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Abstract 

The concept of an isochronous storage ring Free Electron Laser 

is studied using a simple model based on the longitudinal moments 

of the stored electron distribution. Laser performance is given as a 

function ·of machine parameters including momentum compaction 

and current density. Altogether, using the model presented we are 

able to calculate laser rise time, saturation characteristics, output 

power, and the time-dependent longitudinal profile of the optical 

laser pulses. 



1. Introduction 

At times the isochronous storage ring Free Electron Laser (FEL) 

has been looked upon as a possibility for creating a highly efficient 

storage ring FEL operating at near infrared wavelengths[1,2,3,4]. 

While the difficulty in constructing an isochronous storage ring has 

always been apparent, the potential rewards of such a SRFEL have 

continued to keep interest alive. After careful study and modeling, 

the results presented here taken from my recent Ph.D. thesis[5] 

demonstrate that based on laser performance taken together with 

parameter constraints the ISRFEL is not a worthwhile machine. 

In the schematic design shown in Figure 1, electron bunches 

circulating inside the storage ring are timed to arrive synchronously 

(within a fraction of an optical wavelength) with the optical pulses 

contained in the laser cavity. As energy is transferred from the 

electrons to the light pulse the· average energy spread <l:ly/y> of the 

electrons increases, eventually causing laser saturation. Because the 

ring ·is isochronous, electrons having different energies traverse the 

storage ring . with virtually the same period. To appreciate the 

advantages of isochronicity we need to examine the FEL interaction 

which basically proceeds in two phases. 

First the laser wave creates a longitudinal density modulation 

along the electron distribution, called microbunching, occurring on 

the scale of the optical wavelength. The modulated electron 

distribution then reacts resonantly with the optical field, amplifying 

it under proper circumstances. In a normal storage ring FEL the 
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microbunching is destroyed each pass by synchrotron oscillations as 

the electrons travel through the storage ring. However, in an · 

isochronous storage ring the longitudinal profile of the electron 

distribution is preserved from pass to pass and hence the 

microbunching can be gradually enhanced after each traversal of the 

FEL. Clearly with prebunched electrons FEL gain could be increased 

by a few orders of magnitude. It might also be expected that with an 

isochronous ring one could reduce the rate of energy spread growth 

which leads to laser saturation in conventional storage ring FELs. 

There are many difficulties associated with building an 

isochronous storage ring. Stability is more difficult to achieve than m 

an ordinary storage ring due to the reduced longitudinal focusing. 

Beam lifetime due to Touschek scattering[1,6,7] is also an important 

issue because of the reduced energy acceptance in an isochronous 

storage ring, placing an upper limit on the beam current in such a 

device. 

Additionally, as one decreases the laser wavelength the 

tolerance requirements inside the storage ring become more and 

more stringent. Specifically, in order to achieve an isochronous 

SRFEL one must maintain a relative longitudinal slippage through the 

storage ring that is small compared with the laser wavelength. 

Hence the storage ring momentum compaction a. must satisfy the 

relation: 

aroT(~y) < I (1.1) 
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where ro is the laser frequency, T is the period in seconds of the 

storage ring arcs, and <D.:y/y> is the average electron energy spread. 

To describe the coupled electron bunch - optical field dynamics 

I present a one dimensional Vlasov model based around the 

pendulum equations of Colson[8]. The derivation below is taken from 

my thesis[5] where I also develop a separate, small signal model 

based on mapping equations for the lowest order moments of the 

electron distribution. 

2. A Differential Equation Approach to FEL Simulation 

The electron motion is described using longitudinal variables in 

phase C = kz - rot and energy v = 47tN Ay/y where N is the number of 

undulator periods in the FEL. The electron energy y is measured 

relative to the resonance energy 'YR defined by the well-known 

relation: 

(2.1) 

where A. is the laser wavelength Au is the undulator period and K IS 

called the undulator parameter and is usually about unity. 

The variables C and v develop according to the single particle 

equations: 

c = v (2.2) 
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and v = I a I cos <~ + c!>) 

The local amplitude a = I a I exp(icj>) of radiation field is 

described by: 

(2.3) 

where j is the dimensionless electron current density. The brackets 

above indicate an average over the electron distribution on a length 

scale large compared with the optical wavelength yet much smaller 

than the electron bunch length. The pendulum equations (2.2) - (2.4) 

have a fairly wide range of validity, describing both strong and weak 

signal FEL operation[8,9]. 

