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Abstract 

In this dissertation, I discuss the phenomenology of new massive 

neutral gauge bosons, or Z' bosons, concentrating on experimental 

tests by which the properties of a Z' boson could be determined. 

In Chapter I, I briefiy review the Standard Model of elementary 

particle physics, and discuss the motivation for extending it. I review 

some of the extensions to the Standard Model· that predict the exis

tence of Z' bosons, and present a general, model-independent parame

terization of the Z''s properties, as well as a simpler parameterization 

that applies to the most important class of models. In Chapter II, 

I discuss present-day limits on the existence of Z' bosons, both from 

direct searches, and from indirect higher-order tests. 

*This work was supported by the Director, Office of Energy Research, Office of High 
Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of 
Energy under Contract DE-AC03-76SF00098. 
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In Chapter III, I discuss the production and discovery of a Z' 

at a future hadron collider, such as the CERN Large Hadron Collider 

(LHC). Discovery of a Z' at the LHC may be possible if its mass is less 

than 5 TeV. I also discuss the experimental tests of its properties that 

could be performed at such a collider, emphasizing the measurement 

of leptonic asymmetries. 

Finally, in Chapter IV, I discuss the experimental tests that could 

be performed at an e+e- collider with ...jS = Mz•. I include several 

higher-order effects, such as initial-state radiation and beamstrahlung, 

whose inclusion is necessary for a realistic description of the experi

mental environment at a very high energy e+e- collider. 

The combination of leptonic and hadronic experiments permits the 

measurement of all of the parameters discussed in Chapter I. 
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Chapter 1 

Introduction 

1.1 The Standard Model 

All known experimental results in elementary particle physics are described by, 
or at least are consistent with, the so-called "Standard Model," a non-abelian gauge 
theory [1) based on the gauge group SU(3) x SU(2) x U(1), or G32l· To establish notation, 
I discuss the main features of the Standard Model. 

Every gauge theory necessarily possesses one massless spin-1 field for each gen
erator of the gauge group. For the Standard Model, these twelve gauge bosons are the 
eight gluons Gi, (corresponding to the generators ofSU{3)), the three W bosons, W1, W2, 
and W3 (corresponding to the generators of SU{2)), and the B boson (corresponding to 
the generator of U(1)). The gluons mediate the strong interaction, while the W and B 
bosons mediate the electromagnetic and weak interactions. 

In addition to the gauge bosons, which are the minimal particle content of any 
gauge theory, the most general renormalizable gauge theory [2) may also contain spin-0 
and spin.:.~ fields. The Lagrangian for the most general gauge theory based on G321 may 
be written 

(1.1) 

where Ck contains the gauge bosons' kinetic energy terms, C1 contains the fermions' 
kinetic energy term, C8 contains the scalars' mass term, kinetic energy term, ·and self
interactions, and Cy, the Yukawa sector, contains interactions between the fermions and 
the scalars. Because the scalars' and fermions' kinetic energy terms involve the covariant 
derivative Dll, given in Eq. (1.6), their kinetic energy terms imply interactions between 
the gauge bosons and the scalars and fermions. Explicitly, the terms in Eq. (1.1) are 

ck = 1 Bll"' B 1 Wll"'W 1 Gil"' G -4 pv- 4 i pv,i- 4 i pv,i, (1.2) 

Cs = (DP~)t (Dp~)- V(~), (1.3) 

c, = q, ( iQ>) '11' (1.4) 

Cy = H('ll, q,;~), (1.5) 

where V(~) contains all scalar interactions of quartic and lower order that are invariant 
under G3211 and H(ii!, ~)contains all interactions that are linear in '11, q,, and~' and that 
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Table 1.1: Particle content, and SU(3), SU(2), and U(l) quantum number assignments, for the 
first generation of fermions. The Higgs boson, ~, is not part of any of the three generations, and 
is listed here only for convenience. 

Particle SU(3) multiplet SU(2) multiplet y 

QL triplet doublet 1/3 
LL singlet doublet -1 
UR triplet singlet 4/3 
dR triplet singlet -2/3 
eR singlet singlet -2 
q> single~ doublet 1 

are invariant under Lorentz transformations and under G321· The quantities BJj11
, Wt 11

, 

and Gf11 are the gauge bosons' field strength tensors, and DJj, the covariant derivative, is 
given by 

DJj = 8Jj + ig LGI!' + igT.· W!' + ig' y BJj 
· Bl1 I l 2 • (1.6) 

The constants g11 , g, and g' are, respectively, the coupling constants of SU(3), 
SU(2), and U(1), and h Ti, and Y/2 are a representation of the gauge group's generators. 
To specify the theory fully, it suffices to choose some specific representation, that is, to 
choose the quantum numbers of the fermion and scalar states. 

In the Standard Model [3], these states consist of a single complex scalar that 
transforms as a singlet under SU(3) and a doublet under SU(2), and three "generations," 
each of which consists of 15 massless fermions arranged into singlets and triplets of SU(3) 
and singlets and doublets of SU(2). This decomposition into irreducible representations 
of SU(2) and SU(3) specifies I and T completely, but Y is still an arbitrary diagonal 
matrix, subject only to the condition 'that every particle i in an SU(2) or SU(3) multiplet 
must have the same value of Yi. The Standard Model quantum number assignments are 
summarized in Table 1.1. The symbol QL in Table 1.1 refers to the left-handed up and 
down quarks, and LL refers to the left-handed electron and electron neutrino. The right
handed up quark, down quark, and electron are UR, dR, and and eR. The scalar doublet 
can be written explicitly as 

(1.7) 

where both ¢>+ and 4>0 are complex scalar fields. 
Given these particle assignments, it is possible to write down the most general 

form for the functions V and H that appear in Eqs. (1.3) and (1.5). The scalar and 
Yukawa sectors ofthe theory are 

Cs - (DJjq>)t(DI'q>)+JL2q>tq>-~.,x(q;tq;) 2 , and 

Cy - -heeRq>tLL- hddRq>tQL- huilRq>!QL + h.c., 

{1.8) 

(1.9) 

" 

,, 
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where J.t is a constant with dimensions of mass, and )., he, hd, and hu are dimensionless 
constants. The field ~cis the charge conjugate of~, defined as 

(1.10) 

where u2 is one of the familiar Pauli matrices. As in Table 1.1, Eq. (1.9) contains the. 
couplings only for a single generation of fermions. The generalization to the full three 
generations of the Standard Model is straightforward. 

Eq. (1.1) describes a world where all gauge bosons and fermions are massless; 
this is not the world we live in. The Standard Model exhibits spontaneous symmetry 
breaking [4]. That is, although the fundamental Lagrangian is invariant under the gauge 
group G321 , the ground state of the theory is not. Specifically, the scalar potential, 
Eq. (1.8), is minimized not for¢>= 0, but for 1~1 2 = v2, with v2 = ~· The true vacuum, by 
definition, is the state of minimum energy, so ~ must have a nonzero vacuum expectation 
value, with 1(~)1 2 = v2 • The ground state, then, is not invariant under G321· Forming a 
perturbative expansion about this ground state yields an effective Lagrangian that is not 
invariant under G321, but merely under SU(3) x U(l)EM· The factor U(l)EM is not the 
U(1) factor of G321 ; it is generated by a linear combination of that group's generator and 
the diagonal generator of SU(2), and it is the gauge group of electromagnetism. 

Straightforward but laborious algebra yields the Lagrangian 

.c = ~ (8p.w:- avw:) (a~w-v- avw-")- ~ (8"w:) (a~w;) (1.11) 

lg2v2w+. w--! {8 z -a z )2
- ..!_ (a~z )2 +! (-=-) 2 

v2Z2 
+ 4 4 ~ v v ~ 2~ ~ 8 sc 

! (a A -a A )2 - _!_ (8" A )2 -! (a Ga- a Ga) (a~Gv,a- 8"GP.•a) 4 p.v vp. 2~ p. 4 p. 11 lip. 

..!_ (a~ca) 2 
+ !aP.h8 h- !).v2h2 + !a~'¢08 "'0 -! (-=-) 2 

~v2 ¢>02 
2~ . p. 2 " 2 2 p.'f' 8 sc .. 

+ a~¢>+ap.¢>-- tY2~v2 ¢>+ ¢>-- !9
2 [ (w+. w-)2 - (w+)2(w-)2] 

e2 [A2 (~+. w-)- (A· w+)(A · w-)] 

- c2g2 [z2(w+. w-:)- (Z. w+)(Z · w-)] 
- ec9 [2(A. z)(w+. w-)- (A. w+)(Z. w-)- (Z. w+)(A. w-)] 

+ ie [a" A"W;w: + a"W-"W: Av + a~'w+J Ap. W;] + h.c. 

+ icg [a~ Z"W~-w: + a~w-".W: Zv + a~w+v Z~ wv-] + h.c. 

• - tY;(aa. Gc)(Gb. Gd)fabe JCde- !Ys (a~G~- avG~) G~·aGv,brbc 

).v h3 - ~h4- .Av h¢>o2 - ~¢o4- ~h2¢>o2 - v>.h¢>+ ¢>-- !>.h2¢>+ ¢>-
2 8 2 8 4 2 

!>.¢02 ¢+ ¢>- - !.A(¢>+ ¢>-) 2 + (ieAP.¢+ap.¢>- + h.c.) 

+ (i-=-{1- 2s2)Z~¢>+a ¢- + h.c.) + ..!.._z" (¢>08 h- h8 ¢0
) 

2 sc P. 2sc P. " 



+ [~9w+P (hap</>- - ¢~aph) + !9w+P ( 4>- aP¢0 
- ¢08P¢-) + h.c.] 

+ (..!:_) 2
vhZ2 + llvhW+ · w- + (e2 

~¢-w+ ·A+ h.c.) 
2sc 2 s 2 

(
e

2 ~¢-w+. z + h.c.) + !g2h2w+. w- +! (~) 2 

h2Z 2 
c 2 4 8 sc 

+ !g2¢o2w+. w- +! (~)2 </>o2 z2 + e2¢+¢- A2 +.ll¢+¢-w+. w-
4 8 sc 2 

+ (..!:.__) 
2 

(1 - 2s2 ) 2¢+ 4>- Z 2 + e
2 

(1 - 2s2)¢+ 4>- A· Z 
2K K · 

+ [e
2 
h¢-w+.A- e

2 
h¢-w+.z + ie

2 
4>0¢-w+.A- ie

2 
4>0¢-w+.z + h.c.] 

2s 2c 2s 2c 

+ apfi+8P11+ -lg2ev217+11+ + 8p17-8P17- -!lev217-11- + 8p.17z8P11z 

+ aPrrap11a - igsrbc8pf/GP.·b11c 
2 . ' 

( ..!:.__) ev217z11z + ap.17..,ap.11-y + ie ( ap.fi+ 11+ - ap.17-11-) AP 
2sc 

+ e (i8p17-y11- w+p- i8p.17+11..,w+p + h.c.) + igc(ap17+11+- ap.fi-11-) ZP 

( ·a- w+p ·a- w+P.+h ) 92ev(h- +h- ) + gc t p17z11- - t p17+11z .c. - -
4

- 11+11+ 11-11-

(2:c) 2ev hfiz11z + ig:ev (4>0 fi-11-- 4>017+11+)- eg;v (4>+17+11.., + 4>-fi-11..,) 

e
2
ev( 2) ( +- -- ) e

2
ev (A.+- A,-- ) -4 2 1- 2s </> 11+11z + </> 11-11z + -4 2 'f' 17z11- + 'f' TJz11+ s c s c 

+ ii (ifJ) v + e (ifJ- me) e + u (ifJ- mu) u + d (ifJ- md) d 

me eeh - mu uuh - md ddh 
v v v 

.me_ o .md- do .mu_ o r.;me (-l-Is,~..- h ) t-e"{se</> - t-d"{s </> + t-U/su</> - v 2- e--v., + .c. 
v v v v ' 2 

V2 [d- ( mu + md mu - md ) A._ h ] ___;; _ ___:;. + "15 u., + .c. 
v 2 2 

9 ( 1 - /5 1 - /5 ) A0 
- A0 

V2 ;;;w+-2-. -e + uw+-2-d + h.c. + 9sii(r2u + 9sdCia2d 

+ e eje + ~edjd- ~euju -! :c v$(1- -y5)v + l :/+ ( 1- 4s2 - "Ys) e 

l :c u$ ( 1- ~s2 :.. "Ys) u + l :c ii¥ ( 1- ~s2 - "Ys) d, 

4 

where A and Z, the photon and the Z boson, are linear combinations of the W3 and the 
B; e is an arbitrary real dimensionless parameter that determines a particular gauge; lAa 
are the Gell-Mann SU(3) matrices and rbc the SU(3} structure constants; ¢+, 4>-, and ¢0 

are unphysical Goldstone bosons resulting from the symmetry breaking; and 17+, 11-, 17..,, 
TJz, and TJa are the unphysical Faddeev-Popov ghosts that arise (5] from the quantization 
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of a non-abelian gauge theory in a covariant gauge. · 
The parameters e, s, and c that appear in Eq. (1.11} are combinations of pa

rameters that appear in the unbroken Lagrangian. Specifically, s and c are abbreviations, 
respectively, for sin 8w and cos 8w, and 

tan8w 
g' 

(1.12} - g' 

gg' • I 
(1.13} e - y' 2 2 = gsm8w = g cos8w. 

g +g' 

Similarly, the particle masses are defined in terms of the parameters of Eqs. (1.8) 
and (1.9). The mass of a fermion f is given by 

(1.14} 

The masses of the W and Z bosons, and of the Higgs boson, are 

Ma. = t92V2 (1.15) 

Mj = l g2v2 = l ( ..=_) 2 v2 
4 c2 4 sc (1.16) 

mk = .Xv2• (1.17) 

The vacuum expectation value v is directly related to the Fermi constant, the effective 
strength of low-energy weak interactions, which is defined as 

(1.18} 

Experimentally, v = 246 GeV. 
The photon and the Z, which arise from the requirement that the mass matrix 

of physical fields be diagonal, are defined by 

A~' - sin 8w Wf + cos 8wB" 

Z~' - cos 9w Wf - sin 8wB". 

(1.19) 

(1.20) 

Eq. (1.11) is rather formidable, but, fortunately, much of the complexity can be 
made to disappear. The gauge-fixing parameter e is arbitrary; for tree-level calculations 
it is convenient to work in the so-called unitary gauge, where {-+ oo'[6]. In this limit, the 
unphysical Goldstone bosons become infinitely massive and deco.uple from any physical 
processes. The Faddeev-Popov ghosts do not appear at all until the one-loop level, so, 
for tree-level calculations in unitary gauge, it is possible to ignore all terms in Eq. (1.11) 
that involve either ghosts or Goldstone bosons. 

An abbreviated version of the Standard Model Lagrangian, suitable for tree-level 
calculations in unitary gauge, is 



£= l (a w+ - a w+) (EJ~lw-v - avw-p) 2 llv vll 

+ ~g2v2W+ · w-- ~ (allzv- 8vZil) 2 +~(sec) 
2 

v2 Z 2 

l (a A -a A )2 .... l (a Ga.- 8 Ga.) (allGv,a.- avGp.,a) 4 p.v vp. 4 llv vll 

+ ta~'hap.h- p,v2h2 - !g2 [ (w+. w-) 2
- cw+)2(w-)2] 

e2 [A2(w+. w-) -(A· w+)(A · w-)] 

c2g2 [z2(w+ .· w-)- (Z. w+)(Z · w-)] 

ecg [2(A · Z) (w+ · w-) - (A· w+)(Z · w-) - (Z · w+)(A · w-)] 

+ ie [ aP A 11W;w: + apw-vw: Av + aPw+v Ap w;] +h. c. 

+ icg [ a11-zvw;w,; + apw-vw: Zv + EJP.W+" Zp. w;] + h.c. 

~g;( Ga. . Gc)( Gb. Gd)rbe rde - !9s ( 81lG~ - 8vG~) GP·a.Gv,b fabc 

>..vh3 - ~h4 + (~)
2

vhZ2 + lg2vhw+. w- + lg2h2w+. w-
2 8 2sc 2 4 

1 ( e ) 
2 

2 2 me mu md -+ - - h Z - -eeh - -uuh - -ddh 
8 sc v v v 

+ ii (ifJ) v + e (ifJ- me) e + u (ifJ- mu) u + J (ifJ- md) d 

~ (vlf+ 1 ~ 15 e + ul;V+ 
1 ~ l's d + h.c.) + 9sfl~a.~a. u + 9sJ~a. ~a. d 

6 

(1.21) 

1 - 2 1 'e 1 e ( 2 ) + eeJe+ 3edJd- 3euju- 48cii$(1-l's)v+ 48ce$ 1-4s -')'s e 

1 e rz ( 8 2 ) 1 e -'7 ( 4 2 ) . 
4 sc u"r' 1 - 3s - l's u + 4 sc d"r' 1 - 3s - l's d. 

The generalization to three generations, rather than one, is straightforward. The 
only important change is in Cy, which becomes 

{1.22) 

where E, D, U, L, and Q now refer to column vectors rather than to individual fields, 
and HE, HD, and Hu are arbitrary complex 3 x 3 matrices of coupling constants. After 
symmetry breaking the fermions acquire mass, and, by definition, the mass matrices of 
physical particles must be diagonal. 

