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ABSTRACT 

The "Cluster-Bethe Lattice" method is extended to 

the study of heteropolar systems. The Bethe Lattice is 

solved for binary compounds of arbitrary coo+dination · 

using simple tight binding models. In particular systems 

with te~rahedral coordination, such as the zincblende, 

BC-8 and random network structures are examined in detail. 

The results are compared with recent experimental photo-

emission data on the amorphous phases of binary compounds 

and interpreted in terms of topology. 

I.· Introduction 

The "Cluster-Bethe Lattice" 1 method is a particularly· 

useful tool for studying infinite connected systems, which 

may be period_ic or not, in terms of the local configurations 

of the atoms in.these systems. ·The method involves 

treating part of. the system exactly (as a cluster) and 

replacing the effects of the rest of the infinite environ

ment by a Cayley Tree 2 (or Bethe Lattice). Results on 

homopolar systems indicate the importance of local atomic 

configurations and ring topologies in determining structure . . 

in the electromic density of states (DOS} . A natural 
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extension of this method is to heteropolar systems. In 

this way one can in principle study the alloy problem, 

as well as amorphous binary systems. 

In this paper the method will be set up for the study 

of infinite connected binary systems of arbitrary coordina-

tion. To do this, a heteropolar Bethe Lattice of arbitrary 

coordination will be solved in detail. This,·in general, 

permits a study of a large class of problems including 

alluy3 and amorphous binary systems. The focus here, 

however, will be to use the "Cluster-Bethe Lattice" method 

to study the effects of topology on the DOS of amorphous 

tetrahedrally coordinated binary compounds. In particular 

only structures which can be made with no like-atom bonds 

will be studied~ Specifically, the DOS's of binary systems 

constructed using the atomic positions of the diamond, 
3 . 4 

BC~8 , and Connell random network structures will be 

calculated and examined in detail. These systems 

form a series of structures whose local atomic con- . 

figurations become increasingly more disordered. 

The format of the paper is as follows. In.section II 
.. 

the "Cluster-Bethe Lattice" method is discussed, simple one-

orbital and four-orbital tight binding Hamiltonians 5 are 

defined, a transformation between the states of a one-orbital 
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and four-orbital Hamiltonian is introduced for heteropolar 

systems and an example of the "Cluster-Bethe. Lattice" 

method using these Hamiltonians is given. In section III 

the Bethe Lattice is solved analytically for he_teropolar 

systems using the one-orbital Hamiltonian. Local densities 

of states for the cation and anion are obtained separately 

and effects of heteropolarity are studied explicitly. In 

section IV the amorphous phases of III-V compounds are 

discussed and the results for the binary structures made 

from the diamond, BC-8 and Connell ·random network structures 

·are presented and examined in detail. Finally, section V 

is concerned with a sununary and concluding remarks. 

·II·· The "Cluster-Bethe Lattice" Method 

The purpose of the "Cluster-Bethe Lattice" method is to 
.. 

provide.a simple and physical way of obtaining the total 

DOS of an infinite system of atoms, which may or may not 

have periodicity. The procedure is as follows. Consider 

an infinite, connected network of atoms of coordination m. 

Any. <11rbi trary atom is picked as a reference point. A 

cluster of atoms surrounding and including this atom is then 

removed from the syst~. The cluster is chosen such that 

every atom in the cluster is part of a ring passing through 
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the central or reference atom. A Bethe Lattice2 (or Cayley 

Tree) is then attached to the dangling bonds so as to 

simulate the effects of the original infinite environment. 

The Bethe Lattice is an infinite, connected, system of atoms 

of coordination m such that every atom is equivalent and 

there are no rings of bonds in the system. Once the solution 

of the Bethe Lattice is known the local Green function <olglo> 

of the central or reference atom can be obtained exactly. 

The Bethe Lattice therefore serves two useful purposes. 