To proceed, begin by writing down the Vlasov equation m one 

degree of freedom for the evolution of the electron distribution. The 

radiation field evolves according to the averaged Maxwell's equations 

(2.4 ). Essentially we are just converting the discrete particle 

approach of Colson into an equivalent continuous description using a 

distribution function. Thus we have: 

af(~,v;t) + t af(~,v;t) + v ()f(~,v;t) = 0 
a~ a~ av (2.5) 

where the dimensionless time variable ~ has been defined so that a 

single traversal of the undulator corresponds to ~ = 0 ~ 1. 

Furthermore, we expand the distribution f(~,v.~) in terms of a 
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complete orthonormal basis in ~ and v. The choice of the basis is 

determined by the assumed characteristics of the zeroth order 

electron distribution. Probably the most reasonable choice for f(~,v;t) 

is a finite Fourier series in phase ~ and an expansion in energy v in 

terms of Chebyshev[10] polynomials. In general we may then write: 

(2.6) 

where the orthogonal Chebyshev polynomials H are given by: 

Ho= 1 ' Hl =X' = x2- 1 
' 

H3 = x3 - 3x, ... 

In f(~,v,t) above the parameters v, cr, 11, W etc. are all assumed 

to be functions of time t and slowly varying functions of ~- The 

distribution f(~,v,t) above has the property that its phase space area 

is unity and also: 

(v) = v {{v- vf) = cr2 and (2.7) 
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Notice that the coefficients of H 1 eiO and H2 eiO in (2.6) are 

missing. _ The role of these two coefficients has been assumed by v 

and cr and they must be excluded to insure that ·v and cr do in fact 

represent the average energy and energy spread of the electron 

distribution. 

Also from the definition (2.6) we have that: 

w = (<v - v) e-i~). (2.8) 

The problem proceeds easier if we rewrite the Vlasov equation 

(2.5) in terms of the variable: x = (v - v)/cr . 

df - df 1 ·r * ·r df - + (xcr+v)- + -L-(ae1>:> +a e-1>:>)- = 0 
d't a~ 2cr dx 

(2.9) 

At this point we simply substitute the decomposition of f(~,v,-r) 

in (2.6) into the Vlasov equation (2.5) and require that the 

coefficients of the resulting equation each vanish separately. For the 

moment terms we shall ignore terms proportional to d/d ~. which 

corresponds to taking the long bunch length limit. Setting the 

coefficient of H1 eiO to zero in the resulting equation one obtains: 

(2.10) 

Similarly at higher orders: 

-ri = -i v Tl - i w (2.11) 
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cr2 = 2 Re[ a* W ] (2.12) 

· ·- a _... · 2 W = -1 v W + - - (v + 1 cr ) 11 
2 

(2.13) 

From Equation (2.4) we have that the light pulse develops as: 

. 
a= -j11 (2.14) 

It is evident from these equations that the smallest set of 

variables needed to maintain a closed dynamical system while still 

having a physically interesting model includes: v, cr2, 11. and W. We 

shall choose to neglect both 112 and W3 in equation (2.13) and in the 

rest of this discussion. Because 112 represents bunching on half the 

usual scale any 112 that gets built up during laser operation is damped 

away inside the storage ring at 4 times the rate at which 11 is damped 

(See derivation of Equation (3.8) below). 

One must remember throughout this analysis that the electron 

bunch slips backward relative to the light pulse a distance NA. in a 

single traversal of the undulator. If we assume that the length of the 

electron bunch and the light pulse are both long compared to the 

slippage distance NA. then Equations (2.1 0) - (2.13) can be used to 

describe the evolution of the electron distribution at a particular 

phase. 

The coupled problem in which long bunch length is not .. 

assumed, is best considered in two frames. The electron distribution 

7 



evolves in one frame while the light pulse is thought of to evolve 

separately in a different reference frame. To be more specific we 

should write for Equations (2.1 0) to (2.13 ): 

v(~,'t) = Re[ a*(~-N't,'t) Tt(~,'t)] 

Tt(~,'t) = -i v Tt(~,'t) - i W(~,'t) 

cr2(~,'t) = 2 Re[ a*(~-N't,'t) W(~,'t)] 

W(~,'t) = -i v(~,'t) W(~,'t) + l.a(~-N't,'t) 
2 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

It is still reasonable at this level of approximation to ignore 

terms in fJ/iJ ~ while also including the affects of slippage in Equations 

(2.15) - (2.18). The neglected terms come into play at a slightly 

higher order than the retained longitudinal variations in the light 

pulse amplitude a. 

