquette, and adding or deleting 

an "elementary loop" which surrounds a plaquette on all four sides. Table 5.4 gives the 

algorithm, while Figure 5.6 shows the four possibilities around a single plaquette. 

The probability of successfully performing an Addition/Deletion is the probabil­

ity of choosing the Addition/Deletion class times the probability of choosing a particular 

plaquette of the lattice. If the plaquette is bordered by a single link, a hairpin, no links, or 
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Figure 5.6: Link addition/ deletion 
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an elementary loop then links are added or deleted. Otherwise no action is performed at 

the plaquette. A single link is transformed into a hairpin and vice versa. An empty plaque­

tte is transformed into a clockwise loop with 50% probability and into a counter-clockwise 

loop with 50% probability. An elementary loop is deleted with 50% probability. Thus the 

probability of making a transformation is the same as the probability of reversing it. 

5.1.5 Elementary Excitations 

The pivot, translation, reconnection, and elementary addition/deletion classes of 

transformations suffice to change the geometry, connectivity, and number of links in the 

vortex configurations. These moves form a complete set of transformations for a grand 

canonical simulation of the self-avoiding loops system. The following transformation class 

is included not to change a particular aspect of the vortex configurations, but to increase 

computational efficiency. In some ranges of the parameter space ((3, v), elementary addi­

tion/ deletion moves are rarely accepted by Metropolis sampling. The equilibrium weight 

for a configuration is given in Section 3.2: 

If, in a Metropolis step, the candidate configuration c' differs from the starting configuration 

c by (Ll.E, Ll.N) in interaction energy and number of links, then the probability of accepting 

the move is min(l, p(c')jp(c)) where 

p(c') = e-f3l:l.E-{3vl:l.N 
p(c) 

If (3v » 1 then the addition of vortex links is strongly discouraged by the weight. It is 

sometimes desirable, therefore, to create transformations which add links to the domain in 

a manner that produces a particular effect on the interaction energy. Such a transformation 

may have a high probability of being accepted if a favorable change in interaction energy 

Ll.E can offset an unfavorable change in the number of links Ll.N. Transformations which 

are tailored to produce a large increase or decrease of the energy of the configuration are 

termed elementary excitations in this thesis. The use of such specialized transformations 

is similar to a technique used by Chorin [32] for sampling vortex filament configurations. 

This section describes two sorts of elementary excitations: one which raises the interaction 

energy of the configuration and one which lowers the interaction energy. The first sort are 
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Figure 5.8: A crystal of stacked elementary loops 
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termed dipole transformations because the added vortices resemble two dimensional vortex 

dipoles when viewed along their axis, see Figure 5.7. The second sort are termed crystal 

transformations because they generate cubes of vortex loops which could fit together in a 
regular crystal, see Figure 5.8. 

If temperature is negative so that high energy states are favored, while at the 

same time states with many vortex links are discouraged, configurations tend io become . 

polarized with vorticity of one direction in one region of the domain and vorticity of the 

opposite direction in a separ~te region. See Figure 5.9. The addition of an elementary 

loop or a hairpin inserts a pair of nearest neighbor anti-parallel vortices which lowers the 

interaction energy of such a polarized configuration somewhat. Such additions, therefore, 

are penalized both· for decreasing the energy and for increasing the number of links in the 

configuration. The addition of a pair of dipole vortices, however, such as those shown in 

Figure 5. 7, can greatly increase the interaction energy in the system. If the favorable effect 
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Figure 5.9: Polarized vortices with high energy 

of the energy chang'e nearly balances the penalty for increasing N, then dipole additions 

and deletions will be frequently accepted by Metropolis sampling. Table 5.5 gives the dipole 

addition/ deletion algorithm. The sites for adding or deleting dipoles are chosen randomly 

to preserve the detailed balance condition. 
/ 

The counterpart to dipoles are crystals, which lower the interaction e'nergy rather 

than raise it. Crystals may be frequently accepted in systems at low positive temperature 

where low interaction energies are favored. Table 5.6 gives the crystal addition/ deletion 

algorithm. If the randomly chosen sites are neither empty nor filled with a crystal, the 

algorithm attempts to add or delete an elementary loop. Figure 5.10 shows on the left a 

situation where one plaquette is empty and the other plaquette has a set of links which is 

not an elementary loop. The result of the crystal move adding an elementary loop is shown 

on the right. In order to maintain detailed balance, however,' the addition or deletion of 

an elementary loop cannot create or break up a crystal of two counter-rotating loops. If 

the crystal algorithm visits the same site twice in a row, it should return the configuration 
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Table 5.5: Dipole algorithm 

(choose randomly an anti-parallel pair of lines though the domain) 

(if all sites on both lines are empty then) 

(add tYo straight loops of the chosen directions) 
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(else if a pair of straight loops of the chosen direction occupies the lines) 

(delete both loops in the dipole) 

(else the location in ineligible for a dipole move) 

--~-------- :: . 
. . :4: f: .:----:-----.-. . . . . . I I I 0 . . . ' . . 

Figure 5.10: Adding an elementary loop 

to the state before the visits. If the algorithm were to create a crystal by adding an 

elementary loop, and then were to remove both loops in the crystal on the second visit, the 

transformation detailed balance condition would not hold. 

5.2 Ergodicity 

The previous section .describes the set of transformations on the self-avoiding loops 

configurations and shows that the transformation detailed balance condition given in Section 

4.2 is satisfied. The proof that the Markov chain occupation time of each configriration c E C 

converges to the equilibrium weight p( c)/ Z also requires the ergodicity condition: that the 

transformations can change any state to any other state in a finite number of steps. I will 

not show that the ergodicity condition holds; in fact I believe that there exist high density 

states which are not reachable by this transformation set. Nevertheless I believe that at low 

and moderate densities the algorithm gives at least a representative set of configurations. 

The numerical results given in Chapter 6 are accordingly restricted to a region of parameter 

space (/3, v) in which vortices are discouraged so that the density is limited. 

At low enough vortex density, a proof of ergodicity follows from the work of Madras 
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Table 5.6: Crystal algorithm 

(choose randomly a stacked pair of plaquettes and an orientation) 

(if both plaquettes are empty then) 

(add tvo loops to make a crystal of the chosen orientation) 

(else if a crystal of the chosen orientation exists) 

(delete both loops in the crystal) 

(else if one plaquette is empty and the other 

is not a loop of the correct orientation) 

(add an elementary loop of the chosen orientation) 

(else if one loop matches the orientation and the other plaquette 

is not a loop of the correct orientation) 

(delete the elementary loop) 

(else the location in ineligible for a crystal move) 

in his 1990 paper with Orlitsky and Shepp [99]. They showed that the pivot moves are 

ergodic for a single loop in free space. Therefore any geometry is realizable for a loop of 

a given number of links provided it is far enough away from other loops so that it may be 

folded freely. Given this fact, any configuration of N links can be reached from (or turned 

into) a single elementary loop by the following procedure. Add bumps onto the loop until 

the desired total number of links N is reached. Then shape the loop into a single long 

thin configuration, as demonstrated in Figure 5.11. Use reconnection moves to partition 

the loop as desired, Figure 5.12. Then employ translations to separate the loops and pivots 

to bend each one into the desired geometry. Finally, reassemble the configuration with 

translations. Note that both the pivot moves and the translations depend only on the final 

configurations being self-avoiding, so that loops can be freely knotted and linked by these 

transformations. As long as individual loops can be translated and pivoted freely enough to 

form any shape, any configuration can be reached through this procedure. The procedure 

may fail at high enough density, however, because pivots may be unable to transform a 

particular loop into the desired geometry in the presence of many sites which are occupied 

by other loops. Moves which would be possible on an infinite lattice may be blocked by the 
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Figure 5.11: Single "canonical" loop 
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Figure 5.12: Partitioned loops 

self-avoidance condition. 

Although the possible lack of ergodicity in the algorithm is a serious matter, there 

is some reason to believe that the numerical results are not strongly affected. Recall that 

the effectiveness of practical Monte Carlo simulation rests not on the property that all 

configurations are visited with the correct frequency, but that the probability distributions 

of observable quantities converge quickly to their limiting distributions. 

A number of numerical tests have been performed to search for indications that 

non-ergodicity effects the probability distributions at moderate density. Several runs with 

different initial conditions were taken at each set of parameters (/3, v). No difference beyond 

statistical deviations was seen in either the resulting histogram distributions or the observ­

able averages. Runs were performed in which the number of vortices N was held fixed. 

These runs produced histograms for a· range of interaction energies and a single value of 

N. These histograms were compared to energy slices of two-dimensional histograms from 

variable-N runs. The results matched, indicating that the pivot, translation, and reconnec­

tion moves were sufficient to move configurations through a fixed-N subspace.· The addition 

of addition/ deletion moves did not seem to increase the space of accessible configurations at 

any particular valuer of N. These experiments lead me to believe that the numerical results 

are accurate for the self-avoiding loops system. 

5.3 The Split-phase Metropolis Method 

The separate operations of changing individual loop geometry, adding and sub­

tracting links, and repartitioning links among different loops lead to an inhomogeneous 

set of transformations. In particular, some transformation types change N while others 
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leave N fixed, and some change E greatly while others make only modest changes to the 

energy. Because the energy calculations are computationally expensive compared to the 

transformations, an efficient algorithm would employ several transformations for each en­

ergy calculation. ~he use of several transformations would reduce the correlation between 

successive steps of the algorithm without incurring the cost of several energy calculations . . 
I have used what I term a "split-phase Metropolis" method to balance work among the 

different transformations and the energy computations for the self-avoiding loops system. 

This method allows several minor transformations to proceed without an energy check, and 

and splits the enforcement of detailed balance in the E and in N dependent portions of the 

Gibbs weight: 

p(c) = e-/3E(c) e-f3vN(c) 

The split-phase metropolis method maintains the detailed balance condition for the Markov 

process. 

5.3.1 Review of the Metropolis Sampling Method 

The description of Metropolis sampling was given in 4.2. The notation is reviewed 

here. Given a set of functions, also termed transformations, Q = { Qa : C -t C}, each step 

of the Markov chain is generated as follows. Suppose the current configuration in the chain 

is Ci· Choose randomly one of the functions Qa; each function has conditional probability 

1r a ( ci) given the current configuration Ci. Thus for each c E C, since one transformation is 

chosen at each step, the following normalization condition holds: 

Apply Qa to the current configuration to generate a candidate c': 

Now let the next member of the Markov chain be 

{ 
c' with probability E>( Ci, c') 

Ci+l = 
Ci otherwise 

where the acceptance probability E>(Ci, c') is: 

E>( ') . ( p(c')) 
Ci,c = mm 1, P(Ci) 
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The probability TJ01 (c, c*) is the probability, given current configuration c, of employing the 

transformation Q01 and of accepting or rejecting the candidate to select the next configura­

tion c*. If the step accepts the candidate, then: 

T/01 (c, c*) = 7ra (c) e(c, QOI C) 

otherwise: 

T/01 (C, c*) = 7ra (c) [1- e(c, QOI c)] 

If the set { ajQac=c*} contains all the transformations Q01 that map c to c*, then 

the Markov transition probability, 

P (c => c*) = 2:::: ?ra (c) e(c, c*) 
aiQac=c* 

satisfies the detailed balance condition, 

P ( c => c*) _ p( c*) 
P (c* =>c) - p(c) 

when the transformation set {Q01 } and the conditional probabilities {1r01 (c)} satisfy for each 

c the transformation detailed balance condition given in Section 4.2 The transformation 

detailed balance condition is typically satisfied by insuring that for each a and for each c, 

there exists an a* such that: 

and 

If c* = Q01 c then the probability 7r01 (c) of making the forward step Q01 from c equals the 

probability ?r01 • ( c*) of making the inverse step Q01• from c*. 

5.3.2 Descr~ption of the Split-phase Metropolis Method 

I introduce a modification to the Metropolis method which differs from the stan­

dard algorithm in two respects. First, the candidate configuration c' is generated from Ci 

in a sequence of intermediate steps: 

-0 -1 -2 -k \ I 
Ci = C , C , C , ••• , C = C 

Second, the acceptance probability, e( c, d), of the candidate c' is modified to depend on 

aspects of the intermediate sequence. The "composite" transformations Q01 created through 
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the intermediate process need not satisfy transformation detailed balance; the acceptance 

probability eo:( c, c') is adjusted so that the Markov transition probability 

P(c~c*)= L 7ra(c)8a(c*,c) 
o:IQ.,.c=c• 

still satisfies the detailed balance condition. 

Let { Qa : C -+ C} be a set of transformations, and let the conditional probabil­

ity to use Q a given current configuration c be 7r a (c). Suppose that this set { Q a, 7r a (c)} 

satisfies transformation detailed balance: for each Qo: such that Qac = c*, there exists a 

transformation Qa• which reverses the move, 

with equal probability: 

Furthermore, associate with each Qo: an "acceptance function" Fa : C-+ R. Let the same 

acceptance function be associated with inverse transformation Qa• as with the forward 

transformation: 

This collection of transformations, conditional probabilities, and acceptance functions will 

be used to create the split-phase algorithm. 

The split-phase algorithm employs intermediate Metropolis-like acceptance steps 

in the production of an intermediate sequence of configurations. Let k intermediate steps 

be taken at each step of the Markov process; an intermediate sequence of configurations 

leads to a candidate configuration c' from the current configuration Ci: 

-0 -1 -2 -k I 
Ci = .c 'c 'c ' ... , c = c 

The intermediate configurations are themselves selected by the two-step process of the 

generation of a candidate followed by an intermediate acceptance step. Let the first member 

of the intermediate sequence be c0 = Ci· For each j = 0, 1, ... k -1, choose with conditional 

probability 71"~ ( ci) one of the transformations in { Qa}, call it Q~. Generate an intermediate 

candidate: 
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Now accept this candidate with the intermediate acceptance probability f1.~ given by: 

t1_i =min (1 F~(<:')) 
a 'FMci) 

otherwise repeat ci in the intermediate sequence: 

'· 
ci+l = { c'. = Q~ci withprobability f1.~ 

CJ otherwise 

The acceptance function FJ plays the same role in the intermediate steps as the Gibbs 

weight p plays in a standard Metropolis step. Now, let the final candidate configuration 

c' be the last member of the intermediate sequence: c' = ck. The candidate c' is then 

be accepted with the final probability 8a(Ci, c'), to generate the next member Ci+1 of the 

Markov chain: 

{ 
c' with probability 8a(Ci,C1

) 

Ci+l = 
Ci otherwise 

The subscript a is used loosely here to indicate all the random choices involved in the gener­

ation of the candidate c': the choice at each step of a transformation Q~ and the acceptance 

or rejection of the intermediate candidate. One could make a set of "composite" functions 

{ Qa} which correspond to all the different paths one could take from an initial configura­

tion c to a candidate c'. Each function Qa depends on the the sequence of intermediate 

transformations Q~ and on the outcomes of the intermediate acceptance steps producing 

the sequence { ci}. 