Firstly it provides the mathematical convenience of solving 

exactly·an infinite system without periodicity. Secondly it 

provides the physically attractive characteristic of prese,r- ~, 

ving the connectivity and the -~oordination of the system: 

The Hamiltonians that will be used consist of simple 
5 , 

one-orbital (h) and four-orbital (H) Hamiltonians for 

systems with no like-atom bonds. These are given in the 

orbital representation by 

h 

and 

± A L. I i><i I + v 
i 

"L: li><ill 

i,i 1 

ifi 1 

(1) 

H = ± /:::,. L: I ij ><ij I + v 
i,j 

L jij><ij 1 1+V2 L lij><i 1jl (2) 
' ' 'I • ' I • 1,J,J 1,1 ,J 
jfj' ifi 1 
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h represents a system where an s-like localized orbital 

li> is placed on each atom i and only nearest neighbor 

interactions V are taken into account. The diagonal terms 

are·positive or negative depending on whether atom i is a 

cation or anion respectively. Similarly H represents a 

system where four sp3-like orbitals lij> are placed on each 

atom i with j=l,4. v1 represents.the interaction between 

different orbitals on the same atom and v 2 represents the 

interaction between orbitals on different atoms, but along 

the same bond. Finally, a positive or negative !!.. character-

. izes a cation .or anion directed orbital. H is .very useful, 

·because it supplies a simple yet relatively good description 

of the DOS region everywhere except at the top of the valence 

band. Here the upper p-like bonding states form a flat 

band or equivalently a delta function peak in the DOS.. (For· 

the purposes of this investigation, however, this is not very 

important since .it will be shown in section IV that the 

primary concern here is to examine the middle peak region of 

the DOS). If one takes !Y.=A=o, th~n the eigenvalves of H 

(except those that lie in the delta function peak) are related 

by an analytic transformation 5 to the eigenvalves of the much 

simpler Hamiltonian h. This, however,· is also true for 

6. :f b + A as will now be shown. Consider any infinite tetra

hedrally connected network of atoms with a basis set {lij> }. 
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For any atom i in the system the following equations can be 

obtained as part of the secular equation with H. 

E c~ =6. c~ vl E 
i +V c~~ + c. I 

J J j I 
] 2 J 

{3) 

c~~ =6. c~~ 
i I i 

E + vl L c. I + v 2cj 
J J • I J 

J 
{4) 

where C~ represents the coefficient of jij) in the expansion 
J 

of the one electron wanefunction of the total system. In 

these equations atom i is taken, arbitrarily, to be a cation 

for simplicity the sums over j include j 1=j. Solving for 

c;' from (4} and substituting into (3) one obtains 

Ci.. i i
1 

= (E+!J.} v
1 

r c.,+ v
1
v

2 
r c., (5) 

J j' J jl J 

Summing now over all j and defining cL = E C~ , equation (5) 
l. j J 

reduces to 

(E~ 6. 2 - 4V E - v 2 
1 2 a. I 

l. (6) 

This·last equation holds for every atom i and is very similar 

to the secular equation one would obtain for the same system 

using h, i.e. 

Ea. = Aa. + V E a. 1 
l. l. "ll. 

l. 

(7) 
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Comparing (6) and (7) gives the required transformations 

( 8) . 

and 

{9) 

Thus one can now use the much simpler Hamiltonian h for 

heteropolar systems in order to calculate eigenvalues and local 

DOS's and use the transformations (8) and (9) to give·the 

corresponding eigenvalues and local·DOS's for the. Hamiltonian H. 

To obtain the DOS of any system in a Green function formalism 

using the Hamiltonian h one must first define 

g = 1 1 = E" + E" hg. (10) 

The total DOS n(£) is then given by 

n(£) =; Im [Trg(£)] {11) 

and one is interested in the diagonal matrix elements of g(£). 

So that taking matrix elements of (10) between a basis set 

{Ji>} one obtains 

£ <ilglj> = o .. + E<Ljhll><llglj>. 
~J 1 

(12) 
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The local DOS n. (e:) of the ith atom is then gi'Ven by 
~ 

and 

n(e:) =2..: ni (e:) 

i 

(13) 

(14) 

As a simple example of how the "Cluster-Bethe Lattice" 

method works, consider the cluster of atoms in the diamond 

structure shown in Fig. 1. The reference atom is labeled o 

and from symmetry many atoms are equivalent and therefore 

labeled with the same number. Thus, there are only four 

inequivalent atoms in a cluster of 29 atoms. Furthermore, tnere 

are twelve six-fold rings of bonds passing through the central 

atom. A "zincblende-Bethe Lattice" system can now be constructed 

by placing cations or anions on all the odd or even numbered 

atomic positions and attaching a corresponding heteropolar 

Bethe Lattice to the dangling bonds of atoms 2 and 3. The local 

DOS for atom o of this infinite system can now be solved analyti-

cally using equation (12) • One obtains 

(e:±A) <olg~lo> = 1 + 4V <11 g~lo> 

(e: ±A) <11 g+.fo> = V<olg:r-10> + 3V<2Ig=Fio> 

. ( e: ±A <2lg::f.lo> = V<llg~lo> + 2V<3Ig~lo> + <l>i=<2lg=Fio> 

( e:±A) <3lg";f. o> = 2V<2Ig=Fio> + 2¢±<3lg~lo> 
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where g + and g .represent the Green functions for the case 