For the time development of the radiation field we get instead 

of Equation (2.14): 

a(~,'t) = - j(~+N't,'t) Tt(~+N't,'t) (2.19) 

where j(~,'t) is the local current density in the electron reference 

frame. Equations (2.15) - (2.19) can be integrated numerically to 

give· the evolution of the coupled light pulse-electron bunch system 
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in the FEL. One integration scheme involves usmg one-dimensional 

array.s to represent the longitudinal profile of the electron bunch and 

light pulse. The light pulse array contains a as a function of position 

while the electron bunch array contains: v, cr2 , 11 and W each as a 

function of longitudinal position within the bunch. 

3. The Storage Ring Maps 

To complete our description of isochronous storage ring FEL 

dynamics we must now derive equations equivalent to (2.10) - (2.13) 

for the development of the electron moments inside the storage ring. 

For brevity we will not discuss all the details of storage ring 

dynamics. For our purposes it is sufficient to characterize the storage 

ring as containing synchrotron radiation, momentum compaction and 

energy restoration. These three processes determine the period of 

synchrotron oscillation, the rate of synchrotron radiation damping, 
' 

along with the electron bunch length and energy spread in 

equilibrium[?]. Because of low momentum compaction, the electron 

bunches in an isochronous storage ring have reduced bunch length 

and synchrotron frequency whereas equilibrium energy spread and 

the rate of storage ring damping remain unaffected. Because the rise 

time of the laser is assumed to be much shorter than the period of 

synchrotron oscillations we will ignore the affects of synchrotron 

oscillations from now on. 

For the rest of this calculation we shall use the simplest of 

storage ring models, consisting first of a single cavity in which the 
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10 
electrons receive a boost in energy 6(n), with the amount of energy 

. · delivered varying according to the revolution number n. The ~nergy 

replacement cavity is followed by simple arcs characterized by the 

nonlinear momentum compaction factor: a = a 1 + (6y/y) a 2 . In 

actuality the momentum compaction factor a can be expanded to 

arbitrary orders in energy and also emittance. For a complete 

discussion of this expansion and the relative importance of terms to 

the isochronous storage ring FEL see Deacon[1]. 

In terms of the longitudinal storage ring variables (e;r) the 

single particle storage ring maps may then be written: 

e' = e + 6(n) (3.1) 

(3.2) 

Here e = (y- 'Ys)I'Ys and 't represents relative time displacement 

along the electron bunch. Since we choose the storage ring design 

energy 'Ys to coincide with the laser operating energy v = 1t we also 

have: 

41tN 'Ys - 'YR = 1t 
'YR. 

Converting Equations (3.1) and (3.2) into FEL variables. gives: 

v' = v + 6v(n) (3.3) 



(3.4) 

where T is the revolution period of the storage ring m seconds, N is 

the number of undulator periods, ro is the laser angular frequency. 

Let us first derive the storage ring maps assuming perfect 

energy restoration before going on to the slightly more complicated 

case of imperfect energy restoration. For the case of perfect energy 

restoration Av(n) in Equation (3.3) would be such that v' = 1t 

(operating energy) after every pass. In addition, Equation (3.4) 

becomes: 

(3.5) 

where we have defined: X := (V - v)/0 . 

To find the resulting storage ring map for the bunching 

parameter 'fl, exponentiate Equation (3.5) above and integrate over 

the electron distribution f(~,v). We see from Equation (2.6) that the 

only non-vanishing terms after the integration over phase will be 

those proportional to Tl, W, W 3 etc.. That is: 

where 

(3.6) 

and 
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C2 = li- _ax_ x e·x2
/2 exp[ - i cr x A - i cr2 x2 B ] 

cr Y27t -
(3. 7) 

where we have used: A= a1roT and B = a2roT . 
41CN ( 41CN)2 

Integrating and assuming also that Bo2 << 1 we obtain for the 

bunching parameter map through the storage ring: 

(3.8) 

To obtain the W map we use Equation (2.8). For perfect energy 

restoration we have that: 