Note that the final acceptance probability 8a ( c, c') has not yet been defined. I 

begin by providing a concrete example in which the acceptance probabilities are defined 

and the Markov chain detailed balance condition is shown to hold. The example is then 

generalized to define the final acceptance probability used in the thesis. The detailed balance 

condition is shown to hold for this type of algorithm. Finally, the implementation for the 

self-avoiding loops system is described. 
J 

5.3.3 A Simple One-step Example 

Consider as an example a system with grand canonical equilibrium weight: 

p(c) = e-f3E(c)+f3p.N(c) 
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Let k = 1 , so only one intermediate transformation Q~ and one intermediate acceptance 

probability ~~ are employed in the generation of the the final candidate c'. The intermediate 

chain between the current configuration c and the candidate c' therefore has only two · 

elements: 

c =cO c1 = c' ' 

A step of the Markov process involves first making a move, c' = Q~ c0 , by employing a 

random intermediate transformation Q~ to generate an intermediate candidate c'. This 

intermediate candidate is accepted with the intermediate acceptance probability ~~ to 

determine if c' or c0 is the last member of the intermediate chain and the final candidate 

c'. The final candidate is then accepted with probability 9 0 ( c, c') to determine if the next 

member of the Markov chain is c' or c. 

Take a pair of configurations {c,c*} and abbreviate E = E(c),E* = E(c*),N = 

N(c), N* = N(c*). Suppose there are only two intermediate transformations Q~ and Qg 
which take c to c*. Since the intermediate transformations set is assumed to satisfy the 

transformation detailed balance condition, there are two intermediate transformations Q~ * 

and Qg. which take c* back to c. The probabilities of selecting the forward and inverse 

steps are equal: 

-o ( ) -o ( *) 71"1 c = 71"1* c 

-0 ( ) -0 ( *) 71"2 c = 71"2* c 

Now, for transformation a= 1, let the acceptance function be constant, Fr = 1, so inter­

mediate acceptance is automatic: 

Then the intermediate step is: 
_, Q-o -o 
c = 1 c' 

c' = c' (with probability 1) 

For this transformation let the final acceptance probability be: 

81(c, c') =min ( 1, ~~~]) =min ( 1, e-.B(E(c')-E(~))+~JL(N(c')-N(c))) 

Taking transformation a = 1 results in a ~tep corresponding to a regular Metropolis step; 

a candidate c' is generated and then accepted with probability p(c')jp(c). Now suppose, 
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however, that for a= 2 the acceptance function is: 

F~(c) = ef3p,N(c) 

Then the intermediate acceptance probability is: 

.6. 0 = min (1 F~(c1_)) = min (1 ef3p,(N(c')-N(c0
))) 

2 'F~(cJ) ' 

so the intermediate step is: 

{ 

-1 
I C 

c = 
c 

-1 Q-o -o 
c = 2 c' 

with probability min ( 1, ef3p,(N(c')-N(c0
))) 

otherwise 
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In this case c1 is not an unweighted candidate. Adjust the final acceptance probability by 

taking: 

82(c,c1) =min (1,e-f3(E(c')-E(c))) 

Now consider the Markov transition probabilities of moving from c ==?- c* and of 

moving from c* ==?- c. Since in the example there is only one intermediate step, the only way 

to move from c to c* is for all the candidates to be accepted at each step. Thus, 

-0 -1 * I * c =c,c =c ,c =c 

The total probability P (c =} c*) of transforming c to c* is a sum over the two possible 

transformations a = 1, 2: 

P (c =} c*) = L 1i"~ (c) .6.~8a(c, c*) = 
a=1,2 

7i"~ (c) .6.~8 1 (c, c*) + n-g (c) .6.ge2(c, c*) = 

7i"~ (c) min ( 1, e-f3(E*-E)+f3p,(N*-N)) + n-g (c) min ( 1, ef3p,(N*-N)) min ( 1, e-f3(E*-E)) 

Since the acceptance functions Fg are the same for the forward and reverse steps, the reverse 

probability has the same form as the forward probability but with c and c* exchanged: 

7i"~ (c*) min ( 1, ef3(E*-E)-f3p,(N*-N)) + 1rg ( c*) min (1, e-f3p,(N*-N)) min ( 1, ef3(E*-E)} 
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The mins may be resolved in six cases; a case in which: 

e-f3(E*-E)+f3p.(N*-N) > l 

e-f3(E*-E) > 1 

ef3p.(N* -N) < 1 

follows. The other cases produce the same final result. In this case, 

and 

P (c => c*) = 7r~ (c)+ 1rg (c) ef3p.(N*-N) 

p (c* =>c)= 7r~ .. (c*) e-f3(E-E*)+f3p.(N-N*) + 7rg .. (c*) e-f3(E-E*) = 

e-f3(E-E*)+f3p.(N-N*) [1r~ .. (c*) + 1rg. (c*) ef3J.L(N*-N)] 

The ratio of the forward to the reverse probabilities is: 

P (c => c*) _ 1 1rr (c)+ 1r~ (c) ef3J.L(N*-N) 

P (c* =>c) - e-f3(E-E*)+f3p.(N-N·) 7rr. (c*) + *~· (c*) ef3J.L(N*-N) 

Since the transformation detailed balance condition is satisfied, 1rr (c) = 7r~. (c*) and 

7r~ (c) = 7r~. (c*). The summations over a= 1,2 and a* = 1*,2* in the numerator and 

the denominator are therefore equal and the detailed balance condition holds: 

p (c =? c*) = e-f3(E*-E)+f3p.(N*-N) = p(c*) 
P (c* =>c) p(c) 

5.3.4 Final Acceptance Probability in a Split-phase Step 

In the example the product of the arguments in the minimum functions of Ll~ and 

9a(c,c') is the ratio p(c*)jp(c) for both transformations a= 1 and a= 2. For a= 1, 

while for a= 2, 

[1] [e-f3(E*-E)+f3p.(N*-N)] = p(c*) 
p(c) 

[
ef3J.L(N*-N)] [e-f3(E*-E)] = p(c*) 
. p(c) 

One can generalize the example to a class of methods in which k > 1 intermediate steps are 

taken. At each intermediate step j = 0, 1, ... , k- 1, the acceptance probability Ll~ is given 

by: 

Llj =min (1 F~(£:')) 
a 'F&(ci) 
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so at the j'th intermediate step the next intermediate configuration is: 

{ 
_, - Q-i C) with probability D..:f. 

c-i+1 = c - Q ~ 

C) otherwise 

The sequence of acceptance functions 

F o p1 pk-1 
ct:' a'... o: 

determines the intermediate acceptance probabilities; one then must choose the final ac­

ceptance probability 9 0 (c, c') so that the detailed balance condition holds for the Markov 

process. The final probability must depend on information from the intermediate chain. 

Record, therefore, for the sequence of k intermediate transformations and acceptance steps 

a sequence of factors: 

which are defined by: 

~:0 d ~:k-1 
ua, uoc, .•• ,uoc 

•. if the candidate c' is accepted this step 

otherwise 

If, at the j'th intermediate step the candidate c' is accepted, then information on the 

intermediate acceptance probability A~ is stored in 6~. If the candidate is rejected, a factor 

of unity is recorded. At the end of the intermediate sequence, in which the final candidate 

c' is set equal to ck, determine a final factor 6~ such that 

~:O d ~:k-1 ~:k P( c') 
u0 X u0 X ••• X u0 X U 0 = p(c) 

Thus the final factor can be computed from the intermediate factors 8~, c;, ... , c~-1 and 

from the ratios of the Gibbs 'probabilities of the previous member c of the Markov chain 

and of the final candidate c': 

ck = p( c') [rr ~] 
0 

p(c) j=O C~ 

The final acceptance probability is defined from the final factor by~ 

ea(c,c') =min (1,6~) 

The next member of the Markov chain is thus: 

{ 

c' 
Ci+1 = C 

with probability eo( c, c') 

otherwise 
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This is the split-phase Metropolis sampling method which is used in this thesis. In the 

implementation for the self-avoiding loops system the intermediate transformations {Q~} 

are members of the pivot/inversion, translation, reconnection, and elementary excitation 

classes. The acceptance functions F~ are determined by the transformation class. A thor­

ough description of the acceptance functions will be given at the end of this section after 

the proof of detailed balance for the split-phase Metropolis method. 

Note that the standard Metropolis method can be expressed as an instance of 

the split-phase Metropolis method by setting all the acceptance functions F~ = 1. Then 

each intermediate configuration is automatically accepted and the final candidate c1 is un­

weighted; that is, the probability to generate c1 from cis equal to the probability to generate 

c from c1
• Since each F~ = 1, each corresponding factor 8~ = 1 and thus the final factor 

8~ = p(c1
)/ p(c). The final acceptance step in this case proceeds with the standard Metropo­

lis probability 

e ( 1) • ( p( C
1
)) 

a: c, c = mm 1, p( c) 

• 
5.3.5 Proof of Detailed Balance for Split-phase Metropolis 

A proof of detailed balance for the split-phase Metropolis method follows. Consider 

two configurations c and c*. The Markov transition probability P (c::;.. c*) is the sum, over 

all the possible ways a to go from c to c*, of the probability of taking each path. Define 

notation for the intermediate steps as follows. Let the configuration at the beginning of 

the Markov step be c, let the result of the Markov step be c*, and let the intermediate 

configurations be: 
-0 -1 -2 -k I 

c = c 'c 'c ' ... , c = c 

Each cf+l is produced from ci by the generation of an intermediate candidate followed by 

an intermediate acceptance or rejection of the candidate. Name the intermediate step fi~, 

so that 

The transformation Qa: generating the finalcandidate dis thus the composition of the fi~s: 

Q = fik-1 o flk-2 o ... o fl1 o flO 
a: a oc a a 

Define the intermediate probability 77~ (ci, ci+1) to be the probability of selecting Q~ to 

transform ci to c1 and then ofaccepting or rejecting the candidate to produce cf+l. The 
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probability of generating the final candidate 

c' = Qo: c 

through the sequence of intermediate transformations and acceptance/rejections is thus: 

k-1 

7ro:(c) =II rio: (ci,ci+1
) 

j=O 

Since the probability of accepting the final candidate is 8o:( c, c'), the probability of trans­

forming c :::} c' by path a is 

'f/o: (c, c') = 7ro: (c) 8o:(c, c') 

Suppose c* =/= c, then the final candidate c' must be accepted with probability 8o:(c*, c) in 

order to produce c*. Then the Markov transition probability is the sum over all the paths 

a for which Qo: c = c* of the probability to take each path: 

P(c:::}c*)= L 7ro:(c)8o:(c*,c) 
o:JQcrc=c* 

The Markov transition probability P (c*:::} c) is a similar sum over all the paths a* for 

which Qo:• c* =c. 

In order to prove that the detailed balance condition holds, one wishes to iden­

tify each forward transformation Qo: with an inverse transformation Qo:•. Each forward 

transformation can be written as the composition of intermediate steps: 

Q = ftk-1 o ftk-2 o ... o ft1 o ftO 
0: 0: 0: 0: 0: 

which produce the intermediate configurations: 

-0 -1 -2 -k I * c = c 'c 'c ' ... , c = c = c 

The corresponding inverse transformation can be written as: 

- 0 - 1 - k-2 - k-1 
Qo:• = Ho:• o Ho:• o · · · o Ho:. o Ho:. 

where each intermediate step in the forward sequence is reversed. The reverse sequence 

begins from c* and leads to the configuration c, which is taken as the final candidate of the 

inverse step. 
* -k -k-1 -k-2 ::0 

c = c 'c 'c ' ... , c = c 
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The ordering of the superscripts will be reversed when discussing the inverse Markov step 

Qo:• so that fi!;;1 is the first of the inverse intermediate steps to be applied, followed by 

fi!;;2
, and so on until ii~ .. Therefore, the forward and inverse intermediate steps are: 

ci+1 = ii~ ci at the j'th forward intermediate step, and 

ci = ii~. 1J+l, at the (k- j)'th inverse intermediate step. 

The inverse fi!;i of the intermediate step ii~ is defined as follows. The proba­

bilities for the forward and inverse intermediate steps are computed. Recall that for each·· 

j, the intermediate step ii~ consists of applying an intermediate transformation Q~ with 

probability ir~ (ci) to produce an intermediate cand.idate c' which is then accepted as the 

next member of the intermediate chain with probability: 

tJ..i = min (1, F~(c')) 
o: -· F~(ci) 

The acceptance or rejection of the intermediate candidate produces two cases. Consider 

the first case in which the intermediate candidate is accepted. Then ci+1 = c1 and the 

intermediate factor 8~ is set to 
. Fi(c;i+l) 

8' = --=o:~.----'-
0: F&(ci) 

The probability rfcx (ci, c;i+l) of choosing the particular transformation Q~ and accepting 

the step is: 

In this case, where the candidate in the forward intermediate step is accepted, define the 

inverse intermediate step fi~. as follows. Choose the inverse transformation Q~. of Q~ so 

that the candidate in the inverse intermediate step is: 

ci = Q~. (j+l 

Then accept candidate so that the step in the forward sequence from ci to c;i+l is reversed 

in the inverse sequence. The probability of choosing the inverse transformation Q~. is 

7r!x. (ci+l) while the probability of accepting the candidate ci in the inverse step is: 
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The intermediate factor recorded for the inverse step is the ratio of the acceptance functions 

since the candidate is accepted in the inverse step, 

The probability of choosing this inverse step ii~. is then: 

The transformation detailed balance indicates here that ~- (c.f+l) = ir~ (ci), so the prob­

abilities of taking the forward step ii~ and of taking the reverse step ii~. are: 

ria ( ci, ci+1
) = ir~ ( ci) min ( 1, 6~) 

and 

rfa. ( cf+l, ci) = ir~ ( ci) min ( 1, 6~) 
The second case is when the intermediate candidate c' generated in the forward 

intermediate step is rejected. In this case, the configuration ci is repeated in the forward 

intermediate sequence so that: 

The intermediate factor 6~ is set to 1 for this fth step. The probability of rejecting the 

candidate c' is 1 - fl~ where 

£li = min (1 F4(c')) 
a 'F~(ci) 

Since the probability of choosing the intermediate transformation Q~ to create the inter­

mediate candidate: 

c' = Q~ ci 
is given by ir~ (ci), the probability of taking the forward intermediate step ii~ involving 

the rejection of this attempted move is: 

Define for this case the inverse intermediate step ii~. as follows. The step begins with 

c_i+l. Choose the same transformation Q~ that is used in the forward step ii~.. Since the 
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intermediate configuration ci+1 at the start of the inverse step is the same as ci, which is the 

intermediate configuration at the start of the forward step, the transformation Q~ produces 

the same candidate c' in the inverse step as in the forward step. Reject the candidate in 

the inverse step and set 8~. = 1. In this case, 

t:li. = min (1 ~/z(c') ) = min (1 F~(C')) = D..i 
a 'F&(ci+l) 'F&(ci) a 

The probability 1 - ll~. of rejecting the candidate in the inverse step is therefore equal 

to the probability of rejecting the candidate in the forward step. The total probability of 

taking the inverse intermediate step fi~. is therefore the same as the probability of taking 

the forward intermediate step. Thus, 

-j (2+1 2) = ,;;j (2 2+1) ~a• ' 'Ia ' 

in the case when the candidate is rejected in the forward step. 

