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M&V Shootout: Setting the Stage for Testing the Performance of New Energy 

Baseline Models  

  

ABSTRACT 

Trustworthy savings calculations are critical to convincing investors in energy efficiency projects of 
the benefit and cost-effectiveness of such investments and their ability to replace or defer supply-side capital 
investments. However, today’s methods for measurement and verification (M&V) of energy savings 
constitute a significant portion of the total costs of efficiency projects. They also require time-consuming 
data acquisition and often do not deliver results until years after the program period has ended.  A spectrum 
of savings calculation approaches are used, with some relying more heavily on measured data and others 
relying more heavily on estimated or modeled data, or stipulated information. 

The rising availability of “smart” meters, combined with new analytical approaches to quantifying 
savings, has opened the door to conducting M&V more quickly and at lower cost, with comparable or 
improved accuracy. Energy management and information systems (EMIS) technologies, not only enable 
significant site energy savings, but are also beginning to offer M&V capabilities. This paper expands recent 
analyses of public-domain, whole-building M&V methods, focusing on more novel baseline modeling 
approaches that leverage interval meter data. We detail a testing procedure and metrics to assess the 
performance of these new approaches using a large test dataset. We also provide conclusions regarding the 
accuracy, cost, and time trade-offs between more traditional M&V and these emerging streamlined methods. 
Finally, we discuss the potential evolution of M&V to better support the energy efficiency industry through 
low-cost approaches, and the long-term agenda for validation of building energy analytics. 

Introduction 

Measurement and verification (M&V) of energy efficiency measures can be critical to establishing 
the value of efficiency both to building owners and to utility programs incentivizing savings. However, 
M&V can be costly and time consuming. Depending on the M&V methods used and whether third party 
evaluation is included, M&V costs can range from 1-5% of project portfolio costs (Jayaweera et al. 2013). 
Today, the growing availability of data from smart meters and devices, combined with time series data 
analytics offers the potential to streamline the M&V process through increased levels of automation. In 
addition, energy management and information systems (EMIS)1 are beginning to automatically create 

                                                 
1 Energy Management and Information Systems (EMIS) are software tools that store, analyze, and display energy use or 
building systems data; they include energy information systems, and fault detection and diagnostics systems (Kramer et al. 2013). 
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baseline models and calculate energy savings according to the principles of the International Performance 
Measurement and Verification Protocol (Kramer et al. 2013). These technologies offer the potential to 
reduce the time and costs necessary to conduct M&V.  

Although these emerging technologies and approaches hold great promise to scale M&V in the 
commercial buildings sector, several questions relating to their use remain to be answered:  How accurate are 
automated baseline models that utilize interval meter data? How can proprietary tools that automate gross 
savings calculations be evaluated? How can one tool or model be compared to another? What metrics should 
be used to quantify the performance of these tools?   

In this paper, we begin to answer these questions by presenting five key outcomes: 1) a test procedure 
used to evaluate the accuracy of automated building energy baseline models that are used in avoided energy 
use calculations to determine what the building would have consumed had no efficiency measure been 
installed; 2) the application of that test procedure to evaluate ten interval data-based models, using metered 
data from hundreds of geographically diverse buildings; 3) two stakeholder consensus-based performance 
metrics; 4) interpretation of model performance and discussion of implications for the M&V industry; and 5) 
conclusions and directions for future work. The analyses that are presented represent a ‘floor’ for predictive 
accuracy, using fully automated approaches. Data was provided to the models, which automatically fit their 
parameters, and model-predictions were compared to actual meter data. No attempt was made to implement 
non-routine adjustments to improve model predictions. Therefore, the accuracy results that are presented 
represent the most conservative view into performance, which could be improved with the oversight of an 
engineer. The vision motivating this work can be understood in general: that by using large test data sets, 
predictive accuracy can be verified for large portions of building populations. This performance validation 
can provide the quantitative evidence and confidence to begin leveraging automation to scale: a) the 
adoption of measured pre/post M&V approaches, and b) the number of buildings for which M&V can be 
conducted with decreased time and cost. Energy efficiency savings that is verified within specific known 
error bounds may be more interesting as a commodity to some potential buyers. 
 

