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ABSTRACT 
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In a general Sturm Liouville System approximations for the least 

characteristic value and a corresponding characteristic function are 

obtained. The meth~d begins with the construction of a cubic spline 

with uniformly spaced knots in the interval of definition. Then the 

generalized Rayleigh quotient is minimized in an iterative process to 

obtain the final solution approximation • 
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INTRODUCTION 

We consider a ~turm-Liouville system 

py" + fy' + (g + hA.)y = 0 

y(O) = 0 and y(l) = 0 
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(1) 

(2) 

with p, f, g and h continuous, and where p >0, f is the derivative of p, 

and h>O, gsO, insuring a positive X. on [o, 1]. It is noted that most 

second order differential equations can be put in this form. Note also 

that {2) implies 

py"(O) + f(O)·y'(O) = 0 and py"(l) + f(l) y'(l) = 0 (3) 

ri~ obviously the system (1), (2) is always satisfied by the trivial solution 

• 4 

y(O) : 0 (4) 

We seek (characteristic) values for X. for which there are 

(characteristic) non-trivial functions which satisfy the 'system. ~he 

theory of Sturm-Liouville syste~s as presented in references l and 2, 

establishes the following 

(a) There are a countably infinite number of characteristic 

values. 

(b) They are all real and distinct. 

(c) No more than a finite number are negative. Hence there 

is a least characteristic value. 

(d) { I 
UEC2(0,1)} 

u u(O)=O is 
u(l)=O 

spanned by the set of The space, U = 

characteristic functions and for the scalar product of 

u, vEU defined as: 

1\ 11 uv = uvdx 
0 

a countable orthonormal basis for the space can be found 

in the set. 
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(e) For the least characteristic value we: have 

1. = min R(u) 
UEU (6) 

where R is the generalized Rayleigh quotient and 

-! 1 I 1 
R(u) = [u"u + fu'u + gu

2 ]dx J 
0 0 

We propose to find an approximation for 1. by use of cubic 

splines with Uniformly spaced knots in the interval [o, 1]. 

(7) 
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THE SPACE OF SPLINES 

For n~3 and with the knots 

xi ={i-lfn-1.} for i=l, .•. n (8) 

we cons.ider the space, S, of cubic splines which satisfy the boundary 

conditions: 
s(o) = o 

s(l) = 0 
(9) 

for all sES, In reference 3, it is established that for a general space 

of cubic splines on a specified interval and. having n knots has dimen-

sion n+2. But for the particular subspace of S, because of the boundary 

conditions (9), the dimenSion must ben. 

A convenient basis for the space s consists of the cubic splines, 

'tj, j=l, ••• n defined as follows: 

all x
1

, tl (xi) = 0 t~(o) ' = 1, ti (1) = 0 

tj(xi) = oij' ' t~(l) (10) tj(O) = o, 0 j=2, ••. n-1 

tn(xi) = 0 ' ' tn(O)'= O, tn(l) -1 all xi, 

rt may be readily vehfied that { tj} is a linearly independent set which 

spans S. It is further obvious that any linear combination of the. t j is . 

inS. 

Now, ·it is well known that any ueU can be approximated by some 

SES, consequently the least characteristic value, ~ can be approximated 

by 

A*= min R(s) - R(s*), 
SES 

We note that s*·is not unique since for any cfo 

R(cs) = R(s) 

However any s is an approximation of a characteristic function][, 

corresponding to A. 

(ll) 
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THE CUBIC SPLINE APPEOXH:J..TION 

Every s in S is a linear combi~ation of the tj, 

s .. !: ajtj (12) 

and an s* is determined by that set of aj, j=l, ••. n for ,which R is 
' 

minimized. 

We wish to avoid the trivial solution where o-j:O, all j. By the 

. non-unicity of s* ·it is permissible to assign a non-zero value to some 

one of the ~j· We elect to set 

since a 1 = 0 might easily lead to the trivial. solutic:L This selection 

will leave us with n-1 coefficients aj (#1) to be determined. 

A minimization process on R(s) involving n-1 variables:. 

aj, j=2, ..• n must be employeci. 

• • 
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THE MINIMIZATIOH PROCESS 

The general R(s) is the quotient of two quadratic expressions 

in the unknown aj of the form 

RCS) = A(a2 , ••• an)/B(a2 , ... an) 

and 

For that set of particular aj which minimizes R we must have 

aR = o f · 2 or J= , ••• n 
aaj 

or 0 

We employ a minimizing procedure, reference 4, due to 

W.C. Davidon in order to compute the minimizing set {aj}· 

(13) 

(14) 

(15) 

This procedure permits us, initially, to set a 1 l in constraint, 

to assign guesses to the other aj, j=2, •.• n values and, then, permitting 

the guesses to vary, to generate sets of aj scalars, thus minimizing R. 

