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ABSTRACT
In a generai Sturm Liouville System approximations for the least

characteristic value and a corresponding characteristic function are
obtained. The method begins with the construction of a cubic spline.
with uniformly spaced knots in the interval of definitiqn. Then the

generalized Rayleigh quotient is minimized in an iterative process to

obtain the final solution approximation.
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INTRODUCTION
We consider a Sturm-Liouville system
py" + fy' + (g + BNy =0 (1)
y(0) =0 and y(1) =0 @)
with p, f, g and h continuous, and where p >0, f is the derivative of p,
and h'#O, g <0, insuring a positive X\ on [O, 1]. . It is noted that most

second ordef differential equations can be put in this form. Note also

‘that (2) implies

py"(0) + £(0)-y'(0) =0 and py"(1) + £(1) y'(1) =0 (3)
obviously the system (1), (2) is always satisfied by the trivial solution
y(0) =0 (%)
We seek (chgracteristic) values for A for which there are
(characteristic) non-trivial functions which satisfy the\system. The
fheory ﬁf Stuim-Liouville systems as presented in references 1 and é,
establishes the following '
(a) There are a countably infinite number éf characteristic
values.
(b) They are all real and distinct.
{(c) No more than a finite number are negative. . Hence there
is a least charactefistic value.
| ueC>[0,1]

u(0)=0 } is spanned by the set of
u(1)=0 :

characteristic functions and for the scalar product of

(d) The space, U = {u

u, veU defined as:-
1
ﬂ% = .[ uvdx
o

a countable orthonormal‘Eésis for the space can be found

in the set.
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(e) TFor the least characteristic value we have

~

A = min R(u)
uel (6)

where R is the generalized Rayleigh quotient and
1 > 1 5
R(u) = -'[ [u™a + fu'u + gu ]dx/{[ hax . (7)
o o

We propose to find an approximation for \ By use of cubic

splines with uniform;y spaced knots in the interval [O, 1].
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THE SPACE OF SPLINES
For n=z3 and with the knots
x4 ={i“l/n§1} for i=1,...n ‘ - (8)-
- we consider the space, S, of cubic splines which satisfy the boundary

conditions::‘
0

s(o)_ -
s(1) =0 (9)

fof_all_seé. In reference 3, it is established that for a general space .

of cubic splipés on a specified interval and having n knots has’dimen-

sion n+2. But for the particuiar subspacé of ‘S, because of the boundary
“conditions (9), the~dimension must be n. ,
A convenient basis for the'spéce s consists of the cubicﬂsblineé,

: tj, j=1,...n defined as follows:

B ] . o .
tl(xi) =0 - .all.xi,. ‘tl(o) = ;, ti(l) =0 |
) E ' . 1 . ' St
: tj(xi) =655, 4 tj(o)‘=_o, v tj(l) =0 j=2,,..n-1_(}o)
_ tn(xi)‘= o al; X5 s Atn(Q) =0, t,(1)=-1

'it-may be readily verified that {tj}:isia linearly independent set which

spans 8. It is further obvious that any linear combination of the ts is.

J

in 8. : L : v

Now,'it is well known that any ueU can He approximated' by some
: seS, consequently the least characteristic value, A\ can be approximated
' A* = min R(s) = R(s*), _ (11)
o : - seS - o _
We note that s” is not unique since for any cf0

R(cs) = R(s)
However any s 1is an approximation of a characteristic function y -

‘corresponding to A
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THE CUBIC SPLINE APPEOXIMATION

Every s in S is a linear combination of the t;,

s = Tajt; _ (12)

and an é*'is determined by that set of oj, Jelyeeen forvmhich R is
minimized.

We wish'té avoid the trivial solution where aj=0, all j. ..By the

_non-unicity of s¥ it is permiséible to-assign a non-zero value to some

one of the d~; We elect to'set

J
. al=l_

since a3 ='O might easily lead to the trivial soluticn. This selebtioq

will leave us with n-1 coefficients a (3#1) to be determined.

A minimization process on R(s) involving n-1 variables, .

@5, j=2,...n must be_employed.
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THE MINIMIZATION PROCESS

The general R(s) is the quotient of two quadratic expressions

in the unknown aﬁ of the form.

R(S) = A(ae,...an)/B(az,...an) (13)
and
3R _ (g9A _ 4 :;;B_)/B2 (11)
BOJ' » aaj aj _ .
For that set of particular aj which minimizes R we must have
R .
%ET = 0 for j=2,...n
d
QA _ , 3B _ - .
or B 535 A-gzg =0 for a;=2,...n (15)

" We employ a minimizing procedure, reference h, due to

-W.C. Davidon-in order to compute the mihimizing set {aj}.

This procedure permits us, initially, to set @) =1 in constraint,

to assign guesses to the other a5, j=24...n values and, then, permitting

the guesses to vary, to generate sets of aj‘scalars, thus‘mihimizing R.