The lepton mass matrix can be diagonalized simply by making physically ir
relevant field redefinitions. Diagonalizing the quark mass matrix, however, leads to off
diagonal terms in the couplings of quarks to the w± boson. That is, the charged-current 
Interaction of quarks becomes 

. g - +1- 1'5 
Ccc = .j2UT,V -

2
-VD + h.c., (1.23) 
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where V is a unitary 3 x 3 matrix, the Kobayashi-Maskawa [7] mixing matrix. The 
Kobayashi-Maskawa matrix is roughly diagonal: Each quark couples most strongly to its 
partner in the same generation. Some off-diagonal terms, however, most notably that 
connecting the s and u quarks, are substantial. Additionally, there is no a priori reason 
to expect that the elements of the Kobayashi-Maskawa matrix should all be real. The 
most general Kobayashi-Maskawa matrix, up to physically irrelevant field redefinitions, 
can be parameterized by three real angles and one complex phase factor. 

At present, using experimental data and the unitarity constraint, the 90% con
fidence limits on the magnitudes of the Kobayashi-Maskawa matrix elements are [8] 

( 

0.9747 to 0.9759 0.218 to 0.224 
IVi;l = 0.218 to 0.224 0.9735 to 0.9751 

0.003 to 0.018 0.030 to 0.054 

where the matrix elements are labelled 

0.002 to 0.007 ) 
0.032 to 0.054 , 
0.9985 to 0.9995 

(1.24) 

(1.25) 

The phase has not been measured. A non-zero value would explain the experimental 
observation of C P violation in the K meson system. 

Many physical quantities, in particular those involving low-energy properties of 
hadrons, have not yet been calculated from first principles. The problem is simply that 
Eq. (1.11) describes the interactions of quarks, rather than the interactions ofhadrons, and 
the necessary computational techniques for obtaining quantitative low-energy predictions 
about hadrons do not yet exist. Preliminary results from such methods as lattice gauge 
theory [9] and chiral perturbation theory [10], however, suggest that the flaw is indeed in 
our calculational ability rather than in the theory. 

All quantities for which both theoretical and experimental results are available 
exhibit agreement between the measured values and the values predicted by the Standard 
Model [11], and there is no indication of any experimental result that is inconsistent with 
Standard Model expectations. 

1.2 Defects of the Standard Model 

Despite the spectacular successes of the Standard Model, it is theoretically prob
lematic in many ways, and it is unlikely that the Standard Model is actually a complete 
description of nature. Most of the unresolved issues can be grouped into three broad cat
egories: Problems associated with the gauge bosons and with their couplings to fermions, 
Eq. (1.6), problems associated with the Yukawa sector, Eq. (1.22), and problems associ
ated with the scalar sector, Eq. (1.8}. 

The most serious objection to the gauge sector of the Standard Model is its 
arbitrariness. The gauge group G321. SU(3) x SU(2) x U(1), is not simple. The gauge 
theory associated with this group thus has three independent coupling constants, and the 
Standard Model provides no understanding of their relative magnitudes. 
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Even more arbitrary than the gauge group itself, however, is the representation 
of that group used by the Standard Model, i.e., the matter content of the theory. The 
Standard Model provides no understanding of why fermions are replicated in three gen
erations, and even within a single generation the gauge group's representation is very 
complicated: It is formed from many different irreducible representations. The hyper
charge assignments, i.e., the U{1) quantum numbers, are postulates of the theory, rather 
than predictions: U{1) is abelian, so there is no obvious reason why the U{l) quantum 
numbers should be, as they are (see Table 1.1), small integers or ratios of small integers. 
Although the requirement of anomaly cancellation [12) imposes a sum rule on the U(1) 
quantum numbers, there is still a great deal of freedom in their assignments. Finally, 
although it has been known for decades that weak charged currents couple only to left
handed fermions, the Standard Model provides no explanation for this asymmetry. It is 

. simply postulated, in Table 1.1, that left-handed fermions are members of SU(2) doublets 
and right-handed fermions members of SU{2) singlets. 

The mass matrices in Eq. {1.22), or in more physical terms, the fermion masses 
and the Kobayashi-Maskawa mixing matrix, are also simply free parameters of the theory: 
The Standard Model provides no explanation for any of the mass ratios or the mixing 
angles. Given that the ratio between the mass of the lightest massive fermion, the electron, 
and that of the heaviest fermion, the t quark [13), is more than 3 x 105, some explanation 
of these ratios is called for. Similarly, while the presence of a complex phase in the 
Kobayashi-Maskawa matrix can explain the existence of CP violation, it does not explain 
why CP is so nearly conserved in weak interactions; still less does it explain why CP 
violation in strong interactions is, if present at all, measured [14) to be suppressed at least 
nine orders of magnitude relative to the value that would naively be expected [15] due to 
nonperturbative topological effects. 

To some extent, many of these objections are essentially aesthetic: Our precon
ceptions, which suggest that a fundamental theory must be simple, may be in error. The 
problems in the scalar sector are considerably more serious. The Standard Model relies 
on elementary scalars, the complex doublet~' to break SU(2) x U(1) symmetry. Theories 
with self-interacting elementary scalar fields, however, suffer from two inherent problems, 
known as "naturalness" and "triviality." 

The problem of naturalness deals with the scalar's mass renormalization, which 
is quadratic in the high-energy cutoff. If an elementary scalar is much lighter than the 
cutoff, its mass is thus the difference of two very large numbers. This situation is not only 
unnatural, requiring an extraordinarily precise cancellation, but is also unstable under 
higher-order corrections . 

. Jruh as naturalness is related to the mass renormalization of scalar fields, so 
triviality is related to coupling constant renormalization. The simple one-loop {3 function 
for the scalar self-interaction given in Eq. (1.8} is 

{1.26) 
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This has the solution 

A(!<) = 1 ' ( )' 
,\-1(JLo)-~ 1n "! 

(1.27) 

which diverges at a finite energy scale. If this one-loop result is to be believed, then the 
only way for a scalar field theory to be valid for all energy scales is if the coupling constant 
vanishes exactly. In fact, more sophisticated analyses confirm the conclusions suggested 
by the one-loop calculation. There is now very strong evidence [16], although not yet a 
rigorous proof, to support the idea that the only self-consistent scalar field theory in four 
dimensions is the free theory. 

This does not, of course, mean that theories involving scalar fields are inadmis
sible; it merely means that these theories cannot be valid at all energy scales, but must 
instead be regarded as effective field theories that describe interactions at energies less 
than some scale A, where A is less than the scale at which the scalar coupling constant 
would diverge. Or, put less abstractly, it means that scalars cannot be elementary par
ticles but must have some substructure, and that the substructure will be revealed at 
distances of 0(1/ A). 

The larger the scalar self-interaction ,\ is at low energies, the lower must be the 
energy scale A at which new physics appears. Since Eq. (1.17) relates ,\ to the mass of the 
Higgs boson, this is equivalent to saying that a heavy Higgs boson requires new physics 
at low energy scales. This argument can be made quantitative [17]: If the Higgs boson 
has a mass of 175 Ge V or less, then the Standard Model may be valid for all energies less 
than the Plank mass, while a mass of 300 GeV or more implies that the upper limit of 
validity must be less than about 103 Te V. 

While none of these arguments, including triviality, is conclusive, they suggest 
that the Standard Model is probably incomplete, and may, at some high energy scale A, 
be embedded in a more complete theory. 

1.3 Extensions of the Standard Model 

1.3.1 Expansion of the gauge group 

Many different extensions of the Standard Model have been proposed in order 
to address one or more of the issues discussed in Section 1.2. Because of the general 
phenomenon in physics that problems are often alleviated by symmetries, many of these 
extensions involve introducing additional symmetries beyond the SU(3) x SU(2) x U(l) 
gauge symmetry of the Standard Model. 

Such models include the Peccei-Quinn model [18], which explains the suppression 
of CP violation in strong interactions by postulating an additional global U(l) symme
try; horizontally symmetric models [19], which explain the patterns offermion masses and 
mixing angles by introducing global or local symmetries between generations; technicolor 

·models [20], which introduce a new set of fermions, with new gauge interactions, in order 
to break SU(2) x U(l) symmetry without the use of elementary scalars; and supersym
metry [21, 22], which introduces a symmetry relating bosons and fermions, and which 
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eliminates many of the technical problems associated with the renormalization of theories 
containing elementary scalars. 

Gauge symmetries have a special status in field theory, so many extensions of 
the Standard Model involve expanding the gauge gtoup from SU(3) x SU(2) x U(1), or 
G321, to some larger group G which contains G321 as a subgroup. Since this larger gauge 
symmetry is not observed at low energies, spontaneous symmetry breaking must once 
again be invoked. Enlarging the gauge group implies the existence of new gauge bosons; 
the symmetry must be broken in a manner that leaves only the 12 gauge bosons of the 
Standard Model observable at low energies. 

The group G 321 is a Lie group of rank 4, meaning that its Cartan subalgebra 
is four-dimensional. In more physical terms, this means that the gauge theory based on 
G321 has four neutral gauge bosons, i.e., gauge bosons whose interactions with fermions 
change none of the fermions' quantum numbers. These gauge bosons are the photon, the 
Z, and two of the gluons. 

It is a general result that if G1 and G2 are Lie groups, and G1 C G2, then the 
rank of G2 cannot be less than that of G 1. The group G, in which G321 is embedded, 
must then have a rank greater than or equal to four. If G is of rank greater than four, the 
gauge theory based on it will have additional neutral gauge bosons, which are generically 
known as Z' bosons. 

It should be emphasized that Z' bosons are a generic feature of any theory that 
includes a gauge group of rank greater than four: They appear naturally in many different 
extensions of the Standard Model. Given that the Standard Model is almost certainly 
incomplete, it is thus very plausible that Z' bosons exist. This does not, of course, mean 
that they are observable: The mass of a Z' could well be at an experimentally inacces
sible energy, such as the GUT scale. In many models, however, even models where the 
fundamental symmetry-breaking scale of G is very large, Mz• is essentially unconstrained 
and could lie in an experimentally accessible range. A Z' necessarily provides information 
about an expanded gauge sector; a low-mass Z' could well be the only direct experimental 
probe of an expanded gauge sector. 

1.3.2 The left-right symmetric model 

As shown in Table 1.1, the Standard Model assigns left-handed fermions to SU(2) 
doublets, and right-handed fermions to SU(2) singlets. It thus provides no explanation 
of parity violation, but simply postulates it. The left-right symmetric model [23, 24) 
postulates a second SU(2) symmetry that acts on right-handed particle states, so that the 
fundamental Lagrangian of the theory conserves parity. Parity violation is then explained 
by spontaneous symmetry breaking: If the symmetry breaking occurs ·in such a fashion 
so that the gauge bosons associated with the right-handed SU(2) are much more massive 
than those associated with the left-handed SU(2), low-energy weak interactions will violate 
parity. 

The gauge group of the left-right symmetric model is SU{3) x SU{2h x SU(2)R x 
U(1), and the quantum number assignments, instead of the Standard Model assignments 
of Table 1.1, take the somewhat more orderly form shown in Table 1.2. The symbols 
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Table 1.2: Left-right symmetric model particle content, and SU(3), SU(2h, SU(2)R and U(l) 
quantum number assignments, for the first generation of fermions. Note the presence of a right
handed neutrino, which is absent in the Standard Model. 

Particle SU(3) SU(2)L SU(2)R U(l) 
QL 3 2 1 1/3 
LL 1 2 1 -l 
QR 3 1 2 l/3 
LR 1 1 2 -l 

QL and LL have the same meanings as in Table 1.1, while QR refers to a right-handed 
quark doublet, UR and dR, and LR refers to a right-handed lepton doublet, eR and VR· 

The right-handed neutrino, VR, has not been observed, and is not present in the Standard 
Model. Unlike the "hypercharge" of the Standard Model, the U(l) quantum number 
given in Table 1.2 has a simple physical interpretation: It is B- L, where B is a particle's 
baryon number and L is its lepton number. The gauge coupling constant of SU(2)R is 
taken to be the same as that of the familiar SU(2) L· 

The group SU(3)xSU(2hxSU(2)RxU(l) has rank 5, so the left-right symmetric 
model has five neutral gauge bosons. Four of them, the photon, the Z, and two of the 
gluons, are the same as in the Standard Model, while the fifth is a Z'. The photon, Z, 
and Z' do not, however, simply correspond to the diagonal generators of U(l), SU(2h, 
and SU(2) R· Just as the photon and Z of the Standard Model are linear combinations of 
the W3 and the B, so the physical neutral gauge bosons of the left-right symmetric model 
are linear combinations of the neutral gauge group generators, the details of this mixing 
being determined by the symmetry breaking. 

As in the Standard Model, symmetry breaking in the left-right symmetric model 
is accomplished by means of interacting scalar fields with a nonzero vacuum expectation 
value. The scalar sector of the left-right symmetric model, however, is much more compli
cated than that of the Standard Model. The simplest version of the left-right symmetric 
model contains three different complex scalar multiplets, one of which transforms as a 
triplet under SU(2h, one as a triplet under SU(2)R, and one as a doublet under both 
SU(2)L and SU(2)R; this is a total of 20 scalar degrees of freedom. The scalar fields of 
the left-right symmetric model, and their quantum numbers, are specified in Table 1.3. 

The reason for including so many scalars is that the two scalar triplets, the !lL 
and !lR, are required to break the left-right invariance, while the doublet field, ¢, plays 
roughly the same role as does the Higgs doublet ~ in the Standard Model: It breaks 
SU(2) x U(l) down to U(l). This general hierarchical scheme, where one mechanism 
is responsible for the symmetry breaking G -+ SU(3) x SU(2) x U(l) and another for 
SU(3) x SU(2) x U(l) -+ SU(3) x U(l), is repeated in many different extensions of the 
Standard Model. 

The most general renormalizable potential involving these scalar fields is quite 
complicated: It depends on 18 independent parameters [25], three of which ar~ masses 
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Table 1.3: Scalar fields, and their quantum numbers, in the left-right symmetric model. 

Particle SU(3) SU(2)L SU(2)R U(1) 
f::..L 1 3 1 2 
f::..R 1 1 3 2 

<P 1 2 2 0 

and the other 15 are coupling constants. The minima of this potential have not been 
investigated in full detail, but it has been shown [26] that there exists a range of value of 
these parameters such that the minimum takes the form 

(1.28) 

(1.29) 

with VL «,.;, « VR· In this model, ,.;,2 + K-
12 sets the scale of Md, and M!, as does v 2 in 

the Standard Model. 
The mass matrix for the w3,L, w3,R, and B is [24] 

-2gg'vl ) [ W3L ] 
- 2gg' vh W3R . 

g'2( vf + vit) B 
(1.30) 

Although it is possible to diagonalize Eq. (1.30) exactly, the results are too complicated 
to be of much use. In the limit where VR is very ,large, however, and Z-Z' mixing is 
negligible, 

(1.31) 

(1.32) 

and the photon, as electromagnetic gauge symmetry demands, remains exactly massless. 
Without knowledge of the parameters in the scalar potential, it is impossible to 

make a more quantitative prediction of Mz' / Mz or of the mixing angle between the Z 
and the Z'. · 

Assuming that mixing between the Z and Z' is negligible, the Z' coupling to 
fermions is given by 

(1.33) 

where 
9Z' = g Vl - 2 sin2 8w 

(1.34) 
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Table 1.4: Charges Q for the coupling of one generation of fermions to a Z' of the left-right 
symmetric model. The n~rmalization of Qf is defined by Eq. (1.33). 

Left-handed states Right-handed states 
Particle Q Particle Q 

eL !. sin" 9w eR sin" 9w - t cos" 9w 
VL 1 sin2 9w VR . - cos2 9w 
dL _1 sin2 9w dR 1 sin2 9w - 1 cos2 9w 

~ . 2 9 -~ sin2 9w + l cos2 9w UL - 6 sm w UR 

and 
(1.35) 

In Eq. (1.35), T3L and T3R refer, respectively, to the fermion's left-handed and fight
handed isospin assignments, and Q refers to its electromagnetic charge. These couplings 
are given explicitly in Table 1.4. 

1.3.3 Grand Unified Theories 

Much of the complexity ofthe Standard Model stems from the fact that its gauge 
group, G321, is not simple. Grand unified theories (GUTs) are models in which G321 C G, 
where G is a simple group. The symmetry group G breaks spontaneously to G321 • 

In GUTs, all gauge in.teractions are characterized by a single coupling constant. 
This appears to be contradicted by experiment, since the coupling strengths of the strong, 
weak, and electromagnetic interactions are very different, but, in fact, the relative mag
nitudes of the three Standard Model gauge coupling constants are a strong argument for 
the plausibility of grand unification. 

A simple one-loop calculation [27] yields the {3 functions of the three Standard 
Model gauge coupling constants: 

where, for N generations of fermions, 

bsu(3) -

bsu(2) -

bu(l) -

4 
--N+ll 

3 
4 22 1 

--N+---
3 3 6 
4 1 

-3N- w· 

(1.36) 

(1.37) 

(1.38) 

(1.39) 

More careful calculations [28], which include two-loop diagrams and the effects of heavy
particle thresholds, do not modify these equations significantly [29]: These higher-order 
effects are small corrections. 
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Table 1.5: Assignment of a single generation of left-handed fermions to irreducible representations 
of SU(5). AlliS fermionic states can be assigned to two irreducible representations. The symbol 
f'i refers to the left-handed component of the charge conjugate of the fermion f. 

Multiplet Particle content 
5* [v e dc]L 
10 [u d uc ec]L 

Integrating these equations yields the values of the coupling constants at an 
energy scale J1. in terms of their values at a scale J.t.o: 

(1.40) 

When the known low-energy values of the three Standard Model gauge coupling constants 
are inserted into Eq. (1.40), it turns out that although the coupling constants have very 
different values at low energies, the~ values at high energies (J.t. "' 1015 Ge V) become 
roughly equal. This is suggestive of the behavior predicted by a GUT, where, at some· 
scale McuT, they would be exactly equal. 