Now that the inverse intermediate steps fi~. have been defined for both the case 

of acceptance and the case of rejection of the candidate in the forward step fi~, return to 

the composite moves Qa and Qa• which generate the final candidates in the forward and 

inverse steps of the Markov process. The forward transformation Qa is the composition of 

k intermediate steps: 

Q = fik-1 o fik-2 o ... o fi1 o fiO a a a a a 

and acts on c to produce the candidate c*: 

with probability: 
k-1 

7ra (c) = II rfa ( 2, 2+1) 
j=O 

The corresponding probability to select the inverse move Qa• when the current configuration 

is c* is: 
k-1 

7ra• (c*) = II ria. ( 2+1, 2) 
j=O 

The probability 'Tla(c, c*) of choosing the transformation Qa to apply to c and of accepting· 

the resulting candidate c* is: 

~a(c,c*) = 7ra(c)8a(c,c*) = [rr r,~ (2,2+1)] ea(c,c*) 
}=0 
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We have already defined the forward and inverse sequences of intermediate factors { 8~} and 

{ 8~. }, and have computed the intermediate probabilities { fj~ (ci, c:f+l)} and { ~* (c:f+l, Ci)} 

which depend on the { 8~}. Note that the relation 

. 1 
8] * = --:-

a 8~ 

holds for each j whether the candidate is accepted or rejected at that step. The final 

acceptance probability 8a(c, c*) depends on the final factor 6~ which is computed as follows: 

6~ = p(c*) [rr 2-] 
p(c) i=O 6~ 

The final acceptance probability in the forward step a is: 

ea(c,c*) =min (1,6~) 

The final acceptance probability in the inverse step a* is similarly: 

where 

6k - p(c) [krr-1 __!_]- _!_ 
a* - p(c*) j=O 6~. - 8~ 

We wish to determine the relation between the probability 1Ja(c,c*) of taking a 

particular forward path a and the probability 1Ja* ( c*, c) of taking the corresponding inverse 

path a* Break up the indices j = 0, 1, ... k -1 corresponding to intermediate steps into two 

disjoint subsets: 

Ia = {j E [O,k -1], such that the candidate is accepted at the j'th step} 

and 

Ir = {j E [0, k- 1], such that the candidate is rejected at the j'th step} 

Then the product of the intermediate probabilities fj~ (ci, c:f+l) can be broken into two 

products in the composite probability, giving: 
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[;rr ~ (ci,ci+l)l [.rr ir~ (ci) min (1,8~)] ea(c,c*) 
JEI. JEla 

Create another two sets of indices, I up and I down, such that I up U I down = I aU { k} as follows: 

Iup = {j E Ia U {k}, such that 8~ ~ 1} 

and 

!down= {j E Ia U {k}, such that 8~ < 1} 

Then the products in 1Ja(c, c*) can be further separated: 

17a(c,c*) = [.rr ~ (ci,ci+l)l [.rr 1r~ (2)] [.rr min(1,8~)l [.II min(1,8~)l 
JElr JEla JElup JEldown 

The intermediate steps at which candidates are accepted are the same in the inverse sequence 

a* as in the forward sequence. Write, therefore, the probability of taking the inverse path 

a* from configuration c* to configuration c as: 

17a•(c*,c) = [.rr ~- (2+1,2)] [.rr ~- (ci+l) mi~ (1,8~. )] ea•(c*,c) = 
JEI. JEla 

lY. ~- (ci+' ,ci) ]lY. ~- (ci+'l min ( 1, ~)]min ( 1, 6~) 
Now break up the products of the min's over the sets of indices Iv.p and !down which were 

defined for the forward Markov step: 

1"Ja•(c*, c)= 

Since for j E Iv.p the factor 8~ ~ 1, the results of the min functions may be calculated: 

min ( 1, 8~) = 8~ and min ( 1, 8~) = 1 for j E I up 

The min functions may be similarly resolved for j E !down· Performing this action yields 

the expressions for the probabilities of the forward and inverse paths: 

17a(c,c*) = [n ~ (ci,ci+l)] [.rr 1r~ (ci)] [.rr 8~] 
JEI. JEla. JElup 
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and 

The transformation detailed balance condition gives the equality: 

~. ( ci+1
) = 1r~ ( ci) 

for j E Ia, and we have shown that 

-i (ci+1 2) = -j (2 2+1) Tla• ' TJa ' 

for j E Ir· The first two products in the forward and inverse probabilities are therefore 

equal; so write 

TJa(c, c*) = ~Ot r_ II 6~] 
LEiup 

and 

where 

Now since the 6~ and 6~. are unity for j E Ir, the condition: 

implies that: 

;ei!!{k} bi. ~ LEI!!{k} ~£ l [;Y. oi.] = :~c:i 
Since I aU { k} = I up U Idowm the previous expression can be rearranged by taking the factors 

for j E Idown to the right-hand side: 

[ II 6~] = p(c*) [ II l-] 
jEiup p(c) jEidovm 6f:x 

Now substituting this equation into the forward probability gives the pair of equations: 

* p( c*) [ IT 1 l TJa ( c, C ) = ~Ot p( C) . 6~ . JEldovm 
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and 

77a•(c*,c) = K-a [ II ~] 
.EI Oa J down 

Hence for every path a and its corresponding inverse a*, we have: 

( *) p( c*) ( * ) 
7]0 c, C = p( C) 7]0 • C , C 

The Markov transition probability P (c* =>c) is the sum over all paths a such that Q0 c = c* 

of the probability' 7Ja ( c, c*) to take that particular path. That is: 

P ( c => c*) = L 71a ( c, c*) 
aiQ .. c=c* 

and 

P (c* =>c)= 

where, for split-phase Metropolis we have: 

P(c => c*) = L p(c*)71a•(c*,c) = p(c*) L 71a•(c*,c) 
aiQ .. c=c* p(c) p(c) aiQ .. c=c* 

Since the forward and inverse paths a and a* have a one-to-one relationship, the summations 

in the forward and reverse Markov transition probabilities are the same and thus: 

P (c => c*) p(c*) 
-

P (c* =>c) p(c) 

The detailed balance condition is therefore satisfied for the Markov process defined by the 

split-phase Metropolis algorithm. Q.E.D 

5.3.6 Implementation of Split-phase Sampling for Self-avoiding Loops 

The first section of this chapter, Section 5.1, presented a list of types of transfor­

mations for the self-avoiding loops system. The split-pha.Se Metropolis algorithm presented 

in the previous section is constructed from a collection of transformations { Q a} to be used 

in generating the intermediate configurations along with a collection of acceptance functions 

Fa to be used in accepting or rejecting intermediate candidates. In the split-phase algo­

rithm used in this thesis to compute the equilibria of the self-avoiding loops system, the set 

of intermediate transformations consists of the possible moves made by pivots, translates, 

reconnections, elementary additions/deletions, and elementary excitations. The random se­

lection of a transformation for application to a configuration ci begins by randomly choosing 
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one of the above transformation classes; the· effect of the transformation class depends on 

further random choices as described in Section 5.1. The collection of transformations formed 

by the set of transformation classes has been shown to satisfy the transformation detailed 

balance condition. The acceptance functions Fj corresponding to each of the transformation 

classes are given in Table 5. 7 

The pivot, translate, and reconnection moves do not change the number of links N 

in the configuration and change the energy Eint moderately. They are accepted automat­

ically in the intermediate steps. Elementary additions/deletions change N while changing 

the energy by only a relatively small amount. They are accepted in the intermediate steps 

only on the basis of the change in theN dependent portion of the complete Gibbs weight: 

In regions of the parameter space (/3, v) in which v » 1 but !3 « 1, the change in N 

of two or four links often makes a greater difference in the Gibbs weight than the the 

change in energy brought about by adding or deleting the links. The split-phase method 

allows the N dependent portion of the Gibbs weight to be checked immediately upon an 

addition/ deletion move while deferring the computationally expensive energy check to the 

end of the intermediate sequence. The desire to split the N dependent and E dependent 

portions of the detailed balance condition was my original motivation for developing the 

split-phase Metropolis algorithm. Elementary excitations are used in regions of the param­

eter space in which both changes in energy and changes in N have significant effects on the 

Gibbs weight. The elementary excitations attempt to change both N and Eint greatly, but 

in a manner such that the effects cancel in the Gibbs weight. These moves are therefore 

subject to an immediate acceptance base on the full Gibbs weight, resulting in a standard 

Metropolis acceptance in the middl~ of the intermediate sequence. They thus require energy 

computations, but this class can be selected with a low probability in order to maintain the 

overall efficiency of the algorithm. The split-phase method does not eliminate the need for 

energy computations, but insures that they are only used when the change of energy can 

be expected to have a significant effect on the Gibbs probability. 

A pseudo-code description of the main Monte-Carlo loop is given in Table 5.8. 

Aspects of the programming implementation of the algorithm are given in Section 5.4. The 

number of intermediate trials k was set so that the final candidate was accepted about 

50% of the time. Employing more intermediate trials decreases the correlation between 

, 
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Table 5. 7: Split-phase acceptance functions 

Transformation Class 

pivots 
translates 
reconnections 
elementary additions I deletions 
elementary excitations 

Acceptance Function 

1 (automatic acceptance) 
1 
1 
e-/3vN(c) 

e-!3E'"'t(c)-!3vN(c) 

the candidate configuration and the previous configuration in the Markov chain, but also 

decreases the probability that the candidate will be accepted. The 50% rule of thumb [78] 

seems to provide a good balance between the autocorrelation time and the computational 

work. 

5.3. 7 Energy Well Escapes 

The numerical results which I show later in Chapter 6 employ the pivots, trans­

lations, reconnections, elementary additions I deletions, and elementary excitation moves 

with the acceptance functions given in Table 5.7. I have also experimented, however, with 

another application of the split-phase machinery which I believe bears mention. For simula­

tions with very large I,BI, positive or negative, the probable configurations sometimes break 

up into a collection of "ground states" [125]. In the vortex system at negative temperature 

for example, the probable configurations were collections of dipoles as shown in Figure 5:9. 

For a given number of dipoles there is some fr~edom to move the dipoles and to add small 

bumps or kinks. The states with different numbers of dipole vortices, however, are sepa­

rated by gaps of,..., 2L vortices inN. The probability of bridging such a gap through the 

process of building up a closed loop of 2£ links with ~lementary additions and then break­

ing the loop into a pair of dipoles is very small. There is therefore a sort of "probability 

barrier" between states with different numbers of dipoles at negative temperatures. I was 

able for the self-avoiding loops system to identify an elementary excitation which allowed 

the algorithm to jump directly from one probability well into another. For general systems 

which break up into a set ofground states, however, such transformations may not be easily' 

implemented. 

An alternative to elementary excitation moves is a sort of "annealing" process 

whereby the temperature constraints are relaxed and then re-imposed. I experimented with 
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Table 5.8: Monte Carlo algorithm 

(set Number of Trials M) 

(set Number of Sub-Configurations k) 

(set initial configuration co) 

(do i = 0 to M:) 

{ 

(set c0 = Ci) 

(do j = 0 to k-1:) 

{ 

(choose randomly a transformation class) 

} 

(perform transformation on ci to obtain candidate c') 
(calculate r = Fi(c')/ Fi(ci) depending on transformation class) 

(if RANDOM [01] ~ min(1, r) then) 

(set (j+l = c') 
(set 8~ == r) 

(else) 

(set c_i+l = ci) 

(set 8~ = 1) 

(set candidate c' = c_k) 

(calculate p(c')/P(Ci)) 

(calculate final factor 8!) 

(if RANDOM[Ol] ~min (1,8~) then) 

(set Ci+l = c') 

(else) 

(set Ci+l = Ci) 

(record statistics on Ci+l) 

} 

(terminate) 

121 
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this idea in the split-phase framework by taking a fairly large k and checking the complete 

probability for each transformation class, but with random temperatures /3 which were 

less restrictive than the overall simulation temperature {3. The intermediate acceptance 

functions are: 

The relaxed acceptance steps occasionally allowed large hops with a small value of i/31, 
which were then slowly pulled down into another well by the more probable temperatures 

nearer {3. I have not carefully assessed the performance of this algorithm, as the elementary 

excitation method proved more useful in the self-avoiding loops system. Nevertheless, the 

random temperature process suggests an avenue for equilibrating systems in which the 

high-probability regions are separated by probability barriers. 

5.4 Performance 

This section discusses a number of issues related to the performance of the compu­

tational simulation. First, the computational work involved in the simulation is examined. 

The number of computer operations required to perform the transformations and to calcu­

late the observable quantities is discussed, and the data structures employed are described. 

The runtime of the Monte-Carlo algorithm as a function of the system size and parameters 

is examined. Next, the performance of the histogram sampling method is discussed. Section 

4.3 gave an overview of the histogram sampling technique and of the Ferrenberg-Swendsen 

method for combining multiple histograms. This section describes some results for the 

self-avoiding loops system. Finally, the effectiveness of the split-phase Metropolis sampling 

technique is discussed. 