of an anion and cation central atom respectively and ~ and 

~+ are the fields of a heteropolar Bethe Lattice acting, along 

~bond, on an anion and cation respectively. The fields 

~::1::. are in general complex functions of energy and depend only 

on the properties of the Bethe Lattice. S~ction III will be 

+ 
devoted to their solution. Assuming, however, that the ~- are 

known the local Green functions <olg:r:lo> can be obtained 

trivially from the linear equations (15) • The result is 

-1 -1 
E±A-4V 2 [E~A~3V 2 [E±A-~~ -4V 2 [E~A-2~±l ] 

-1} -1 
] ( 1.6) 

~~·' 

and n~(E) = - 1Tl Im <olg~lo> 
0 

. (17) 

where n-(E) and n+(E) are the local DOS's of an anion or cation 
0 0 . 

central atom respectively. These results will be examined again 

+ 
in the next section once the solutions for ~- are obtained. 

III The Heteropolar BetheLattice 

This section will be concerned with solving the total and 

local Green functions of a heteropolar Bethe Lattice (with no 

like-atom bonds) using the Hamiltonian h defined in section II. 
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This will be accomplished by using a mean field formalism 

. + 
so that fields ¢- will be obtained which can then be used to 

attach the heteropolar Bethe-lattice to any cluster of atoms. 

Consider a heteropolar Bethe Lattice made up of atoms 

with coordination m. Choose any atom in the Bethe Lattice and 

remove it and m-1 of its .nearest neighbors from the system. 

Assume now for simplicity that the atom chosen is an anion and 

is labeled o. lt's nearest neighbors are labeled 1. Atom o 

has only one dangling bond whereas atoms 1 have m-1 dangling 

bonds. If the Bethe Lattice is now attached to the dangling 
+ 

bonds of atoms o and 1 through the fields ¢- one again obtains 

a complete Bethe Lattice and the following equations from (12) 

(18) . 

Now consider again atom o but now remove it and all of its m 

nearest.neighbors from the Bethe Lattice system. The Bethe 

Lattice is then attached to the m-1 dangling bonds of atoms 1 

and one obtains the following quations from (12) 

(r:::+A) <olg-ro>- 1 + mV <llg-lo> 

(E~A) <llg-!o> - V<olg-lo> + (m-1) ¢+ <llg~lo> (19) 
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Comparing equations (18) and (19) and using the plus and minus 

symmetry of the system gives 

+ 
,~..-

'+' = 

t.±A- (m-1) <f>=F 

+ 
Solving (20) for <f>- gives 

with 

+ t.=FA <f>- = 2(m-l) R 

and 

+ [4(m:_l)V2 (t. 2-A 2) <f>""C = [±] -
R 2 (m-1) (t.±A) 

(20) 

(21) 

... 

(22) 

-_t/2 
2J (t.lA2) _ 

(23) 

The choice of sign .in the brackets [±] in (23) depends only on 

the value of £ and not on whether the connecting atom is an 

anion or cation. The minus sign must be taken when t.>A and the 

plus sign when t.<-A 

The local Green function for the heteropolar Bethe Lattice 

is now given by 

(24) 

:::' 
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. + 
and the local DOS of the Bethe Lattice m:B(e:) from 

~ 1 ' =F n ( E:} = - 1T r.m<o I g I o> 
B 

(25) 

therefore 

~ (e:) = - --------~--------------1T 

1 
(26) 

(e:±A - m.<J>; ) 2 + m2 (<!>~) 2 

The bond edges can be obtained from (2~) and occur at 

(27) 

and 

e: = ±A (28) 

