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Litter decomposition is a keystone ecosystem process impacting
nutrient cycling and productivity, soil properties, and the terres-
trial carbon (C) balance, but the factors regulating decomposition
rate are still poorly understood. Traditional models assume that
the rate is controlled by litter quality, relying on parameters such
as lignin content as predictors. However, a strong correlation has
been observed between the manganese (Mn) content of litter and
decomposition rates across a variety of forest ecosystems. Here, we
show that long-term litter decomposition in forest ecosystems is
tightly coupled to Mn redox cycling. Over 7 years of litter decom-
position, microbial transformation of litter was paralleled by
variations in Mn oxidation state and concentration. A detailed
chemical imaging analysis of the litter revealed that fungi recruit
and redistribute unreactive Mn2+ provided by fresh plant litter to
produce oxidative Mn3+ species at sites of active decay, with Mn
eventually accumulating as insoluble Mn3+/4+ oxides. Formation of
reactive Mn3+ species coincided with the generation of aromatic
oxidation products, providing direct proof of the previously posited
role of Mn3+-based oxidizers in the breakdown of litter. Our results
suggest that the litter-decomposing machinery at our coniferous
forest site depends on the ability of plants and microbes to supply,
accumulate, and regenerate short-lived Mn3+ species in the litter
layer. This observation indicates that biogeochemical constraints
on bioavailability, mobility, and reactivity of Mn in the plant–soil
system may have a profound impact on litter decomposition rates.
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Decomposition of above-ground plant detritus (litter) is a
fundamental process regulating the release of nutrients for

plant growth and the formation of soil organic matter (SOM) in
forest ecosystems (1). Litter decomposition regulates the pro-
portion of litter-derived carbon (C) that is either retained in the
system as SOM or lost as CO2 (2), thereby influencing net C
storage in soils. Although even small decomposition rate in-
creases may accelerate climate change by virtue of increasing
CO2 emissions from soils (3), uncertainty persists over the rate-
controlling mechanisms (4, 5).
Litter decomposition rates are strongly influenced by climatic

factors (e.g., temperature and moisture) and have long been
linked to litter chemistry, specifically lignin content (6). Lignin—
an aromatic biopolymer—often makes up between 15% and
40% of the litter mass and is concentrated in cell walls (7). It
encrusts cellulose microfibrils to form protective physical units
(“ligno–cellulose complexes”) that are embedded in a matrix of
hemicellulose. Conventional thinking suggests that the relatively
high initial litter decomposition rates are due to the preferential
use of soluble and readily accessible polysaccharides and hemi-
celluloses relative to lignin components. In later stages, decom-
position slows when litter has become enriched in lignin and any
remaining celluloses and hemicelluloses remain enclosed and
protected in ligno–cellulose complexes (8). However, more recent
research suggests that lignin readily decomposes in the presence of
dissolved organic substrates (5). This effect was attributed to dis-

solved and readily assimilable substrates providing decomposer
organisms with the extra energy required for the cometabolic
breakdown of lignin. This observation suggests that litter decom-
position may be controlled not only by litter chemistry, but also by
the availability of key resources for the efficient microbial break-
down of individual biopolymers.
One such key resource seems to be manganese (Mn). Numerous

studies (9–14) have measured a strong positive relationship be-
tween Mn content of litter and litter decomposition (expressed as
% mass loss) in boreal, temperate, and semiarid forest ecosystems.
Among all other parameters tested (water soluble C, lignin, N, P,
K, Ca, and Mg contents), Mn content best predicted litter mass
loss, leading Berg et al. (10) to conclude that “Mn concentration is
the single main factor” governing litter decomposition in these
forest biomes. However, efforts to experimentally validate the ef-
fect of Mn availability on decomposition rates have produced
ambiguous results (15) and have been hampered by the lack of
explicit consideration of Mn redox cycling in the soil system.
Microbial Mn oxidation has long been implicated in the en-

zymatic degradation of lignin (16). Culture studies with lignin-
decomposing fungi showed that trivalent Mn3+ is generated
during the oxidation of lignin model compounds (17). It has been
proposed that Mn3+ is formed via the oxidation of soluble Mn2+