5.4.1 Implementation and Runtime 

The computational algorithm has two distinct steps. In the first step the Monte 

Carlo algorithm generates a sequence of configurations which represent the self-avoiding 

loops system for particular values of the inverse temperature f3 and the loop self-energy v. 

Observable quantities are computed for each configuration in the sequence; these values are 

stored in histograms over the configuration energy and number of links. A number of runs at 

different parameter values (/3, v) may be made during this step. The second step processes 
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the histogram data to generate values of the observable averages at arbitrary points in the 

((3, v) plane. Plots of thermodynamic quantities as functions of (3 and v can be generated 

in the second step. 

The first step is more computationally intensive by far than the second step. A 

great number of configurations must be generated, as the statistical error in the final results 

decreases only as 0(1/VM) where M is the number of configurations sampled. Decreasing 

the statistical error by a factor of 10, therefore, requires 100 times as many configurations. 

Once the configurations have been generated and the results stored in histograms, however, 

determining the ensemble averages requires relatively little work. Computing the average 

value of an observable quantity at each point ((3, v) in parameter space requires a number 

of operations only on the order of the number of bins in the histogram. Hundreds of hours 

were spent running the Monte Carlo code which sampled the configurations, while the final 

pictures included in Chapter 6 required only a modest number of minutes of cpu time. 

The Monte Carlo code which generated the configurations and created the his­

tograms was written in ANSI-C. The the C code was not as easily optimized as FORTRAN 

would have been, but provided more flexibility in memory management and in data struc­

tures. The histogram processing routines were implemented in Matlab, a data language 

licensed by the The Mathworks, Inc. of Natick Mass. The Matlab language is interpreted 

rather than compiled and is therefore significantly slower than Cor FORTRAN. This was 

not a severe handicap in the histogram processing step, however. The use of Matlab pro­

vided flexibility in handling the data and gave easy access to graphical output. As is stated 

in Section 4.3.4, graphical monitoring is important for insuring the integrity of the histogram 

merging process. 

The code which generated the configurations must apply the transformations listed 

in Section 5.1, accept and reject candidate configurations in Metropolis steps, compute the 

energy, number of links, and desired observable quantities of the configurations, and store 

and output histograms. Algorithmic descriptions of the components of the Monte Carlo 

method are given in Sections 5.1 and 5.3.6. The main algorithm is given in Table 5.8, while 

the algorithms for pivots, translates, reconnections, elementary loop additions/deletions, 

and elementary excitations are given in Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6. A discussion of 

the computational work required for various operations and of the data structures employed 

in the algorithm follows. 

Individual vortex links in the collection of vortex loops need to be referenced in 



124 CHAPTER 5. NUMERICS FOR THE SELF-AVOIDING LOOPS SYSTEM 

two ways. In order to identify the links in a loop or in an arc of a loop one should be able 

to reference the vortex links in head-to-tail order within each loop. On the other hand, in 

order to check vortex self-avoidance or to find sites for .reconnection events one should be 

able to reference the links by their position in the domain. The first sort of referencing . 

is accomplished by representing the configuration of vortex loops as a linked list of loops, 

with each loop possessing a linked list of nodes in head-to-tail order. Employing linked lists 

instead of arrays supports link additions, deletions, and connectivity changes efficiently. 

The lists are used to identify and move loops and arcs of loops in the pivot and translate 

class transformations. The second sort of link referencing, by position in the domain, is 

accomplished by maintaining two hash tables: one of occupied sites and one of plaquettes 

which are bordered by occupied sites. The entries of the tables contain pointers to the 

corresponding links. Referencing by position is used to check if the result of a pivot or 

translate is self-avoiding, and to locate sites for reconnection events or for the addition or 

deletion of elementary loops. The use of the hash tables allows each site to be searched in 

0(1) time, as opposed to searching the lists of vortex links looking for a link that matches a 

particular location. In checking the self-avoidance of a pivot move which alters the positions 

of n links, for instance, the hash table search requires 0( n) operations to examine the n. 

new locations, while searching the list of links would require examining on the order of N 

elements for each location, leading to a time of order 0( nN) where N is the total number 

of vortex links in the configuration. The use of hash table referencing, as suggested in [100], 

greatly reduces the time required to check the self-avoidance of pivot and translation moves. 

Reconnection events are only possible at plaquettes which are bordered on all four sides by 

vortex links. The algorithm maintains a list of such plaquettes to facilitate quick selection 

of reconnection sites. 

These data structures allow each transformation to be carried out in a number of 

operations proportional to the number of links which are changed by the transformation. 

The metropolis acceptance/rejection steps require copying a candidate configuration to 

the new configuration or copying the old configuration to the new configuration. This 

can be accomplished in O(N) operations where N is the number of vortex links in the 

configuration. Calculating and recording statistics such as loop sizes can also be performed 

in O(N) operations. 

The one operation in the present algorithm for which the computational work does 

not scale linearly with the number of links in the system is the computation of the energy 
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of a configuration. The interaction energy is given by a double sum over all pairs of vortex 

links in the system: 

Since there are of the order N 2 such pairs, a direct calculation of the energy requires 0( N 2 ) 

time. In the simulation of large enough systems, most of the runtime is consumed in the 

calculation of the energy. An O(N2 ) scaling for the runtime implies that doubling the 

system length L, which increases the domain volume and the number of vortices by a factor 

of eight, would increase the runtime by a factor of sixty-four. The energy calculation is 

thus the limiting factor in simulating large vortex systems. For small to moderate system 

sizes, however, such as the L = 4 to L = 16 domains studied in this thesis, the energy 

calculation may be implemented in such a way that the time spent in energy calculations 

remains manageable. The use of the split-phase metropolis sampling reduces the number 

of energy calculations required by the algorithm, and tabulating the lattice Green function 

G(x) reduces the time required to calculate each vortex-vortex interaction. 

Table 5.9 shows the runtime per trial of the Monte Carlo algorithm by the number 

of vortex links N and the number of intermediate steps k taken in the split-phase process. 

The runs were executed on a collection of Spare 2's at Lawrence Berkeley Laboratory. Table 

5.10 shows the energy calculation time by the number of links in the configuration. A typical 

number of links in a domain of size L = 8 is N = 128 - 256, while a typical number of links 

in a domain of size L = 16 is N = 2048. Table 5.11 shows the percentage of the runtime 

which is consumed in the energy calculation. At L = 8, the energy calculation requires 

only 40%- 60% of the runtime, although this fraction rises to about 95% of the runtime at 

L= 16. 

The scaling of the energy calculation time with the number of links is shown on 

log-log axis in Figure 5.13. The time scales with the square of the number of links. Figure 

5.14 shows the remaining portion of the runtime: the runtime minus the energy calculation 

time. Plots for different values of k are shown with solid lines as functions of N; a dotted 

line of slope one is plotted as a reference. The portion of the runtime not in the energy 

calculation scales linearly with N for large N. 

The energy calculation time currently limits the size of the vortex systems which 
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Table 5.9: Runtime per Trial (sec) 
k N=32 N=64 N = 128 N= 256 N= 512 N = 1024 N = 2048 
1 0.0020 0.0037 0.0088 0.0260 0.0968 0.3996 1.8467 
2 0.0029 0.0047 0.0099 0.0273 0.1009 0.4012 1.8351 
3 0.0039 0.0054 0.0110 0.0289 0.1011 0.4065 1.8515 
4 0.0045 0.0064 0.0119 0.0297 0.1029 0.4084 1.8446 
8 0.0081 0.0097 0.0156 0.0351 0.1109 0.4347 1.8679 

16 0.0143 0.0165 0.0231 0.0449 0.1204 0.4574 1.9101 

Table 5.10: Energy calculation time per trial (sec) 
N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048 
0.0003 0.0011 0.0043 0.0178 0.0788 0.3654 1. 7654 

Table 5.11: Fraction of runtime calculating energy (%) 
k N=32 N=64 N= 128 N= 256 N= 512 N = 1024 N = 2048 
1 20 30 48 68 82 91 97 
2 10 23 44 65 79 90 96 
3 8 20 39 60 78 88 96 
4 7 19 35 59 77 88 95 
8 5 12 29 52 71 86 94 

16 3 7 18 41 64 82 92 
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can be simulated. There exist, however, algorithms for calculating the energy sum 

in less than O(N2 ) operations. In the current algorithm, the periodic Green function G(x) 

was calculated by the Ewald summation technique [3] and stored in a lookup table. The 

Ewald summation technique represents the Green function in terms of a sum of Fourier 

modes and a sum of Gaussian functions. A method developed by Strain [135] employs 

fast Fourier transforms and fast Gauss transforms to calculate the energy sum. While the 

overhead involved in this method makes it impractical for use with small and moderate sized 

systems, the fast method could greatly reduce the time required to calculate the energy of 

large systems. Such a fast method is virtually necessary in order to study a system with a 

very large number of links. 

5.4.2 Histogram Convergence 

The histogram sampling method for calculating ensemble average values at arbi­

trary points in the (/3, v) plane is described in Section 4.3. Also described is a method of 

merging histograms taken during different Monte Carlo runs into a single dataset. These 

methods are used to collect data and produce the results of Chapter 6. This section discusses 

some aspects of accuracy and convergence in the histogram 'framework. 

Histograms were sampled during a number of Monte Carlo runs simulating the self­

avoiding loops system in the grand canonical ensemble at different (/3, v) values. The his­

tograms were then merged into a single reference probability function using the Ferrenberg­

Swendsen fixed point method described in Section 4.3.3. This reference function was then 

used to calculate the ensemble averages for the plots in Section 6.2. Table 5.12 lists posi­

tive temperature runs used for the L = 6 system size. The average interaction energy per 

unit volume£, the average vortex density per unit volume 1), and the average percolation 

probability P are calculated in two ways. The first group of averages is computed from 

the configurations in each run separately, as in a Monte Carlo simulation without the his­

togram method. The second group of averages is computed from the merged histograms. 

The percentage difference is given; the interaction energy and vortex density values match 

to within a few percent. The percolation probability converges more slowly in a single run 

than do the energy and vortex density, so the single-run averages differ from the combined 
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Table 5.12: Averages from Monte Carlo runs at L = 6 
Parameters Single Run Averages Histogram Averages Percent Difference 

f3 v e 1) p e 1) p e 1) p 

7.0 0.20 -.0098 .3562 .35 -.0098 .3573 .39 -0.3 -0.3 -10.7 
10.4 0.15 -.0088 .2761 .07 -.0085 .2635 .05 3.8 4.8 20.2 
10.0 0.15 -.0099 .3231 .16 -.0099 .3204 .16 0.1 0.8 -4.5 
9.6 0.15 -.0115 .3919 .38 -.0114 .3837 .36 1.3 2.1 4.4 
9.6 0.15 -.0114 .3858 .34 -.0114 .3837 .36 0.4 0.6 -6.6 
8.6 0.15 -.0140 .5046 .78 -.0143 .5115 .81 -2.2 -1.4 -4.1 
13.0 0.12 -.0113 .3494 .15 -.0112 .3454 .14 0.5 1.1 1.1 
16.0 0.10 -.0144 .4326 . .31 -.0136 .4055 .22 5.5 6.7 37.9 
21.0 0.08 -.0197 .5538 .53 -.0187 .5199 .42 5.2 6.5 24.1 

averages by a greater amount. 

As described in Section 4.3, each Monte Carlo run records each configuration c 

as a hit in a two-dimensional histogram n( Eint, N) of the interaction energy Eint (c) and 

the number of vortex links N(c). Normalizing the histogram gives an estimate of the joint 

probability density function, Pjj,v(Eint, N), of Eint and N at the simulation parameters 

((3, v). If M is the number of trials in the Monte Carlo simulation, then the estimated 

probability density function is: 

P (Eint N) = n(Eint' N) ::::::: P, (Eint N)t::..Eint f:::..N 
f3,v , M f3,v , 

Figure 5.15 shows the histogram n(Eint, N) from a single run of one million trials. Figtire 

5.16 shows the estimated probability density created by combining histograms from mul..: 

tiple Monte Carlo runs listed in Table 5.12. Averaging histogram hits from a number of 

overlapping histograms reduces the statistical error and smooths the probability density. 

Section 4.3.3 gives a statistical model for the error in the probability density func­

tion formed during a single Monte Carlo run. If M is the number of trials and r is the 

autocorrelation time, then the variance of each entry p(Eint, N) of the single-histogram 

probability estimate is: 

The variance is the expected value of the square of the error between the estimated proba­

bility and the true probability. Define the error for each bin as: 
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One can sum the squared errors over all the bins (Eint, N) in the histogram to obtain the 

statistical estimate: 

Since the true probability function is normalized, the sum over all the histogram bins is 

equal to one, and the expected value of the sum squared error of the estimated probability 

function is: 

Figure 5.17 shows the sum squared error as a function of the number of trials averaged 

over a number of Monte Carlo runs at the same parameter values. The multi-histogram 

probability function generated from the combination of many Monte Carlo runs was used 

as the reference probability for the purpose of estimating the error. Figure 5.18 shows the 

error on log-log axis; the sum squared error indeed decreases as 1/M. Figure 5.18 shows 

the estimator for the autocorrelation time 7 given by: 

The estimated autocorrelation time is 7 ~ 200, so approximately 200 trials were required 

to generate an independent sample of the probability density function. 
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5.4.3 Split-phase Effectiveness 

The split-phase Metropolis sampling described in Section 5.3 is implemented to 

reduce the proportion of the runtime spent in energy computationS compared to the runtime 

spent transforming the configurations. In particular, the algorithm separates acceptance 

steps which depend on a change in the number of links N from acceptance steps which 

depend on the change in energy. The Gibbs weight of a configuration c in the grand 

canonical ensemble of the self-avoiding loops system is: 

Transformations which add or delete a few links change the configuration by a relatively 

small amount, only a few vortex links out of several hundred are changed. 'A number of 

such transformations are needed to make any significant change in the interaction energy 

Eint. A link addition, therefore, may change the portion of the Gibbs weight which depends 

on the number of links by a much greater amount than the portion of the Gibbs weight 

which depends on the change in energy. Allowing intermediate Metropolis steps to accept 

or reject a move which changes N only on the basis of the N dependent portion of the 

Gibbs weight can reduce the number of energy calculations needed in the overall algorithm. 