In the Fortran code written for this problem, Eq. (12) takes on

this contracted form: :
n 'n

2 E A i
j=1 k=1 Sjk k

Rlay) = o= 2=t 9% (16)
: z = Bjk ;%

J=1 k=1
where the . coefficients are defined by the foliowing integfals

l [ " 1] V

Ajk =-£ Sjsk + fsjsk_+ gsjsk]dx (17)

. v .
BJk =f thSk dx - (18)

(o]
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The coefficients of equations (17) and (18) are calculated
prior to minimization. Except for the input guesses shere the aﬁ's.
are specified, the minimization routine computes and optimizes on
each iteration a new set of a;. Thereupon our Fortran code uses
equation (16) to calculate a new R(aj), and also the partiél derivatives
of equafion (14). (There are as many of these partials as there are
dimengions in the cubic spline space.) Once the partial derivatives
are calculated they are returned to the minimization routine where.a
new set of os's are obtained. This process is repeated until there is
no significant reduction in the value of R. Then the current set of
aj.is accepted as minimized.

The cubic spline, which minimizes R is obtained by

= Toy t (19)

‘where the t. are the bLasic éplines. We then approximate A by the

corresponding R and finally the eigen function itself by (19), where

y o=s*,
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Error Discussion

Once we have found L* an approximation for X and s*an approxi-

mation for the elgen function y, we may substitute in Eq. (1) for
m1d -point values between knots.v In the examples we give we will -
calculate s", s! and s at mid-poinﬁs._ Then we calculate as a measure

of the error o

en = PpSp + fpsp + (g + hmﬁf) Sm » | ~(20)

and as an overall measure of the error

=MaXIel : (21),_

) Thls approach to error analysis 1s dlrect and glves in one"
figure a measure of epprox1mat1on erro:s.from the elgenvalue and the,v
- ay coefficients.

The detalls of the process descrlbed thus far will be made

clearer in the numerlcal examples of the next sectlon

and a3 auﬁomatically satisfies the boundary conditions.
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NUMERICAL EXAMPLES
Example 1

In this example we treat the very simple case where in (1).

p=1 :
2 : 8 on [0, 1]
~h=1-
yielding Yy 4ly =0 . (22)
Cwith . y(0) =0 , y(1) =
from (20); y'(0) =0 and y"(1) =0

Our equaﬁion has an analytic solution:

A

- 9.86960& with
¥y =CS8in mX. cfo
Suppose n=3, where krots are O 1/2 and 1 let us compute the

basic spl1nes, where, we assume

|
o

tl(o) o} 3 tz(o)’=.o , t3{oj =

1
o

Q) =0, 1) 0, £0) -

We arrange values for the splines in-three arrays. Theispline
function array together with the underlined values in the first deriv- .

ative array define the splines.

The other values ere calculated:

t 1
t2 t3

1 b t3

Any linear combination of the basic splines with any s @p
Arbitrarily

choosing @ = 1,

[
|

= tl + a2?2 + a3t3

/]
]

" " "
‘51 + a2t2 + Q3t3

/
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Substituting s for y and s" for y" in equation (22), we have
"
ty + aet; + a3tg + Mty + apty + a3t3) =0

Evaluating at x=0, and 1 we obtain

n

' t;(O)az + t;(o)a3 -;'i‘(o)

| .t;(l)az + 1;'_;)(1)‘,3 -t;(l)

Employing combuted’values of the second derivative,

1/3 and @3 =1.

]

%2

Hence _ s ty + 1/3ty + tg

Then R(s) = -fl

o
possible s* = s and A* = 9.882353.

ss"dﬁ/jlszdx = 9.882353. Since no minimization is
o : : '

With 5 knots (n=5), x=0, 1/4, 1/2, 3/4 and 1. The basic-spline
functions are chosen as shown, with the two boundary conditions: v

imposed: tj(O) =0 and tj(l) = 0, j=l,...5

ty by t3 b, t ottty oy to

o Jo 9 & 0 9 0 1 o 0 9 9
25 10 1L 0 0 0 25 |-.27 -8 3 -.86 -.018
S g 0 1 0 9 5 [--07 -3.4 0 3.b -.07
75 Jo -0 0 1 92 .75 |-.018 -.86 -3 -.86 -.27

1 ] ¢ 2 9 Q@ 1.{ 0 o o0 [¢] -1

In thé array of first derivatives ti(o) =1 and té(l) = 21 so that at
none of the basic splines will be zero to avoidAthe trivial
solutioﬁ; All other vglues of t5(05 = 0 and té(l) = 0. Choose these
for convenience. R ’

Here again, as with 3 khots, the entire spline function array
together with the underlined values of the first derivative array define

the splines. The other values of the first derivative are calculated,

as are all the second derivative values:
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" " " 1"

ty by t3 i tg

0 [ RER:! B9 2k 6.8 -.1k
.25 3.7 -82 48 -1k -.28
.5 -1 48 -72 48 -1
.75 .28 14 L8 .82 3.7
1 -.1h4 6.8 -24 89 -14

These values completely determine a set of five basic splines
shown in the plots of Figure 1. The second derivatives are necesséry
for computing the integfals_of equations (17) and (18).