An examination of (26) shows that n.; (e:) and n~ (e:) have square 

root singularities ate:.= -A and e: =+A respectively. These 

singularities are actually a general feature of the h and H 

Hamiltonians and will occur for all structural systems with 

no like-atom bonds. Furthermore, although n;(e:) is singular 

at e: = ~A 1 it is zero at e: = ±A. This indicates that the states 

occuring at.the singularities e: =+A and e: =-A represent pure 

cation and pure anion states respectively. n; (£) and n ~ (ri) are 

plotted in Fig. 2(a) as a dotted and dashed line respectively 

with V = 1 and A = "?.V. The sum of these two curves (which is 
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not shown) is of course the total DOS of the heteropolar 

Bethe Lattice. 5 This is very similar to that of a homopolar 

Bethe Lattice except that there is now a gap between ( and 

singularities at) E = ±A. The local DOS n;(s) for an anion 

·• is clearly concentrated at low energies with a small amount 

of states at high energies. The cation local DOS is of 

course just the mirror image of n~(E) about E= o. 

In Fig. 2(a) is also shown (as a solid line) the DOS of 

the "zincblende Bethe Lattice" system obtained by adding 

n-(E) and n+(E) from equation (17). The cluster in this 
0 . 0 

system was described in section II and drawn in Fig. 1. It 

contains 29 atoms in a zincblende configuration. The peaks 

around ± 2.5 V arise from the twelve six-fold rings of bonds 

passing through the central atom of this cluster. In Fig 2 

(b), the separate contributions of n-(E}(solid l.ine) and· 
0 . .· 

n +(E)· (dashed line) for the anion and cation respectively are 
0 

shown. Again the spectra are mirror images of each other 

about E=o with the anion and cation having considerably more 

states at low and.high energies respectively. Furthermore, 

+ 
the singularities of the local DOS's n~(E) at E=±2V occur along 

+ . 
with n-{E) = o atE= ~2V. This implies that the electron 

0 

states atE = -2V and E = +2V have wavefunctions which have 

zero coefficientsfor the orbitals li> localized on all the 

cation and anion atoms respectively. These states therefore 
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represent pure cation or anion states occuring at the 

energies for isolated atoms. 

As an example of a transformation from the states of h 
. I 

toH, consider a comparison of Figs. 2(b) and 3(a). In 

Fig. 3(a), the filled valence bands of the local DOS's of 

the "zincblende-Bethe Lattice" system mentioned above using 

the Hamiltonian H is plotted. These curves were obtained 

by using the transformation equations·· (8) and (9) derived 

in section II with v1 =-2.2eV and v2 = -6.2eV. To complete 

the filled valence bond in Fig. 3 a delta function of pure 

p-like bonding states must be introduced near -2.7eV. This 

delta function, (containing 2 states/atom) is only a pro--

perty of a and independent of the structure of a system as 

long as no like-atom bonds are present. It will always occur 

near -2.7 eV and will therefore not be shown·explicitly in 

any of the figures. The effects on the valence band by 

. , 

transforming from-h to Hare rather small. The most important 

differences, as seen by comparing Figs. 2(b) and 2(a), are 

a narrowing of the low energy anion band and a widening of 

the high energy or cation band • 

. Figure 3 (b) shows (as a solid line) the sum of the two 

local DOS's shown in Fig. 3(a). This is compared with the 

total DOS of the zincblende structure (dashed line) as 
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obtained from a band structure calculation using the 

Hamil ton ian H. The agreement between the two curves in Fig. · 

3(b) is very good considering that the "zincblende-Bethe 

Lattice,. system has only 29 atoms in a zincblende configura...;. 

tion. This again emphasizes the importance of local atomic 

configurations in determining the structure in the DOS. 

IV Discussion of Amorphous Phases 

Experimentally information about the DOS can be obtained 

from X-ray (XPS) and ultraviolet (UPS) photoemission spectra-

6 7 scopy. XPS and UPS spectra on crystalline and amorphous 

III-V compounds reveal DOS's that are rather similar. The 

most easily resolved differences between the crystalline and 

amorphous spectra occur in the dip region between the middle 

peak and the upper p-like bonding peak at the top of the 

valence band. {The upper p-like bonding peak is analogous to 

the delta function peak obtained using H). In ·the amorphous 

phase states seem to shift from the middle peak into this 

dip, thereby filling it in partially and making it less 

prominent than in the crystalline phase. 