The following is an example in which elementary loop additions and deletions have 

a greater effect on the N dependent portion of the Gibbs weight than on the Eint dependent 

portion of the weight. Let the inverse temperature be j3 = 10.4 and the self-energy per link 

be v = 0.15. The average interaction energy per link in the system at these parameter 

values is (Eint /N) = -0.0325. In an average sense, therefore, adding an elementary bump 

of two links to the system produces the following changes: 

flEint ;:::;; -0.065 

tlN =2 

The change in the magnitude of Gibbs weight, therefore, is: 

p(c') ""'0 08 
p(c) ""' . 

So the addition of a bump reduces the weight of the new configuration by a factor of about 

12. Most of the change comes from theN dependent portion. of the weight: 

e -{3l::..Eint 
~ 2.0 

e -f3vllN ;:::;; 0.04 
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Table 5.13: Runs by number of intermediate steps k 
k time/Trial (sec) energy fraction (%) final acceptance rate (%) 
1 0.0206 25 78 
2 0.0267 20 64 
3 0.0330 16 54 
4 0.0380 14 47 
8 0.0501 11 34 

The energy change increases the weight by a factor of 2, while the change inN decreases the 

weight by a factor of 25. This is a relatively low temperature example; the dominance of the 

N .dependent portion of the Gibbs weight can be expected to increase as the temperature 

increases toward f3 = 0. 

The following tables give an indication of how the split-phase algorithm performs 

for the example system. The algorithm is described in Section 5.3.6. For each trial, k 

intermediate steps are taken. Randomly chosen transformation types are used in the inter­

mediate steps; the intermediate steps sometimes include the application of transformations 

which add or delete vortex links in the domain. Such transformations are accepted in the 

intermediate steps with the probability: 

where A.N is the change in the number of links in the system. The final acceptance step after 

the k intermediate steps always includes a calculation of the complete Gibbs probability and 

thus entails a computation of the energy. Table 5.13 lists the total runtime per trial, the 

fraction of the runtime spent computing the energy of configurations, and the probability 

that the candidate configuration was accepted in the final acceptance/rejection step. As 

more intermediate steps are employed, the time per trial increases, but the fraction of 

the time spent in the energy calculation routine decreases. The probability that the final 

configuration will be accepted also decreases with k, as the use of more intermediate steps 

allows a greater change in the configuration before the final acceptance step. Table 5.14 

shows the autocorrelation time estimates as functions of k. These estimates may contain 

significant error, as the autocorrelation estimates converge more slowly than the probability 

density function itself. The approximate number of trials needed to obtain an independent 

sample of the probability density is given along with the time required to complete each 

trial. The product of these two columns is the runtime required to generate an independent 
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Table 5.14: Autocorrelation and efficiency 
k Autocorrelation time r (trials/sample) time/trial (sec) Efficiency (sec/sample) 
1 . 309 0.0206 6.4 
2 195 0.0267 5.2 
3 
4 
8 

178 
126 
117 

0.0330 
0.0380 
0.0501 

5.9 
4.8 
5.9 
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sample. Th~s measure of efficiency supports the use of the split-phase method in this 

example. Less cpu time is required to produce a given level of error when a number of 

intermediate steps are employed. The implementation of the split-phase Metropolis method 

for the self-avoiding loops system offers an even greater increase in efficiency near infinite 

temperature, {3 = 0. 
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Chapter 6 

Phase Transitions in the 

Self-avoiding Loops System 

This chapter contains computational results for the self-avol.ding loops system and 

a scaling analysis of energy and entropy. Two phase transitions are shown to exist: one at 

low temperature which separates a phase containing only finite vortices from a phase con­

taining infinite vortices, and one at infinite temperature which separates a phase containing 

fractal vortices from a phase containing smooth vortices. The first phase transition is related 

to the lambda transition and to the phase transition in the three-dimensional XY model. 

Similarities and differences between the self-avoiding vortices and the self-intersecting XY 

vortices are noted. Aspects of the self-avoiding loops transition are compared to XY theories, 

and a renormalization which is not based on the Kosterlitz-Thouless method is suggested. 

The second phase transition in the self-avoiding loops system is related to vortex breakdown 

in the development of classical turbulence. An argment supporting the notion that infinite 

temperature is the asymptotic state for vortex filaments is given. 

The self-avoiding loops system is des~ribed in Section 3.2 of this thesis. The 

Monte Carlo algorithm for generating a representative sequence of random configurations 

is described in Sections 5.1 and 5.3, and the histogram sampling method for computing 

thermodynamic averages from the statistics of the sequence is discussed in Section 4.3. The 

Monte Carlo algorithm simulates the self-avoiding loops system in the variable-N, grand 

canonical ensemble with the Gibbs weight: 

. p(c) = e -{3Eint(c)- {3vN(c) 
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A feature of the histogram method also allows the statistics to be interpreted for the mi­

crocanonical and canonical ensembles: 

Section 6.1 of this chapter examines quantities in the micro-canonical ensemble 

as functions of Eint and N. The density of configurations at points in the ( Eint, N) plane 

is shown; the density is proportional to the number of configurations c which have energy 

Eint (c) =. Eint and number of links N (c) = N. This examination reveals the most densely 

populated regions of the phase space and the high and low energy limits of the system. 

Section 6.2 of this chapter examines thermodynamic averages of the self-avoiding 

loops system in the grand canonical ensemble as functions of inverse temperature f3 and of 

vortex link self-energy v. A line of phase transitions is revealed at low temperatures. The 

phase transitions have no latent heat, but have a divergence or a cusp in the specific heat 

at the critical temperature. The transitions are also shown to be percolation thresholds; 

vortices are of finite length below the critical temperature, while infinite vortices exist above 

the critical temperature. In these respects the phase transition in the self-avoiding loops 

system resembles the lambda transition in superfluid helium and the ordering transition in 

the three-dimensional XY model. Estimates of the fractal dimension of the self-avoiding 

vortex loops at criticality, however, differ noticeably from previous estimates of the fractal 

dimension of self-intersecting XY vortices. 

Section 6.3 of this chapter gives computational results and a scaling analysis for 

the self-avoiding loops system in the fixed-N ensemble in which vortex density is held 

constant. The use here of the canonical ensemble rather than the grand-canonical ensemble 

allows examination of the system at moderate vortex density near infinite temperature, since 

density tends toward one in the grand canonical ensemble as temperature goes to infinity. 

The computations and the scaling analysis of energy and entropy indicate an instability at 

any negative temperature to the formation of bundles of smooth vortex lines of the size of 

the domain. At positive and infinite temperature, vortices are fractal and have structure of 

size comparable to the lattice spacing. At hotter, negative, temperatures however, vortices 

are smooth and have structure of size comparable to the domain length. This transition 

at infinite temperature is analogous to the fractal/smooth transition which is observed in a 

system consisting of a single self-avoiding vortex [38]. 

The final section, Section 6.4 of this chapter, summarizes the behavior of the self­

avoiding system. Comments are made on the relation of the system to the XY model, 

to Kosterlitz-Thouless renormalizations, and to classical turbulence. Suggestions are then 
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made for future investigations. 

6.1 Micro-canonical Ensemble 

The micro-canonical ensemble restricts the state space to those configurations c in 

which the energy E(c) and the number of particles N(c) take set values: E(c) = E,N(c) = 

N. Thermodynamic averages in the micro-canonical ensemble assign equal weights to all the 

configurations in this restricted set, as described in Section 2.1. The Monte Carlo Algorithm 

described in Chapter 5 simulates a variable E, variable N ensemble with the Gibbs weight: 

p(c) = e-f3Eint(c)-{3vN(c) 

The histogram sampling method discussed in Section 4.3, however, breaks up the informa­

tion from each run into bins by the energy Eint and the number of vortices N. A verag­

ing the observable quantity A over the individual bins gives an estimate a(Eint, N) of the 

micro-canonical ensemble average. The histogram method also estimates a joint probability 

density P[3,v(Eint, N) of the interaction energy and the number of vortex links at tempera­

ture (3 and vortex self-energy ll. As discussed in section 4.3, the probability density can be 

related to the density of states: 

D(Eint N) = 1 de = z e f3Eint+f3vN P, (Eint N) , {3,v {3,v ' 
, Eint(c)=Eint,N(c)=N 

The numerical estimate 

d(Eint N) _ e f3Eint+f3vN p (Eint N) 
' - {3,v ' 

is proportional to the number of configurations c in the variable-E, variable-N ensemble 

which have energy Eint(c) in the interval [Eint,Eint + b..Eint) and number of links N(c) in 

the interval [N, N + b.N). An examination of this numerical density of states reveals the 

most populated regions of the (Eint, N) plane. This section describes the density of states 

and the micro-canonical averages in the variables (Eint, N), or equivalently, 

(

Eint N) 
(t:, v) = v' v 

Recall that the interaction energy E = Eint can be positive or negative, since the physical 

energy is decomposed as: 
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Lines of constant total energy, therefore, have slope -v in the (Eint, N) or (£,'D) planes. 

This section notes several features of the self-avoiding loops system from the ex­

amination of micro-canonical averages and of the density of states. At infinite temperature 

j3 = 0 in the canonical and grand canonical ensembles, the Gibbs weight p(c) = 1, so all 

configurations in the appropriate phase space C are equally likely. The infinite tempera­

ture behavior of the energy and of the vortex density can be deduced for these ensembles 

from the density of states D(Eint, N); the maximum of the density of states in the region 

of the (Eint, N) plane which is accessible to the system will occur at the expected values 

( < Eint > 00 , < N >co)· In the grand-canonical ensemble, the entire (Eint, N) plane is acces­

sible to the system and the infinite temperature point is the global maximum of D(Eint, N). 

This maximum appears to occur at high density 1> ~ 1 for the self-avoiding loops system. 

In the canonical ensemble, N is :fixed and only a slice of the (Eint, N) plane is accessible 

to the system. In this ensemble, the infinite temperature interaction energy < Eint >oo is 

both finite and negative. Finite energy at infinite temperature is characteristic of other vor­

tex systems such as two dimensional vortex turbulence and the single self-avoiding vortex 

filament. The negative vortex-vortex interaction energy, however, is unusual and reflects 

the allowance of vortex reconnections in the self-avoiding loops system. 

High and low energy "ground states" are examined for the self-avoiding loops 

system. The high energy states are seen to have energies far above the infinite temperature 

energy at :fixed N. This observation of the existence of rare but very high energy states in 

the self-avoiding loops system is quantified by the scaling analysis of Section 6.3. 

The micro-canonical percolation probability is examined. Finite size scaling is 

observed in the probability that the self-avoiding loops system at :fixed £ and :fixed 1> 

has a percolating loop, see Sections 3.2 and 3.4. The scaling indicates the existence of a 

percolation threshold: a line in the (£,'D) plane below which the probability of an infinite 

vortex loop existing in the micro-canonical ensemble is zero, and above which the probability 

is one. Percolation occurs at lower vortex loop density 1> for higher loop interaction energies 

£. 

As discussed in Section 4.3.1, the density of states is proportional to the number 

of configurations c having energy Eint(c)/V = £ and vortex density N/V = 1>. Figure 

6.1 shows a portion of the surface generated by the logarithm of the density of states 

log10 (d(£, 'D)) for the self-avoiding loops system of domain size L = 6. Figure 6.2 shows 

a contour plot of the surface; the lines are of constant population density d. The spacing 
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between the contours represents factors of ten; crossing each line as one moves from left to 

right indicates that there are ten times as many configurations in the L = 6 ensemble which 

have a particular £ and 'D as there were at the previous line. 

Several features of the self-avoiding loops system can be noted from these figures. 

First, note that the most populated region of phase space is at high density. The surface 

is cut off in the figures at density 'D = 0.7 since the computational algorithm used in the 

thesis may not be ergodic at high density. A lack of ergodicity at high density 'D would 

result in an undercounting of states at high 'D. Any difference between the true density of 

states D(£, 'D) and the numerical approximation d(£, 'D), therefore, can be expected to be 

positive and to increase with increasing 'D. While the exact shape of the density of states 

and the thermodynamic behavior is unknown for the self-avoiding loops system at very high 

density, one ·may assume that the overall maximum of the density of states d( £,'D) lies near 

'[) = 1. This indicates that the variable-N system will tend toward high density as the 

temperature tends to infinity. 

Secondly note that at fixed vortex density 'D, the density of configurations de­

creases both for small £ and for large £. This is in contrast to systems such as the ideal 

gas, in which the state space is described by both position and momentum variables. In the 

ideal gas, the number of configurations is monotonically increasing with the energy of the 

system at fixed molecular density, and the average energy becomes infinite as temperature 
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goes to infinity. In the vortex system, the number of configurations decreases at very high 

energies. At a fixed vortex density 'D there are fewer ways to achieve a very high energy 

than there are to achieve a moderate energy. Figure 6.3 shows a slice through the density 

of states at fixed 'D = 0.4. Note that the most populated region is of negative interaction 

energy. The interaction energy of the self-avoiding loops system in the canonical ensemble 

will therefore be negative even at infinite temperature. The total energy of the system, 

which includes the self-energies of the vortex links is still positive, however. The negative 

interaction energy in the self-avoiding loops system is in contrast to the positive interaction 

energy of the single self-avoiding walk at infinite temperature [38]. 

Figure 6.4 shows a typical configuration from the most heavily populated energy 

region £ = -0.0036 at vortex density 'D = 0.16. Contrast this configuration of multiple 

self-avoiding loops with the example of a single self-avoiding vortex loop in Figure 6.5. 

The principle difference in formulation between the single loop model and the multiple 

loop model of the_ thesis is the relaxation of the constraint that a vortex loop must remain 

connected. As can be seen from the figures, this relaxation leads to a breakup of vortex 

lines into many loops. While some large connected loops remain, the smallest loops are the 

most numerous. The existence of this "sea" of small loops plays a role in the reduction of 

the interaction energy of the system. An elementary loop consisting of four vortex links has 

negative interaction energy: 

Eint = _ _..!.._ 
27r 

While the total energy interaction associated with the elementary loop includes its interac­

tions with other vortex links in the domain, a collection of small vortex loops of independent 

orientations may be expected to contribute a negative term to the interaction energy. The 

collection of small vortex loops could reduce the interaction energy even further if the small 

loops were not independently oriented but were arranged to screen large vortex loops. 