(v' - v')e·il;' = ( (1C + cr x) - 1C ) e-il;;' 

or 

Proceeding as before we notice that: 

This gives: 

W' = { W - i A cr2 ( 11 - i A W ) } 

(3.9) 

x exp(- A2 o2 I 2) exp(- i cr2B) 
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To proceed to the case of imperfect energy restoration we 

assume that the storage ring misses the operating energy v = 1t by an 

amount ll.. This gives for the first storage ring map: 

v' = 1t + ll. + xa (3.10) 

The storage ring map for phase then becomes: 

~, = ~ + A (ll. + xa) + B (ll. + xa)
2 (3 .11) 

1 3 

The integration is then quite straightforward, g1vmg m the end: 

11' = ( 11- i (A+ 2Bil. )W) exp( -(A+ 2Bil.)2 
a2 I 2) 

(3.12) 

along with: 

W' = { W - i a2 (A + 2Bil.) ( 11 - i (A + 2Bil.) W)} 

(3.13) 
. 2 2 2 2 x exp( -(A+ 2Bil.) a /2) exp[ -i (All.+ B (ll. +a. ) )] 

4. Numerical Results 

The SRFEL equations given above shall now be evaluated in the 

long bunch length limit ignoring slippage. The nominal values for 

machine parameters are: a. 1 = I0-5, a.2 = I0-3, N = 100, 'A = I0-6 m 



14 
and T = 1 Q-7 s. The amplitude of the spontaneous radiation 

generated is calculated to be [11]: laol = 1.6 x I0-4 while the phase of 

this radiation is made to vary randomly from pass to pass. Other 

parameter choices include the current density j = 0.8 along with the 

initial conditions: v(O) = 3.1416, a2(0) = 0.003 and rt(O) = 0. 

Our first example is that of a lossless oscillator in which the 

undulator is enclosed by perfectly reflecting mirrors and· a light 

pulse is built up inside the cavity over many passes starting from the 

spontaneous radiation. Note that in this first example no light is 

allowed to leave the laser cavity and that energy restoration in the 

storage ring is assumed to exactly compensate for the energy lost by 

the electrons to the light pulse. That is, the average electron energy 

v is set to the operating energy 3.1416 after every pass upon exiting 

the undulator. Additionally, the laser field amplitude a is given a 

phase change of 1t after each pass through the cavity by the electron 

bunch in order to restore the proper phase relation relative to the 

electron microbunching. 

Figure 2a shows the logarithm of the magnitude of the 

radiation amplitude I a I as a function of revolution number around 

the storage ring, while Figures 2b and 2c give the magnitude of the 

bunching parameter and the square of the energy spread in FEL 

units for this same example. The amplitude of the light pulse 

increases rapidly for the first 20 turns, after which point the energy 

spread has increased to where the storage ring begins rapidly to 

damp away the electron microbunching. The laser amplitude 

continues to increase with a reduced gain until growth stops after 

about 100 passes where I al = 3.7, a2 = 60 and Tt = 0. 



In contrast, Figure 3 displays the laser amplitude profile for 
' 

the analogous conventional storage ring laser for which we have 

increased the momentum compaction a 1 so much that the ring is not 

at all isochronous and no microbunching is left over from pass to 

pass. Without isochronicity we see smaller gain, reaching maximum 

radiation amplitude after 250 turns, at which point: 1 al = 3.2 and 

a2 = 60. Thus we reach basically the same .final configuration as in 

the isochronous case, Figure 2a, but after about 150 additional turns. 

Figure 3 is not entirely accurate since in a conventional non­

isochronous storage ring there would be bunch lengthening due to 

the increased energy spread. 

S. Self-Amplified Single-Pass Operation 

1 5 

One of the most promising isochronous storage ring FEL 

configurations to consider and certainly the easiest to construct in 

practice occurs when we operate the FEL with no mirrors, external 

laser wave, and without energy restoration to the ~lectrons. After 

every pass through the FEL the electrons create a new light pulse 

usmg the microbunching left over from the previous turn (See 

Equation (2.14)). As the microbunching Tl increases turn after turn so 

does the amplitude of the emitted light pulses. Operation is 

simplified since no thought has to be given to mirror alignment nor 

to keeping the phase of the microbunching commensurate with that 

of an external wave. In addition, energy restoration may be 



neglected since the electrons are seen to lose only a small fraction of 

their energy. 