The smallest simple group that can contain G321 as a subgroup, and that has 
representations in which the Standard Model fermion representations can be embedded, 

. is SU(5) [30]. The fifteen states of a single generation of fermions can be embedded in 
two irreducible representations of SU(5), a 5* and a 10: The decomposition of these 
irreducible representations of SU{5) into representations of SU(3) x SU(2) is 

s• - (3*, 1) e (1,2) 

10 - {3*, 1) e (3,2) e {1, 1). 

(1.41) 

(1.42) 

The assignments ofleft-handed particles to SU(5) multiplets are shown in Table 1.5. Note 
that left-handed charge conjugate states, rather than right-handed states, are included in 
this table. This is because all particles in a gauge multiplet must transform the same way 
under Lorentz transformations, or, more succinctly, because gauge transformations and 
Lorentz transformations commute. 

As is the case in the left-right symmetric model, the gauge symmetry must 
be broken in two stages. At energy scales large compared to the GUT scale, the gauge 
symmetry is SU(5); at energy scales small compared to the GUT scale, but large compared 
to the electroweak scale, the gauge symmetry _is SU(3) x SU(2) x U(1); and at energies 
small compared to the electroweak scale, the gauge symmetry is SU(3) x U{1). Again, 
much as in the left-right symmetric model, this hierarchical symmetry breaking may be 
accomplished with a scalar sector consisting of two different species of scalars. In the case 
of SU(S), the minimal phenomenologically acceptable scalar sector consists of a 24 and a 
5 of SU{S), where the 24 breaks SU{5), and the 5 breaks electroweak symmetry. The 5 
contains the familiar Standard Model Higgs doublet~-

The group SU(5) is 24-dimensional, so SU(5) has 12 more gauge bosons than 
does the Standard Model. Its rank, however, is 4, so it has no additional neutral gauge 



15 

bosons. There are no other rank 4 groups that can contain SU(3) x SU(2) x U(l) as a 
subgroup: Every other extension of the Standard Model gauge group, and, in particular, 
every other GUT, has at least one Z'. 

This fact is significant, because the minimal SU(5) model has been conclusively 
ruled out. There are two convincing arguments against minimal SU(5). First, SU(5) pre
dicts an excessively fast decay rate for the proton. The 12 new gauge fields introduced by 
SU(5) are fractionally charged; their interactions with matter connect quarks to leptons, 
and these interactions lead to proton decay [31), suppressed by MatT· Although there 
is some uncertainty about the calculation of the proton lifetime, due both to the uncer
tainty in MauT and to the difficulty of calculating low-energy hadronic matrix elements, 
the experimental 90% confidence limit [8] for the decay p --+ e+7r0 is Tp/ B > 9 x 1032 yr, 
which is two orders of magnitude larger than the upper limit allowed by minimal SU(5). 

Independently, minimal SU(5) is ruled out because in this model the three Stan
dard Model coupling constants do not actually unify. The values of the Standard Model 
coupling constants at Mz are now known precisely enough to make it clear that, although 
they approach a similar magnitude at very high energies when they are evolved upwards 
using Eq. (1.36), they never actually become equal. The electroweak coupling constants 
a1(Mz) and a2(Mz) are obtained by the LEP measurements of OEM(Mz) and sin2 Ow, 
yielding [32] 

a1 (Mz) - 0.016887 ± 0.000040 

. a2(Mz) = 0.03322 ± 0.00025, 

(1.43) 

(1.44) 

and the strong coupling constant a 3 can be extracted from a variety of experiments; the 
Particle Data Group [8) reports a world average of a 3(Mz) = 0.1134 ± 0.0035. Using 
these values, as shown in Fig. 1.1, coupling constant unification is ruled out by more than 
seven standard deviations [32). 

This does not mean that grand unification must be abandoned altogether, but, 
rather, that grand unification is tenable only if the assumptions implicit in the application 
of Eq. (1.36} are abandoned. Using Eq. (1.36) to run the coupling constants from Mz 
to MGuT is only valid if there are no thresholds between those scales, i.e., if there is no 
new physics until MGUT· Grand unification is still possible if some new physics exists at 
intermediate energy scales. 

In minimal SU(5), no such intermediate scales exist: SU{5) breaks directly to 
SU{3) x SU(2) x U(1). Suitable GUTs that do possess intermediate scales include su
persymmetric SU(5), and GUTs based on gauge groups larger than SU(5). Larger gauge 
groups are worthy of consideration in any case: SU{5) still uses two different irreducible 
representations to accommodate each generation of fermions, while a larger group can 
accommodate them in a single irreducible representation. 

Other than SU{5), the smallest candidate for a GUT gauge group is 80{10) [33]. 
All fermions of a single generation can be accommodated in a single 16-dimensional 80(10) 
multiplet. The decomposition of the 16 of S0{10) into SU(5) multiplets is 

[16]so(IO) = 5* + 10 + 1, (1.45) 
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Figure 1.1: One-loop calculation of the running of the SU(3), SU(2), and U(l) gauge coupling 
constants. The three lines represent the central values of the coupling constants, and the shaded 
regions represent the one-u errors. Note that the three coupling constants never actually become 
equal. 
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Table 1.6: Value of the charge Q for the coupling of an 80(10) Z', or Zx, to one generation of 
left-handed fermions. Note that the coupling is the same for all members of an SU(5) multiplet. 

SU{5) multiplet Particle QL 
10 e+, d, u, uc QiU = -&a 2 6 
5* de, e-, Ve Qf = 3 

2Js 

and, as discussed above, all known fermions of a single generation can be embedded in 
the 5* and the 10 of SU(5). The SU(S) singlet describes an additional fermion state, an 
electrically neutral fermion that transforms neither under SU(3)c nor under SU(2h. This 
state may be thought of as a right-handed neutrino. 

The group 80(10) has rank 5, so the 80(10) GUT does predict the existence of 
a Z'. Also, since 80(10) has a larger rank than that of G321, there are several ways in 
which it can be broken down to G321· One symmetry-breaking scheme is that suggested 
by Eq. (1.45): 

80(10) --+ SU(5) x U(1) (1.46) 

--+ SU(3) X SU(2) X U(1) X U(1) 

--+ SU(3) x U(1) x U(l). 

The 80(10) gauge interactions, like those of the left-right symmetric model, conserve 
parity; in fact, it is possible to embed the left-right symmetric model in 80(10), via the 
breaking scheme 

80(10) -+ SU( 4) x SU(2) x SU(2) {1.47) 

-+ SU(3) x SU(2) x SU{2) x U(1) 

-+ SU{3) x U(1) x U(l). 

The Z' in the symmetry-breaking scheme ofEq. {1.47) arises from the breaking of 
left-right symmetry, so its couplings are those described in Section 1.3.2. In the symmetry
breaking scheme of Eq. (1.46), however, the Z', conventionally called Zx, has a different 
set of couplings. The generator of the Zx commutes with the SU{5) generators, so the 
fermionic couplings of the Zx. are the same for all fermions in an SU{5) multiplet. The 
coupling of the Zx. to fermions is g'Q, where g1 is the same as the U{1) gauge coupling 
constant in the Standard Model, and where Q is given in Table 1.6. 

As is the case with the left-right symmetric model, each successive stage of 
symmetry-breaking in Eq. {1.46) or Eq. {1.47) involves a separate Higgs multiplet. In 
the case of the symmetry-breaking scheme of Eq. {1.46), the predicted mass of the Zx 
depends crucially on the structure of t~e Higgs sector: Mzx may be of up to O(MGUT ). 
For at least one choice of Higgs bosons, however [34], the Zx may have a mass as low as 
a few hundred Ge V without any unnatural fine-tuning of parameters. 

, 
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1.3.4 The E6 model 

Superstring theory suggests E6 as a candidate GUT gauge group. Regardless of 
the status of superstrings, E6 is a useful example of a model that predicts the existence 
of at least one Z'. H superstring theory is indeed a correct description of nature, this · 
would imply that the Lagrangian of the theory should be supersymmetric, although the 
scale of supersymmetry breaking could conceivably be as high as MGuT or even MPlan.k· 

In any case, however, Es can be treated purely as a GUT, without including any effects 
of supersymmetry. For the purposes of understanding the gauge boson sector of Es, the 
most important effect of supersymmetry would simply be a modification of the /3 function 
associated with the running of the gauge coupling constants. 

The group Es has rank 6. There are many ways that it can break [35] down to 
the low-energy gauge group SU(3) x SU(2} x U(l); the most common assumption is that 
it breaks according to the pattern 

Es -+ SO(lO} x U(l},p {1.48) 

-+ SU(5) x U(l)x x U(l),p 

-+ SU(3) x SU{2) x U(l)y x U{l)x x U(l},p· 

The factor U(l)y is the familiar hypercharge group, while U(l},p and U(l)x are additional 
symmetries. The U(l),p factor commutes with SO(lO), so the couplings of the U(l),p 
are the same for all left-handed states. The couplings of the Zx are, as discussed in 
Section 1.3.3, the same for all particles in an SU(5) multiplet, but are different for the 5* 
and the 10 of SU(5). 

In general, neither the Zx nor the Zl/1 will be a physical particle. A light Z' will 
be a linear combination of the generators of these two U(l) groups, which is typically 
parameterized [36] by the mixing angle a: 

Z , z' z'· = ,pcosa+ xsmo. {1.49) 

In principle the Z' could mix with the Z, but this mixing is experimentally known to be 
small (37], and is expected to be negligible for Mz• ~ Mz. 

A generation of fermions in Es forms a 27 representation, that is, it consists of 
27left-handed states related by a gauge symmetry, and another 27 right-handed states. 
Only fifteen left-handed fermionic states in each generation are known; E6 , then, predicts 
an additional twelve "exotic" fermions. In the breaking scheme of Eq. (1.48), the 27 of 
E6 decomposes into irreducible representation of SO(lO}, 

(27)E6 = 16 + 10 + 1. {1.50) 

The 16, in turn, as discussed in Section 1.3.3, decomposes into irreducible representations 
ofSU(5): 

(16]so(lo) = 5* + 10 + 1, (1.51) 

and thus includes all of the known fermions and a right-handed neutrino. The 10 and the 
1 of SO(lO) are composed entirely of exotic fermions. 

.. 
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Table 1. 7: Values of the charge Q for the coupling of one generation of left-handed fermions to 
an E6 Z'. Note that the coupling is the same for all members of an SU(S} multiplet. 

SU(5) multiplet Particle 

10 e+, d, u, uc Q}_O. -
5* de, e-, Ve Q}.* 1 - 3 

Using the normalization conventions of Ref. [36], the coupling of a Z' to matter 
is 

.Cmt = 9Z' ( Q{Z~fLI'~' fL + QkZ~fRI'~' fR), (1.52) 

where gz• is the ordinary U(1)y coupling constant, i.e., 

' e 9z• =g = -~-
cos8w 

(1.53) 

Eq. (1.53) is exact only at the GUT scale: There are corrections when g' and 
gz• are run down from the GUT scale to experimentally accessible energies. These cor
rections, however, are only logarithmic. In any case, calculating them requires knowledge 
of the physics between Mz• and McuT, such as thresholds due to new fermions and to 
supersymmetry. Even in the context of the Ea model, then, gz• is best regarded as a 
quantity to be determined experimentally rather than as one for which there is a precise 
theoretical prediction. 

In this Ea model, the charge QL is a linear combination of the U(l)t/J and U(l)x 
charges. The normalization has been fixed by Eq. (1.53), and the charges for known 
fermions are given in Table 1.7. The right-handed charge QR is fixed by CPT invariance: 

(1.54) 

The width of the Z', if exotic fermions are too heavy to be produced and if the 
masses of all conventional fermions may be neglected, is 

rz• = Mz• g~. [10(Q}_o)2 + 5(Q}_*)2]. 
2 4?r 

For a Z' of 1 TeV, this varies between 4 GeV and 10 GeV. 

1.4 Parameterization of Z' properties 

(1.55) 

The fact that Z's are a generic feature of many models makes it plausiblethat 
they exist, but it also means that the mere observation of a Z' tells us very little about 
the physics that gives rise to it. Only by detailed study of its properties can the nature of 
the expanded gauge group that gives rise to it be determined. There is a large literature 
discussing tests that can distinguish one model from another, but, since the true physics 
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of an expanded gauge sector might not be that described by any of the currently popular 
models, it is desirable to have a model-independent parameterization of Z' properties. 

Many models that predict the exiStence of a Z' boson, such as the E6 model, also 
predict the existence of additional fermions that couple to the Z'. I assume, for the sake of 
simplicity, that all of these "exotic" fermions, if they exist, have a mass greater than !Mz•; 
If any exotic fermions have a mass less than !Mz•, this will have the effect of increasing 
the Z''s width and decreasing its branching ratio to ordinary fermions, thus decreasing 
its production cross section. This would make precision Z' studies more difficult, but, 
of course, by allowing direct study of new fermions, it would provide a great deal of 
additional information about the expanded gauge group. Assuming that this information 
will not be available, and that only the Z' will be accessible to study, is the conservative 
assumption. 

I further assume universality, that is, that the Z' couples in the same way to each 
generation, and also the lack of B.avor-changing neutral currents in the coupling of the Z' 
to ordinary fermions. Note that these three assumptions are not completely independent: 
Sufficiently light exotic fermions are likely to induce flavor-changing neutral currents [38]. 

The most general Z' consistent with this set of assumptions can be described by 
seven parameters. Two of these are the Z''s mass and its mixing to the ordinary Z, Mz• 
and BM, and the other five are coupling constants, which I will denote 9L, Ue, gq, Uu, and 
9d· Because of SU(2) L invariance, the coupling to left-handed electrons and neutrinos 
must be the same, just as SU{3) invariance implies that the Z' must couple equally to the 
three quark colors. The coupling to left-handed electrons and neutrinos is denoted 9L· 
Similarly, gq is the coupling to left-handedquarks, and Uu, 9d, and 9e are the couplings to 
right-handed up quarks, down quarks, and electrons. The sign of the couplings is defined 
by the interaction Lagrangian . 

.Cint = 9! f1' f. {1.56) 

Del Aguila, Cvetic, and Langacker [39] have proposed a different model-indep
endent parameterization, introducing the four normalized couplings 

-ri ul - ul+u; 

-r1 ub 
- ul +u; 

-' g~ u -
g~ 

iJ g~ 
- 2' 9Q 

and del Aguila and Cvetic [40] have proposed yet another parameterization, 

P{r 9L+9e - 9L- 9e 
pq 9Q 

L -
9L- 9e 

(1.57) 

(1.58) 

(1.59) 

{1.60) 

{1.61) 

{1.62) 



21 

PR 9u (1.63) -
9Q 

P1 9d (1.64) -
9Q 

These particular combinations of coupling constants are measured directly in certain ex
periments. 

In fact, an important special case is even simpler: In many models, the couplings 
of the Z' are invariant not only under SU(3)c x SU(2h, but under SU(5). This is always 
true, in particular, for models in which at some energy scale the gauge group takes the 
form G x H, where the Z' is one of the generators of H, SU{5) ~ G, and the Standard 
Model gauge group is contained in that SU(5). 

Most of the Z' models commonly discussed in the literature, including the SO{lO) 
model discussed in Section 1.3.3 and the E6 model discussed in Section 1.3.4, are of this 
form. The only notable exceptions, in fact, are the left-right symmetric model discussed 
in Section 1.3.2, and the so-called sequential Z' model. The sequential model simply 
postulates a Z' whose couplings are identical to those of the Z; this model is completely 
unmotivated theoretically, and appears in the literature only because of its computational 
simplicity. 

The special case ofSU{5)-invariant couplings requires one additional assumption 
beyond those discussed above: Z' couplings are invariant under SU(5) only if mixing 
between the Z and the Z' is negligible. In fact, however, this assumption is already 
known to be true: As discussed· in more detail in Section 2.2.1, experiments at LEP 
already constrain (JM to be very small [37]. Except in the case of precision studies, such 
as rare decay modes of the Z', it is valid to neglect mixing. 

All known elementary fermions in a single generation can be assigned to two 
irreducible representations of SU{5): V£, eL, and dl, are assigned to a 5*, and U£, dL, u[,, 
and el, to a 10. Instead of five independent coupling constants, then, a theory of this 
form only has two, 95* and 91o. The couplings of such a Z' to fermions take the form 

9L - 95* (1.65) 

9Q - 910 

9e - -910 

9u - -910 

9d - -95*· 

For most purposes, a different parameterization of the SU{5)-invariant couplings 
is more convenient: 

95* = gsin/3 , 

910 = gcos/3. 

(1.66) 

Different models correspond to different values of /3. The Z~ and Z~ of E6 [36], for 
example, correspond respectively to /3 = 1r /4 ~d /3 = - tan - 1 ( 3). 
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A measurement of Z' couplings, in this language, means a measurement of a 
physically observable quantity that depends on g and {3. Note that a quantity that 
depends only on the magnitudes of the couplings, not the signs, must have periodicity 1r 

or less. 
This general class of SU(5)-invariant models is no less predictive than is the 

E6 model: Both describe all ratios of coupling constants in terms of a single parameter. 
Although the E6 model is seemingly more predictive in that it specifies the Z' coupling 
constant gz• in terms of the U(1) coupling constant g', that, as discussed in Section 1.3.4, 
is an illusion: The precise value of gz• can be predicted only by making assumptions about 
physics at energy scales between Mz and MGUT· 

The width r Z' is not an independent parameter of the theory. The partial width 
for Z' decay into a fermion-antifermion pair is 

(1.67) 

where g{ and uk are the fermion's left-handed and right-handed couplings to the Z'. In 
the case of quarks, this must be multiplied by a color factor of 3, for the three quark 
colors, times a small enhancement factor due to final-state QCD interactions. 

The only fermion whose mass cannot be neglected is, of course, the top quark. 
For Mz• = 500 GeV and mt = 175 GeV [13], the corrections due to nonzero mt depend 
on the relative sign and magnitude of ui and g_k, but are typically at least 10%. 