In the Fortran code written i'<;'r this problem, Eq. (12) takes on 

this contracted form: 
n n 
::E ~1 Ajk ajak 

R(aj) j=l 
n n 
::E ::E Bjk ajak 

(16) 

j=l k=l 

where the coefficients are defined by the following integrals 

(17) 

(18) 
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The coefficiPncs of equations (17) and (18) are calculated 

prior to min~mization. Except for the input guesses fihere the a.'s 
J 

are specified, the minimization routine computes and optimizes on 

each iteration a new set of aj. Thereupon our Fortran code uses 

equation (16) to calculate a new R(a), and also the partial derivatives 

of equation (14). (There are as many of these partials as there are 

dimensions iri the cubic spline space.) Once the partial derivati~es 

are calculated they are returned to the minimization routine where a 

new set of a 's are obtained. This process is repeated until there is 
j 

no significant reduction in the value of R. Then the current set of 

aj is accepted as minimized. 

The cubic spline, which minimizes R is obtained by 

(19) 

where the t~ are the basic splines. We then approximate ~ by the 

corresponding Rand finally the eigenfunction itself by (19), where 

Y:::. s*. 
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Error Discussion 

Once we have found ~ * an approximation for >.. and r! an approxi

mation for the eigen function y, we may substitute in Eq. (l) for 

mid-point values between knots. In the examples we give we will 

calc::ulate s", s' and s_at mid-points. Then we calculate as a measure 

of_the error 

·(20) 

and as an overall measure of the ~rror 

(21) 

This approachto error analysis is direct and gives in one· 

figure a measure of approximation errors from the eigenvalue and the 

aj coefficients. 

The details of the process described thus far willbe made 

clearer in the nwnerical examples of the next section. 
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NUHSRICAL EY.A."fPLES 

Example 1 

In this example we treat the very "simple· case where in (1). 

yielding 

with 

from (2o), 

p = 1 
f = 0 
g = 0 
h = 1· 

on [o, 1] 

y" + >..y = 0 

y(O) = 0 y{l) = 0 

y'' {0) = 0 and y" (1) = 0. 

Our equation has an analytic solution: 

-~ = w
2 

= 9.869604 with 

y = C Sin tiX. C#O 

(22) 

Suppose n=3, where knots are 0, l/2 and l; let us compute the 

basic splines,' where, we assume 

0 

0 

We arrange values for the splines in three arrays. The. spline 

function array together with the llnderlined values in the first deriv-

ative array define the splines. The other values are calculated: 
r r r " " " tl t2 t3 tl t2 t" 

3 tl t2 t3 
0 Q 0 Q 0 1 0 0 0 -7 2 -1 

.5 0 1 0 .5 -.2 0 .25 ·5 2 -24 2 
1 0 0 0 1 0 0 -1 1 -1 24 -7 

Any linear combination of .the basic splines with any a1, a2 

and a3 automatically satisfies the boundary conditions. Arbitrarily 

choosing a1 = 1, 

s 

tl " s" tl + a2t2 + a3t3 

' 

• • 

' 
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Substituting s for y and S
11 for y11 in equation (22), we have 

Evaluating at x=O, and 1 we obtain 

Employing computed values of the second derivative, 

Hence 

a 2 = 1/3 and a3 = 1. 

s = tl + l/3t2 + t3 

LBL-356 

Then R(s) = - Ll ss
11 dx/ t s2dx = 9.882353. Since no minimization is 

possibles*= sand~*= 9.882353. 

With 5 knots (n=5), x=O, 1/4, 1/2, 3/4 and 1. The basic-spline 

·'"':~ functions are chosen as shown, with the two boundary conditions·· 

I I I I I 

tl t2 t3 t4 t5 t~ t2 t3 t4 t5 
0 Q Q Q 0 0 0 ~ 0 Q 0 0 

.25 Q .;!, Q Q Q .25 -.27 -."86 3 -.86 -.018 
-5 Q Q .;!, Q Q -5 -.07 -3.4 0 3.4 -.07 
-75 Q Q Q 1 Q -75 -.018 -.86 -3 -.86 -.27 

1 Q Q Q Q Q 1 0 0 0 0 -1 

In the array of first derivatives t~(O) 1 and t5(1) -1 so that at 

none of the basic splines will be zero to avoid the trivial 

... . solution. All other values of tj(o) = 0 and tj(l) = 0. Choose these 

for convenience. 