1 6 

Figure 4 shows the results of this mirrorless configuration with 

j = 0.8 and cr2(0) = 0.003. Laser output is given as a function of 

revolution number for several values of the storage ring damping 

factor A = alooT/41tN (See Equation (3.8)) with the nominal case 

defined as A = 1.5. Here simply by exploiting the isochronicity of the 

storage ring we see up to a 7 order of magnitude increase in the 

intensity of the emitted light pulses (=I a 12 ) above the single-pass 

level produced in ·a conventional non-isochronous storage ring. 

Notice however that there is a limit placed on the maximum single­

pass amplitude obtainable from the FEL. That is, because 111 I ~ 0.5, 

by definition, we· must then have from Equation (2.14) that · 

I a bax ~ j/2. 

Although this configuration produces less total and peak power 

than in the mirrored case, here there is also only relatively mild 

energy spread growth in comparison. In Section 7 we are able to 

compare the merit of the two solutions more directly as we discuss 

SRFEL efficiency. What is surprising is that solutions with greater 

storage ring damping reach peak amplitude in less time and thereby 

have higher gairi near startup. This phenomena appears to be due to 

coupling between the 11 and W moments in the storage ring. 

6. Optical Pulse Narrowing 



In Figures 5 and 6 we see the effects of the finite electron 

bunch length in this same mirrorless configuration. Elementary 

theory predicts that the electron bunches produced in a quasi­

isochronous storage ring will be Gaussian and also shorter 

longitudinally than in conventional storage rings. Because the 
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current density j is higher at the center of the electron bunch than at 

the ends, the laser interaction will consequently evolve faster at the 

center leading to an initial narrowing of the optical pulses (Figure 5). 

Later, as the energy spread at the center of the bunch causes local 

saturation, the outer unsaturated portions continue to provide gain 

giving the double humped optical pulse shown in Figure 6. 

7. Equilibrium Solutions and SRFEL Efficiency 

In his thesis Deacon[!] postulated that the isochronous storage 

ring FEL would operate in a continuous fashion of high gain even 

neglecting of the energy spread damping provided by synchrotron 

radiation in the storage ring. Using a simple one-dimensional model 

of the isochronous storage ring laser, Deacon derived conditions, 

based on machine parameters, for the existence of stable single 

particle fixed points, assuming a constant external radiation field 

(amplifier mode). Naturally the existence of fixed points does not 

ensure or predict laser gain. For this we require knowledge of the 

electron microbunching and its phase relation to the external 

radiation field. 



The more detailed model presented here which takes into 

account energy spread growth and the formation of the electron 

microbunches shows that kind of equilibrium solution predicted by 

Deacon cannot exist in reality. With the inclusion of the longitudinal 

dimension into our model the situation becomes even more 
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complicated. Due to slippage between the electrons and the light 

pulse, evolution at any given phase m the electron bunch is affected 

by the parameter values at adjacent locations. Also, the fact that the 

storage ring FEL interaction proceeds at different rates at different 

parts of the electron bunch illustrates further the impossibility of 

finding even a quasi-equilibrium solution for the entire bunch. 

The more plausible type of equilibrium solution, often sought 

in conventional storage ring FEL models[12,13,14,15] recognizes that 

the laser interaction will increase the energy spread of the electron 

bunches. Equilibrium storage ring laser solutions then come about as 

a balance between energy spread growth caused by the laser and 

energy spread cooling provided by the storage ring arcs. For 

conventional storage ring FELs, the Renieri limit gives the 

relationship between laser power and the amount of radiation that 

must be given off as synchrotron radiation in the storage ring arcs in 

order to balance the energy spread growth generated by the laser. 

Explicitly the Renieri limit says: 

= x-1-PsYN 
2N 

(7.1) 



where l/2N is the homogeneous gain bandwidth and x denotes 

efficiency, shown to be no more than unity for conventional storage 

ring free electrons lasers. 

Because of the great disparity between synchrotron radiation 

power and laser power caused by th~ factor of l/2N above, storage 

ring FELs generally operate as pulsed lasers. That is, the laser 

interaction is allowed to develop through many passes by the 

electrons until checked by laser saturation due to energy spread 

growth. The FEL must then be disconnected following saturation to 

allow the storage ring arcs to .cool the electrons before resuming 

pulsed operation. 