Assuming that the Z' only decays into known fermions, and assuming Mz• > 
2mt, the width of the Z' is 

r z• = ~:· [ 2gi, + g~ + 3gj + g~ ( 5 + (1 - x )v'1 - 4x) (1.68) 

+ g; ( 2 + (1 - ~)v'1-:- 4x) + 6xv'1 - 4x 9Q9u], 

where x = m~ I Mj,. In the case of a Z' with SU ( 5 )-invariant couplings, this simplifies to 

(1.69) 

This expression is graphed in Fig. 1.2, setting the Z' coupling constant g equal to the 
Standard Model U(1) coupling g'. This normalization is solely for convenience: In most 
realistic models, it is considerably smaller. In most models, rz, I Mz• "'1%. As is seen in 
this graph, the corrections from a finite top mass can be substantial if Mz• is sufficiently 
small. 
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Figure 1.2: Graph ofEq. {1.69), rz•/Mz• for a Z' with SU(5)-invariant couplings. The coupling 
constant, g, is taken to be equal to the U(l) coupling constant g1 of the Standard Model. The 
angle /3 determines the Z"s relative coupling strength to the SU{5) 5* and 10 multiplets. The 
solid line is for mUM~. negligible, and the dashed line is for mUM~. = 0.1. 



Chapter 2 

Present-day limits on the 
existence of a z' 
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Limits on the existence of a Z' may be divided into two categories: Limits from 
direct search, and limits from indirect arguments. Direct search limits arise from the 
failure to observe a Z' resonance in high-energy collisions, whereas indirect search limits 
arise from a diverse collection of effects where the existence of a Z'. would affect physical 
observables even if the Z' were too massive to be produced on-shell. 

Both direct and indirect searches lead to model-dependent constraints. Although 
the direct and indirect limits on Mz• are similar, the ranges of parameter space excluded 
by the two methods are different, and the two methods are complementary. 

2.1 Direct search limits 

At present, the most stringent direct search limits for new gauge bosons are 
those obtained by the CDF Collaboration [41] at the Fermilab Tevatron. 

CDF's search limit is based on the non-observation of the reaction pp--+ Z' --+ 

z+z-, where z+r- is either an electron or a muon pair. The actual quantity whose value 
is bounded, then, isn't Mz• but rather u(pp -+ Z')B(z+z-). In any particular model, 
u(pp) and B(z+z-) can both be obtained as functions of Mz•, and, by comparison with 
this prediction, the experimental upper bound on Z' production can ·be turned into a 
model-dependent lower bound on Mz•. 

For both the e+e- and the J.I.+J.I.- modes, CDF required a candidate event to 
consist of an opposite sign dilepton pair, both members of which have high transverse 
momentum (pl. > 25 GeV for electrons, P.L > 20 GeV for muons). One member of each 
pair was required to be central (1771 < 0.6 for muons, 1'71 < 1.1 for electrons) the other only 
to lie within the central tracking chamber (1771 < 1.4). For both channels, the dilepton 
invariant mass was required to be greater than 40 GeV. The total sample, after all cuts, 
consists of 148 p.+ J.L- events, none of which has M~~ > 155 GeV, and 1244 e+e- events, 
none of which has Mee > 320 GeV. 

The limit on u(Z')B(z+z-) is obtained by fitting the observed invariant mass 
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distribution to a distribution that includes both Drell-Yan production and Z' decay, taking 
into account trigger efficiencies and geometric acceptances. This limit is mass-dependent, 
mainly because the kinematics of Z' production and decay depends on Mz': Higher mass 
Z's tend to be produced more centrally, and their decay products tend to have higher PJ., 
so it is more likely that such events would pass CDF's cuts. The upper bound on u B 
(95% confidence limit) ranges from 0.8 ph for a 250 GeV Z' to 0.2 ph for a 600 GeV Z'. 

CDF obtains a: model-dependent lower bound on Mz' simply by finding the 
lowest value of Mz' for which the predicted value of u B is less than the experimental 
upper limit. For the model where the Z''s couplings are equal to those of the Standard 
Model Z, this limit is Mz' > 495 GeV (95% confidence limit). This model, however, 
is poorly motivated theoretically. For more plausible models, such as those based on a 
broken Es symmetry, the limits are on the order of 350 GeV. 

Similar upper limits for uB have been reported by DO [42], UAl [43], and 
UA2 [44]. CDF's limit is the most stringent. 

CDF 4as also studied the dijet channel [45), and found no statistically significant 
excess over QCD expectations for Mjj up to 930 Ge V. CDF does not report an upper limit 
on u(pp--+ Z'--+ qij) based on this measurement, or a lower limit on Mz,, but it is possible 
to obtain such limits [46). These limits are similar to, but somewhat weaker than, those 
obtained in the dilepton channel. The difference is partly because dijet mass resolution is 
worse than dilepton mass resolution, and partly because of uncertainties in the calculation 
of QCD background. This limit is nevertheless valuable because the dilepton search limits 
apply only to models where the Z' couples to both quarks and leptons, while the dijet 
search applies also to models where the Z' couples only to quarks. 

2.2 Indirect search limits 

2.2.1 Measurements at Mz 

In the case of the left-right symmetric model, Section 1.3.2 shows that the Z 
and the Z' mix-that is, that the neutral gauge boson associated with the new generator 
of the gauge group, and the neutral gauge boson associated with SU(2) x U(l), are not 
mass eigenstates of the theory. In fact, this phenomenon is general. There is no symmetry 
forbidding mixing, so a general analysis of Z' models must include it. 

If Z0 is the massive gauge boson of SU(2) x U(l) and. Z0 is the new massive 
gauge boson, their mass matrix is, in general, 

, ( Mjo Mj, z ) [ Zo l 
[Zo ZoJ Mj,z Mi~ Zo . (2.1) 

The physical Z and Z', however, are (by definition) mass eigenstates, with the diagonal 
mass matrix 

(2.2) 



The states (Z, Z') and (Zo, Zb) are related by 

Z - cos8MZo + sinOMZ~ 
Z' - - sin8MZo + cos8MZ~, 
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(2.3) 

(2.4) 

where the mixing angle, 8 M, is determined in terms of of Mj
0 
I M'ib and Mj, z I Mj

0
• More 

conveniently, it can be expressed in terms of Mj I Mj
0 

and Mj, / Mj
0

: 

or 

• 2 Mjo -Mj 
Sin (} M = M2 - M2 ' 

Z' Z 

2 Mjo -Mj 
tan (} M = M2 . M2 . 

Z'- Zo 

(2.5) 

(2.6) 

Generally, for Mj, » Mj, (JM .-v Mj/Mz•. This is only a general statement about the 
magnitude of the mixing angle, however: A quantitative prediction depends on details of 
the Higgs sector. 

The physical Z boson, then, is a mixture of the Standard Model Zo and the 
Z'. This mixing has two effects. First, it changes the mass of the physical Z boson from 
the mass Mz0 predicted by the Standard Model1 , and second, it changes the couplings 
of the Z from the Standard Model values to those values plus an admixture of the Z''s 
couplings. 

The mass shift is immediately obtained from Eq. (2.5). For (JM « 1 and 
Mj,jMj » 1, 

(2.7) 

or 

2 2 ( 2 Mj,) M Zo = M Z 1 + (} M Mj . (2.8) 

The Standard Model relation between the W and Z masses is in terms of Mz0 , not 
Mz. When expressed in terms of the physical Z mass, Mz, this relation thus acquires a 
correction of 0(8it-Mj,jMj). Since (JM .-v Mj/Mz•, these corrections are of 0(8M)· 

In fact, it turns out that this mass shift is not as sensitive a test as might be 
hoped. First, the uncertainty in Mw is large enough so that, even in the absence of, 
any theoretical difficulties, Oit-Mj,jMj would have to be on the order of 1% ,to have any 
observable effect. Second, however, and more important, this shift has exactly the same 
form as other corrections to Mw I Mz, and it is difficult to disentangle the Z''s contribution 
from the rest. Specifically [47], it is simply an additional term in the p parameter, which 
already, in the Standard Model, receives contributions from the t quark and the Higgs 
boson. This effect is unobservable [48] unless 8it-Mj,jMj > 0.05, a range that is already 
excluded by (model dependent) limits. 

1In some renormalization schemes, the mass of the physical Z is taken as a defining parameter of the 
Standard Model-that is, other masses are predicted in terms of Mz, rather than the other way around. 
In these schemes, what is changed is the mass of theW predicted in terms of Mz. 
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Although this upper bound on the Z-Z' mixing angle is not as stringent as those 
obtained by considering the effect of mixing on the Z's couplings, it has the virtue of 
being model-independent: Unlike every other lower bound on Mz', or upper bound on 
BM, it requires no assumptions at all about the Z''s couplings. 

The shift in Z couplings due to mixing with the Z' provides more stringent 
constraints, but does require assumptions about the Z''s couplings to fermions. If the 
Standard Model Zo 's coupling to some fermion f is 9zo, and the pure Z''s coupling is 9z', 

0 
then the physical Z and Z' couple with strengths 

9z - COS (}M9zo- sin(JM9z' 
0 

9z' - sin8M9zo + cos9M9z~· 
(2.9) 

(2.10) 

As an extreme illustration of the model-dependence of any limit based on this mixing, 
consider the "sequential" model, where the Z' has the same couplings as the Standard 
Model Z. Clearly, this model is completely unconstrained by such limits. 

Less pathological models, however, are subject to very strong constraints. Many 
observables measured at LEP depend on Z couplings; the only challenge is finding combi
nations of observables that are independent of other corrections to the Standard Model. 
Two particularly useful quantities [47] are 

2 
(2.11) ..:Ye - Te- 3e 

2 
(2.12) ..:yll - Til- 3~' 

where Te and Tv are the normalized e+ e- and vv partial widths, 

9 re+e- (2.13) Te -
a{Mz) Mz 

9 r IIV • (2.14) Til - 2a(Mz) Mz' 

and 
. M2 
~- w (2.15) - Mi cos2 9w · 

These quantities have been measured at LEP. Comparing them to the values expected 
in various Z' models yields [49] a limit of IOMI < 0.01 for most models. This can be 
combined with the limits on 81-Mj.,fMi to obtain a model-dependent lower bound on 
Mz', which, in most models, is 100 to 150 GeV (50]. 

2.2.2 Low-energy measurements 

Other indirect limits can be derived from low-energy experiments. At low en
ergies, parity-violating effects would be affected both by the shift in Z couplings due to 
mixing with the Z', and by exchange of virtual Z's. Note that effects due to virtual Z' 
exchange cannot be observed on the Z resonance. Observation of these effects requires 
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either energies much less than or much greater than Mz; at present, of course, only the 
first is an option. 

Analyses of atomic parity violation [51] provide model-dependent bounds on Mz• 
and 8M. For most models, IBMI is constrained to be less than a few percent, and Mz• to 
be greater than 200 or 300 GeV. This is a region of parameter space already ruled out by 
combining the direct search at the Tevatron with the mixing experiments at LEP. 

· Marciano and Sirlin [52] have found another· indirect constraint, based on ra
diative corrections to low-energy weak interactions-specifically, radiative corrections to 
the four-fermion charged current contact interaction. In any model where the Z' couples 
differently to quarks than it does to leptons, box diagrams involving a Z' have the effect of 
changing the relative strength of lepton and quark four-fermion operators. This relative 
strength is already parameterized by the elements of the Kobayashi-Maskawa matrix, and 
Marciano and Sirlin show that, if corrections from Z' exchange are considered to be cor
rections to the Kobayashi-Maskawa matrix, they have the effect of effect of destroying its 
unitarity relationship. In the first row of the Kobayashi-Maskawa matrix, IVubl is known 
to be small (see Eq. {1.24)); IVudl and IVusl come close enough to saturating unitarity so 
that the unitarity constraint can be used to limit the Z''s mass and couplings. The Zx 
of SO{lO), for example (see Section 1.3.3), must have a mass greater than 260 GeV. This 
too, however, is a mass range already ruled out by direct search at the Tevatron. Note 
also that this calculation cannot constrain a Z', such as the Z.p of E6 (see Section 1.3.4), 
that couples with equal strength to all quarks and leptons. 

These methods are interesting, and provide nontrivial constraints, but they are 
dominated by theoretical error and there is little prospect for significant improvement in 
the near future. It is likely that the best constraints on Mz• and 8M will continue to come 
from collider experiments. 

2.3 Future prospects 

Precision measurements at e+e- colliders, with ..jS > Mz, are expected to yield 
new constraints on the Z' mass and coupling. These constraints would mainly be due 
to the interference of the 'Y, Z, and Z' propagators. At LEP, where measurements are 
made at Mz, this interference is negligible, but it must be included at ..jS > Mz. This 
is discussed in more detail, in the context of studying a Z' already known to exist, in 
Section 4.4. 

These measurements can establish a model-dependent lower bound on Mz• of 
roughly two or three times the center of mass energy at which they are made. Limits from 
LEP 200, then, will probably not raise the lower bound on Mz• by more than 100 or 200 
GeV. A high-energy e+e- collider, with ..jS = 500 GeV, will be able to rule out a higher 
range of Z' masses, but the lower bounds on Mz• established by indirect experiments at 
such a collider are expected to be lower than those established by direct search at the 
LHC. The e+e- limits are complementary, however, in that they apply to models where 
the Z' couples only to leptons. 
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Chapter 3 

Measurements at hadron colliders 

3.1 Z' production and discovery 

3.1.1 The parton model 

At a hadron collider, Z' production proceeds through the process qij ._... Z'. 
Quark and antiquark beams are impractical, however; a hadron collider uses proton or 
antiproton beams. The cross section for Z' production in pp or pp collisions is calculated 
using the parton model. 

A high-energy hadronic collision can be thought of as a collision involving quarks 
and gluons (generically referred to as partons), illustrated in Fig. 3.1. The partons are 
constituents of the incoming hadrons, and it is assumed that a collision involves one 
parton from each hadron, rather than either hadron as a whole. The other constituents of 
the hadrons do not take part in the hard scattering, but comprise the underlying event. 
The fundamental assumption of the parton model is that even though the constituents 
of hadrons are strongly bound, those partons that participate in the hard scattering may 
be treated as free particles; formal justification for this assumption relies on the operator 
product expansion [54]. 

If the hadrons are labelled A and B, and their momenta are Pa and p0, then the 
momenta of the partons are defined to be Xa.Pa. and Xa.Pb, where X a. and x0, the momentum 
fractions, are dimensionless numbers between 0 and 1. The probability that a parton i in 
hadron A has a momentum fraction Xa. is denoted fi/A(xa), where i can refer to a gluon 
or to any flavor of quark or antiquark. The parton distribution functions are normalized 
by the requirement that the momenta carried by the hadron's constituents add up to the 
hadron's momentum, or 

(3.1) 

where the sum is over all species ofpartons. Requiring that the sum of the electric charges 
of the partons equals the hadron's charge yields another such sum rule. 

A hadronic cross section, in the context of the parton model, is given as the 
incoherent sum of the partonic contributions, where each contribution is weighted by the 
parton distribution function f. Specifically, for a process that proceeds only through 
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Figure 3.1: Parton model diagram of Z' production at a hadron collider. A Z' is produced by 
qij annihilation, where the quark and the antiquark are constituents of the initial-state hadrons. 
The other constituents of the initial-state particles, the underlying event, are shown schematically. 
Particles produced in the underlying event typically have small angles with respect to the incoming 
beams. 

quark-antiquark annihilation, the total cross section is 

u(AB-+ X)= L J dxa.dxb [!qJA(xa.)!9;B(xb) + !qJB(xb)!9;A(xo.)] &(qij-+ X), (3.2) 
q 

where the sum is over all flavors of quarks, and where & is the cross section for the 
reaction qij-+ X, i.e., for the production of X by the annihilation of a free quark and 
a free antiquark with center-of-mass energy v'§, where s = 4xo.XbPo.Pb· The sum in the 
square brackets represents the fact that there are two possibilities for the origin of the 
partons: Either the quark can come from A and the antiquark from B, or the quark from 
B and the antiquark from A, 

All of the parton distribution functions fi(x) fall to 0 as x -+ 1. For the u and 
d valence quarks in a proton, xfqfp(x) p~aks at about x = 0.2, while for gluons, all other 
quarks, and all antiquarks, xfi;p(x) peaks at x = 0. In other words, it is very unlikely that 
all of a proton's momentum, or even most, is carried by just one of its quarks or gluons. 
Most energetic parton-parton events at a hadron collider, then, take place at energies .J§ 
considerably lower than the center-of-mass energy of the two hadron beams. 

Any calculation involving the parton model requires knowledge of the parton 
distribution functions fi(x). The parton distribution functions are typically extracted 
from fits to experiments such as deep inelastic scattering; these experiments are usually 
performed at relatively modest energies, so the parton distribution functions are not 
directly measured for very small values of x. The distribution functions for small x are 
obtained by extrapolation, sum rules, theoretical expectations about hadronic structure, 
and other methods. Similarly, due to higher-order QCD corrections [55], the parton 
distribution functions depend not only on x, but also on the energy, v'§, of the collision 
itself. Qualitatively, as 8 increases, the part on distribution functions become increasingly. 
biased toward small values of x; this dependence is logarithmic in § For experiments at 
a different (usually higher) §than those used in the fit, the parton distribution functions 
must incorporate these corrections. ' 
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Figure 3.2: Graph of z times the parton distribution functions for u and d quarks and antiquarks 
in protons, using the GRV HO [61) set. The value of 8 used in this plot is 1 TeV, the scale relevant 
for Z' production at the LHC. The solid line is zfu;p(z), the dashed line is zfdfp(z), and the dotted 
line is either zfv.;p{z) or zfJ;p{z ). In the GRV parton distribution functions, the distributions 
for u and dare equal. The curve peaks at z = 0 even for fu;p(z) and fu;p(z) because this graph 
includes all u and d quarks, not just the valence quarks. 