The density of states in Figures 6.1 and 6.2 is cut off at high 'D, but the upper and 

lower energy limits reflect the extent of sampling by the Monte Carlo algorithm. Figure 

6.6 shows a configuration with very low interaction energy per vortex link, while Figure 

6. 7 shows a configuration of very high interaction energy. The (£,'D) locations of these two 

configurations are sho~n in the contour plot of the density of states in Figure 6.8. The energy 
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axes in this figure have been expanded from the values in Figure 6.2 to include histograms 

taken at negative temperatures. Note that the low energy example configuration is much 

nearer in energy to the highly populated area of the (£,'D) plane than is the high energy 

example configuration. The existence of very rare but extremely high energy configurations 

will be shown in Section 6.3 to have a significant impact on the system as the thermodynamic 

limit is taken. 

The micro-canonical percolation probability is the micro-canonical average of the 

observable Perc( c)', which is defined in Section 3.2. The micro-canonical percolation proba­

bility is the fraction of configurations of fixed ( £, 'D) which contain a connected loop spanning 

the length of the domain. In the thermodynamic limit L = oo, the self-avoiding loops system 

has a micro-canonical percolation threshold in which the probability of the existence of an 

infinite loop loop jumps from zero to one over a line in the (£,'D) plane. In micro-canonical 

systems of low interaction energy, large aligned vortex structures are rare and a percolating 

loop forms only at relatively high vortex density. As the interaction energy in the system 

increases a percolating loop forms at lower and lower density. At high enough interaction 

energy, dissociated loops pierce the system at arbitrarily low density. Figure 6.9 shows the 

micro-canonical percolation probability at L = 6 as a function of(£, 'D). The orientation 

of the transition shows how the percolation threshold occurs at a lower vortex density for 
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higher interaction energy. The probability shown in this figure is smoothed by finite size 

effects. Figure 6.10 shows a slice of the micro-canonical percolation probability through 

'D = 0.4 in domains of size L = { 4, 6, 8}. The transition shows the typical percolation 

finite size behavior: becoming steeper as the system size increases. In an infinite system, 

the percolation probability would jump from 0 to 1 at a critica~ value Ec of the interaction 

energy. 

6.2 "Lambda" Percolation Transition 

Section 4.3 shows how the density of states information and micro-canonical av­

erages taken in the histogram sampling method can be used to approximate canonical or 

grand canonical averages. This section employs those techniques to describe the thermody­

namic averages of the self-avoiding loops system in the variable-N grand canonical ensemble 

in terms of the inverse temperature f3 and the loop self-energy v. The set of configurations, 

C, here contains collections of loops c with arbitrary numbers of vortex links N(c) and 

arbitrary interaction energies Eint(c). The Gibbs weight of a configuration cis: 

p( c) = e -f3Ei"t(c)- f3vN(c) 

The Gibbs weight indicates that the average interaction energy per unit volume E decreases 

as f3 increases, and the average number of vortex links per unit volume 'D decreases as 

f3v increases. Computational results reveal a line of phase transitions at low temperature. 

Finite size scaling indicates that the transition is a continuous phase transition; the energy 

of the system is continuous at the critical temperature but the specific heat shows peak 

whose height increases with the system size. The vortex density is also continuous at the 

phase transition, but the probability of an infinite connected loop existing in the system 

jumps from zero to one in a percolation threshold at the critical temperature. This phase 

transition is similar to the lambda transition in super:fluid helium in that it is a continuous 

phase transition with a divergence or a cusp in the specific heat, and in that vortices are of 

finite size below the transition while vortices of infinite size exist above the transition. 

Examination of the interaction energy per link across the transition reveals a 

change in the energy per link in the system. The energy per link rises more slowly with 

temperature above the transition than below. This qualitative behavior is consistent with 

the renormalization arguments of Shenoy [130] and Williams [144]. A modification to the 
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self-avoiding loops computation which would reveal more detailed information about the 

assumptions in the renormalization theories is described in this section. 

The fractal dimension of individual vortex loops is estimated. The numerical 

values found for the fractal dimension do not accurately represent the thermodynamic limit, 

but serve as a comparison with the fractal dimension estimates for comparably sized XY 

systems in Epiney's computations [53]. The fractal dimensions of self-avoiding vortex loops 

.are found to be significantly larger than the fractal dimensions of self-intersecting XY vortex 

loops. While altering the definition of distinct XY loops in the presence of intersections 

may give different fractal dimension values than those found by Epiney, the results tend 

to indicate that the self-avoidance condition significantly effects the fractal dimension of 

vortex structures. 

Figure 6.11 shows the location of the line of phase transitions in the (/3, v) plane. 

Note that the f3 axis is reversed so that low temperature is on the left and high temperature 

is on the right. This orientation convention is retained in figures throughout this section. 

Phase I is the "cold" phase in which all vortex loops are of finite size. Phase II is the "hot" 

phase in which infinite vortex loops exist. The line between them is both a continuous 

thermodynamic phase transition and a percolation transition. In the analogy with the 

.. 
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lambda transition in liquid helium, phase I is identified with the superfluid phase while 

phase II is identified with the normal fluid phase. In the analogy with the XY model, phase 

I is identified with the ordered phase in which the XY spins are aligned over long distances, 

and phase II is identified with the disordered phase in which vortical excitations break up 

the alignment of the spins. The phase transition in the self-avoiding loops system occurs 

at hotter temperatures as the self-energy of a vortex link is increased. Higher self-energy v 

discourages vortices from forming and suppresses the phase transition. This behavior is in 

agreement with numerical work done by Shrock and colleagues [86] [85] on the XY model 

in which a term was added to enhance or suppress vortex defects in the spin system. 

Figure 6.12 shows a slice through the (/3, v) plane at a self-energy value of v = 0.15. 

The views presented by the fixed-v slices in Figures 6.12, 6.13, 6.14 6.15 6.17 are qualitatively 

similar at different values of the self-energy. Figure 6.12 shows the average total energy per 

unit volume: 

as a function of j3 at v = 0.15. The dotted line marks the critical temperature f3c for this 

value of the self-energy. Note that the curves for the system sizes L = { 4, 6, 8} show little 

difference beyond statistical error. This indicates that the energy is continuous across the 

critical temperature. The specific heat per unit volume, 

however, shows in Figure 6.13 a peak which increases in height with the system size. This 

indicates the presence of a cusp or divergence in the specific heat in the thermodynamic 

limit ·and demonstrates that the system has a continuous phase transition. 

The loop density, like the energy, appears continuous across the transition. See 

Figure 6.14. Although there is a sense in which the cold.phase corresponds to low vortex 

density and the hot phase corresponds to high vortex density, the self-avoiding loops system 

does not exhibit a sudden increase in vortex line length at the transition. This is in contrast 

the the belief which is commonly held for the lambda transition in superfluid helium. There 

does exist, however, a sudden increase in the length of connected vortices at the critical 

temperature. The number of vortices in the system does not jump at f3c, but the connectivity 

pattern changes to allow infinitely extended vortices at and above the transition. Figure 

6.15 shows the finite size scaling for the percolation probability Pas a function of j3 at 
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v = 0.15. The percolation probability is the expected value of the observable Perc(c), 

which has the value one if the configuration c has a loop as large as the system size, and 

has the value zero if no loop in c is as large as the domain. The figure shows the curves 

p 13 for the system sizes L = { 4, 6, 8} plotted on the same graph. The threshold is the most 

gradual for L = 4 and the most steep at L = 8. This scaling indicates the presence of a 

discontinuity in the thermodyna:niic limit, so that the probability of an infinite vortex loop 

existing in the system is zero below the critical temperature and one above f3c· 

The inverse temperature f3 for which 'P = 0.24 is the same for the system sizes 

L = { 4, 6, 8}, and assumably marks location f3c of the percolation threshold when L --+ 

co. Above the crossing temperature the percolation probability increases with system size 

and may be expected to converge to one in the thermodynamic limit, while below the 

crossing temperature the percolation probability decreases with system size and may be 

expected to converge to zero. Figure 6.16 shows in the (/3, v) plane the location of the 

percolation probability crossing and the location of the peak of the specific heat. The 

percolation threshold is plotted with a solid line, while the specific heat peak is plotted 

with a dashed line. This figure demonstrates that the percolation threshold coincides with 

the thermodynamic phase transition. 
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The computational data demonstrates the existence of a continuous phase transi­

tion in the self-avoiding loops system which is also a percolation threshold. The question 

remains to what extent the phase transition in the self-avoiding loops system describes the 

lambda transition in superfl.uid helium and the ordering transition in the XY model. The 

most conclusive evidence of the extent of .the similarity of these transitions awaits a cal­

culation of the critical exponents for the self-avoiding loops transition. A matching of the 

critical exponents for the self-avoiding loops system and the XY model would indicate that 

the transitions are in the same universality class and can be expected to have the same 

physics. A significant difference between the exponents for the two systems would be con­

clusive evidence that the transitions are in different universality classes although they are 

superficially similar. The finite size scaling of the percolation probability in the self-avoiding 

loops system may provide a means of determining the critical exponents for the system. 

In any event, the phase transitions in the self-avoiding loops system and in the XY 

system are qualitatively similar. One can compare the behavior of the self-avoiding loops 

system with vorticity theories for the phase transition in the XY model. Since XY vortices 

are self-intersecting, while the vortices simulated in the thesis are self-avoiding, differences 

between the two systems can indicate the effect of the self-avoidance condition on dense 

vortex equilibria. 

The Kosterlitz-Thouless style renormalization theories of Shenoy and Williams 

look for a phase transition in which the energetic cost of adding a very large loop to a system 

containing smaller loops changes behavior. Specifically, one expects from the theories that 

the additional energy of adding to the system a large vortex loop having n links should 

scale as log n below the phase transition but should be constant for large n above the 

transition. Figure 6.17 shows the interaction energy per link for L = 8 in the self-avoiding 

loops system. The critical temperature is marked by the dotted line. There is an indication 

that the behavior changes at the critical temperature as the energy curve flattens out. 

Note however, that the quantity shown represents the complete set of interactions within 

and among all the vortex loops in the system. Care should be taken when comparing, to 

the incremental energy described in the Shenoy renormalization. Nevertheless, the figure 

illustrates the screening effect of multiple loops of varying sizes. The interaction energy 

per link is negative in this system,·in contrast to the single connected vortex for which the 

interaction energy is typically positive [38]. The allowance of vortex reconnection in the 

self-avoiding loops model permits small loops to orient themselves in such a way that they 
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The computation could be modified in the following manner to test the energy 

scaling theory of Shenoy for the self-avoiding loops system. The largest loop in each config­

uration c could be identified. The total interaction energy, which is a sum over all N(N -1)/2 

pairs of vortex links in c could then be decomposed into three parts: a "background" en­

ergy, a "bare" energy, and a "screening" energy. The background arises from all· pairs of 

links not in the largest loop; this is the interaction energy of the configuration without the 

dominant loop. The bare energy arises from all pairs of links in the largest loop; this is 

the energy of a configuration containing only the dominant loop. The sum of these two is 

not the total interaction energy, since one must also consider pairs of links with one link 

in the dominant loop and the other in the background loops. The interaction energies of 

these pairs describes the screening effect which the background has on the dominant loop. 

Averaging of the three component energies separately along with the number of links n in 

the dominant loop would yield a set of quantities which could be directly compared with 

the Kosterlitz-Thouless type renormalization theories. 

The fractal dimension of XY vortex loops at the critical temperature has been 

identified in the Shenoy renormalization theory [130] [29] with the fractal dimension of a 
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single self-avoiding walk in free space at infinite temperature. One is interested in the pos­

sible effects on the fractal dimension of XY vortex loops at criticality of the following three 

conditions: the reduction of temperature to f3c from {3 = oo, the addition of many vortex 

loops to the system instead of a single walk, and the allowance of self-intersections in the 

XY vortices. Numerical estimates of the fractal dimension of self-avoiding vortex loops can 

shed light on the the difference between a single self-avoiding walk and a dense collection 

of loops, and on the difference between infinite temperature and low temperature. A com­

parison of the estimated fractal dimension of self-avoiding vortex loops to the estimated 

fractal dimension of self-intersecting XY vortices suggests the impact of the self-avoidance 

condition. 

Several finite-size effects must be considered when estimating the fractal dimension 

of vortex loops in small systems, such as the L = 16 domains simulated in the thesis. Fractal 

dimension is computed from the following power-law scaling relation: 

where R is a length scale of the loop and n is the number of links in the loop. The exponent 

(} is the inverse of fractal dimension; for a single open self-avoiding walk or a single self­

avoiding loop, (} ~ 0.59 for very large n. Computational fractal dimension estimators such 

as the end-to-end distance between the ends of an arc of n links converge rather slowly with 

the linear dimension R. For an open self-avoiding walk, two significant digits are obtained 

in (} at a length of R = 50. The largest self-avoiding loops simulations run for this thesis 

were L = 16; the three-dimension XY simulation run by Epiney [53] was also on an L = 16 

domain. Finite size effects are therefore significant in the self"'avoiding loops and in the XY 

simulations. 

The length scale R employed for closed self-avoiding loops is the loop extent as 

defined in Section 3.2. The extent is essentially the side length of the smallest cube needed 

to enclose the loop. The average extent of a single self-avoiding loop at infinite temperature 

is shown versus the number of links n in the loop in Figure 6.18. The extents are calculated 

both for a loop in free space and for a loop in an L = 16 periodic domain; for nu;nbers of 

links less than 100, enclosing the loop in the periodic domain has virtually no effect on the 

average size. Figure 6.19 shows the plot of loop size versus number of links on log-log axes, 

a linear fit to the curve has slope (} = 0. 71. The finite size error is: 

(}SAW-(}~ 0.59- 0.71 ~ 0.12 
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This error is of the same order as . the difference between the asymptotic value of the self­

avoiding walk exponent BsAw ~ 0.59 and the inverse fractal dimension of the purely random 

walk BRw = 0.5. The numerical values of the L = 16 fractal dimension estimates there­

fore are not accurate enough to determine if vortex loops in the infinite system scale like 

random walks or like self-avoiding random walks. The average sizes of the small single 

self-avoiding loops at infinite temperature can serve as a finite size reference for the the 

infinite temperature self-avoiding walk. 

The sizes of self-avoiding loops selected from dense collections at L = 16 can ·be 

compared to the sizes of single infinite temperature self-avoiding loops. Figure 6.20 shows 

on log-log axis the average sizes of self-avoiding vortex loops in a collection at infinite 

temperature in the canonical ensemble. The vortex line density was 1J ~ 0.15. The sizes 

of loops from configurations containing many loops are plotted with circles; the single loop 

sizes are plotted with a solid line. Allowing many loops instead of a single loop slightly 

straightened the vortices; a linear fit to the circles gives an inverse fractal dimension of 

e ~ 0. 78 as compared to the finite size value for lone infinite temperature loops of e ~ 0. 71. 