by fungal exo-enzymes, such as Mn peroxidase or phenol oxi-
dases (e.g., laccase). When stabilized in solution by chelating li-
gands, these soluble Mn3+–ligand complexes were suggested to act
as diffusible and potent oxidants of lignin analogs (16). More re-
cently, it was discovered not only that fungi can oxidize Mn en-
zymatically, but that a diverse range of heterotrophic bacteria
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isolated from terrestrial and aquatic systems can do so as well
(18, 19). Despite the widespread physiological potential for mi-
crobial Mn oxidation, it is unclear to what extent the natural Mn
redox cycle is coupled to organic matter degradation in forest
ecosystems.
Circumstantial evidence suggests that microbial oxidation may

be the main driver of Mn cycling in forest litter layers. Foliar
litter is a major source of Mn compared with other plant litter
and mineral soils (20). Mn in live foliage is naturally present in
its reduced, mobile form (i.e., Mn2+), facilitating its supply to
photosystem II and other enzymatic systems (21). Foliar litter
becomes enriched in Mn relative to fresh plant material and
further accumulates Mn during the decomposition process (9,
22). Mn in dead foliage (i.e., litter) was found to be bound in
organic complexes (23), but it is unclear whether Mn is present
as unreactive Mn2+ or the more reactive Mn3+ form. A recent
spectroscopic investigation showed that foliar tissue contains
predominantly Mn2+ that is gradually oxidized to Mn3+/4+-oxides
in the soil upon decomposition (24). This observation led Herndon
et al. (24) to suggest that Mn stored in leaves is solubilized upon
litter fall but rapidly immobilized as Mn3+/4+ oxides after aging
in the soil. Others have observed Mn-rich black precipitates on
needle litter colonized by fungi (25), resembling Mn3+/4+ oxides
as observed after fungal Mn oxidation in model systems (26, 27).
Here, we investigated the impact of biotic Mn redox cycling

on long-term litter decomposition in forest ecosystems, taking
advantage of a field experiment conducted in an old-growth
Douglas-fir forest in the Oregon Cascades. During this 7-y ex-
periment, each year’s litterfall was spatially separated by nylon
mesh placed on the forest floor. The mesh created a series of six
well-confined litter layers (a “littercake”) containing Douglas-
fir needles at increasing decomposition stage. Our approach
was to resolve Mn transformation and litter decomposition within
the forest ecosystem at two different scales—across the whole
soil profile and in microenvironments on needles colonized by
fungi. Across the litter layer, we hypothesized that Mn oxidation
covaries with the breakdown of aromatic litter components (i.e.,
lignins and tannins). Changes in Mn chemistry were identified by
selective extractions and X-ray absorption near edge structure
(XANES) spectroscopy, whereas the alterations in the molecular
composition of litter was determined using a combination of
Fourier-transform infrared (FTIR) spectroscopy, NMR, and la-
ser desorption postionization mass spectrometry (LDPI-MS).
Within microenvironments on needle surfaces, we anticipated
that oxidative degradation of aromatic compounds occurs where
fungi produce Mn3+. To spatially resolve Mn oxidation state and
chemical transformations in these microenvironments, we ap-
plied a multimodal chemical imaging approach that coupled
microscale X-ray fluorescence (μXRF)/X-ray absorption spec-
troscopy (XAS) with μFTIR imaging.

Results
Mn Transformations. With increasing litter age, Mn gradually ac-
cumulated and became more oxidized. Total Mn concentrations
in decomposing needle litter progressively increased and, on dry-
weight basis, became higher than in fresh needles or the underlying
mineral horizons (Table S1). The contribution of pyrophosphate-
extractable Mn (MnPYRO, Mn in soluble and organically com-
plexed pools) increases most rapidly in the first three layers, before
reaching a plateau in layer 4 (Table S1).
Concurrently, Mn XANES absorption maxima shifted from

energies associated with Mn2+-dominated phases to Mn3+- and
Mn4+-rich phases as litter age increased (Fig. 1). The average
oxidation state of Mn calculated from these shifts progressively
increased from +2.07 in fresh needles to +2.74 in layer 6 (Fig. 1).
The relative amount of Mn3+ species increased most rapidly in
layers 1 and 2 whereas that of Mn4+ species increased strongly
from layers 3–6. Needles in the underlying O horizons showed

another slight increase in average oxidation state (+2.83). Mn
oxidation state (+3.1 and +3.0) and, consequently, the relative
contributions of Mn3+ and Mn4+ were found to be highest in the
mineral soil.