Methodology 

The evaluation of model predictive accuracy that is presented in this paper is based on a 4-step 
testing procedure, generally characterized as statistical cross validation using large test datasets. This 
procedure is depicted in Figure 1. The test dataset comprises interval meter data and independent variable 
data, such as outside air temperature, for dozens to hundreds of buildings. These buildings are “untreated” in 
terms of efficiency interventions. That is, they are not known to have implemented major efficiency 
measures. The data for each building is divided into hypothetical training periods and prediction periods, and 
meter data from the prediction period is “hidden” from the model. The trained model is used to forecast the 
load throughout the prediction period, and predictions are then compared to the actual meter data that had 
been hidden. Figure 2 shows an example of actual, and model-predicted data for a 12-month training period 
and a 12-month prediction period. Performance metrics that quantify the difference between the model 
prediction and the actual load are calculated and used to characterize accuracy. 
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Figure 1. Schematic of the test procedure used to evaluate the performance of automated M&V 
methods. 
 

 
 

Figure 2. Actual and model-predicted energy data, overlaid with outside air temperature, for a 12-month 
training period and 12-month prediction period. 
 

This test procedure is documented in further detail in prior publications (Granderson et al. 2015; 
Granderson et al. 2014). It shares important similarities to the approaches used in the ASHRAE ‘shootouts’ 
of the mid and late 1990s (Haberl & Thamilseran 1998; Kreider & Haberl 1994). In both cases, cross-
validation is used to determine model error, and in both cases, similar performance metrics are considered. 
However, the ASHRAE shootouts were limited to data from a total of three buildings, and the cross-
validation was conducted during a short subset of the model training period. The ASHRAE competitions 
considered total energy use from a sum of submetered quantities, but the analyses presented in this work are 
constrained to data and models of whole building electric metering because that is the only meter data that 
was available in our dataset; it is also the type of interval data most readily available in today’s buildings. 

Test Data 

The test dataset for the analyses presented in this paper comprised 537 commercial buildings from 
multiple climate zones, and is characterized in Table 1. These data represent a combined pool from model 
developers, a utility, and a municipality.  For each building, 15-minute whole-building electricity data was 
paired with zip-code based data for outside air temperature. Buildings in Climate Zone 3 were from Northern 
and Central California, and those from Climate Zone 4 were from the Northwest and Mid-Atlantic.  
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Table 1. Distribution of buildings in the test dataset based on ASHRAE climate zones  
 

ASHRAE Climate Zone 1 (Very Hot) 2 (Hot) 3 (Warm) 4 (Mixed) 5 (Cool) 6(Cold) 7 ( Very Cold) 

Building Count 1 15 277 237 5 1 1 

 

Description of Models Tested  

Ten baseline models were evaluated in this study, comprising a cross-section of approaches used in 
commercial EMIS technologies, as well as approaches that are documented in the literature, and/or 
developed by the academic building research community. The models are described below, with references 
and a description for those that are published in the literature. While the models may be able to 
accommodate additional independent variables were they available, outside air temperature, date, and time 
were the only variables for which it was possible to build a large dataset comprising hundreds of buildings 
from diverse climates. The ten models are: 

M1. Combination principle component analysis and bin modeling, developed by Buildings Alive Pty. 
Ltd. of Sydney Australia.  

M2. Combination Random Forest, Extra-Trees (extremely randomized trees) and Mean Week, 

developed by Paul Raftery and Tyler Hoyt at the Center for the Built Environment, University of California, 
Berkeley. 