Many different sets of parton distribution functions are in common use today, 
including EHLQ [56], Duke and Owens [57], HMRS [58], Morfin and Tung [59], DFLM [60], 
and GRV [61]. Each of these sets represents a different fit to experimental data and a 
different way of calculating the parton distribution function for values of x and s outside 
those that entered the fit. When performing a parton-level calculation, it is common to 
estimate the theoretical uncertainty due to the parton distribution functions as the range 
of predictions obtained when the choice of parton distribution functions is varied. As an 
example, the GRV (set HO) quark distribution functions are plotted in Fig. 3.2. 

3.1.2 Production rates 

If a Z' is discovered in the near future, discovery will almost certainly be at the 
CERN Large Hadron Collider (LHC), a proposed pp collider with a center of mass energy 
of 14 TeV1 and a luminosity of 1.5 x 1034 cm-2 s-1, or 150 fb- 1 jyr. Specifically, discovery 
will be through the e+e- and p,+J.t- channels. In general the z+z- final state receives 
contributions from the 'Y, Z, and Z', but interference. between the Z' and the two lighter 
bosons is negligible on the Z' resonance, so it suffices to consider only the Z'. The z+ z
events arising from 'Y and Z can be treated as a background. 

1The LHC was originally to have ..ji = 17 TeV, and most published studies of Z' production at the 
LHC assume that value. The change from 17 TeV to 14 TeV significantly worsens the possibilities for 
observation and study of a Z' at the LHC. 



32 

The cross section for pp--+ Z' --+ z+z- can be estimated, in the context of the 
parton model, by approximating Z' production as a simple Breit-Wigner. The total cross 
section fF for qij --+ Z' --+ z+z- depends only on s = XaXbs, so the integration over the 
momentum fractions is particularly simple. Making the additional approximation that 
the proton contains only u and d quarks, 

(T = 12
11"

2 
-

1
-B(Z'--+ z+z-) X ! [r dCur uu + T dCdr cld] I 

M;, Mz• 9 dr dr 
(3.3) 

where 

dfrq = J dxadxb6(r- XaXb) [/qjp(xa)/qjp(xb) + /qjp(xb)/qjp(xa)], (3.4) 

r uu and r cid are the partial widths for Z' --+ uu and Z' --+ dd, and and r = M;, / s. The 
factor of 1/9 comes from the requirement that the quark and antiquark must have the 
same color in order to annihilate. 

This expression can be rewritten as 

411"
2 

1 B( + _) [ r uu R r dJ] dCu u = --- e e -- + -- r--, 
3 M;, Mz• Mz• dr 

(3.5) 

where 
(3.6) 

This expression is actually quite simple. In the ratio R, much of the theoretical uncertainty 
of the parton distributions cancels out, as does much of the energy dependence. In fact, R 
is typically a number of order ~, the value one would naively expect from the observation 
that a proton in the static quark model has twice as many up quarks as down quarks. 
Eq. (3.5), then, consists of three factors: A model-independent overall factor that falls as 
1/ M;,, a model-dependent combination of Z' coupling constants, and a mass-dependent 
factor that requires knowledge of the parton distribution functions. 

With the branching ratio and widths of Section 1.4 (taking m; «: Mj, ), Eq. (3.5) 
becomes 

1r 1 (gl + g;) (g; + 9~ + R(gj + g~)) dCv. 
U = --2- 2 2 2 2 2 T-d ' 

18 M Z' 2gL + 9e + 6gQ + 3gu + 3gd T 
(3.7) 

or, in the case of SU(5)-invariant couplings, 

1r g2 R + 2 cos2 /3 dCv. 
u= --- r--

90 M;, 1 + cos2 {3 dr · 
(3.8) 

The quantities rdCv./dr and R can be obtained, for various choices of parton distribution 
functions, using the computer program PDFLIB [62]. These numbers are given in Table 3.1 
for a range of Z' masses and a representative sample of parton distribution functions. 

Table 3.1 and Eq. (3.8) together determine the cross section for Z' production as 
a function of Mz•, g, and {3. This cross section is plotted in Fig. 3.3 for several values of 
Mz•, assuming that g, the Z' coupling constant, is equal to 0.15, a value typical of many 
models. The cross section for production of a 1 TeV Z' in ..jS = 14 TeV pp collisions 
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Table 3.1: Differentialluminosityd.Cu/dr and luminosity ratio R, defined in Eqs. {3.4} and {3.6), 
where r = Mj, / s and s = {14 Te V}2 • The parton distribution functions are EHLQ 1 [56], 
DFLM [60], and GRV HO [61]. The Z' production cross section is on the order of ( r / Mj, }d.Cu/d-r. 

EHLQ 1 DFLM GRV 
Mz• rd.Cu./dr R rd.Cu./dr R rdCu/dr R 

1 TeV 5.25 X 10 ·l 0.448 5.16 X 10 ·l 0.490 5.75 X 10 ·l 0.477 
2 TeV 1.05 X 10-l 0.366 9.87 X 10-2 0.409 1.22 x 10-1 0.375 
3TeV 2.36 X 10-2 0.314 2.31 X 10-2 0.365 2.86 x 10-2 0.307 
4TeV 5.24 X 10-3 0.273 5.68 X 10-3 0.310 6.29 x 10-3 0.258 
5 TeV 1.06 X 10-3 0.239 1.36 X 10-3 0.268 1.23 x 10-3 0.220 
6TeV 1.94 X 10-4 0.210 3.02 X 10-4 0.230 2.06 X 10-4 0.190 

is about 100-200 fb, which at the LHC will result in a production rate on the order of 
25000 Z' events per year. Even though only a few percent of these events will have e+e
or p+ p- final states, this is a large enough production rate so there is no doubt that a 
1 TeV Z' could be discovered at the LHC. A 2 TeV Z' isprobably still observable, but 
3 TeVis marginal at best, and a 4 TeV Z' is out of the question unless its couplings are 
much larger than those assumed for this calculation. 

The leptons resulting from Z 1 decay are preferentially produced with a transverse 
momentum of Mz' /2, as shown in Fig. 3.4; this effect is simply due to the change of 
variables from angular variables to the transverse momentum. As a result, it is possible 
to impose very stringent cuts on the leptonic transverse momentum without substantial 
loss of data. 

The signature for a Z' candidate event at the LHC is exactly the same as at 
the Tevatron-an opposite-sign dilepton event where both leptons have high transverse 
momentum. The only difference is the scale: At the Tevatron, the transverse momentum 
cut is P.L > 20 GeV, but at the LHC, for Mz• ~ 1 TeV, even a cut of 100 GeV rejects 
very few genuine Z' -+ [+ z- events. The Z' is a narrow resonance; the Z' peak in the z+ z
invariant mass spectrum will be quite striking if the Z' is light enough to be produced with 
sufficient statistics and if the detector's electromagnetic calorimeter has sufficient energy 
resolution to resolve the peak. Studies taking detector effects into account [63, 64, 65J 
suggests that it may be possible to observe a Z' as massive as 5 TeV; these studies reach 
such optimistic conclusions because they postulate much larger Z' couplings than the ones 
used for Fig. 3.3. For a 1 TeV Z', it may be possible to measure Mz· with a precision of 
100 MeV, and rz• with a precision of 200 MeV. 

The maximum observable value of Mz• depends on the Z''s couplings to u and d 
quarks, but the most important limiting factor is the behavior of the parton distribution 
functions, which fall rapidly at large x. Production of a 5 Te V Z' at the LHC requires 
X1X2,..., 0.1. 

To lowest order, a Z' is produced with zero transverse momentum, but this is 
simply an artifact of the CJ( a~) calculation. The dominant production process for a Z' is 
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Figure 3.3: Production cross section for pp-+ Z' at .jS = 14 TeV, calculated using Eq. (3.8) and 
the values in Table 3.1. The Z"s couplings are assumed to be invariant under SU(S), and {3 is the 
angle defined in Eq. (1.66). The overall coupling constant g is taken to be 0.15. For each value 
of Mz·, the calculation was performed using three different sets of parton distribution functions, 
EHLQ set 1 [56], drawn on this graph with solid lines, DFLM (60], drawn with dashed lines, and 
GRV (61], drawn with dotted lines. 
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Figure 3.4: Transverse momentum spectrum for leptons produced in the reaction pp-+ Z' -+ 

z+z-, where Mz· = 1 TeV. Note the peak at Pl. = Mz· /2, which comes from the Jacobian relating 
angular variables to transverse momenta. · 
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quark-antiquark a~hilation, which produces Z's with no transverse momentum. Higher 
order processes result in a Z' with nonzero transverse momentum, accompanied by one 
or more jets.· The most important one-jet processes are gq ~ Z' q and gij ~ Z' ij; for 
two ot more jets, many different partonic processes contribute. A Z' with finite trans
verse momentum, however, is no more difficult to observe than one with zero transverse 
momentum. 

3.2 Hadronic decays of the Z' 

It has been proposed [66) that, despite the enormous QCD background, it might 
be possible to observe the decay Z' ~ qij at the LHC, and, even more optimistically, that 
it might be possible to distinguish Z' ~ bb from tt [67). This would be quite valuable, since 
measurement of the leptonic decay modes alone does not permit individual determination 
of the three quark coupling constants 9Q, g,H and gd, but only of the combination that 
appears in the Z' production rate. 

Specifically, the proposal is to examine do-f dMjj, where M;; is the invariant 
mass of the two jets from Z' decay. If the Z' has already been discovered in the dilepton 
channel, and its mass is known precisely, it might be possible to see a small increase in 
dafdMii at M;; = Mz•. 

Unfortunately, this would be an extraordinarily diffict4t measurement. At any 
hadron collider, the cross section for production of events with two or more jets is quite 
large: At the LHC, the cross section for dijet production with an invariant mass of 1 TeV 
is larger than the peak Z' cross section by a factor of at least 104 • A set of aggressive cuts, 
relying mainly on the fact that the QCD dijet production cross section falls steeply as 
a function of the jet transverse momentum, while the transverse momentum of Z' decay 
products is typically on the order of Mz• /2, can reduce this background. Even with the 
most optimistic possible assumptions about Z' production rates and the effects of cuts, 
however, direct calculation using the Monte Carlo program PAPAGENO [68) shows that the 
signal to background ratio at M;j = Mz• is stillat most 0.1. 

An enhancement of 0.1 in the dijet cross section is not necessarily unobservable, 
but it is important to remember that this is the peak value of the enhancement, and that 
the Z' peak is quite narrow. Observation of Z' ~ qij at the LHC requires a detector 
whose dijet mass resolution is 2rz• or better, an understanding of QCD background to a 
level much better than 10%, and high enough statistics in the region Mz• - 2r z• < M;; < 
Mz• + 2r z• to make a small excess statistically significant. None of these assumptions is 
particularly plausible. 

1 For the remainder of this chapter, I will assume that a Z' can only be studied 
at the LHC through its decays to leptonic final states. 

3.3 Forward-backward asymmetry 

The forward-backward asymmetry has long been recognized as a useful means 
for studying a Z' produced in pp collisions [69). It is also possible to define a non-zero 
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forward-backward asymmetry in a pp collider [36, 70], even though it is not immediately 
obvious how to define "forward" and "backward" in a collider where both beams consist 
of the same type of particle. The leptonic couplings of the Z' can be probed by measuring 
the forward-backward asymmetry, AFB, in the e+e- and J.i.+J.l.- modes. 

Ideally one would like to define AF B as the cross section for 0 < 8 < ~ minus 
the cross section for ~ < 8 < 11', where 8 is the angle between the z- and the q momenta 
in the qij center of mass frame. Since we cannot know which proton contributed the q and 
which the q, this does not define a measurable quantity. However, since the quark distri
bution function x/qfp(x) peaks at a higher value of the momentum fraction x than does 
the antiquark distribution x/qfp(x), the Z''s will usually be produced with longitudinal 
momentum in the same direction as that of the quark. Making the approximation that 
the longitudinal direction of the Z' always tel.IS us which beam contributed the quark, this 
allows a forward-backward asymmetry to be defined at a pp collider. This assumption is 
usually correct for Z's with large longitudinal momentum, but is frequently incorrect for 
Z' s with small longitudinal momentum; the net result is that the measurable asymmetry 
is washed out, with the Z's produced nearly at rest providing no information. 

More formally, if uF and uB are the forward and backward cross sections de
scribed above and y is the Z' rapidity, then 

[fo-{lnT)/2- f(~T)/2] [ ~- ~] dy 

[Jo-(lnT)/2 + J8nT)/2] [ ~: + d;:] dy. · 
(3.9) 

This can be related to the Z' couplings, using the unintegrated parton luminosity functions 
a:=(y, r) = q(xa)ii(xb) ± q(xb)q(xa), where Xa = ...;Te+Y and Xb = ...;Te-Y. Then the 
asymmetry is predicted to be [36] 

(3.10) 

where the sum is over the quark :flavors that contribute to Z' production, and where 

(3.11) 

Specializing to SU(5)-invariant couplings, and making the approximation that 
only u and d quarks and antiquarks are found in the proton, 

3 2 Hi 
AFB=--4 cos2{3·H+ · 2/3 +' 

d + 2cos Hu 
(3.12) 

where only Hi appears in the numerator because a Z' with SU(5)-invariant couplings 
couples equally to left- and right-handed u quarks. The quantities Ht and Hi" can easily 

. be obtained by numerical integration of the parton distribution functions provided by 
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PDFLIB [62]. For a 1 TeV Z' at the LHC, and using the GRV [61] parton distribution 
functions, the results are 

n-
d - 23.6 (3.13) 

n+ 
d - 53.4 

H- - 71.9 u 

H+ - 112. u 

Independent of the Z' model, AFB will be reduced from its parton-level value because, 
for both u and d, Hi/ Hi < 1. In models with SU(5)-invariant couplings there is an 
additional suppression: Protons contain more u quarks than d quarks, but the u quark 
couplings of such a Z' do not contribute to its forward-backward asymmetry. 

The forward-backward asymmetry, as calculated using Eq. (3.12), is shown in 
Fig. 3.5. The asymmetry attains its maximum absolute value at {3 = 1r /2, when the Z' 
doesn't couple to u quarks at all, but even this maximum value is rather small. Fur
thermore, Fig. 3.5 is only valid under the unrealistic assumption that all leptons from 
Z' decays, regardless of their pseudorapidities, can be used for the measurement of Ap B. 

This is particularly important because the events that contribute the most to Aps are 
those where the Z' has substantial longitudinal momentum, and those are precisely the 
events where the Z''s leptonic decay products are likely to have so much longitudinal 
momentum that at least one of them falls outside . the pseudorapidity coverage of the de
tector. A more realistic assumption is that the only usable events are those where both 
the z+ and the z- satisfy t~e requirement 1771 < 71ma:x, where the value of 71max depends 
on the details of the detector. The maximum absolute value of AFB will be reduced by 
about 40% even assuming 'TJm~ = 5. 

The statistical error in a measurement of AFB is roughly 1/../N, where N is 
the number of events used in the measurement. Assuming a sample of 25000 Z' events 
of which 10% decay into e+e- or J..t+J..t-; the statistical error will be approximately 2%. 
Since even the maximum possible value of Ap B is rather small, however, the relative 
error, fJApsfAps, will be quite large. Note also that theoretical interpretation of a 
measurement of AFB will be difficult. The forward-backward asymmetry is determined · 
by a rather complicated combination of couplings to leptons, u quarks, and d quarks, 
and it depends on quantities, H;. and Hi, that are obtained by integrating the parton 
distribution functions. Only the ratios of H;. and Hi enter into the expression for Ap B, 

so much of the theoretical uncertainty in the parton distribution functions will cancel out, 
but, as can be seen from the range of values for R in Table 3.1, some uncertainty exists 
even in ratios. 

3.4 Tau polarization asymmetry 

3.4.1 . Definition of Apol 

Despite the unobserved neutrinos from r decay, it is also possible to study the 
polarization asymmetry Apoh that is, the asymmetry in Z'- r+r- between production 
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Figure 3.5: Forward-backward asymmetry AFs in pp-+ Z'-+ 1+1-, as a function of /3, for a Z' 
with SU(5)-invariant couplings. The expression for AFs as a function of /3, Eq. (3.12), depends 
on quantities obtained by integrating parton distribution functions. This plot uses the GRV (61) 
parton distribution functions, and assumes Mz· = 1 TeV and .jS = 14 TeV. See text for the 
definition of AFs at a pp collider. 
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Figure 3.6: Polarization asymmetry in the decay Z' -+ r+r-, for a Z' with SU(S}-invariant 
couplings. Note that Apol may have any value within the range ( -1, 1), and that it depends 
strongly on (3, as defined in Eq. (1.66). Even an imprecise measurement of Apol provides useful 
information about (3. 

of left-handed and right-handed r- leptons [71). If O"£ is the production cross section for 
r£ and O"R the production cross section for rR., 

O"L- O"R 
Apol = · 

0"£ + O"R 
(3.14) 

The decay of the r proceeds through the weak interaction, which violates parity. Left
handed and right-handed rs thus have different decay properties, and it is possible to 
distinguish them on a statistical basis. This method has been used to study Z couplings 
at LEP [72]. There are additional complications at a hadron collider, but they are not 
prohibitive. 

In general, measurement of a polarization asymnietry for the production of some 
fermion f requires that f decay within the detector, that the decays of h and !R be 
distinct, and that f's decays be both measurable and theoretically well understood. For 
the purpose of studying a Z' at a hadron collider, the only fermion f that meets these 
requirements is the r. 