Here again, as with 3 knots, the entire spline function array 

together with the underlined values of the first derivative array define 

the splines. The other values of the first derivative are calculated, 

as are all the second derivative values: 
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II " II " " tl t2 t3 t4 t5 
0 

r·" 
89 -24 6.8 -.14 

.25 3.7 -82 48 -14 -.28 

.5 1 48 -72 48 -1 
• 75 .28 -14 48 -82 3.7 
1 -.14 6.8 -24 89 -14 

These values corepletely determine a set of five basic splines 

shown in the plots of Figure 1. The second derivatives are necessary 

for computing the integrals of equations (17) and (18). 

For the minimization routine a set of guesses must be made· .for 

the coefficients aj, j=2, ..• 5 with a1 always kept at 1, thus preventing 

the trivial solution. We submit as guesses: 

{o jo} = {1,1,1,1,1} 

The following values of {ojk} and the corresponding values of 

1~Rk = J;. ojtj are shown for several of 26 total computer iterations: 

{ojk} = {ol' 02' 03' 04' a5} ; ~ 

k=l { 1, .865, 1.25'. .865 1.01} 10.7365 

k=5 {1 .601 .869 .612 .146} 10.3502 

k=l5 {1 .340 .501 .363 1.85} .9.99320 

k=20 {1 .219 .311 .225 1.06} 9.87747 

k=25 {1 .225 .318 .225 1} 9.869700 

k=26 {1 .225 .318 .225 1} 9.869700 

We note that five basic splines yield a better approximation to. the 

analytic solution for~ than did three. 

Figure 2 shows the solution of y" + >.. y = 0. To better show 

continuity in a plot on a given interval, two methods might be employed: 

~) interpolate by a Taylor's expansion for values between the knots, 

or, b) employ a sufficiently large number of knots, i.e;··basic splines. 
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Figure 2 shows a double plot. One is based on five knots or 

five points without in~erpolation. The other results from a Taylor's 

expansion about these five points and is plotted for 5- points within 

the interval. 

Example 2 

For a second example, start with 

y = ex sin Yx (23) 

2 from the first and second derivatives of (23), setting A= 1 + Y , we 

obtain 

y" - 2y' + AY = 0 (24) 

or 

(25) 

on [O,l] with y{O) = y{l) = 0. Then 

p = e-2x 

f = -2p 
. (26) 

g=O 

h = p 

Equations {26), specific for each problem, are entered into the Fortran 

code by a separate routine. 

We note that identical boundary conditions on the interval 

[O,l] permit use of the same basic spline space as discussed in 

... 4 example 1. The Fortran code is generalized to accomodate any reason-

able number of basic splines. As in example 1, initial guesses 
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for 'the aj's are inputted, one for each a. 

The analytic answers for example 2 are: 

~ = 1 + ~2 = 10.869604 

y = .! ex sin ~ x 
~ 

The following values of A are shown for several of th~ 37 

iterations k: 

k ~ 

1 20.074721 
5 11;297976 

15 11.092549 
20 10.993930 
25 10.871439 
30 10.871063 
35 10.869790 
36 10.869606 
37 10.869604 

Figure 3 shows the solution of Equation {24). Note that the 

plot of Figure 3 employing 11 knots has practically the same resolution 

as the 50 point plot derived from these 11 knots by a Taylor's expansion. 

In all the examples tried with our Frotran code the error by 

equation (20) is reduced by taking a greater number of basic splines. 

In examples 1 and 2 the maximum error, e (21) is shown in the following 

table: 

Basic Example 1 Example 2 
S;elines e e 

3 0.154 0.124 
5 0.078 0.029 

11 0.013 0.0099 
21 0.003 0.003 
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Computer Code 

Computer code ~IGSLY (Eigenvalue by Splines} is written in 

Fortran for the CDC 6600. · A listing of this program and the {Lawrence 

Berkeley} library subroutine VARMIT, an application of Davidon's 

minimization routine, reference 4, together with oth~r called sub-

routines are available from the author. 

Conclusion 

The method presented here is a possible approach to the 

Solution of eigenvalue problems of one dimension.· It has the merit of . , .-

simplicity in formulation and computation. The cubic spline approx- . 

~ imation is amenable to interpolation, that is, it. is easy to inter~ 

~ polate, since the spline is a cubic on each smaller segment in the 
.. , 

interval in the iildependent variable. Thus we use terms to the third 

order in a-Taylor's expansion and get an exact interpolation. 

Th~ smallness of the e"rror at mid point shows that we have a 

reasonable approximation to the least eigenvalue and the corresponding; 

eigen function. 
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Figure Captions 

A set of five basic splines on the interval [O,l] used in 

solving y" + ~Y "' 0 and y" - 2y' + ~y "' 0. 

Solution of y" +~y"' 0 on the interval [O,l], 

y(O) "' y(l) "' 0. 

Solution of y"- 2y' +~Y "'0 on the interval [O,l], 

y(O) "' y(l) "' 0. 
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