Litter Decomposition. Overall, we observed a strong relationship
between Mn redox transformations and litter decomposition.
The increase of Mn in soluble and organically complexed pools
(MnPYRO) was significantly correlated with microbial processing
of the litter. The C/N ratio, which might be expected to decrease
with increased microbial processing, decreased most rapidly from
layers 1–3 (Table S1). This decrease in C/N was correlated with
increases in MnPYRO (R2 = 0.76, P < 0.05) (see Fig. 3A), but not
with changes in organically complexed Al, Ca, or Fe (P > 0.05).
Similarly, the FTIR absorbance of amide groups, associated with
microbial protein and chitin, increased (Fig. 2A) and is positively
correlated with MnPYRO (R2 = 0.94, P < 0.05) (Fig. 3B).
Differences in the litter’s molecular composition correspond

with increases in Mn oxidation state across the decomposition
sequence. FTIR spectra show that the relative absorbance of
regions associated with saccharide and aromatic functional
groups (Fig. 2A) is significantly correlated with Mn oxidation
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Fig. 1. Change in Mn speciation in Douglas-fir needle litter (L) over 6 years
of decomposition. Mn K-edge XANES spectra with approximate positions of
absorption maxima for Mn2+, Mn3+, and Mn4+ forms (50). Pie chart Insets
show the relative amounts of Mn2+, Mn3+, and Mn4+ with the adjacent
number representing the average oxidation state as determined by linear
combination fitting (50). Fresh needle litter (FL) and the underlying organic
(O) and mineral (A and B) horizons were included for comparison.
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state (R2 = 0.79, P < 0.05) (Fig. 3C). Similarly, relative changes in
the abundance of saccharide and aromatic moieties in the 13C NMR
spectra (Fig. 2B) are well correlated with Mn oxidation (R2 =
0.98, P < 0.05) (Fig. 3D).
To evaluate a link between the chemical alteration of aromatic

litter components and Mn transformations, we gathered 13C NMR
and synchrotron-LDPI mass spectrometry data. Two different types
of aromatic carbons are usually identified in 13C NMR spectra:
protonated (Car-H) and quaternary nonoxygenated (Car-C) at
142–110 ppm, or oxygenated aromatic ring carbons (CAr-O) at
162–142 ppm (28). The abundance of oxygenated relative to
nonoxygenated aromatic ring carbons (Car-O/Car-R, with R = C
or H) in 13C NMR spectra, used here as a proxy for ring oxi-
dation, was strongly correlated with changes in MnPYRO (R2 =
0.92, P < 0.05) (Fig. 3E). Synchrotron-LDPI is a soft-ionization
mass spectrometry technique that is particularly sensitive for

lignin-derived compounds (29, 30). Inspection of the resulting
mass spectra showed that one set of peaks at lower mass-to-
charge (m/z) ratios (

P
ar+; m/z = 340–370) gains intensity with

increasing litter age whereas the intensity of a second set of
peaks at higher m/z ratios (

P
ar−, m/z = 396–414) declines (Fig.

2C). To confirm that these mass fragments (i.e., m/z = 340, 370,
396, 399, 400, 406, and 414) correspond to aromatic structures,
we determined ionization energies (IEs) for each of the fragments
in a second LDPI experiment as previously described (31, 32) and
detailed in SI Materials and Methods. This method exploits the
fact that aromatic ring structures have lower ionization energies
(≤8.5 eV) than other organic moieties (>9 eV) (29, 30). Because
ionization energies of these mass fragments ranged from 7.3 to
8.5 eV (Table S2), we attributed these peaks to aromatic moieties.
The observed gradual transition from one set of aromatic com-
pounds to the other (

P
ar+/

P
ar−) therefore points to a structural

A B C

Fig. 2. Chemical transformations of Douglas-fir needles over 6 y of decomposition. (A) FTIR spectra of needle litter. Absorbance of both (i) amide I and II
groups associated with bacterial/fungal protein and chitin increased and (ii) C-O-C groups of polysaccharides increased with litter age whereas (iii) absorbance
of COO-stretch of carboxylates and the ar-C-C stretch of aromatic lignin decreased. (B) 13C-NMR spectra of needle litter. Gray lines show spectra obtained by
unselective CP/TOSS experiments including all carbons, whereas black lines show spectra obtained by selective CP/TOSS-DD sensitive to nonprotonated
carbons and mobile carbons (e.g., -CH3 and long-chain -(CH2)n-). (C) Synchrotron-LDPI mass spectra of needle litter. Fragments with m/z of 340, 370, 396, 399,
400, 406, and 414 showed ionization energies of ≤8.5 eV and were thus assigned to aromatic structures. Detailed description of peak assignments can be
found in SI Materials and Methods.