Unlike AFB, which depends on both the quark and lepton couplings, Apol de
pends only on the Z''s couplings to the r. Assuming universality, and:.using the notation 
of Section 1.4, 

- gj,- g; 
Apol- 2 2" 

gL +ge 
(3.15) 

The r polarization asymmetry does not depend on the Z''s couplings to u or d quarks, or 
on the parton distribution functions, but only on g;_jg'f. For a Z' with SU(5)-invariant 
couplings, 

Apol ({3) = - COS 2/3. (3.16) 

This is shown in Fig. 3.6. Note that it depends strongly on {3; even an imprecise mea
surement of Apol provides a reasonably precise measurement of g;fg'f. 
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3.4.2 Decays of the r lepton 

The matrix element for the decay .,.- -+ v.,.x- is 

(3.17) 

where 
{3.18) 

and 
J~ = (XIJtciO). (3.19) 

When X = eiie or J.Lii~, the final state matrix element J~ is completely calculable. Even 
for some simple hadronic states, however, J~ can be determined up to an overall normal
ization. In fact, it turns out that these well-understood decays have a branching ratio [8] 
of about 80%. 

The quantity that depends on the r's polarization is the angular distribution of 
the r.'s decay products in the r's rest frame. For a relativistic r, an equivalent quantity, 
more directly related to experimental measurements, is the distribution in x, the visible 
momentum fraction. The visible momentum fraction is defined as x = Pvis/Pn where Pvis 
and P-r are respectively the momenta of the visible decay products and the decaying r, 
both measured in the lab frame. The visible decay products are defined to be all decay 
products except for neutrinos. 

Tsai [73] discussed r decays in detail more than 20 years ago, before the r was 
even discovered, and expressions for the decay of a polarized r in terms of the visible 
momentum fraction x have been obtained [74] for most simple decay modes. 

The .,.-' decays into e-iiev.,. and J.L-ii~v.,. with the same branching ratio-about 
17%. The calculation is identical to that for J.L decay. There are no theoretical ambiguities, 
and 

(3.20) 

From this, it is straightforward to derive the normalized decay distributions for left- and 
right-handed .,.-s, 

(f:)L -
(f:)R -

~(1- x 3 ) 
3 

2(1- 3x2 + 2x3). 

(3.21) 

(3.22) 

These two decay distributions, unfortunately, have very little discriminating power; one 
way to understand this is that the polarization information contained in the angular 
distributions is diluted by the integral over the momenta of two neutrinos. Distinguishing 
r L from r R for leptonic decays will require very high statistics. 

The .,.- decays into 1r-v-r about 11% of the time. The only possible Lorentz 
structure for J~ in this case is 

(3.23) 
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where k is the momentum of the pion. Neglecting terms of O(m;;m;), this gives the very 
simple relations · 

(f~}L = 2(1-x) 

(f~)R = 2x. 

(3.24) 

(3.25) 

Some multi-hadronic decays are also calculable. The data are consistent with 
the assumption that the two- and three-7r final states are dominated by single hadronic 
resonances [75], the most common of which are the vector decay, pvn and the axial 
vector decay, a1 (1260)vr. H the p or a1 is treated as a unit, and the pions are not 
distinguished, the Lorentz structure of Jp. is again completely determined up to a constant 
of proportionality: · 

(3.26) 

where e is the polarization vector, and M 2 the mass squared, of the resonance. In the 
approximation where the form factor j is taken to be constant, the normalized decay 
distributions are 

(f~)L - (3.27) 

(1 dr) 
rdx R 

(3.28) 

where ( = M 2 Jm;, and kinematics require ( :::; x :::; 1. 
Because both the p and the a1 are wide resonances, it is inappropriate to treat 

( as a fixed parameter; it is, instead, necessary to convolve these distributions with the 
appropriate line shapes. Making the assumption that the p and a1 are simple Breit
Wigner resonances with the measured masses and widths, the smeared distributions are 
shown in Figs. 3.7 and 3.8. The two distributions for the a 1 are so similar that this mode 
is unlikely to be useful, except as a trigger. The two distributions are more distinct in 
the case of p decay, but, unfortunately, it is difficult experimentally to distinguish the p's 
from the a1 's decay products. At the LHC, none of the r;s multihadronic decays are likely 
to be useful for measuring r polarizations. 

The r£ and r}i decay spectra are most distinct for the decay T- --+ 1r-v. The 
observed spectrum dNjdx for r--+ 1rv, where xis the visible momentum fraction, is the 
weighted sum of(dNjdx)L = 2(1-x) and (dNjdx)R = 2x; a one-parameter fit determines 
the coefficient of this sum, hence the polarization asymmetry. Note that the background 
for T ~ 1rv is likely to be lower than for the other decay modes: There are very few 
plausible sources of high-energy isolated pions. 

It is likely, then, that only the 20% of r+r- events where at least one T decays 
to 1rv can be used for measurement of the polarization asymmetry. The other r decay 
modes may still be useful, however, in distinguishing r+r- events from background. 
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Figure 3.7: The decay distributions~~ for left- and right-handed r-s decaying into pvn nor
malized to the branching ratio of this decay mode. The distributions have been smeared to account 
for the finite width of the p. The solid line is the distribution for ri -+ p-vT, and the dashed line 
is the distribution for rji -+ p-vT. 
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Figure 3.8: The decay distributions ~ ~; for left- and right-handed r-s decaying into a1vn 
normalized to the branching ratio of this decay mode. The distributions have been smeared to 
account for the finite width of the a 1. The solid line is the distribution for ri -+ a}vT, and the 
dashed line is the distribution for rji -+ a1vT. 
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Figure 3.9: Diagram ~fa Z'-+ r+r- event. The transverse momenta of the r+ and the r- are 
p~, and q~ are the transverse momenta of the "visible" r decay products-that is, all of the decay 
products other than the neutrinos. The visible momentum fraction, x, is defined by p± = X±P±. 
The observable quantities are q~ and k.1, where k.1 is the transverse momentum of the Z'. The 
angle <Pis constrained to lie in the range 0 $ <P $ 1r. 

3.4.3 Reconstruction of r momenta 

The visible momentum fraction xis defined in terms of the r's momentum and 
the momentum of its visible decay products. Because at least one of a r's decay products 
is always a neutrino, the momentum of a r is not a directly observable quantity. A 
Z' --+ r+r- event, however, is sufficiently constrained that is it possible to reconstruct 
the momenta of both rs. 

For all but a small fraction (O(mr/Er)) of events, a rand its decay products 
are essentially collinear in a frame where its momentum is much greater than its mass. 
In such a frame, 

(3.29} 

where pis the momentum of the r, q is the total momentum of all of the r's decay products 
except for the neutrino, and x is the ''visible" momentum fraction, that is, the fraction 
of the r's momentum contained in decay products which are observable through tracking 
and calorimetry. 

If a r+ r- pair is known to be the product of a Z' decay, it must satisfy two 
constraints. Since the width of the Z' is expected to be small compared to its mass, the 
invariant mass of the r+r- system must equal Mz•, assumed to be a known quantity. 
Similarly, measuring jets not part of the r decay and demanding transverse momentum 
balance yields the transverse momentum of the Z'. These constraints, using the notation 
defined in Fig. 3.9, are 

(3.30) 

(3.31) 

where k1. is the transverse momentum of the Z'. These equations uniquely determine x+ 
and x_. 
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For simplicity, first consider the special case where k.1 = 0. Eqs. (3.30) and (3.31) 
immediately yield 

X+X- - (2q+ · q-)jMj,, 

x+fx_ - q!fqL. 

(3.32) 

(3.33) 

In the case where k.1. :f:. 0, the situation is more complicated. There are three 
constraints but only two unknown parameters, and the problem is overdetermined. In 
principle, it would be possible to determine x+ and X- using any two of these equations 
(or some combination) and to use the remaining information as a consistency check. In 
the presence of experimental error, however, the most practical way to determine x+ 
and x_ consistently is simply to make them part of the fit that determines experimental 
quantities. That is, q±, X±, and k.L are to be chosen such that x2 is minimized, subject 
to the constraints of Eqs. (3.30) and (3'.31). It is cumbersome to express the results of 
this procedure in closed form, but there are no conceptual difficulties in performing it. 

If the minimum value of x2 is unacceptably large for some event, or if it min
imized for unphysical values of X±, then the event can be rejected as inconsistent with 
Z' ---+ r+r-. A simpler consistency condition, which is useful for the study of background, 
can be obtained by noticing that if k.1. = 0, the rs must be collinear; more generally, the 
degree of acollinearity yields a minimum value for k.L. If ljJ is the angle of acollinearity, 

k1. ;::: 2~ ql qL sin</>. 
X+X- 2 

(3.34) 

3.4.4 Background 

Background is not a serious obstacle to discovery of the Z' at a hadron collider 
through its decay into e+e- and p.+f.£-, or to the study of AFs in those modes:. The 
invariant mass of the e+e- system will stand out above any likely background. For the 
study of r+r- pairs, however, this is no longer true. The r+ and r- themselves are 
unobservable, so an event must be identified as a Z'---+ r+r- event by some means other 
than its invariant mass. 

As discussed in Sec. 3.1, the Z' decay products have a very high transverse 
momentum, peaking at P.L = Mz,/2. The transverse momenta of the rs' decay products 
is less than this, but it is still possible to impose very stringent cuts on transverse momenta 
without rejecting a very large fraction of genuine Z' -+ r+r- events. The most serious 
backgrounds, after such cuts, are tt pairs, conventional Drell-Yan production of r+r
pairs, and possibly jet misidentification. 

There is no reliable way to estimate the rate of jet misidentification in advance 
of experiment; this rate depends both on parton fragmentation functions at very high 
energies, and on the tracking and calorimetry capabilities of LHC detectors. The QCD 
cross section for dijet production at a high-energy hadron collider, however, is enormous, 
and if any appreciable fraction of jets can mimic single isolated pions, measuring Apol at 
the LHC may be impossible. ·._ 
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The cross section for production oftl at the LHC will be extremely large. Taking 
mt = 175 GeV, direct calculation using PAPAGENO [68] and the EHLQ 1 parton distribu
tion functions [56] shows it to be about' 800 pb. Even after requiring that both t quarks 
decay to r and imposing a p .L cut of 100 Ge V on both rs, the cross section is still 200 fb, 
which is on the same order as the production cross section for a 1 Te V Z'. After requiring 
that at least one r have P.L > 200 GeV, the cross section is 50 fb. Further cuts are still 
necessary if the Z' --+ r+r- mode is to be useful. 

It is likely, however, that these further cuts can be found. Top events differ from 
Z' events in three crucial ways. First, all tl events contain two b quarks, which, if b jets 
can be identified as such, may be used to discard these events. Second, the invariant 
mass of at quark's decay products must be less than mt; in particular, if at decays into 
brii.,., then M;b < m~ - M&r, where M.,.b is the invariant mass of the T and the b. For 
mt = 175 GeV, this is 155 GeV. Third, the momenta of the rs' visible decay products 
in a genuine Z'--+ r+r- event must satisfy a consistency condition, Eq. (3.34), which, in 
general, will not be satisfied by the rs produced by the decay of a tl pair. 

Tagging of b jets at hadron colliders through observation of a secondary vertex 
has already been demonstrated at the Tevatron; at the LHC, where the b quarks will 
be more energetic and their decay lengths greater, b tagging should be easier. Rejecting 
events with tagged b jets may [64] reduce tlbackground by up to a factor of 2. Similarly, 
the consistency condition of Eq. {3.34) will provide roughly another factor of 2 [71]. The 
effectiveness of the M-,.b cut depends on the detector's jet momentum resolution, and also 
on the jet multiplicity in Z' production at the LHC. If Z' events tend to have a high jet 
multiplicity then an overly aggressive M.,.& cut will reject genuine Z' events, because even 
a genuine Z'--+ r+r- event will be likely to have a jet such that M-r,jet is fairly small. 

Optimization of these cuts will have to wait until the properties of leptonic Z' 
decays have been studied in the e+ e- and J.L+ J.L- channels, but it is plausible that these , 
cuts, or others, can reduce the tl background sufficiently. 

Drell-Yan events, finally, are events with a high-p.L r+r- pair produced by a 
virtual 'Y or Z; they are essentially the same process as Z'--+ r+r-. The only kinematic 
distinction between Z'--+ r+r- events and conventional Drell-Yan events is the invariant 
mass of the T pair, which is not an observable quantity. 

Conventional Drell-Yan events are peaked at low transverse momentum, and a 
100 Ge V p .L cut reduces their contribution to about 20% of the Z' cross section. The 
remaining Drell-Yan events have essentially the same kinematics as Z' --+ r+r- events. 
They are an irreducible background, and must be dealt with by subtracting the Drell-Yan 
cross section as measured in the e+ e- and J.L+ J.L- channels. 

3.4.5 Evaluation of discriminating power 

If it actually is possible to obtain a clean sample of Z' --+ r+r- events where at 
least one T decays to nv, then measuring the spectrum dN f dx corresponds to measuring 
the average T polarization Apol· The measured spectrum is a sum of the left-handed and 



right-handed r ~ 1rv decay spectra, both of which are linear. Specifically, 

dN 
dx 

- 1 +:pol (2(1- x)) + 1-:pol (2x) 

- 1 + Apol- 2xApol· ' 
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(3.35) 

(3.36) 

Generally, if a distribution g( x) depends on a parameter c, the value of c can 
be extracted from the measured distribution by means of a maximum likelihood analysis. 
This analysis will have an uncertainty [76) 

(3.37) 

Applying this to the case at hand, 

1 fu 3/2 ( 1 + Apol ) -l/
2 

AApol = ,fN v 2Apol In 1 _ Apol - 2Apol (3.38) 

For most values of Apo~' AApol ~ 1.5/ffi. 
At the LHC, as discussed in Section 3.1.2,. the rate for the production of a 1 

TeV Z' is on the order of 25000 per year. Assuming that the branching ratio to r+r- is 
5%, that in 20% of r+r- events at least one r will decay to a pion, and that, because of 
cuts, only half of these events will be usable, this leaves only about 120 events for this 
measurement. The error in Apob then, will be 15%. 

This is significantly worse than the precision with which AFB can be measured, 
but Apol is inherently a more sensitive test of Z' couplings. The forward-backward asym
metry is restricted to the range ( -0.3, 0), while the polarization asymmetry can attain 
any value between -1 and 1. Both measurements will be needed in order to measure the 
Z' couplings to both quarks and leptons. 

3.5 Rare Z' decay modes 

The Z-Z' mixing angle, 9M, is already known to be small; the upper bounds, 
obtained from measurements at LEP, are discussed in Section 2.2.1. If a Z' is discovered,· 
9 M may be determined by measuring the branching ratio for rare Z' decays that can only 
proceed if 9M is nonzero. 

One particularly useful rare decay mode is Z' ~ w+w- [77). This decay would 
be forbidden if there were no Z-Z' mixing, since the W's couplings are just those of 
an SU(2) gauge boson. For finite Z-Z' mixing, however, the Z' has an admixture of Z 
couplings, so this decay proceeds via the trilinear ZWW term in Eq. (1.11), which, in 
turn, is due to the trilinear SU(2) gauge boson self-interaction found in a pure Yang-Mills 
theory. 

The decay Z' ~ w+w- is suppressed by a factor of BL, but it is enhanced 
by a factor of Mi, / M~ due to interactions between the longitudinal components of the 
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gauge bosons, and the branching ratios may, for ()M sufficiently large, be large enough to 
be observable. 

The background for this mode is substantial: The production cross section at 
the LHC for w+w- pairs, calculated using PAPAGENO [68], is almost 50 ph. In most 
Z' --+ w+w- events, however, thew+ and w- have very high transverse momenta, while 
the transverse momentum of w+w- pairs from direct electroweak production peaks at 
small values. A 200 Ge V p 1. cut on the transverse momentum of both members of the W 
pair reduces the background by a factor of about 70. The w+w- pairs from Z' decay 
have other distinctive kinematic properties as well, and several studies [78] have concluded 
that they can probably be distinguished from the background due to electroweak w+w
pair production, at least in the channel where both Ws decay leptonically. 

Unfortunately, these studies were all performed at a time when it was assumed 
that the t quark was lighter than theW; we now know that mt > Mw. At quark decays 
to bW with essentially probability 1, so tl is another source of w+w- pairs. In fact, 
since tl pairs are produced by QCD, this is the dominant source of w+w- pairs: As 
discussed in Section 3.4.4, the production cross section for tl pairs is more than ten times 
that for direct electroweak w+w- pair production. Although it is possible to reduce this 
background somewhat by b tagging, it is unlikely that it could be reduced sufficiently so 
that the rare decay Z' --+ w+w- could be observed. 

The rare decay Z'--+ z±v1W=F may be observable at the LHC [79, 80] despite the 
tl background, but this decay is less interesting theoretically. It results from an ordinary 
Z' --+ z+ z- event where one of the leptons produces a w± by final-state bremsstrahlung 
and turns into a 111. Because the W couples only to the left-handed component of the 
charged lepton, this branching ratio is an indirect measurement of the z+ z- polarizations, 
and thus, like Apoh provides information about g;JYL· It does not, however, provide any 
information about 8 M. 