Theoretically, effects of disorder on the DOS of amorphous 
. 8. 

binary systems have been studied by Joannopoulos and Cohen and 

by Kramer and Treusch 9 • In the former study specific types 
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Of disorder (e.g. bond length, bond and dihedral angle 

distortions, differences in topology, effects of like-atom 

bonds, etc.) are examined by calculating the DOS, using 

pseudopotentials, of various complex binary crystals made 

specifically by using the atomic positions of polytypes and 

3 polymorphs of Ge and Si. Since the systems studied are 

stoichiometric crystals with large unit cells this method 

leads to an explicit examination of short-range disorder. 

The results of Joannopoulos and Cohen 8 can be used to draw 

two main conclusions. First that the presence of like-atom 

bonds will tend to decrease the gap, fill up the.dip region 

and also.form a shoulder or peak at the lower energy and 

of the s-like region of the DOS spectrum. This last effort 

does not seem to be observed expe~imentally. Secondly that 

systems without like-atom bonds but with bond-angle distor-

tions of about ±10% and some variations in dihedral angle and 

topology will produce relatively small differences from the 

zincblende DOS. 

In the work of Kramer and Treusch 
9 

an attempt is made to 

deal with homopolar systems and heteropolar systems.with no 

like-atom bonds, and to understand the effects of variations 

in dihedral angles. Their method is most easily and con-

veniently described using only a homopolar system. The exten-

sion to heteropolar systems is straight forward. Their method 
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involves taking a finite cluster of atoms (in a diamond 

structure configuration) consisting of four tetrahedral units 

connected to a common central atom. The tetrahedral units 

can then be rotated by arbitrary amounts to yield changes 

- + 
in dihedral angle. An "effective" potential v (g) is then 

- + 
defined as a weighted average over the potentials v(q) of 

the atoms in the cluster with 

N 
.+ -;; 

1 2: + - (g) 
l.q. . v(q) (29) \) = N 

e l. 

i=l 

where N is the total number of atoms in the cluster and t. 
l. 

.:;.::. 

represents the difference in position between an atom in the 

cluster and in a diamond structure. As a first approximation 

this "effective" potential is then introduced at the atomic 

positions o£ a diamond structure creating an effective.total 

potential given by 

.+ + 
+ - + l.q•-r V (q) = v(q) e 

where +-r 
-l' represent the positions of the 

diamond structure. For the case where 

are not rotated all the t.. = 0 and one l. 

(30) 

basis atoms in the 

the tetrahedral units 

v(q> +. -
returns to = \) (q) .-

In general,therefor~,the "effective" diamond structure (30) 

can be solved using conventional band structure methods. The 
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results of Kramer and Treusch using an "effective" diamond 

and zincblende structure indicate that dihedral angle varia-

tions will cause a broadening of the DOS spectrum and a decrease 

in the fundamental gap. Care, however, should.be taken in 

interpreting these results, because they are not caused expli-

citly by dihedral angle rotations. This is clear since sub-

stituting (29) into (30) gives 

N 

V(q) = ~-2: 
. + ( + -r . + (+ -r ) 

(+) ~q • T+LL) + (+) -1q T +L:i.. v q e ~ v q e ~ (31) 

i=l 

which reveals that V(q) is just the average potential of a 

system of N f.c.c. structures with basis atoms a:t positions 

± (~ +l.). This change in basis positions will in general 
~ 

create diamond and ·zincblende structures with both bond angle 

and bond length distortions. Such distortions may_be quite 

large and unphysical. , 

In this section the ''Cluster-Bethe Lattice" method will 

be used to study the effects of topology and.short range dis-

order on the DOS of a series of structures whose total atomic 

arrangements become increasingly more disordered. These 

structures will not be periodic, will contain no like-atom bonds 

and will include the local atomic configurations found in the 

3 4 diamond, BC-8 , and Connell random network structures. The 
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Connell model is of particular interest since it is a random 

network model with a radial distribution function that agrees 
10 

very well with experiments. In addition, it contains only 

even-nwtlbered rings of bonds and therefore offers the possibility 

of having a random network structure with only like-atom bonds. 

The clusters that will be taken from the diamond, BC-8 

and Connell random network structures to be used as "Cluster-

Bethe Lattice" systems will be chosen so that they include 

all ten fold rings of bonds passing through the central atom. 