P
ar+ denotes the sum of normalized intensities of peaks that increase with litter age (m/z = 340 and 370) whereas

P
ar−

represents the sum of normalized intensities of peaks decreasing over time (m/z = 396, 399, 400, 406, and 414). Mass spectra presented here were collected
with a photon energy of 9.5 eV and were chosen because they showed less fragmentation and greater signal-to-noise ratio.
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change in aromatic litter components, which showed a strong
correlation with Mn oxidation state (Fig. 3F) (R2 = 0.88, P < 0.05).

Mn Form and Distribution on Decomposing Needle Surfaces. Because
Mn chemistry and molecular composition of the litter changed
more rapidly in the initial stages of decomposition, we chose
needles from layer 1 for detailed imaging analysis. These needles
were colonized by fungi forming dense hyphal networks with
distinct dark patches hypothesized to be Mn3+/4+ oxides (Fig.
S1A). Elemental maps of resin-embedded cross-sections from
three needles showed that Mn concentrated in diffuse patches on
the surface, associated either with individual hyphae or larger
particles (Fig. S1B). Other major elements (e.g., Ca, Fe, and Si)
were randomly distributed. Mn XANES spectra collected from
diffuse patches and discrete particles on the needle surface
showed a greater abundance of Mn3+ and Mn4+ and, conse-
quently, a higher average oxidation state than those extracted
from individual hyphae and the needle tissue (Fig. S1C).

Manganese Chemistry at the Hyphae–Epidermis Interface. Photo-
graphs of two cryo-sectioned decomposing needles show dark
hyphae colonizing the epidermis region (Fig. 4A). Along this
interface, μFTIR chemical imaging visually separates needle
tissue rich in aromatic structures from amide-rich fungal mate-
rials (Fig. 4B). Elemental maps of this interface showed that Mn
accumulates where fungal hyphae are in direct contact with the
needle epidermis (Fig. 4C). We collected Mn XANES spectra
from hotspots (points 3–5, Fig. 4C) along this interface (Fig. 4D).
Spectral deconvolution indicated that the hotspots associated
with fungi on the needle surface were more oxidized (points 3–5;
average oxidation state, 2.6–2.7) than Mn in the needle interior
(points 1–2; average oxidation state, 2.1–2.2) (Fig. 4C). Inter-

estingly, these hotspots of oxidized Mn were colocalized with
carbonyl groups (1,750-1,680 cm−1) as shown in the μFTIR ab-
sorbance map (Fig. 4B).
To further investigate the potential chemical alterations due to

oxidative Mn species at the site of direct contact between fungal
hyphae and the needle surface, we extracted μFTIR spectra
along a transect across this interface (red line, Fig. 4B). Spectra
taken from fungal tissue, the fungi–epidermis interface (contact
zone), the needle epidermis, and mesophyll are presented in Fig.
4E. The spectrum extracted from the infected epidermis (C)
showed a lower absorbance of saccharide bands (1,180–950 cm−1),
as well as enhanced absorbance of bands corresponding to car-
bonyl (∼1,700 cm−1) and aromatic C = C groups (∼1,600 cm−1)
compared with uninfected epidermis regions (Fig. 4E).

Discussion
We initially hypothesized that litter-decomposing fungi repur-
pose Mn2+ naturally present in litter to produce reactive Mn3+

species at the site of oxidative needle degradation. Our results
suggest a strong relationship between biotic Mn oxidation and
litter decomposition both at macroscales (litter layer) and mi-
croscales (fungal needle colonization), the causality of which is
discussed in the following.
Across the Douglas-fir litter layer examined here, Mn was pro-

gressively transformed. Total Mn increased rapidly in years 1–3,
followed by a slower increase in years 4–6, a trend consistent with
Mn accumulation in litter layers observed elsewhere (9, 22). Sim-
ilarly, the amount of pyrophosphate-extractable Mn (MnPYRO) and
the proportion of Mn3+ as evidenced by XANES increased most
rapidly within the first 3 y whereas solid Mn4+ phases did not occur
until years 4–6 (Table S1 and Fig. 1). Pyrophosphate is expected
to complex and extract dissolved and/or organically complexed Mn