Chapter 4 

Study. of a Z1 at future lepton 
colliders 

4.1 Production of Z' bosons in e+e- collision 

4.1.1 Corrections to the cross section 
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To first approximation, the line shape for the Z' production cross section is a 
simple Breit-Wigner: 

( + - Z') 1211"B(Z' + -) r2 /4 u e e --+ =- -+e e 2 • 
s ( y8 - Mz·) + r 2 14 

(4.1) 

Several corrections, however, render this a poor approximation. 
The most important correction is the essentially classical phenomenon.of initial

state radiation of photons from the incident beams. Although this is a purely electromag
netic effect, and is thus suppressed by a factor of a, it is nonetheless significant because 
it is enhanced by a factor of In(M~, jm~), representing the presence of two very different 
energy scales. Using the formalism of Kuraev and Fadin [81], it is possible to sum all 
orders of initial-state radiation by performing a single integral: 

· r../i/
2 [1( 3t)·(2k)t 2 ( k)] 2 u(s) = t lo dk k 1 + 4 yS - yS 1- .;s uo [(vs- k) ] ' (4.2) 

where 

t = 
2
: (In ( ~l ) -1) ' (4.3) 

and where u0 is the cross section in the absence of initial-state radiation. For a Z' of mass 
500 GeV, t ~ 0.13. , 

The first term in the integral is the result of summing all orders of soft photon 
emission, while the second is due to single-photon hard bremsstrahlung, and turns out to 
be negligible when uo is sharply peaked. When cro is a Breit-Wigner, in fact, it is possible 
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Figure 4.1: Cross section for e+e- production of a Z' near resonance, setting B(Z'-+ e+e-) = 1. 
The solid line includes the effects of initial-state radiation, and the dashed line is an unmodified 
Breit-Wigner. The Z' is taken to have a mass of 500 GeV, and a width of 5 GeV. 

to do the integral analytically, yielding !82] 

( 3t) (rz')t ( .fi- Mz') 2 
cr(s) = 1 + 4 .fi ~ 2 r cro(Mz, ), (4.4) 

where 

(4.5) 

This effect is familiar from studies at the Z resonance, where it leads to a 26% reduction 
in the maximum value of the cross section. In the case of the Z', where t is larger and 
where, in most models, r / M is smaller, this effect is even more significant. The effect of 
initial-state radiation is shown in Fig. 4.1. 

What is actually observed, however, is not the cross section cr, but rather an 
effective cross section obtained by convolving cr with a collider's energy distribution. At 
future e+e- colliders, this distinction is expected to be significant: At high energies and 
luminosities, when an electron and a positron bunch collide, the electromagnetic field 
from one bunch causes the particles in the other bunch to radiate. This effect, known 
as "beamstrahlung" [83], causes a broadening of the effective beam energy spectrum. In 
extreme cases, beamstrahlung can lead to the sort of broad-band distribution function 
more familiar in hadron colliders than in e+e- colliders, but most modern designs for 
high-energy linear e+ e- colliders yield a relatively narrow spectrum, where almost all 
particles have an energy close to the nominal energy of the machine. 

The beamstrahlung spectrum depends on two parameters, the effective "beam
strahlung parameter" Tef/, a dimensionless measure of the beam's average magnetic field, 
and crz, the length of a bunch in the lab frame. If a beam's energy spectrum, in the 

( 
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absence of beam.strahlung, is a sharp delta function at E', then the approximate effect of 
beamstrahlung is to modify this to [84] 

where 

1 ( e-'T'f(E/E') ) 
tPE•(E) = Nc (1- e...:N")6(E'- E)+ E' _ E h (rJ(E/E')) , 

'TJ(X)::: -
2 [.! -1], 

3Teff X 

h( ) = ~ -y(n + 1, Nc) n/3 

"' - ~ n!r(n/3) 11 
' 

(4.6) 

(4.7) 

(4.8) 

the classical number of photons Nc radiated per particle in traversing an opposing bunch 
is given by 

5 2CTz me 
Nc = -

2
a - E' Tef1 1 (4.9) 

Te l 

and me andre are the electron mass and the classical electron radius. The actual energy 
spectrum is time dependent: The energy spectrum of a bunch is modified during its 
traversal of the opposing bunch. The expression in Eq. ( 4.6) is a time average, defined by 

2 {L/2 
'¢(E) = L Jo dt '1/l(E, t), (4.10) 

where L is the length of each bunch. If the longitudinal beam profile is gaussian, the 
effective bunch length is L = 2Vlu z· 

Although Eq. ( 4.6) is strictly valid only for TeJJ « 1, it provides a reasonable 
approximation to the gross features of the beamstrahlung spectrum even for Teff "'1 [85]. 
A fully realistic prediction would, in any case, require detailed machine-dependent calcu
lations that take into account the measured beam shape and linac energy spread. 

A beam's electromagnetic :field varies depending on the transverse position within 
the beam; properly, it is necessary to perform an integral over the transverse ( x-y) plane. 
The parameter ieJJ is an effective field strength resulting from such an integral [84], and 
has the value 

(4.11) 

where Eo is the nominal beam energy, N is the number of particles per bunch, and CTz and 
CTy are the widths of the beam in the transverse plane. Eq. 4.11 relies on the assumption 
that the beam shape is gaussian in both x andy, but it is not necessary to assume that 
CTz = ay. 

Even in the absence of beam.strahlung, of course, the beam's energy spectrum is 
not a sharp delta function, but has a finite spread. The details of this spread vary from 
machine to machine; naively, however, it suffices to model it as a gaussian, 

(E) - _1_ -(E-Eo)2 /262 
PEo - rn=e , 

6 v 271" 
(4.12) 
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Figure 4.2: Energy spectrum of a beam at an e+e- collider, averaged over its traversal of the 
opposing beam. The nominal energy of the beam is 250 Ge V, the beamstrahlung parameter Teff is 
0.1, and the linac energy spread is 0.6%. The solid line in the graph includes both beamstrahlung 
and the linac energy spread, while the dashed line includes only the linac energy spread. 

where Eo is the machine's nominal energy, and 62 is its variance. This is to be convolved 
with the beamstrahlung spectrum. That is, the observed beam energy spectrum is 

(4.13) 

This integral can be performed explicitly, yielding 

_.!... (1- e-Nc) _1_e-(E-Eo)2/262 (4.14) 
Nc .J2;6 

1 1 [ 1 ( E - Eo) 
2 

1 Eo - E 1 Eo - E 6
2

] 
+ Nc .;2io exp -4 6 + 3ieff E + 9T;

0 
E E 2 

~ ')'(n + 1,Nc) ( 26 )n/3 D (E- Eo 26 ) 
x ~ n! 3TeoE -n/3 6 + 3TeoE ' 

where Dv(x) is the parabolic cylinder function. This function is shown in Fig. 4.2. The 
collider design parameters used for this calculation, and for the calculation shown in 
Fig. 4.3, are discussed in Section 4.1.2. 

Each beam loses energy through beamstrahlung. For Teo « 1, a good approx
imation [84] is that only the electron or the positron, but not both, loses a significant 
amount of energy. For Teo "' 1 (the regime relevant at very high energy e+e- collid
ers) this approximation breaks down: Even for T ~ 0.1, neglecting the case where both 
particles lose energy changes the spectrum by roughly 10%. 
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Figure 4.3: Effective cross section for Z' production at an e+e- collider, setting B(Z'-+ e+e-) = 
1. The Z''s mass and width are, respectively, 500 GeV and 5 GeV. The machine's beamstrahlung 
parameter Teo is taken to be 0.1, and its linac energy spread to be 0.6%. The solid curve includes 
the effects of initial-state radiation, linac energy spread, and beamstrahlung, as given by Eq. ( 4.15). 
The dashed curve includes only the effect of initial-state radiaiion. 

The observed cross section, the result of convolving the physical cross section 
with the beamstrahlung spectrum for each beam, is 

( 4.15) 

This integral must be performed numerically. 
The effective cross section near resonance for e+e- -+ Z', including initial-state 

radiation, linac energy spread, and beamstrahlung, is shown in Fig. 4.3, again setting 
B(e+e-) = 1, and again assuming Mz• = 500 GeV and rz' = 5 GeV. As might be 
expected, the major effects of linac energy spread and beamstrahlung are to reduce the 
maximum cross section and to increase the width of the peak. The maximum is also 
shifted by about 500 MeV, and the cross section in the tail above the peak is increased. 
This tail represents events in which a high-energy electron or positron loses just enough 
energy so that it falls on the resonance. 

The main practical importance of these results for the purpose of studying a Z' 
is the reduction in the total number of Z' events that can be observed by running the 
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collider on resonance. The combined effects of initial-state radiation, beamstrahlung, and 
linac energy spread are quite cltamatic: After including all of these effects the peak cross 
section is only 17 nb, compared to 59 nb for the maximum value of the pure Breit-Wigner. 
This is a reduction by more than a factor of three. 

4.1.2 Collider parameters 

Production rates of a Z' can only be calculated in the context of a specific 
accelerator design. It is likely that a high-energy e+ e- collider will be built, partly to 
study gauge interactions at high energies and partly to study tl physics [86]; generically, 
such a collider is referred to as the "Next Linear Collider," or NLC. Its actual design 
parameters, however, are quite uncertain. There have been many different proposals for 
a high-energy e+e- collider [87, 88, 89], and it is likely that by the time the NLC is built, 
and more thought has been given to practical engineering questions, the design will be 
different than any currently being discussed. 

Note that one difficult design issue is the minimization of beamstrahlung while 
maintaining high luminosity: Many of the machine parameters that affect the luminosity, 
such as the number of particles per bunch and the beam shape in the transverse plane, 
also affect the beamstrahlung parameter Tef!. As has been seen above, beamstrahlung 
can dramatically reduce the usable luminosity, and a high-luminosity collider is of no use 
if much of the beam energy spectrum lies in a region of no physical interest. 

Note, further, that the luminosity-beamstrahlung tradeoff depends to a great 
extent on the physics for which the machine is designed. For the study of resonant 
phenomena, such as Z' physics, only that part of the energy spectrum in a rather narrow 
range is useful, so reduction of beamstrahlung, even at the cost of reduced luminosity, can 
boost the event rate. For the study of continuum phenomena, however, this is not true. 

An NLC built after the discovery of a Z', and designed with Z' physics in 
mind, would probably be a very different machine from the NLC designs discussed today. 
These designs are based on the assumption that there are no resonant phenomena at 
y'S = 500 Ge V, and that cross sections will be very small; they are thus designed to 
have extraordinarily large luminosities. As discussed in Section 4.1.3, however, the event 
rate for Z' production at such a collider would be large enough so as to make statistical 
error negligible. The dominant errors would be systematic, and a broad-band spe~trum 
would contribute to that systematic error. For the purpose of studying the Z' resonance, 
it would almost certainly be preferable to choose a design that sacrifices some of this 
luminosity in exchange for a cleaner beam energy spectrUm.. 

Rather than design my own NLC, however, I will assume design parameters 
typical of proposed NLC designs. These designs usually feature a high bunch rate, a 
beam with a very small spot size, and a beam shape that is fiat in the transverse plane-
that is, one where u:c/uy is a large number. In some designs, in fact, u:c/uy > 100. I 
assume already in Section 4.1.1, and elsewhere, the following collider parameters: 

C - 1.4 x 1033 cm-2s-1 

vs - 500 GeV 

(4.16) 

(4.17) 
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qz - 612 nm (4.18) 

qy - 3.4 nm (4.19) 

qz - 110 p.m (4.20) 

N - 1.67 X 1010 (4.21) 

Teo - 0.11 (4.22) 

6 - 0.6%, (4.23) 

where the beam shape is assumed to be gaussian in each dimension, with lab-frame widths 
Uz, uy, and qz and with N particles per bunch, and where Te!J and 6, as discussed in 
Section 4.1.1, are the effective beamstrahlung parameter and the spread in the linac 
energy. None of these values is either the largest or the smallest that have been proposed. 

4.1.3 Event rates 

The cross sections plotted in Figs. 4.1 and 4.3 take B(e+e-) = 1. The actual 
branching ratio for this mode is 

B(e+e-) =!. 9~ + 9L , 
3 29L + 9~ + 39J + 9~ (2+y) + 9~ (5 + y) + 6fi9Q9u 

(4.24) 

where x = mVM'J;,, y = (1- x)v'1- 4x, fj = xv'1- 4x, and the couplings are those 
defined in Section 1.4. Specializing to SU(5)-invariant couplings, this becomes 

(4.25) 

or, when mVM'J:, can be neglected, 

B(e+e-) = 115 (1 + c~s2 ,a). (4.26) 

As shown in Fig. 4.4, including the mass of the top can have a sizeable effect. 
Typically, B(e+e-) lies in the range 0.03-0.07. The observed production cross 

sectiop, then, using the maximum value from Fig. 4.3, is 0.5-1.2 nb. Despite the degra
dation of the peak, this cross section is still quite large. If the ambitious NLC luminosity 
of Eq. (4.16) can be achieved, Z' production will be copious, with a rate comparable to 
that of Z production at LEP. A year's running should, for any reasonable assumptions 
about Z' couplings, provide a sample of at least a million Z' events. This is a sufficient 
statistical sample for high-precisions studies. 

4.2 Measurement of the Z' width and branching ratios 

4.2.1 Measurement of Mz· and rz• 

As seen in Fig. 4.3, the observed Z' line shape at the NLC will be significantly 
distorted. The cross section's maximum value is at a value about 1 GeV higher than Mz•, 
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Figure 4.4: Branching ratio B(Z'-+ e+e-). The solid curve is for mt = 175 GeV and Mz· = 
500 GeV, and the dashed curve is form~ « Mi•· The two curves are equal for /3 = 1rj2 because 
the Z' does not couple to t quarks at all at that value of /3. 

and the width of the peak is greater than rz•. Extraction of Mz• and rz•, then, will be 
more complicated than simply fitting a Breit-Wigner to the measured line shape. 

This is familiar from LEP measurements of Mz and rz [90], where the Z line 
shape is distorted by initial-state radiation. The same methods used at LEP can be 
applied at the NLC-that is, running the accelerator at several energies in the vicinity 
of Mz• and comparing the measured line shape to the line shape. predicted by a Monte 
Carlo program that includes initial-state radiation, linac energy spread, beamstrahlung, 
and detector resolution. As at LEP, the statistical error in this measurement is likely 
to be negligible; the dominant systematic error will probably be the prediction of the 
beamstrahlung spectrum. 

An alternative method, not possible at LEP, takes advantage of the relatively 
broad energy distribution of the NLC. H the accelerator is run at a single, fixed energy, the 
spread in the actual collision energy is sufficient to cover the entire Z' peak. A detector 
with sufficiently precise energy resolution can reconstruct the invariant mass of leptonic 
Z' events, and measure the invariant mass spectrum. The necessary precision is high, 
but not inconceivably so. In most realistic models, r z• f Mz• ,..,; 1%. Resolving a 5 Ge V 
peak in the e+e- -+ J.t+J.t- channel requires an electromagnetic calorimeter with energy 
resolution of a few Ge V or better. 

Both methods rely on a detailed understanding of the beamstrahlung spectrum, 
but they use that information in somewhat different ways. Consistency between these two 
methods can be used to verify that the Monte Carlo program is predicting beamstrahlung 
correctly. 
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4.2.2 Heavy-quark flavor tagging 

The Z''s branching ratio into e+e- or p.+p.- is given in Eqs. (4.24-4.26), and is 
plotted, for the special case of SU(5)-invariant couplings, in Fig. 4.4. It is also possible [67] 
to measure the branching ratios into up- and down-type quarks. 

There is no reliable way of differentiating jets from up, down, and strange quarks, 
but, for t and b quarks, it is quite practical. At the NLC, b quarks will be very distinctive: 
A b quark with energy 250 Ge V has a decay length of more than 2 em. This large decay 
length, and a beam with a very small spot size, should make it easy to see secondary 
vertices. Although c quarks and T leptons also exhibit secondary vertices, they do not 
present a serious background problem. Using the known multiplicity of b decays, and 
possibly also the presence of a c in the decay products, it should be possible to distinguish 
bb events from cc and r+r- events with high reliability. 

Top quark events will be even more distinctive: A t quark decays to a b and a W 
with a branching ratio of essentially one. The signature for a tt event at the NLC, then, 
is a bb pair and the decay products of two W s. These decay products could either be two 
liiz pairs, an li/z pair and two jets, or four jets. None of those three signatures is likely to 
be mimicked by any significant background. It is possible to reduce the background still 
further by requiring that the kinematics of the ostensible W decay products be consistent 
with the hypothesis that they result from W decay. 

Using the same notation as for B(e+e-), the _branching ratios to bb and tt are 

B(bb) = 
g2' +g2 

d Q 

2gf + 9~ + 3gJ + 9~ (5 + y) + g; {2 + Y) + 6fi9Q9u 

Y (u~ + g~) + 6fi9Q9u 
B(tt) 

- 2gl, + g~ + 3gJ + g~ (5 + y) + g; {2 + y) + 6fiUQ9u' 

or, if m; « Mi,, 

B(bb) 
- 2gf + g~ + 3gJ + 3g; + 6g~ 

u; +u~ B(tt) = 
2gf + g~ + 3gJ + 3g; + 6g~. 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

Measurement of B(bb), B(tt), and B(e+e-) is a simple matter of counting, so the 
statistical error for each of these measurements is roughly 1/-/N, where N is the number 
of events in each mode. At the NLC, a sample of at least a million Z'· events should be 
obtainable, but, assuming only 105 events, the statistical errors in the e+e- and in the 
heavy-quark modes should be on the order of 1.5% and 1% respectively. The dominant 
sources of systematic error will probably be uncertainty in the detector's acceptance and 
in its heavy-quark identification efficiency. 

These two measurements, when combined with the total width rz, (shown in 
-Eq. (1.68) and, for SU{5)-inva.riant couplings, in Fig. 1.2), determine u3 + g~ and g~ + 
g~. These data are still insufficient to determine all three quark couplings, but that 
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determination only requires one additional independent measurement. One of the quark 
asymmetries, such as the bb or tf forward-backward asymmetry, would be an obvious 
choice. 