Figure 6.21 shows the average sizes of loops in a collection near the critical tern-
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perature. Here the sizes of loops in the collection, plotted with asterisks, are smaller than 

the sizes of lone infinite temperature self-avoiding loops. A linear fit gives an inverse fractal 

dimension of self-avoiding loops at criticality of (} ~ 0.60. The ~loseness of this value to the 

asymptotic value for the self-avoiding walk is merely fortuitous, but the value does indicate 

that self-avoiding loops are somewhat more crinkled at low temperature than they are at 

infinite temperature. 

Epiney [53] calculated the inverse fractal dimension of XY vortex loops at the XY 

critical temperature in a system with L = 16. His calculations gave a value of (} ~ 0.5, 

significa~tly less than the (} ~ 0.60 of self-avoiding loops at criticality. This difference 

seems to indicate that the self-avoidance condition has a significant effect on the fractal 

dimension of vortex loops at the critical temperature. The comparison is not definitive, 

however, since the fractal dimension of the self-intersecting XY vortex loops is difficult to 

define. Which links constitute a single loop is not uniquely determined in the presence 

of loop intersections. Epiney traced out individual loops by randomly picking a branch 

to follow at each intersection, he suggests that this method may reduce the value of the 

scaling exponent(} to the asymptotic random walk value of ORw = 0.5. Shenoy suggests in 
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his renormalization argument [130] that a vortex loop should be defined by the process of 

removing all the sets of four end-to-end links which form a closed loop, and then removing 

all the sets of six link loops, and so on until only the largest loop remains. This alternate 

method of defining the identity of the largest loop may yield a different fractal dimension 

estimate than the 8 ~ 0.5 found by Epiney. 

Because of the existence of significant finite size errors in the computational fractal 

dimension estimates, the following summary is somewhat speculative. Nevertheless, both 

the addition of a collection of loops to the domain and the reduction of temperature from 

(3 = 0 to (3 = f3c appear to have significant effects on the fractal dimensions of self-avoiding 

vortex loops. The allowance of multiple loops in the domain seems to result in individual 

loops which are straighter than lone self-avoiding walks. The reduction in temperature 

from infinite to the critical temperature seems to have the opposite effect of producing . 
more folding in individual loops. Self-intersecting XY loops at criticality appear to have a 

different fractal dimension than self-avoiding loops at criticality. 

The low temperature phase transition described here resembles the lambda tran­

sition in superfluid helium and the ordering transition in the XY model in that it is a 

continuous phase transition at which infinite vortices appear as the system is heated. Per­

colation finite size scaling is observed at this transition; the percolation framework describes 

how infinite vortices can appear at the critical temperature without a sudden increase in 

vortex density. Aspects of Kosterlitz-Thouless renormalization theories for XY vortices are 

consistent with observations in the self-avoiding loops model. Fractal dimension estimates, 

however, indicate a difference between the self-avoiding vortex loops and the self-intersecting 

XY vortex loops. 

Finally note that other positive temperature phases and phase transitions may 

exist in the self-avoiding loops system. In particular one may expect a "vortex solidification" 

transition at low temperature and very low values of the self-energy v in which vortices pack 

into a regular lattice with very large negative interaction energy. Such a transition has been 

observed in a 2~-dimensional vortex model studied by Chorin [42]. 

6.3 Fractal-Smooth Transition 

As the temperature becomes infinite, ((3 -+ 0), in the variable-N ensemble of 

the self-avoiding loops model, the vortex loop density 1) tends toward one. One may also 
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consider the temperature dependence of the system in a canonical ensemble in which the 

density is restricted to a fixed value. Such an ensemble may represent the equilibrium of· 

a physical system in which the time scale of vortex stretching is much greater than the 

time scale of vortex folding and reconnection. The examination of the density of states 

in Section 6.1 indicates that the number of configurations having high energies decreases 

with increasing energy. The self-avoiding loops system may be therefore be expected to 

have non-trivial thermodynamics at infinite and negative temperatures, as do other vortex 

systems [115] [38] [80] [109]. Examination of the self avoiding loops system at infinite and 

negative temperatures may shed light on processes such as the development of turbulence 

in classical fluids [115] [43] [38] [41]. 

At positive temperatures, the thermodynamic limit L -+ oo exists for the self­

avoiding loops system and is the same in the micro-canonical, canonical, and grand canon­

ical ensembles. At negative temperatures, however, the canonical and grand-canonical 

average energy (£)£ is not finite in the thermodynamic limit L-+ oo; the ensemble average 

energy per unit volume increases indefinitely with increasing system length L. This insta­

bility of the self-avoiding loops system comes about through the existence of configurations 

whose interaction energy grows faster with L than does the entropy of the system. These 

configurations therefore dominate the negative temperature systems in which high energy 

configurations are encouraged by the Gibbs weight: 

p(c) = e -f3Ei"'t(c) 

The high energy configurations are shown in this section to consist of aligned bundles of vor­

tex lines which are smooth on the scale of the domain length. These smooth configurations 

are in contrast to self-avoiding loops configurations at positive and at infinite temperature 

which are fractal on the scale of the domain length. The scaling of the energy and of the 

entropy of certain groups of configurations as L -+ oo and as the lattice step size h -+ 0 is 

discussed in this section. The basic energy/entropy argument is discussed in Section 2.3. 

Analysis of the balance of energy and entropy between smooth configurations and fractal 

configurations is used in this section to demonstrate the presence of a phase boundary at 

·infinite temperature, {3 = 0. 

The thermodynamic limit is usually taken as the length L of the system goes to 

infinity. The lattice step size h may be held constant under the assumption that the physical 

system has a natural di$cretization. This is appropriate, for example, when modeling a 
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collection of gas molecules which have a certain size, or the atoms of a ferromagnetic material 

which form solid lattice. In the classical fluid flow system, however, physical considerations 

may not fix the lattice size. The discretization of the vorticity field is discussed in Section 

3.1; the assumption is made that h is a scale on which the vorticity field is smooth. The 

development of turbulence in classical fluids is a process in which motions are generated on 

smaller and smaller length scales; one may therefore wish to consider the fluid system as 

h -+ 0. The scaling analysis of this section will therefore be applied to the limit h -+ 0 as 

well as to the limit L -+ oo. In both cases, the number of lattice sites and thus the number 

of degrees of freedom in the system go to infinity; so both cases represent a thermodynamic 

limit. 

This section considers the energy of two classes of self-avoiding loops configura­

tions: one class containing configurations having complex structure down to the lattice size 

h, and another class containing configurations having uniform structure on all scales below 

the domain length L. The first class represents the fractal vortices observed at positive 

and at infinite temperatures, while the second class represents the smooth vortices which 

dominate the system at negativEl temperatures. The asymptotic scaling of the interaction 

energy for configurations in these classes is given as h -+ 0 and as L -+ oo. The relative 

numbers of configurations in the two classes are also approximated. Arguments based on 

the balance of energy and entropy show that fractal configurations have high probability at 

positive and at infinite temperatures, while smooth configurations have high probability at 

negative temperatures. 

Members of the two classes of configurations are defined through a notion of "equiv­

alent" configurations with having different numbers of vortex links N. I consider two types 

of equivalency which I refer to as copying and thickening . Configurations in the first class 

representing vorticity with structure on the lattice scale are related through the copying 

equivalency, while configurations in the second class representing smooth vorticity are re­

lated through the thickening equivalency. Figure 6.22 shows a reference configuration of 

eight vortex links. Figure 6.23 shows on the left the thirty-two node copied version of the 

reference and on the right the thirty-two node thickened version. Both the copying and 

thickening operations preserve the number ofvortex links per lattice site; in the example 

the domain volume and the number of vortices each increase by a factor of eight. Copying, 

however, preserves the small scale structure of the configuration while thickening preserves 

the large scale structure. In the former case, repeating copying leads to a vorticity field 
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Figure 6.22: Base loop configuration 

·:-. 

Figure 6.23: Copied and thickened configurations 

having length scale h, so that macroscopic vortices in configurations of the first class are 

individual lattice vortices. In the latter case, repeated thickening leads to a vorticity field 

having length scale L. Macroscopic vortices in configurations of the second class are aligned 

bundles of smooth lattice vortices. 

The following calculations give the scaling behavior of the energy of configurations 

which are equivalent through the copying or through the thickening relation. Section 3.2 

discusses the energy and density definitions for the self avQiding loops model; I begin here 

by summarizing scaling with the lattice step size h. The total energy is the sum of an 

interaction term and a self-energy term: 
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where v comes from a constant self-energy per length €: 

v = h€ 

and the interaction energy is given by: 

where 

1~1 =h 

The linear scaling of the vortex link self energy v and the vortex link strength I~ with h is 
I 

based on the view that the vortex tubes represented by the links have a circulation r = 1 

which is fixed as h varies. 

Consider as a preliminary step the dilation of a configuration and the domain by 

a factor b. Thus a reference lattice [0, £*)3 with step size h* is mapped to a new lattice 

[0, £)3 with step size h, where 

b = !:_ = !!:._ 
L* h* 

Figure 6.24 shows a vortex configuration before and after dilation by a factor b. The 

domain length and the step size are increased together so that the number of vortices N 

in the original and in the dilated configurations is unchanged. Consider the interaction 

energies of the two configurations: 

Eint and Eint L* ,h* L,h 

In free space, the Greens function G (x) = 4~ l~l, transforms under dilation as follows: 

G(b _) 1 1 1 1 1 G( _) 1 
x = 471" lbxl = 471" lxl "b = x "b 

The same law holds for the periodic domain: 

Suppose ~ are vectors of length h* and Xi E [0, £*)3 . The vortex strength is increased in 

the dilated configuration to lb~J. The interaction energy changes as follows: 

1 N . 1 N ~ 
Eth = 2 2::: L(b~~) · (b~)GL (bxi- bxj) = 2 L L~~ · ~jGL· (i'i- xj) b = bEi~~h· 

i=l j::j:i i=l j::j:i 
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Figure 6.24: Dilation of a vortex configuration 

so scaling L and h together by a factor of b gives the relation: 

E int b Eint 
bL* bh* = L* h• 

' ' 

The self energy term scales in the same way with b: 

Now consider the periodic copying of a reference configuration of loops. Suppose 

a copies are added in each coordinate direction. Since the original domain is periodic, the 

energy of a3 copies of a configuration in a domain of [0, aL*)3 is simply a3 times the energy 

of the original configuration in [0, L * )3 • Hence for copied configurations at a fixed h: 

E int 3 Eint 
aL* ,h• = a £• ,h• 

Now if L and h are scaled separately, 

L . h 
- = ab and-= b 
L* h* 

combining the above energy relation with the dilation formula gives: 

E. int Eint 3 Eint 3b Eint 
L h = abL* bh* = a bL* bh* = a L* h* 

' ' ' ' 
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The energy can be expressed in terms of L and h by substituting in for a and b. 

E int ( b)3 1 Eint L
3 

Eint h*
2 

L,h = a b2 L* ,h* = h2 L* ,h* L*3 

Thus the functional form of the energy of configurations related by copying is: 

E int _ L
3 

E*int 
L,h - h2 L*,h* 

where factors of h* and L* are absorbed into the reference interaction energy E£~~~-· 

165 

The number of vortex links per lattice site is preserved by copying, so the number 

of links is proportional to the number of sites in the domain, 

and the self energy, vhNh,L, scales in the same way as the interaction energy: 

The vortex line length hN follows the same pattern: 

The total energy, self energy, and line length are all proportional to L3 jh2 for configurations 

related by copying. Since the domain volume is V = L3 , the the interaction per unit volume 

£ and the vortex line density per unit volume 1) are constant under the copying relation as 

L--+ oo but diverge as -b as h---+ 0. 

Now consider class of configurations related by thickening; these configurations 

are shown to have interaction energies which increase more quickly as L ---+ oo or as h --+ 0 

than do the energies of copied configurations. The thickening process, like the copying 

process, preserves the number of links per lattice site and thus the vortex line density 1) as 

L---+ oo. The scaling of energy in the thickening process may be determined by examining 

a different discretization of the Lamb integral from the one used in the self-avoiding loops 

model. Consider a vorticity field {(x) on the periodic unit cube with l{(x)l equal to zero or 

to one. Then the Lamb Integral , 
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for the energy is finite. The vortices produced in the thickening process as h --+ 0 may be 

thought of as a discretization of this integral which converges if 

since the vortices represent volume elements instead of line elements. Thus the volume 

scaled interaction energy defined below in terms of the self-avoiding loops line vortices {?, 
having 1€.1 = h converges as the configuration is thickened to finer and finer lattices: 

As h--+ 0, the following relation holds: 

Therefore, solving for the interaction energy gives the scaling for small h: 

The relation between thickened configurations at two discretization lengths h = ah * and h * 

is thus: 

E int 1 Eint 
L* ah* = -4 L* h* ' a ' 

This expression can be combined with the dilation formula to scale h and L separately. Let 

L h 
-=band- =ab 
L* h* 

Then 

E int _ Eint _ ~ Eint b Eint b
5 

Eint 
L,h- bL*,abh* - a4 bL",bh* = a4 L",h* = (ab)4 L",h* 

Substituting back the expressions for L and h for a and b gives: 

£5 h*4 
Eint Eint 

L,h = h4 L· ,h· L*5 

The functional form of the interaction energy for configurations related by thickening is 

therefore: 

where factors of h* and L* are absorbed into the reference interaction energy. The energy 

growth for the thickened configurations is much greater than the L 3 jh2 scaling for the 
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copied configurations. Physically, the thickening process represents the formation of a large 

scale correlated flow as L --+ oo, or vortex intensification as h --+ 0.' 

The previous calculations show that the vortex line length hNh,L and the self 

energy term vhNh,L scale as: 

L3 £3 
hNh,L ex: h2 and vhNh,L ex: h2 

with as L --+ oo and as h --+ 0 for configurations related both by copying and by thickening. 

The interaction energy term, Elnk, however, scales differently for copied and thickened 
' . 

configurations: 

El~h ex: ~: under the copying relation 

Eth ex: ~: under the thickening relation 

The following calculations estimate the number of configurations in three subsets 

of C as functions of L for large L and as functions of h for small h. The first estimate 

is of the total number of self-avoiding loops configurations in C. The second estimate is 

of the number of configurations related by a copying like process and having a particular 

interaction energy per unit volume & and vortex line density 'D. The second estimate is 

essentially an estimate of the density of states for some pair (&,'D). The third estimate is 

of the number of "thick" configurations as functions of h and of L. These estimates of the· 

entropies of the three subsets are employed in the final part of this section, along with the 

estimates of the energies of copied and thickened configurations, to describe thermodynamic 

features of the self-avoiding loops· system. The system will be shown to be dominated by 

configurations with small-scale structure at positive and at infinite temperatures and to be 

dominated by configurations with smooth large-scale structure at negative temperatures. 