A B C

D E F

Fig. 3. Covariation of litter and Mn transformations in Douglas-fir needles over 6 y of decomposition. (A) Changes in the C/N ratio across the litter layer in
relation to pyrophosphate-extractable Mn (MnPYRO), here used as a proxy for bioavailable Mn. (B) Changes in the FTIR absorbance of amide I and II groups as a
proxy for microbial protein/chitin abundance relative to variations in average Mn oxidation state. (C) Changes in litter decomposition (expressed by the ratio
of saccharide/aromatic carbon absorbance in the FTIR spectra) in relation to Mn oxidation state. (D) Changes in litter decomposition (as indicated by the ratio
of saccharide/aromatic carbon in 13C NMR spectra) in relation to Mn oxidation state. (E) Lignin transformations (expressed by the ratio of Car-O/Car-C in the 13C NMR
spectra) in relation to average Mn oxidation state. (F) Changes in lignin transformations (expressed by the relative ratio in signal intensity of LDPI-detected
aromatic mass fragments shown in Fig. 2C) in relation to average Mn oxidation state.
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(33), which we consider a proxy for bioavailable Mn, but does not
differentiate between unreactive Mn2+ and oxidative Mn3+ species.
On the other hand, XANES spectroscopy can detect Mn3+, without
providing unambiguous information about its physical state. Com-
bined, however, our extraction and spectroscopy results suggest the
transformation of litter-borne Mn into bioavailable Mn2+ and re-
active Mn3+ forms in the initial stages of decomposition. In later
stages, increasing Mn oxidation resulted in Mn3+/4+ forms similar to
those observed in solid Mn oxide precipitates (24, 26, 27).

This rapid formation of bioavailable and reactive Mn forms in
the first years of decomposition is accompanied by increased
microbial processing of the litter. Accumulation of bioavailable
and reactive Mn correlated with decreasing C/N ratios and
stronger contributions of amide functionalities in the decom-
posing litter (Fig. 3 A and B). N content (34), fungal biomass
(35), and visible fungal colonization of needle litter (36–38)
commonly rise within the first 2 y of decomposition. Within a
similar time frame, maxima in MnP activity can be observed (35).
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Fig. 4. Mn transformations at the hyphae–epidermis interface of two decomposing needles. (A) Photographs of needle thin sections showing fungal hyphae
(FH) colonizing the outer walls of epidermis cells (ED), partially fungal-infected hypodermis cells (HD), and mesophyll tissue (MP). The white line delineates the
boundary between fungal hyphae and the needle epidermis. (B) Corresponding μFTIR heat maps showing the distribution of aromatic, amide, and carbonyl
functional groups. Heat maps were generated using the integrated absorbance of spectral regions given in the figure. (C) Corresponding Mn distribution
maps of the same region of interest generated by μXRF. (D) Mn XANES spectra collected at locations along the hyphae–epidermis interface (points 1 and 2 in
C) and the needle’s mesophyll tissue (points 4 and 5). Pie charts show relative amounts of Mn2+, Mn3+, and Mn4+ at each location, with numbers indicating the
average oxidation state. (E) μFTIR spectra extracted from transect across the hyphae epidermis interface, shown as red line in B). Note that absorbance at
∼1,700 and ∼1,610 cm−1 at the interface (B) increases relative to (C) infected epidermis regions and a fresh needle epidermis. (Scale bars: 30 μm.)
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Our results support the hypothesis that Mn mobilization and the
formation of reactive Mn phases are caused by successive mi-
crobial colonization of the litter.
Further, the strong relationship between Mn cycling and

chemical transformation of litter points to a direct involvement
of Mn in the decomposition process. Mn oxidation is strongly
related to the relative loss of saccharides and the transformation
of aromatic litter components (Fig. 3). Oxidative transformations
of aromatic compounds occurred across the litter layer, reflected
in changes in abundance of aromatic compounds (Fig. 2C) and
increases in oxygenated aromatic ring carbons (Fig. 2 A and B).
These transformations were significantly correlated with Mn
mobilization and oxidation (Fig. 3 E and F), suggesting that
decomposing fungi actively cycle Mn for the purpose of using
oxidized Mn species in the breakdown of aromatic structures.
Our imaging analysis can be reconciled as evidence that fungi