M3. Advanced regression including a term for drift, developed by Gridium Inc. 
M4. Mean Week – predictions depend on day and time only. For example, the prediction for Tuesday 

at 3 PM is the average of all of the data for Tuesdays at 3 PM. Therefore, there is a different load profile for 
each day of the week, but not, for example, for each week in a month or each month in the year. This is a 
simplistic ‘naïve’ model that was intentionally included for comparative purposes. 

M5. Time-of-Week-and-Temperature (Granderson et al. 2015): the predicted load is a sum of two 
terms: (1) a “time of week effect” that allows each time of the week to have a different predicted load from 
the others, and (2) a piecewise-continuous effect of temperature. The temperature effect is estimated 
separately for periods of the day with high and low load, to capture different temperature slopes for occupied 
and unoccupied building modes.  

M6. Weighted Time-of-Week-and-Temperature (Piette et al. 2013): the Time-of-Week and-

Temperature model with the addition of a weighting factor to give more statistical weight to days that are 
nearby to the day being predicted. This is achieved by fitting the regression model using weights that fall off 
as a function of time in both directions from a central day.   

M7. Ensemble approach combining nearest neighbors and a generalized linear model, developed by 
Lucid Design Group. 

M8. Combination Multivariate Adaptive Regression Splines (MARS) and other advanced regression 

M9. Combination bin modeling and other advanced regression, developed by Performance Systems 
Development of Ney York, LLC. 

M10. Nearest neighbor advanced regression 
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Performance Metrics  

There are many metrics that can be used to quantify the accuracy of model predictions. Different 
metrics provide different insights into aspects of performance. To identify those most relevant and useful in 
understanding model performance for M&V of energy savings, a group of approximately twenty industry 
representatives from the evaluation, implementation, and utility program management community were 
consulted. These stakeholders were asked to select from several candidates such as coefficient of 
determination, root mean squared error and other goodness-of-fit metrics. Across this group, the most 
meaningful two metrics were found to be normalized mean bias error (NMBE), and coefficient of variation 
of the root mean squared error (CV(RMSE)). These two metrics provide a nice complement in understanding 
model performance for M&V applications. NMBE gives a sense of the total difference between model 
predicted energy use and actual metered energy use, with intuitive implications for the accuracy of avoided 
energy use calculations. CV(RMSE), gives an indication of the model’s ability to predict the overall load 
shape that is reflected in the data. CV(RMSE) is also familiar to practitioners, and prominent in resources 
such as ASHRAE Guideline 14. These metrics are defined in the equations below, where yi  is the actual 
metered value, Ĕyi  is the predicted value, y  is the average of the yi , and N is the total number of data points. 
In the case of CV(RMSE), results are presented for daily totals of energy use across the prediction period; for 
NMBE, by definition, the metric captures the percent error in measured versus predicted energy use for the 
full prediction period.  
 

NormalizedMeanBiasError =

1
N

yi - Ĕyi( )
i

N

å

y
´100

 
 

CV RootMeanSquared Error =

1
N

yi - Ĕyi( )
2

i

N

å

y
´100

 

Time Horizons 

In keeping with current standard practice and guidelines for whole-building avoided energy use 
calculations (ASHRAE 2012), the analyses in this study are grounded in a 12-month ‘post’, or model 
prediction period.  We assess the degradation in prediction accuracy when the ‘pre’, or model training period 
is reduced from 12-months, to shorter and shorter time horizons. Specifically, results are presented for 12-
month, 9-month, 6-month, and 3-month training periods.  