1 This is the condition on the size of a cluster that guaran-

tees very good convergence. This is particularly true for 
. ~_, 

amorphous systems. For the diamond andBC-8 structures all 

the atoms are equivalent so that the total DOS's are equal to 

the local DOS's. For the Connell model all the atoms are 

inequivalent so that in principle one would need to average 

over the local DOS of every atom to obtain the total DOS. In 

this model, however, the local DOS of various atoms studied -

were very similar. Therefore, in these calculations as in those 

for homopolar systems 1 only an average over 5 central atoms 

is taken. 

The results of the DOS's for the aforementioned three 

"Cluster-Bethe Lattice" structures are shown in Figs. 4 to 6 · ~ 

using the Hamiltonian H. (As it has already been mentioned the pure 

p-like delta function near -2. 7eV is not shown) . In Fig. 4 {a)·' 
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the local DOS's of the anion (solid line) and cation (dashed 

line) are shown for the "zincblende-Bethe Lattice" syste..TU. 

Fig. 4(b) shows the DOS of the "zincblende-Bethe Lattice" 

sy"stem obtained by adding the two curves in Fig. 4(a). The 

.cluster in this "zincblende Bethe Lattice" system (as we have 

mentioned} contains all ten-fold rings of bonds passing through 

the central atom. Therefore, it is interesting to compare 

Fig. 4 with Fig. 3, which contains the crystalline zincblende 

DOS and a "zincblende Bethe Lattice" system with a zincblende 

cluster containing only all six-fold rings of bonds passing 

through the central atom. Fig. 4 shows the corre~t trend of 

shifting•states closer to the singularities. Furthermore the 

shoulder near -5.2eV appears to be developing although the 

sharpness of this shoulder in the crystalline DOS is a conse-

quence of periodicity. In Fig. S(a), the local DOS's of the 

anion (solid line) and cation (dashed line) are shown for a 

binary system constructed from the atomic positions of a "BC-8 

Bethe Lattice" system. Fig. 5(b) shows the DOS of this binary 

"BC-8 Bethe Lattice" system as obtained by adding the two 

curves in Fig. S(a). The BC-8 structure (with 8 atoms in a 

primitive cell) ismore complicatedtopologically than the diamond 

or zincblende structure. ,Furthermore, the ring st~tistics of the 

atoms in these two structures are quite different. For instance, 

diamond has 12 six-fold and 24 eight-fold rings of bonds passing 
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through a given atom while the BC-8 structure has 9 six-fold 

and 36 eight-fold rings of bond. This smaller number of 

six-fold rings of bonds and larger number of eight~fold rings 

of bonds is responsible 1 for the noticeable shift of states 

chosen to the singularities in Fig. 5 as compared with Fig. 4. 

Moreover the binary "BC-8 Bethe Lattice" system also seems 

to have slightly more states in the dip region between the 

·middle p-like peak (near -6eV) and the upper p-like bonding 

states (delta function near -2.7eV). This rather small effect 

was also o~served 8 using pseudopotentials on a crystalline 

binary BC-8 structure. .--. _-:;:. 

Finally in Fig. 6{a), the local DOS's of the anion (solid 

line) and cation {dashed line) are shown for a binary system 

constructed from the atomic positions of a "Connell Cluster

Bethe Lattice" system. These local DOS's, however, are only 

for one atom in the Connell random network structure located 

near the center of the network. The anion peak near -lOeV 

actually goes slightly off the scale. The DOS of an averaged 

(over 5 atoms) binary "Connell Cluster-Bethe Lattice" system is. 

shown in Fig. 6~b). As it was mentioned earlier the average DOS 

is very similar to individual local atomic DOS's. There is, 

however, a very interesting difference between Fig. 6(b) and 

Figs. 5(b) and 4{b). The peak near -6 eV is now very sharp 
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and strong and a comparison of this spectrum with the crystalline 

results in Fig. 3(b) does not reveal any filling up of the dip 

region as it is observed experimentally for the amorphous phase. 

Topologically this strong peak observed in the Connell model is 

a direct result of the rather large number of six-fold rings 

.of bonds present in this network. Specifically there are on an 

average about 16 six-fold rings of bonds passing through a given 

atom. The differences in bond angles and d{hedral angles have 

of course been omitted in this study, however judging from the 

pseudopotential results 8 on the BC-8 structure where they were 

included, one would expect their effects to be rather small. 