actively promote Mn transport and oxidation during litter colo-
nization. The high concentrations of Mn found in single hyphae
and dense hyphal networks (Fig. S1B) imply biotic accumulation
and transport of Mn in the litter layer. Greater contribution of
Mn3+ and Mn4+ forms to overall Mn concentrations in hyphae
further indicate active biotic Mn oxidation. In addition to Mn
associated with fungal hyphae, we observed larger, Mn-rich par-
ticles consisting predominantly of Mn3+/4+ forms on needle sur-
faces. A significant fraction of hyphae found on needle surfaces
can be assumed dead (36–38), and Blanchette (25) showed dead
wood-colonizing hyphae covered in Mn precipitates. These ob-
servations suggest that, when the fungal supply of Mn3+-stabilizing
chelators such as oxalic acid ceases upon cell death, excess Mn3+

disproportionates and precipitates as Mn3+/4+ oxides on dead
fungal residues. These coprecipitates may then accumulate as
larger aggregates observed here and elsewhere (24).
Imaging further showed that reactive Mn3+ occurs in hotspots

at the interface between hyphae and needle epidermis (Fig.
4C). These hotspots showed a mixture of Mn2+ and reactive
Mn3+ species and almost no signs of Mn3+/4+ oxide accumulation
(Fig. 4A). If microbially produced Mn3+ engages in oxidation
reactions with litter components at this interface, it is reduced
back to Mn2+ in the process. In this scenario, no Mn3+/4+ oxides
accumulate, and fungi continuously reoxidize Mn2+ to form Mn3+.
The fact that we find comparable amounts of Mn2+ and Mn3+ is

therefore consistent with active cycling of the Mn2+/3+ couple
and its involvement in oxidation reactions.
Evidence for chemical alterations of saccharide and aromatic

components at infected sites with high Mn3+ concentrations re-
veal a direct involvement of Mn in litter decomposition. First,
decreasing absorbance of saccharides in spectra taken from the
contact zone between hyphae and epidermis (Fig. 4E) is in good
agreement with bulk saccharide loss across the litter layers
(Table S1) and preferential (hemi)cellulose removal from the
site of attack. Second, increased absorbance of bands arising
from conjugated C=O and C=C bonds can be attributed to ar-
omatic decomposition products released during the oxidative
breakdown of plant material (39, 40). Removal of saccharides
and concurrent oxidative alteration of aromatic lignin structures
is a widely noted fungal decay pattern, where hyphae generate
oxidized trenches in cell walls to liberate and release (hemi)
cellulose components without invading the cell interior (41).
In summary, our study reveals the mechanistic link between

microbial Mn cycling and the transformations of organic com-
pounds during litter decomposition (Fig. 5A). Collectively, our
bulk and microscale results show that litter-decomposing fungi
first recruit and accumulate reduced Mn2+ in the litter layer,
transform it into oxidative Mn3+ forms at the site of oxidative
litter decomposition, and later accumulate it as Mn3+/4+ oxide
precipitates (Fig. 5B). Moreover, we find that Mn oxidation—
specifically the formation of reactive Mn3+ species—in this
ecosystem is not incidental, but tightly coupled to the oxidative
degradation of aromatic structures in litter. These findings provide a
mechanistic basis for the highly significant “Mn-dependence” (9–11)
of litter decomposition across a wide variety of forest ecosystems.
Our results suggest that this relationship largely rests on the ability
of decomposer organisms to recruit Mn in the litter layer and oxi-
dize it at the site of litter decay. This insight demonstrates that Mn
bioavailability and oxidation rate should be recognized as major
determinants of litter decomposition in forest ecosystems. Fur-
thermore, it provides strong support for a new ecological concept of
litter decomposition: That the ability of decomposer organisms to
degrade litter is, in large part, controlled by availability of, and ac-
cess to, resources critical for the biochemical breakdown of litter.
Our results support the hypothesis that plant–soil systems in

forest biomes have coevolved to optimize the “cell-wall degrad-
ing machinery” (42), thereby maximizing litter decomposition
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(and thus the recycling of nutrients) by ensuring the availability
of key resources such as Mn (Fig. 5A). Because aspects of global
change also impact ecosystem Mn fluxes, bioavailability in soils
(43, 44), plant uptake, and foliar litter concentrations (45), the
tight coupling we demonstrate between Mn cycling and litter
decomposition suggests that further research on regulators of
ecosystem Mn fluxes is warranted.