Similarly, the e+e- partial width depends on g; + gz. A measurement of g;jgz, 
such as the e+e- forward-backward asymmetry, or the r polarization asymmetry, then 
allows the determination of g; and gz. 

Note the importance of the assumption that bb and tf events can be identified. 
Heavy-quark flavor tagging allows the measurement of the magnitudes of all five Z' gauge 
coupling constants; without it, however, only a combination of g;, gj, and g~ can be 
measured. 

4.3 Asymmetries 

Generally, the quantity determined by measuring an asymmetry is the difference 
between the right-handed and left-handed couplings to some fermion. Specifically, define 

AI= {4.31) 

The fermion I may be a lepton, an up-type quark, or a down-type quark, so this defines 
three quantities, Ae, Au, and AD. Measurement of Au and AD will require the ability to 
tag heavy flavors, as discussed in Section 4.2.2. 

4.3.1 Forward-backward asymmetries 

On resonance, the forward-backward asymmetry for e+ e- --+ Z' --+ I 1 is given 
by 

( 4.32) 

This equation assumes that the final-state fermions are massless, and thus that the differ
ent helicity amplitudes do not interfere; if the final-state fermions are t quarks, At must 
be be generalized to 

2 2 
At = v'l - 4x . 9q - 9u . 

. {1- x) [u~ + g~] + 6xgqgu 
(4.33) 

where x = ml/M~,. If Mz• is sufficiently small, this correction can result in a siz~able 
decrease in AFB· Note also that it depends on the relative signs of gq and 9u, rather than 
just on their magnitudes. As is discussed below, however, this potential sensitivity to the 
sign is not useful in SU{5)-invariant models. 

Off resonance, interference terms become important, and the variation of AFB 
with energy can, in principle, be used to determine not only the magnitude, but also the 
sign of the Z' couplings. For energies within a few tens of GeV of Mz•, however, AFB 



0.8 

0.6 

0.4 

ID 0.2 
LL 

0 c( 

-Q.2 ._ 
-Q.4 

-0.6 

-o.a 
0 

Forward-backward asymmetry 

------------
---------., 

·--., ___ _ 

•, ---
7tl12 7tl6 7tl4 7tl3 57tl12 7tl2 

~ 

58 

Figure 4.5: Graph of forward-backward asymmetry in e+e- -+ Z'-+ !f. The couplings of the 
Z' are assumed to be invariant under SU(5), and {3, defined in Eq. (1.66), determines the relative 
strength of couplings to fermions in the 5* and 10 representations of SU(5). The solid line is for 
the case where the final-state fermions are charged leptons, the dashed line for down-type quarks, 
and the dotted line for up-type quarks. 

typically changes only by a few percent. This is fortunate: If AFB varied quickly, then 
any effect would be likely to be smeared out by beamstrahlung. 

If the Z' has SU(5)-invariant couplings, as discussed in Section 1.4, then for any 
final-state fermion j, A~B depends only on the parameter {3 defined in Eq. (1.66). This 
dependence is shown in Fig. 4.5. Explicitly, 

A~B 
3 

- 4 cos2 2{3, (4.34) 

A~B 
3 2 ( 4.35) - --cos 2/3 4 , 

A~B - 0. (4.36) 

It is a general result in models with SU(5)-invariant couplings that Au and A~B are 
necessarily zero, because the left- and right-handed up-type quarks appear in the same 
representation of SU(5), · 

When interference terms are included A~B is no longer exactly zero, but is still 
small. The full expression for Ap8 is somewhat cumbersome, and depends not only on 
the ratios of the Z' couplings to fermions, but also on their magnitude relative to the "( 
and Z couplings. Fig. 4.6 shows A~B as a function of energy for a Z' with SU(5)-invariant 
couplings, assuming g = gz, Mz• = 500 GeV, and mt = 145 GeV. Although it is possible 
in principle to measure A~B at some energy other than .JS = Mz•, Fig. 4.6 shows that 
A~B is unmeasurably small except at energies so far off resonance that there will be too 
few events for a precise measurement. It can thus be taken as a definite prediction of all 
models with SU(S)-invariant Z' gauge couplings that A~B = 0. 

Even with very high statistics, the effects described in Section 4.1.1 would make 
measurement of an energy-dependent asymmetry very challenging: Any sample of events 
would probe Z' couplings not at any one energy, but at a range of energies, and if taken 
above Mz•, would be heavily contaminated by on-resonance events. Making this mea-
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Figure 4.6: Graph of forward-backward asymmetry in e+e- -.. Z' -.. tt as a function of energy, 
for Mz• = 500 GeV and rz• = 10 GeV. The Z' couplings are assumed to be invariant under 
SU(5), and g, defined in Eq. (1.66), is assumed to be 0.15. The five curves refer to five different 
values of the parameter {3, also defined in Eq. (1.66). The Z' width, rz•, is given by Eq. (1.69), 
and, for these values of Mz• and g, varies between 2 and 4 GeV. 

surement would require a precise understanding of the beamstrahlung spectrum in order 
to understand at exactly which energies A~B is actually being measured. 

At a hadron collider a Z' is usually produced with a sizeable longitudinal momen
tum, so its decay products are often nearly collinear with the incoming beams. Addition
ally, detector coverage of pseudorapidity is usually limited to fairly small values of TJ, so 
a substantial fraction of events are unusable. At an e+e- collider, however, Z's produced 
on resonance are produced at rest, thus yielding roughly isotropic decay distributions. 
Essentially all events should be usable for the purpose of measuring AFB· 

Measuring the forward-backward asymmetry in some mode involves measuring 
two quantities, Np and NB; their statistical uncertainties cNp and cNB are .../NF and 
../NB, or, if N is the total number of events in this mode, roughly JN72. The statistical 
error of Ap B is 

6AFB = (oN 8AFB)2 +(eN 8AFB)2 
F 8Np B oNB ' {4.37) 

or roughly lfyljii. With a sample of 5000 events in each mode, this is about a 1.5% 
statistical error. Most systematic errors cancel out in the ratio, so the actual error in this 
measurement will probably not be much larger than Eq. ( 4.37). 
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4.3.2 Polarization asymmetries 

In addition to the left-right asymmetry, for certain final-state fermions it is 
also possible to measure the polarization asymmetry, i.e., the asymmetry between the 
production of right-handed and left-handed particles in the final state. Specifically, if U£ 
is defined to be the cross section for production of left-handed particles and UR the cross 
section for production of right-handed particles, the polarization asymmetry is defined to 
be 

U£-UR 
Apol = · (4.38) 

UL+UR 

Measurement of Apol requires that the final-state fermions be unstable, that 
they have well-und.erstood decays, and that the decays of left-handed and right-handed 
particles be substantially different. The only particles that meet these requirements are 
r leptons. In the future, t quarks [91] may also. be suitable candidates, but not enough is 
known at present about the extent to which polarization is affected when the t quarks or, 
more likely, their decay products, hadronize. 

Unlike Aps, which depends both on the Z' couplings to the initial-state electrons 
and to the final-state fermions, Apol depends only on the couplings of the final-state 
fermions: In the notation of Eq. (4,31), 

AT -A.,. 
pol- · (4.39) 

For the special case of SU(5)-invariant couplings, 

(4.40) 

For the Z 0 , A;ol has been measured at LEP (72]; as discussed in Section 3.4, it is poten
tially also valuable as a diagnostic tool for studying a Z' at hadron colliders. 

The relevant quantities, at both lepton and hadron colliders, are dNL/dx and 
dNR/dx, the normalized decay spectra for left- and right-handed rs. The measured decay. 
spectrum, dNfdx, can be fitted to a linear combination of dNL/dx and dNR/dx, and this 
fit directly determines A;ol: If 

dN dNL dNR 
- = CL-- + CR--, 
dx dx dx 

(4.41) 

then 
( 4.42) 

Although measurement of A;ol at a hadron collider would be a very challenging 
experiment, essentially none of the difficulties involved in this measurement apply to Z' 
studies at an e+e- collider. The two main difficulties at a hadron collider are that it 
is necessary to find the decay products of a r+r- pair above all possible backgrounds 
{chiefly QCD jets and tt pairs), and that the kinematics of Z'--+ r+r- events at hadron 
colliders, in which the Z''s longitudinal momentum is unknown, and in which the Z' is 
often produced with substantial transverse momentum, make it difficult to reconstruct 
the momentum of the r+ and r-. 
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Neither of these presents a problem at an e+ e- collider. Reconstruction of the 
rs' momenta is trivial, since the Z' is produced at rest in the lab frame: Both the r+ and 
the r- always have a momentum of Mz• /2, so determination of x+ and x_ is a simple 
matter of measuring the momenta of the T decay products. Background, similarly, is 
negligible. 

The reason that background is a serious problem at a hadron collider is that, 
while the invariant mass of the ~+T- pair is equal to Mz•, the invariant mass of the TS' 

visible decay products is reduced by a factor of Jx+x-, and there are many other processes 
that can result in an event with an invariant mass of y'x+x_Mz•. At an e+e- collider 
withy's = Mz• there are no such processes: Essentially all events have an invariant mass 
of Mz•, so the only events that could conceivably mimic T+T- events are other events 
where unstable particles are produced at the Z' resonance and then decay. It is almost 
impossible, however, that bb, cc, or tt decays could be mistaken for r+T- decays: The vast 
majority ofT decays are one-prong, while heavy quark decays have a high multiplicity. 

One possible source of low-invariant mass events is pair production of e+ e- or 
Jl.+ Jl.-, in conjunction with a high-energy bremsstrahlung photon. This is not a resonant 
process, however, so such events will be rare. Moreover, bremsstrahlung is strongly peaked 
in the beam direction, so these events will always have a very small missing transverse 
momentum and can be rejected by a simple cut. 

The statistical error in Apol is roughly 1.5/v'N, where N is the number of T+T

events used in the measurement. Assuming a sample of 5000 r+T- events, of which 20% 
decay into channels that are sufficiently well understood to be used in this measurement, 
this error is about 5%. This is significantly larger than the error in AFs, but Apol is 
more sensitive than is AFB to variations in Ae, which is the actual quantity of interest. 
Assuming universality, AFB is proportional to A~, while Apol is equal to Ae. If Ae is small, 
Apol will provide a better measurement than Ap B despite the larger statistical error. 

Finally, it is possible to combine ALR and Apoh i.e., to measure the forward
backward asymmetry separately for left-handed and right-handed TS. This simply involves 
fitting the T decay spectra separately for forward and backward events, and yields the 
results 

ATL A'~"R 3Ae 
FB =- FB = 4 · (4.43) 

Except as a test of universality, this measurement is redundant: If e and T couplings are 
equal, it provides the same information as A;01 , but with less precision. 

4.3.3 Polarized beams 

If one of the initial beams is partially longitudinally polarized (there is no advan
tage to polarizing both, because the cross section for production of a J = 1-- resonance 
by a relativistic e+ e- pair vanishes when the electron and the positron have the same 
helicity), it will be possible to measure yet another polarization asymmetry, ALR· This is 
defined as the cross section for Z' production by a left-handed e- minus the cross section 
for production by a right-handed e-, divided by the sum of the cross sections. That is, 

(4.44) 
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The value of this asymmetry is 

(4.45) 

Measurement of ALR is straightforward: Counting the number of events for each polar
ization. 

Note that, except as a test of universality, ALR and Apol are redundant: Both of 
these methods provide direct measurements of g!/9b· If, however, it is possible to obtain 
a sufficient~y high degree of polarization, then ALR can be measured more precisely than 

Apol· 

4.4 Study of a Z' below resonance 

Although the possibility is not ruled out by present search limits, it is perhaps 
overly optimistic to hope that a new gauge boson will be found with a mass sufficiently 
low for it to be the subject of on-resonance studies at the NLC. This section discusses the 
possibility that a Z' will be discovered at the LHC with a mass higher than the NLC's 
maximum value of ...ji. If the Z' has a mass less than a few TeV its couplings can still be 
measured at the NLC, but only through virtual Z' exchange. Several detailed studies of 
this case [40, 92] have been performed. 

In fact, even if a Z' is sufficiently light that it can be produced at an e+ e- collider, 
s.tudies of it at energies far below its mass would still be valuable: All of the measurements 
discussed up to this point deal only with the magnitudes of the Z's couplings, but studies 
below the resonance are able to determine their signs as well [40, 92, 93]. 

At the NLC, with ...ji < Mz,, the effect of Z-Z' mixing on Z couplings will be 
no greater than the same effect at LEP. Since mixing is already known to be small and 
NLC measurements will be less precise than those at LEP because of the lower statistics 
associated with running off-resonance, mixing may safely be neglected. The Z' will affect 
observables at the NLC simply though interference between the 1, Z, and Z' propagators. 

In general, an event at the NLC is of the form e+ e- -+ f f. The three Feynman 
diagrams that contribute to this reaction are shown in Fig. 4.7, and the matrix element 
takes the form 

M=M"Y+Mz+Mz'· ( 4.46) 

Observable quantities depend on IMI2• The largest contribution from the Z' comes from 
the interference between the 'Y and Z' propagators, but none of the terms in this product 
may be neglected. 

The quantities that can be measured at the NLC are the production rates and 
asymmetries discussed in Sections. 4.2 and 4.3, specifically u(e+e- ~ ff), A{,01 , and, if 

one beam can be polarized, A{R. The identifiable final-state fermions are e, ,.,., r, c, b, 
and t. I assume, as before, that only the T can be used in the measurement of Apot· It is 
possible, however, that t polarization asymmetry might also be measurable. 

Off resonance, the tree-level cross section u( e+ e- -+ f }) is 

(4.47) 
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Figure 4.7: Feynman diagrams for e+e- --+ JJ, for the case where Mz < ...fS < Mz•. On 
resonance only diagram (c) contributes, but off resonance all three are important, and interference 
between the diagrams must be included. The interference terms depend on the signs, not just 
the magnitudes, of the Z' couplings. If the final-state fermions are electrons, interference from 
t-channel gauge boson exchange must also be included. 
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Figure 4.8: Cross section for a:(e+e--+ p.+p.-) at ...fS = 500 GeV as a function of {3, assuming 
a Z' with SU(5)-invariant couplings whose overall coupling strength g is equal to 0.2. The cross 
section is plotted for Mz• = 1 TeV, Mz• = 1.5 TeV, Mz• = 2 TeV, Mz• = 3 TeV, and Mz• = oo. 

where the individual helicity terms are 

(4.48) 

This expression assumes that the final-state fermions are not electrons, and that their 
masses can be neglected. In the case of quarks, it must be multiplied by a color factor of 
3. Fig. 4.8 shows u(e+e--+ J.L+p.-) at 500 GeV (below Mz•) as a function of {3 for four 
different values of Mz•, for SU(5)-invariant Z' couplings and g = 0.2. The Z' contribution 
to u falls as 1/ Mi,, so, while a 1 TeV Z' has a very substantial effect, a 2 TeV Z' results 
in a cross section that is scarcely distinguishible from the Standard Model value. 

The Standard Model prediction at .,fS = 500 GeV is u(e+e- -+ J.L+J.L-) :::= 450 fb. 
An e+e- collider with the parameters described in Section 4.1.2 has an integrated lumi
nosity (for one year ofrunning) of about 10 fb- 1. With 5000 J.L+ J.L- pairs u(J.L+ p.-) can be 
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measured with a statistical error of about 1.4%, or about 6 fb. As can be seen in Fig. 4.8, 
this means that the effect of a 1 TeV Z' on a(e+e- --+ J.t+J.t-) will be quite clear, and 
it will even be possible to obtain nontrivial information about /3. The effect of a 2 TeV 
Z' will, however, be difficult to tell from a statistical fluctuation in the Standard Model 
cross section, and a 3 Te V Z' will be essentially invisible. As always, the effect is larger 
if the Z' has larger couplings than those assumed here. 

Note that this cross section is not individually sensitive either to the Z' gauge 
coupling constant or to Mz•, but only to the two in combination. This is a general 
feature of experiments at Vi< Mz•: None of the measurements discussed in this section 
can determine Mz•. For Mz• ~ ..[8, the Z' coupling is essentially a contact interaction; 
increasing Mz• has the same effect as decreasing its coupling strength. 

Using the same notation as in Eq. ( 4.47) and making the same assumptions, the 
forward-backward asymmetry for e+e---+ f f is 

3 FfL + F~R - FfL - F~R 
4 . F£L + F~ + FfL + F~R. 

Expressions for the other observables are equally straightforward. 

(4.49) 

Del Aguila and Cvetic [40) have analyzed the precision to which Z' coupling 
constants can be measured at the NLC, assuming Mz• = 1 TeV. Assuming polarization 
of the initial e- beam, they find that the parameters P~, Pl, P)l, and P~, defined in 
Eqs. (1.61-1.64) can be determined to 10-20%, the exact degree of uncertainty depending 
on the central values of the parameters. 

This analysis does not include the effects of initial-state radiation or beam
strahlung, but far off resonance, where no quantities are varying rapidly with respect to 
energy, these effects should be less important than at ..[8 = Mz•. Since the quantities 
being measured are small deviations from Standard Model predictions, however, it is im
portant that all Standard Model effects at ..[8 = 500 Ge V be understood in as much detail 
as possible. 

4.5 Conclusions 

If a Z' is discovered at the LHC, experiments there will be able to determine the 
its mass, width, and the magnitude of all of its couplings except those to quarks. These 
couplings must be measured at an e+ e- collider. 

Combining results obtained at the NLC with those obtained at the LHC, all 
of the parameters described in Section 1.4 may be determined. An e+e- collider at 
Vi = Mz•, with low beamstrahlung and relatively low luminosity, would allow high
precision measurement of all Z' parameters. Even if it proves impossible to build such a 
machine all of these parameters can still be obtained, to a reasonable degree of precision, 
from the combination of LHC measurements and off-resonance measurements at the NLC. 
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