V. SUMMARY AND CONCLUSIONS 

The "Cluster-Bethe Lattice" method has been extended to the 

the study of heteropolar systems. This is accomplished by solving 

a binary "Bethe Lattice" of arbitrary coordination using 

simple tight binding models. From these solutions effective 

+ 
binary Bethe Lattice fields cp-(e:}are obtained which attach the 

Bethe Lattice to any cluster system of atoms of arbitrary coordina-

tion. The tight binding models used include a one-orbital and 

four orbital Hamiltonian. A transformation between the eigenvalues 

of the simple one orbital Hamiltonian to those of the more realistic 
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four orbital Hamiltonian was also obtained. 
I 

The "Cluster-Bethe Lattice" method was then used to study 

amorphous tetrahedrally coordinated binary compounds. To do 

this the atomic positions of a series of structures were 

chosen to build binary "Cluster-Bethe Lattice" systems. These· 

structures included the diamond, BC-8 and Connell random 
. 4 . 

network structures and represent materials whose local 

atomic configurations are respectively increasingly more dis

ordered. The Connell random network structure is particularly 

interesting since it has a radial distribution function which 

. 10 
agrees very well with that of the amorphous phase In 

addition, it only has even numbered rings of bonds and con-

sequently can be constructed as a binary system·with no like-

a.tom bonds. However, using only topological considerations 

the results here show that this random networkmodel does not 

seem to reproduce features in the DOS as observed experi-

6 7 -
mentally ' for the amorphous binary compounds. These results 

are explained in terms of the very large number of six-fold 

rings of bonds passing through the atoms in this network. 

This work was done in part under the auspices of the U. S. Atomic Energy 
Commission. 
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FIGURE CAPTIONS 

Figure 1 Cluster of atoms in the diamond structure. The 

central or reference atom is labeled 0. ·All 

equivalent atoms are labeled with the same number. 

The Bethe Lattice is connected to the one and two 

dangling bonds of atoms 2 and 3 respectively. 

Figure 2 Densities of states using the one-orbital Hamil-. 

tonian (a) local anion (dotted line) and cation 

(dashed line) densities of states for a binary 

Bethe Lattice and the density of states (solid 

line) of a "zincblende Bethe Lattice" system 

with the cluster of atoms shown in Figure 1. (b) 

The local densities of states for the-anion (solid 

line) and cation (dashed line) for the same "zinc- . 

blende Bethe Lattice" system. The energy is in 

· units of the one orbital interaction ·.parameter V. 

Figure 3 Densities of states using the four orbital Hamil

toniam. (a) local anion (solid line) and cation 

(dashed line) densities of states for a "zincblende 

Bethe Lattice" system with the cluster of atoms 

shown in Figure 1. (b) The density of states 

(solid line) for this "zincblende Bethe Lattice" · 
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system as obtained by adding the local anion and 

cation densitites of states and the density of 

states (dashed line) for a normal crystalline 

zincblende structure. The energy is in units of 

eV and the p-like delta function peak pear -2.7eV 

is not shown. 

Figure 4 Densities of states using the four orbital Hamil-

tonian. (a) local anion (solid line) and cation 

(dashed line) densities of states for a "zinc-

blende Bethe Lattice" system with a cluster con-

taining all ten fold rings of bonds passing through 

the central atom. (b) The density of states for 

this system as obtained by adding the anion and 

cation local densities of states. The energy is 

in units of eV and the p-like delta function peak 

near -2.7 eV is not shown. 

Figure 5 Densities of states using the four orbital Hamil

tonian (a) local anion (solid line) and cation 

(dashed rine) densities of states for a ·binary 

"BC-8 Bethe Lattice" system with a cluster con-

taining all ten fold rings of bonds passing through 

the central atom. (b) the density of states for 

this 'sys tern as obtained by adding the anion and 

cation local densities of states. The energy is in 
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(units of eV and the p-like delta function near 

-2.7 eV is not shown. 

Figure 6 Densities of states using the four orbital Hamil

tonian (a) local anion ( solid line) and cation 

{dashed line) densities of states for one atom 

in the "Connell Cluster-Bethe Lattice" system 

with a cluster containing all ten-fold rings of 

bonds passing through the central atom. (b) the 

density of states for the "Connell Cluster-Bethe 

Lattice" system as obtained by averaging over the 

local anion and cation densities of states of 5 

atoms near the center of the Connell random net

work model. 
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..---------LEGAL NOTICE-----------

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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