An argument will be made that the disordered, infinite temperature, state is generic as 

h--+ 0. 

Consider the set of self-avoiding loops configurations C at fixed number of links N 

per lattice site. The vortex links in the self-avoiding loops configurations satisfy connectivity 

and self-avoidance constraints, and are a s~bset of the set of configurations in which links 

are arranged on the lattice without constraints. Since the number of ways of arranging the 

vortex links independently on the lattice scales as QN for some constant, the number of self-.. 
avoiding loops configurations at fixed N per site can grow no faster than a constant to the 

power N as N --+ oo. Thus the entropy of the entire system, which is the log of the number 



168CHAPTER 6. PHASE TRANSITIONS.IN THE SELF-AVOIDING LOOPS SYSTEM 

of configurations, grows no faster than linearly with N. On the other hand, the set of single 

self-avoiding loops of N links is a subset of the self-avoiding loops configurations (at low 

enough density so that the periodic boundary conditions are not significant). The number 

of self-avoiding loops is also believed to scale asymptotically as qN for some constant q [63], 

[98]. We may therefore conclude that the entropy of the self-avoiding loops system Sc at 

:fixed N per site grows linearly with N. If the lattice step size h is fixed, than this scaling 

applys to the system of fixed vortex line density 'D as L --+ oo. 

Now consider the number of configurations at some fairly low interaction energy 

per vortex link and at fixed number of vortex links per lattice site. If the lattice step 

size h is fixed, these parameters translate into :fixed interaction energy per unit volume 

£ and :fixed vortex line density 'D. A variation of the copying relation gives a heuristic 

argument for the scaling of the number of such configurations as L --+ oo. Consider first the 

collection of configurations on the domain [0, L*)3 which have a particular interactioO: energy 

Eint. Suppose that the vortices in the configurations have complex small-scale structure 

and appear disordered when viewed on the scale of the domain. Let n be the number of 

configurations in this set, so the entropy is given by: 

SL* = logn 

Now consider an enlarged domain [O,aL*)3; it consists of a3 copies of the smaller lattice. 

If we ignore loop connectivity constraints across the boundaries of the a3 subcubes, na
3 

new configurations may be created on the large cube by placing independently one of the 

n small configurations on each subcube. The entropy thus increases to: 

The energy of a new configuration may be assumed to resemble the result from the periodic · 

copying relation and thus be approximately a3 Eint. These non-periodic copying operations 

increase the volume, the interaction energy, and vortex line length by the same factor a3 , so 

the interaction energy density £ and the vortex line density 'D are preserved. The entropy 

of the new set of configurations generated by the non-periodic copying also increases by 

a factor of a3 • This, admittedly sketchy, argument implies that the entropy of the set of 

configurations having small-scale structure and having a particular £ and 'D scales linearly 

with volume V = L 3 as L--+ oo. 

.. 
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Finally consider the "thick" ~onfigurations in which macroscopic vortices consist 

of aligned bundles of smooth lattice vortices. Whereas the non-periodic copying plausibly 

generates a set of configurations whose entropy is proportional to N, each thickened con­

figuration corresponds to a singe macroscopic vorticity field {(x). If the lower scale for the 

fields {(x) is f L, then f limits the number of distinct fields and thus the number of thick 

configurations to a constant as L ~ oo or h ~ 0. The thick configurations thus represent 

a vanishingly small proportion of the total number ·of self-avoiding loops configurations as 

L ~ oo or as h ~ 0. 

The preceding arguments suggest that the entropy of the set of configurations 

having complex small-scale structure and a particular energy density £ = Eint j(£3) and 

vortex line density 'D = (h N)/(L3 ) grows linearly with the volume V = £ 3 as L ~ oo. 

The entropy of all configurations having vortex line density 'D also grows linearly with the 

volume Vas L ~ oo. The entropy of the thick configurations, however, remains essentially 

constant as L ~ oo. For a fixed number of vortex links per lattice site, if we denote the 

entropy of the whole system by Sc, the entropy of copied configurations of reference energy 

e. at some reference size by Scop(e.), and the entropy of thick configurations by Sthick, then 

the following asymptotic relations hold as L ~ oo and a.s h ~ 0: 

Sc 

Scop(e.) 

Sthick 

Now consider the thermodynamic limit L ~ oo in the canonical ensemble in which 

'Dis held fixed. The Gibbs weight for each configuration is: 

p(c) = e -/3Ein.t(c) 

The estimates of the interaction energy and of entropy can be used to make assessments of 

which subsets of configurations dominate the self-avoiding loops system in the thermody­

namic limit. Consider the thick configurations in relation to the rest of the configurations 

in the system. Copied configurations have entropy which scales in the same way as th~ 

entropy of the total system; it suffices to compare the set of all copied configurations to the 

set of all thick configurations. The entropy/ energy balance is: 

(Sthick - Scop)- {3 (Ethick - Ecop) 
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If this quantity increases as the thermodynamic limit is taken, then thick configurations 

dominate copied configurations, while if the quantity decreases then thick configurations 

are insignificant. Inserting the scaling forms for the entropies and the energies gives: 

For large L or for small h, this is approximately: 

First consider positive and infinite temperatures: {3 ;::: 0. At positive temperatures, {3 > 0, 

high energy configurations are discouraged. At infinite temperature, {3 = 0, all configura­

tions of vortex density 'D are equally weighted. Both terms of the energy/ entropy difference 

are non-positive and decrease as L increases. The probability of the subset of thick configu­

rations therefore decreases with increasing L: the configurations become more rare and are 

penalized for their high energy. The typical configurations at positive and at infinite tem­

peratures, therefore, come from the copied subset and have complex structure on the scale 

of the lattice step size. At negative temperatures, however, the Gibbs weight exponentially 

favors configurations of high energy. The entropy term of the energy/ entropy difference is 

still negative and favors the copied configurations, but the energy term -{3A.E now favors 

the thickened configurations. The energy term, furthermore, grows as L 5 , while the entropy 

term grows only as L 3 • The relative probability of the thick configurations compared to the 

rest of the system, therefore, increases with increasing L. Thick configurations dominate the 

self-avoiding loops system i~ the thermodynamic limit and the canonical ensemble average 

energy increases without bound as L _..... oo. 

The same situation holds with regard to the thickened configurations as h _..... 0. 

In this case, the magnitude of the energy difference term in the energy/ entropy difference 

grows as 1/h\ while the magnitude of the entropy term grows only as 1/h3 . At positive or 

at infinite temperature, both terms are non-positive and thick configurations are suppressed. 

At any negative temperature, however, the energy term becomes positive. Since the energy 

term grows faster as h _..... 0 than the entropy term, the system is dominated by thick 

configurations in the thermodynamic limit. 

In both thermodynamic limits L _..... oo, h fixed, 'D fixed, and h _..... 0, L fixed, 

N /site fixed, infinite temperature marks a phase threshold. At positive and at infinite 
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temperatures, f3 2: 0, the average interaction energy per unit volume & converges in the 

canonical ensemble as L ___. oo. Vortices have complex structure down to the lattice spacing 

h. At all negative temperatures, f3 < 0, very large or very refined systems are dominated 

by configurations of smooth vorticity and very high energy. The average interaction energy 

grows as the thermodynamic limit is taken. 

The preceding arguments indicate the behavior of the self-avoiding loops system 

at negative temperature as L ___. oo or as h ___. 0. Computational results at positive and at 

infinite temperature given in Sections 6.2 and 6.1 indicate that the average energy per unit 

volume (&) 13 converges in the thermodynamic limit L ___. oo to a function of (3. The scaling 

of the energy and of the entropy of copied configurations is consistent with a non-trivial 
• 

thermodynamic limit; both the interaction energy and the entropy of copied configurations 

with fixed small-scale structure increase linearly with the volume V = L 3 • As h ___. 0, 

however, the energy of copied configurations grows only as 1/h2 while the number of links 

in the system and thus the entropy grows as 1/h3 . This scaling indicates that the infinite 

temperature state dominates the system as h ___. 0 at fixed number of links per lattice 

site. Consider as references two microcanonical subsets of a self-avoiding loops system at a 

fixed system size. Suppose one has average interaction energy einf corresponding to infinite 

temperature in the canonical ensemble at that system size. Suppose the other has average 

energy e* < einf· Now consider the two classes formed by non-periodic copying of the two 

subsets. The difference in entropy and energy between the infinite temperature class and 

the low energy class of configurations is: 

(Scop(einf)- Scop(e*))- f3(Einf- E*) ~ ([qinf- q.]~:)- f3 ([einf- e*J~:) 
where qinf - q. is the difference in entropies between the two reference systems. There 

are more configurations in the infinite temperature reference than there are in the finite 

temperature reference, so [qinf - q.] > 0. The reference energy difference [einf - e.] is 

positive by assumption. The energy/ entropy difference between the two states represents 

a competition between the energy and the entropy terms at positive temperature (3. As 

L ___. oo; both terms grow as L 3 , so there is a a temperature, 

f3 
_ qinf - q* _.!:._ .- einf- e. h. 

below which the lower energy state is encouraged over the state representing infinite tem­

perature. As h ___. 0, however, the entropy term grows as 1/h3 while the energy term 



172CHAPTER 6. PHASE TRANSITIONS IN THE SELF-AVOIDING LOOPS SYSTEM 

grows only as 1/h2 • Entropy therefore dominates, and the configurations representing the 

infinite temperature system eventually dominate the other configurations at any value of 

/3. The self-avoiding loops system at positive temperature, therefore, resembles the infinite 

temperature system in the limit h ~ 0. 

The infinite temperature state has been conjectured on other grounds, [43] [38] to 

be the asymptotic state of incompressible turbulence. To the extent that the self-avoiding 

loops system resembles classical turbulence, this conjecture is supported by the scaling 

behavior as h ~ 0. One should note, however, that the linear scaling of the vortex link 

. strength 1& 1 and of the self-energy term vh with the lattice step size h is somewhat arbitrary. 

The linear scaling is appropriate for isolated vortex tubes of constant circulation. Other 
\ I 

constraints not considered in the formulation given in Chapter 3 may regulate how the 

vortex strength and the self-energy term scale with h. More work is required to determine 

the physical meaning of the thermodynamic limits for vortex systems. 

6.4 Conclusions 

The self-avoiding loops model demonstrates several features of vortex equilibria. 

The model illustrates the effect of vortex loop connectivity on vortex screening at posi­

tive temperatures and on vortex intensification at negative temperatures. The model also 

demonstrates the effect which temperature and vortex self-energy have on the density of 

vortex loops. The model supports a non-trivial infinite temperature state. The self-avoiding 

loops system exhibits at least two phase transitions: one at low temperature which is similar 

to the lambda transition in liquid helium, and one at infinite temperature which may be 

related to the formation of inertial range turbulence in classical fluids. 

The self-avoiding loops model has a line of continuous phase transitions in the 

(/3, v) plane at low temperature, f3 ~ 0. The energy and vortex density are continuous as 

functions of f3 at the critical temperature, but the specific heat has a peak whose height 

increases with increasing system size. In the thermodynamic limit, connected vortices of 

infinite size exist only above the critical temperature. In these respects, this phase transition 

in the self-avoiding loops system resembles the lambda transition in superfl.uid helium [139]; 

the two transitions may share a similar mechanism. The nature of the self-avoiding loops 

transition indicates that a lambda-like phase transition can be driven by vortices. 

The properties of vortices in the self-avoiding loops model also support vorticity 



6.4. CONCLUSIONS 173 

based theories of the disordering transition in the three-dimensional XY model [130] [144]. 

A difference in the fractal dimension of self-avoiding vortices and of self-intersecting XY 

vortices is apparent, however. The self-avoiding loops system and the vorticity form of 

the XY model differ only in the self-avoidance constraint, but the difference may place the 

self-avoiding loops phase transition in a different universality class than the disordering 

transition of the XY model. A calculation of critical exponents for the self-avoiding loops 

system is required to resolve the issue. 

The phase transition in the self-avoiding loops system exhibits percolation finite 

size scaling; the phase transition is also a percolation threshold. Renormalization treatments 

based on connectivity and percolation ideas may be possible for both the self-avoiding loops 

system and for the vorticity form ofthe XY model [39]. Such treatments would represent 

a departure from the Kosterlitz-Thouless style renormalizations and could complement ex­

isting theories. 

The micro-canonical, canonical, and grand canonical ensembles of the self-avoiding 

loops system appear to be equivalent in the thermodynamic limit L --t oo at positive 

temperatures. This equivalence does not hold at infinite and at negative temperatures, 

however. 

The canonical ensemble in which the number of vortex links per lattice site is 

held fixed supports a non-trivial infinite temperature state. · The energy is finite in the 

thermodynamic limit L --t oo. Screening among unconnected vortex loops reduces the 

energy of the system; vortex-vortex interactions contribute a negative term to the total 

energy. Vortices exhibit complex small-scale structure at infinite temperature, and long 

vortices have fractal geometry. The scaling of energy and entropy as the lattice size h --t 0 

indicates that entropy dominates energy at positive temperatures as the lattice is refined. 

In this sense, the infinite temperature state may be the asymptotic state as vorticity in a 

classical flow breaks up into turbulence. 

At any negative temperature, the energy of the self-avoiding loops system becomes 

infinite in the thermodynamic limit. High-energy configurations in which lattice vortices 

align into smooth bundles dominate the system as L --t oo or as h --t 0. Infinite temperature, 

therefore, marks a phase boundary between vortices with complex small-scale structure and 

vortices with smooth small-scale structure. 

To the extent that the self-avoiding loops model simulates classical turbulence, the 

following picture may hold [38] [41]. At negative temperature, the flow is smooth and kinetic 
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energy is concentrated on large scales. As vortices stretch and fold, however, energy moves 

into smaller scales and the temperature moves toward infinity. Fractal structure forms at 

infinite temperature. Positive temperatures below infinite temperature are unreachable in 

the limit h --t 0, but can exist in a system in which a lower bound ho is placed on the 

refinement of the small scale. 
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