Materials and Methods
Litter Decomposition Study. This study took advantage of an ongoing litter
decomposition experiment at the H. J. Andrews Experimental Forest (HJA),
Oregon, United States. About 90% of the area’s annual precipitation falls
from October to April, with the wettest period in December and peak
drought conditions occurring in July. Within the HJA, the study was con-
ducted at a site in watershed no. 8, at an elevation of 982 m and slope aspect
of 223 degrees. Mean annual temperature at the nearby headquarters av-
eraged 8.8 °C, and annual precipitation was 2,200 mm during 1974–2003
(46). The soil underlying a dense cover of old-growth Douglas fir (Pseu-
dotsuga menziesii) is an Andic Dystrudept and shows abundant patches of
dense ectomycorrhizal mats (47), which can result in peroxidase activities 28-
to 126-times greater than that of nonmat soils (48). We therefore expected
particularly rapid Mn cycling at this site.

A “rolling” litter decomposition study spanning the years 2005–2011 was
conducted at this site to examine the temporal and spatial variation in litter
decomposition across individual layers. Nylon mesh panels (1-mm netting,
60 × 60-cm frames) were placed on the litter surface at this site annually.
They were stacked over time to delineate each year’s litter fall from the next
without confining processes by artificial closure. Upon harvest at the end of
the dry season in November 2011, the whole littercake was transferred on a
supporting sheet and placed in a sealed plastic container. Fresh needles and
underlying O, A, and B horizon material were also collected and transported
anaerobically in capped amber vials containing dry ice. Samples were
transported at 4 °C and immediately returned to the laboratory. In the
laboratory, individual 60 × 60-cm litter layers were separated. Decaying
needles were manually isolated from other forms of litter such as cones and
twigs, and mixed. Soils were pushed through a 2-mm sieve and mixed
thoroughly. Needle litter and soil samples were then stored for further
analyses as described in SI Materials and Methods.

Manganese Chemistry. Total Mn (as well as Fe, Ca, and Al) content was
quantified with X-ray fluorescence spectrometry (XEPOS HE XRF spectrom-
eter; SPECTRO Analytical Instruments). To determine the amount of bio-
available Mn, we additionally conducted Na-pyrophosphate extractions (49),
with extractable Mn (MnPYRO) taken to originate predominantly from solu-
ble and organically complexed Mn (33). Extracted Mn concentrations were
measured using inductively coupled plasma mass spectrometry (ICP-MS). Mn
oxidation state was determined using Mn XANES (50). Litter and soil samples
were dried and hand-ground in an anaerobic glove box and sealed with
X-ray transparent Kapton tape. Mn XANES spectra were recorded at the
wiggler beamline 4–3 at the Stanford Synchrotron Radiation Lightsource
(SSRL) (51).

Litter Decomposition State. Total C and N content was determined using a
Europa Scientific 20/20 isotope ratio mass spectrometer. Changes in the or-
ganic composition of the decomposing litter were determined using FTIR
spectroscopy. FTIR spectra of the samples pressed in KBr pellets were recorded
from 4,000 to 650 cm−1 with a resolution of 4 cm−1 on a Thermo Nicolet
NEXUS 670 FTIR spectrometer (Thermo Fisher Scientific).

13C-NMR experiments were performed on a Bruker Avance 400 spectrom-
eter at 100 MHz (400 MHz 1H frequency). All experiments were performed
with 4-mm sample rotors in a double-resonance probe head. Semiquantitative

structural information on all carbon atoms in the sample was obtained
by 13C cross-polarization/total sideband suppression (CP/TOSS). The corre-
sponding subspectrum with signals of nonprotonated carbons and carbons
of mobile groups such as rotating CH3 was obtained by 13C CP/TOSS com-
bined with 40-ms dipolar dephasing (DD).

To identify molecular changes in aromatic components of the litter (lignins
and tannins), synchrotron-based laser desorption post ionization (LDPI) mass
spectrometry of fresh needles and litter layers was performed on a modified
time-of-flight secondary ion mass spectrometer (TOF.SIMS V; IonTOF) coupled
to a synchrotron UV light port at beamline 9.0.2 of the Advanced Light Source
(ALS) (29, 31). To identify peaks in the resulting mass spectra that corre-
sponded to aromatic structures, ionization energies for each of the most
prominent mass peaks were determined as described in ref. 31 and detailed in
SI Materials and Methods. Based on the low IEs of larger aromatic systems (29,
30), peaks with IEs of less than 8.5 eV were attributed to aromatic moieties.