One of the central reasons for considering building an 

isochronous storage ring FEL was that by preserving the electron 

microbunching from pass to pass in the storage ring one could 

presumably overcome the Renieri limit, Equation (7 .1) above. We 

may now calculate the efficiency x for the different isochronous 

storage ring FEL operating configurations presented elsewhere[5]. 

To calculate the efficiency x note that the storage ring damps 

electron energy spread according to the relation: 

cr2 = cr2(0) exp( -2U0 /E5) (7.2) 

where U0 is the total amount of synchrotron radiation emitted in the 
' 

storage ring arcs and Es is the storage ring energy. Knowing the 

initial and final energy spread in the FEL operating profile one may 

then calculate the amount of synchrotron radiation U0 needed to 

restore the initial electron energy spread. Comparing U0 with the 
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amount of optical energy ll.v produced in the laser determines x the 

storage ring FEL efficiency. 

The amount of time needed for storage :r:ing damping depends 

on how large an initial energy spread can be tolerated by the FEL 

without · comp!"omising laser performance. In the examples 

considered, an initial energy spread of cr2 = 0.02 was found to still 

20 

give good laser results. For the case of an FEL with lossless, non­

transmitting mirrors and perfect energy restoration, similar to that 

presented in Figure 2, we obtain: . l:l v = 8.2, cr2(0) = 0.02, cr2(SAT) = 58. 

Thus giving an efficiency x = 0.33. This efficiency is the same for the 

non-isochronous case depicted in Figure 3 since both configurations 

end up emitting the same amount of energy at the expense of equal 

amounts of energy spread growth. 

For simplicity we may rewrite the efficiency x as: 

_ !l. v I (cr2(SA T))- 1 

X - - n ---.::.__~ 

1t cr2(0) 
(7.3) 

where again l:l v is the total, average electron energy lost in the FEL. 

For the case of 50% transmitting mirrors we obtain, assuming 

perfect energy restoration: ll.v = 0.39, cr2(0) = 0.02, cr2(SAT) = 0.19 ~ 

X = 0.049. 

Lastly, for the mirrorless, single-pass configuration presented 

m Figure 4 using the nominal values for momentum compaction 

A = 1.5 we obtain: ll.v = 0.25, cr2(0) = 0.02, cr2(SAT) = 0.21 ~ 

X = 0.034. 
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These efficiency results show that the isochronous storage nng 

FEL is in fact not a more efficient variety of storage ring FEL. In 

addition, altering machine parameters such as current density and 

isochronicity is not seen to improve machine efficiency an further. 

The isochronous device thus delivers the same laser energy after 

fewer revolutions by the electrons than in a conventional SRFEL, but 

not at a savings when it comes to energy spread growth. 

8. Conclusion 

Although the isochronous storage ring FEL has been shown to 

have an intriguing gain mechanism, the results given here and in my 

Ph.D. thesis indicate that its construction would not be worthwhile. 

Tolerance requirements in the storage ring eliminate the possibility 

of short laser wavelengths, which in turn implies that the storage 

ring be operated at low energy. Because of low electron energy, the 

ability of the storage ring to damp the laser induced electron energy 

spread is largely restricted. Additionally, because of low momentum 

compaction, the longitudinal storage phase space area is reduced thus 

greatly limiting the electron current. There also remain large 

problems still to be addressed concerning the difficulty of 

construction of an isochronous storage ring along with instability 

issues. Aside from this, the output laser power calculated ·here for 

the isochronous storage ring FEL should easily be exceeded by either 

conventional lasers or by a high powered linear accelerator operated 

together with a mirrored FEL cavity. 
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Schematic diagram of an isochronous storage ring FEL. 

The amplitude of an optical pulse contained m a lossless 

cavity is plotted against revolution number assuming 

quasi-isochronous storage ring. 
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Corresponding bunching parameter growth accompanying 

Fig. 2a. 

Mean-squared energy spread growth accompanying 

Fig. 2a 

Same configuration as Fig. 2a except that momentum 

compaction is taken to be large. 

Single-pass self-amplified FEL performance as a function 

of the storage ring damping parameter 'A'. 

Longitudinal optical field profiles for single-pass self­

amplified operation. 

Longitudinal optical field profiles for single-pass self­

amplified 'operation. 
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Figure 2b: Lossless oscillator configuration 
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