Results  

Some buildings are predictable, and others are not; therefore, to understand the predictive accuracy of 
the models, and their promise for streamlining M&V, it is necessary to test them across many buildings. 
Moreover, simply reporting the mean or median does not give a full picture of the fraction of buildings in the 
population for which accuracy is exceptionally high or low; therefore the results present distributions, i.e., 
percentiles, of the performance metrics over the full population of buildings in the data set. 

tali
Typewritten Text
5



 

 

Normalized Mean Bias Error 

Normalized mean bias error across the full population of buildings in the test dataset is shown for 
each model, in Figure 2. In these ‘box-and-whisker’ plots, the mean error is shown with a white circle; for 
some models, the mean error is literally off of the chart, or approaches infinity, and therefore is not plotted. 
The top of each ‘whisker’ represents the error for the 90th percentile in the population of test buildings, and 
the bottom represents the 10th percentile; note that for some models, these two percentiles are off of the 
chart, and thus not displayed. The top and bottom of each box represent the 75th and 25th percentiles, 
respectively, and the horizontal line in each box marks the median, or 50th percentile. 

The number of buildings in the test dataset is shown in the title at the top of each plot. Most models 
that were tested failed to generate predictions for at least some of the buildings in the test dataset.     
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Figure 3. Distributions of NMBE for each model, for a 12-month prediction period, and 12-month, 9-month, 
6-month, and 3-month training periods.   
  

While Figure 3 shows percentiles of errors across the full population of buildings and training 
periods that were analyzed, Table 2 summarizes just the median, 50th percentile error as the training period is 
reduced from twelve, to nine, to six, to three months. This provides insight into the general degradation in 
performance that is seen as the model training period is reduced, while the prediction period is held fixed at 
twelve months.  
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The results displayed in Figure 3 and Table 2 show that for the majority of models there was a 
tendency of a bias toward over-predicting the energy use (NMBE negative), In addition, when the training 
period was shortened from twelve months to nine, the average model NMBE (absolute values taken to 
account for changes in sign), was stable. However, the NMBE increased modestly with six months of 
training data, and notably with only three months of training data. 

 

Table 2. Median NMBE for each model, for a 12-month prediction period and 12-month, 9-month, 
6-month, and 3-month training periods.  
 

Model  
Model Training Period 

12 months 9 months 6 months 3 months 

M1 -1.7 -2.02 -4.19 -12.77 
M2 -0.63 -0.68 -0.73 1.3 
M3 0.35 -0.2 -0.67 -0.17 
M4 -1.93 -1.07 -2.22 -2.66 
M5 -1.25 -1.26 -1.79 0.21 
M6 -0.73 -0.92 -0.88 -0.81 
M7 -2.97 -2.62 -3.57 -3.19 
M8 -0.51 -0.88 -0.36 1.38 
M9 -1.1 -0.98 -1.65 -3.5 
M10 -0.32 -0.55 -0.84 1.14 

Avg. of Absolute 
Median Values 

1.15 
 

1.12 
 

1.69 
 

2.71 

 

CV(RMSE), Daily Energy Totals   

Figure 4 shows the results for the CV(RMSE) performance metric, when calculated for daily energy 
totals across each day in the prediction period. Similar to Table 2, Table 3 summarizes just the median, or 
50th  percentile error as the training period is reduced from twelve, to nine, to six, to three months. The 
results in Figure 4 and Table 3 show that when the training period was shortened, there was a gradual 
degradation in predictive accuracy. For these training periods the average median CV(RMSE) for 15min 
energy totals increased from 12.93 to {13.76, 15.43 and 20.47} respectively. For the standard whole-building 
case of twelve months training followed by twelve months of prediction, and for all the models except the 
model 4, which is a very naïve model, the prediction CV(RMSE) was less than 25 for more than 75% of 
buildings. 
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Figure 4. Distributions of CV(RMSE) for daily energy totals for each model, for a 12-month prediction 
period, and 12-month, 9-month, 6-month, and 3-month training periods.   
 