For the minimization routine a set of guesses must be‘madelfor
the coefficients a5,
the trivial solution. We submit as guesses:

| {oj0} ='{1’1’¥’1’1}

The following values of {ajk} and the cofrespohding values of

j=2,...5 with @y always kept at 1, thus preventing

) _X_:Rk =X a’jtj are shown for several of 26 total computer iterations:

{opd ={o @ ey @p e} A
k=1 {1, .865, 1.25," .865 1.0} 10.7365
k=5 {1 .601 869  .612 .146} 10.3502
k=15 {1 340 - .501  .363  1.85} .9.99320
k=20 {1 219 .31 .225  1.06} 9.87747
k=25 {1 225 .38 225 1} 9.869700
k=26 {1 .225 318 .225 1} 9.869700

We note that five basic splines yield a better approximation to.the
analytic solution for )\ than did three.

Figure 2 shows the solution of y" + Xy = 0. To better show
continuity in a plot on a given interval, two méthods might be employed:

g) interpolate by a Taylor's expansion for values between the knots,

or, b) employ a sufficiently large number of knots, i.e. basic splines.
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{ FIRST BASIC SPLINE

SEC

OND BASIC SPLINE

_THIRD BASIC SPLINE

';';ffa

FOURTH BASIC SPLINE -

: :
S T T . 1
: ‘| FIFTH BASIC SPLINE ]
o 0.2 04 0.6 0.8 10
| fig. 1
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Figure 2 shows a double plot. One is based on five knots or

five points without interpolation. The other results from a Taylor's

. expansion about these five points and is plotted for 5- points within

the interval.
Example 2
For a second.examﬁlg, start with
y = e¥ sin Yx | (23)
from the first and second derivatives of (23), setting A= 1 + Y2, we
obtain | | |
y' -2yt +Ay =0 ~(2h)
or ’ | ‘
e-2xyu _ 2e-2xy. + e-‘2x)\y =0 (25)

on [0,1] with y(0) = y(1) = O. Then

p = e~2x
f=-2p
- (26)
g=0
bh =p

Equations (26), specific for each problem, are entered into the Fortran .

code by é separate routine.

We.note that identical boundary conditions on the interval
[0,1] permit use of the same basic spline space as discussed in
example 1, The Fortran code is generalized to accqmodate any reason-

able number of basic splines. As in example 1, initial guesses
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for 'the os's are inputted, one for each a.

The analytic answers for example 2 are:

_X_=l+‘n’2=

ex

1l

¥ =

10.86960L

sin mx

‘The following values of A are shown for several of the 37

iterations k:

A

20.074721
11.297976
11.092549
10.993930
10.871439
10.871063
10.869790
10.869606
10.869604

Figure 3 shows the solution of Equation {24). Note that the

plot of Figure 3 employing 11 knots has practically the same resolution

as the 50 pdint plot derived from these 11 knots by a Taylor's expansion.

‘In all the examples tried with our Frotran code the error by

equation (20) is reduced by taking a

greater number of basic splines.

In examples 1 and 2 the maximum error, e (21) is shown in the following

table:
Basic: Example 1 Example 2
Splines e : e
3 0.154 0.124
5 0.078 0.029
11 . 0.013 0.0099
.21 0.003 0.003
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' Cbmpﬁter Code

Computer code SIGSLY (Eigenvalue by Splines) is written in

- Fortran for the CDC 6600. A 1isting'of this program and the (Lawre@ce

" Berkeley) 1ibfary subroutiné:VARMIT, an application of Davidon's

ﬁinimization'routine,-reference 4, together with othe;‘called sub-

" routines aréfavailable from_thé author.

Conclusion:
" The method presented here is a possible approach to the -
‘solution of eigemvalue problems of one dimensidnff It has the merit of

simplicity in formulation and computation. The cubic spline approx- .

imation ié-amengble to interpolation, that is, it is easy to inter- -

polate, since the spline is a cubic on each sg&ller éegment in the

interval in the independent variablé;."Thus we use terms to_the third

" order in a.Taylor's expansion and get an éxact:intérpclation. -

The smallness of the error at mid point shows that we'héye a
reasonable approximatibn to the:least_eigenvalué_and-the co:respénding;

eigen function.
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Figure Captions
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A set of five basic splines on the interval [0,1] used in

solving y' +\y = 0 and y" - 2y" +Ay = O.

Solution of

¥(0) = y(1)
Solutién of
¥(0) = y(1)

y" +\y = O on the interval [0,1],

0.

y' - 2y' +Ay = O on the interval {0,1],

0.



LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.




xm, V:r

]

L

VS