 
Table 3. Median CV(RMSE) for daily energy totals for each model, for a 12-month prediction period and 
12-month, 9-month, 6-month, and 3-month training periods  
 

Model  
Model Training Period 

12 months 9 months 6 months 3 months 

M1 15.69 19.35 23.63 40.18 
M2 11.72 12.18 13.16 15.93 
M3 11.66 11.93 13.1 15.88 
M4 16.91 17.57 18.67 19.45 
M5 12.69 12.77 13.65 17.18 
M6 12.2 12.67 13.76 16.17 
M7 11.79 11.81 12.4 15.98 
M8 11.96 12.76 14.09 16.88 
M9 11.94 13.45 17.45 29.34 
M10 12.78 13.06 14.44 17.72 

Average 12.93 13.76 15.43 20.47 
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NMBE vs. CV(RMSE)  

Given that stakeholders generally saw value in assessing model performance according to two 
complementary metrics, it is useful to consider both metrics simultaneously. Figure 5 shows median NMBE 
vs. CV(RMSE) for daily energy totals, for a 12-month training and prediction period, for each model that 
was tested. Although not shown here, these plots were generated and analyzed for the nine-month, six-
month, and 3-month training periods as well. This view into the results allows a comparison of relative 
model performance, across both metrics. Models that appear closest to the upper left hand corner of the plot 
between the vertical and the horizontal red lines are those that minimize both CV(RMSE) and NMBE.    
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Figure 5.  Median NMBE vs. CV(RMSE) for daily energy totals, for each model tested, for a twelve-month 
training period and twelve-month prediction period.   

 

Discussion 

Absolute Model Performance 

Overall, the interval data models that were tested were able to predict whole-building energy use with 
a high degree of accuracy for a large portion of the 537 buildings in the test dataset.  For the standard whole-
building case of twelve months training followed by twelve months of prediction, and for all models, there 
was a tendency of a bias toward over-predicting the energy use (negative NMBE), which has potential 
implications for pay-for-performance incentive designs. Average CV(RMSE) for daily energy totals less than 
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13 for half of the buildings and less than 24 for three quarters of them (except for model 4, a very naïve, 
simple model). 

This is promising for the industry. ASHRAE Guideline 14 specifies that CV(RMSE) during the 
training period, should be less than 25% if 12 months of post-measure data are used, and no uncertainty 
analysis is to be conducted (ASHRAE 2002). The analyses in this study computed CV(RMSE) during the 
prediction period, which is expected to be even higher than that in the training period. Therefore, while not 
directly comparable, it appears that the models in this study are likely to meet the ASHRAE requirements for 
a large fraction of buildings. Median CV(RMSE) for daily energy totals was less than 25% for every model 
tested when twelve months of training data were used. With even six months of training data, Median 
CV(RMSE) for daily energy total was under 25%  for all models tested.  

Moreover, with NMBE ranging from approximately -1 to 4 for one quarter of the buildings in the 
data set, and approximately -1 to -5 for another quarter of the buildings, the results provide confidence that 
these M&V approaches will be applicable for many instances of multi-measure programs. This is because 
multi-measure programs commonly target larger savings, on the order of ten percent or more (for example, 
median retro-commissioning savings are 16% (Mills 2011)); with errors of just a couple of percent, there is 
less risk that savings will be ‘lost in the noise’. In addition, the accuracies achieved in this study were for a 
fully automated case. In practice, errors can be further reduced with the oversight of an engineer to conduct 
non-routine adjustments where necessary. For example, occupancy is not commonly available measured 
data, and therefore not included in the dataset, or as explanatory variables in the models. Were the buildings 
to experience significant changes in occupancy, non-routine adjustments might be merited, and could 
improve the accuracy of the savings that are quantified.  

When the training period was shortened from twelve months to nine, and then to six, there was a 
gradual degradation in predictive accuracy. Not surprisingly, a three-month training period was not long in 

general enough to capture the range of temperatures necessary to reliably predict energy over a the full range 
of temperatures and loads that are seen in a twelve-month period. Given the desire to shorten total time 
requirements for M&V, the modest increases in error incurred in shortening the training period, in some 
cases, even to six or three months, may be worth reducing the total time necessary to acquire data for the 
baseline period.  

Climatic Differences 

The test dataset that was compiled for this analysis comprised whole-building data that represented a 
dataset of convenience, as opposed to design. Ideally, the buildings would be uniformly distributed across all 
climate zones, however it was not possible to obtain that level of diversity for this study. The data that were 
acquired were skewed to buildings from California (ASHRAE Climate Zone 3), and Washington, DC 
(ASHRAE Climate Zone 4), with much less representation from other climates. Although not presented in 
detail in the Results section, an analysis of predictive accuracy was conducted for regions independently, to 
supplement the aggregated findings that were detailed in Figures 3-4 and Tables 2-3. Regional differences in 
model performance were observed; the median and distribution of errors for the California data set (n=209) 
were modestly smaller than those for the Northwest (n=30), and those for Washington DC (n=198) were 
notably larger than both California and the Northwest. This may be due to more extreme seasonal variations 
in outside air temperature in the Mid-Atlantic region. As the California dataset was provided by a 
participating model developer, while the Northwest and Washington DC datasets were contributed by non-
developers, there is also a possibility that the California buildings were less randomly selected from the 
general commercial stock. 
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Relative Model Performance  

For the most part, each of the ten models performed equally well, according to the two metrics of 
focus in this study. When plots of median NMBE vs. CV(RMSE) were compared for the standard case of 
twelve months training and twelve months prediction, Models 1, 4, and 7 emerge as modest outliers; the 
other models analyzed are relatively tightly clustered together. When non industry-standard shorter training 
periods (nine, six, and three months) were considered, Models 1, 4, 7, and 9 emerged with relatively higher 
errors than the other models. However, it is important to emphasize that only the median performance was 
investigated, and in many cases, the magnitude of the difference in errors between models were quite small. 
In spite of these relative differences in model performance, it is worth reiterating that absolute performance 
for all models tested was strong, and provided compelling evidence for their application to whole-building 
measurement and verification. 

The results section also noted that for some models, the mean error was extremely large. The fact that 
some buildings are simply not predictable based purely on outside air temperature, date and time is not 
surprising; there are buildings that are not operated in a predictable manner, for which other drivers of 
energy use are at play, or for which non-routine adjustments may be appropriate. Interestingly, in some cases 
the buildings that were poorly predicted by one model, were not the same as the buildings that were 
predicted poorly by the other models. In addition, most models were unable to generate predictions for at 
least some of the buildings in the data set – failure rates ranged from roughly zero to ten percent depending 
on the training period and particular model in question. These aspects of performance are likely due to 
differences in the underlying form of the models, how they were coded to run automatically in batch mode, 
their treatment of outliers in the training data, and the different mathematical approaches that they each use.  

 

Conclusions and Future Work  

The results of this work show that interval data baseline models, and streamlining through 
automation hold great promise for scaling the adoption of whole-building measured savings calculations 
using AMI data. These results can be used to build confidence in model robustness, and also to pre-vet M&V 
plans for specific projects, given project requirements for uncertainty in reported savings. While uncertainty 
is not commonly considered today, it could hold value for evaluating and reducing project and investment 
risk. For example, ASHRAE’s published methods for computing fractional savings uncertainty depend on 
depth of savings, length of the training and prediction periods, and model CV(RMSE). “Look-up” tables can 
be used to explore the likelihood that a given model will produce savings estimations that meet uncertainty 
and confidence requirements, for a specific set of buildings and expected depth of savings.   

Future work will focus on four key areas: 1) demonstration of these automated approaches in 
partnership with utilities, using data from buildings that have participated in whole-building programs or 
pilots; 2) exploration of industry demand for the objective model testing methods as presented in this paper, 
and identification of appropriate bodies to which the procedures should be transferred; 3) continued 
engagement of the evaluator, program manager and implementer community to collectively more clearly 
define uncertainty and confidence requirements for reporting gross energy savings; 4) investigation of how 
these approaches that use  measured pre-measure energy use data as the baseline from which savings are 
calculated, can comport with evaluation requirements to consider code baselines.   
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