Chemical Imaging Analyses. Needles from all layers were visibly colonized by
fungal hyphae, frequently concentrated around dark infections of the sur-
face. To determine Mn distribution and oxidation state associated with these
fungal infections, elemental maps and Mn μXANES spectra of cross-sectioned
needle litter were obtained using X-ray fluorescence mapping and absorp-
tion spectroscopy (μXRF/XAS) at ALS beamline 10.3.2. To this end, individual
needles taken from the top layer were embedded in epoxy (Spurr; TedPella)
and cured. Cross-sections were obtained by cutting the resin block and
polishing the exposed surface using sand paper and diamond paste.

To obtain high-resolution maps of the functional group chemistry at the
hyphae–needle interface, thin sections (<5 μm) of infected needles from the
top layer were also prepared using a cryostat (Leica 1950 Cyrostat; Leica
Instruments) without the use of carbon-based resins and transferred to gold-
coated (IR reflective) microscope slides. High-resolution infrared maps of
these locations were acquired using synchrotron FTIR (μFTIR) spectromicro-
scopy at ALS beamline 1.4.3. After completion of the μFTIR analysis, μXRF
maps of the same regions and Mn μXANES spectra of selected points within
that region were collected at ALS beamline 10.3.2. Further details on sample
preparation, analytical procedures, and data processing can be found in SI
Materials and Methods.

Data Analysis. All statistical analyses were performed using OriginPro (OriginLab
Corp.). Reported SEs are based on three analytical replicates.

ACKNOWLEDGMENTS. We thank J. Sexton for setting up the decomposition
study and M. Sarginci for sample processing. We thank M. Marcus and
H. Bechtel for help and support at Advanced Light Source beamlines 10.3.2
and 1.4.3, respectively, and E. Nelson for assistance at Stanford Synchrotron
Radiation Lightsource beamline 4-3. M. Keiluweit acknowledges funding
through a Lawrence Scholar Fellowship awarded by the Lawrence Livermore
National Laboratory (LLNL). Funding for M.E.H. and the long-term litter de-
composition experiment was provided by a National Science Foundation
grant to the H. J. Andrews Long-Term Ecological Research Program (Grant
DEB-0823380). Analytical work was performed under the auspices of the US
Department of Energy (DOE) by LLNL under Contract DE-AC52-07NA27344.
Funding was provided by LLNL Laboratory Directed Research and Develop-
ment Award 10-ERD-021 “Microbes and Minerals: Imaging C Stabilization”
(to J.P.-R., P.N., and M. Kleber), and the work of P.N. was supported by
Lawrence Berkeley National Laboratory Award IC006762 as sub-award from
LLNL and DOE-Biological and Environmental Research Sustainable Systems
scientific focus area. M. Kleber acknowledges support through a research
fellowship from the Institute of Soil Landscape Research at the Zentrum für
Agrarlandschaftsforschung. Use of the Advanced Light Source is supported
by the Director, Office of Science, Office of Basic Energy Sciences, US DOE
under Contract DE-AC02-05CH11231. Use of SSRL at the Stanford Linear
Accelerator Center National Accelerator Laboratory is supported by the US
Department of Energy, Office of Science, Office of Basic Energy Sciences
under Contract DE-AC02-76SF00515.

1. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in
terrestrial ecosystems. Annu Rev Ecol Evol Syst 36(1):191–218.

2. Prescott CE (2010) Litter decomposition: What controls it and how can we alter it to
sequester more carbon in forest soils? Biogeochemistry 101(1-3):133–149.

3. Chapin FS, Matson PA, Vitousek PM (2011) Principles of Terrestrial Ecosystem Ecology
(Springer, New York).

4. Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial effi-
ciency-matrix stabilization (MEMS) framework integrates plant litter decomposition
with soil organic matter stabilization: Do labile plant inputs form stable soil organic
matter? Glob Change Biol 19(4):988–995.

5. Klotzbücher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K (2011) A new con-
ceptual model for the fate of lignin in decomposing plant litter. Ecology 92(5):
1052–1062.

6. Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates.
Ecology 59(3):465–472.

7. Turner S, Gallois P, Brown D (2007) Tracheary element differentiation. Annu Rev Plant
Biol 58(1):407–433.

8. Berg B, McClaugherty C (2007) Plant Litter: Decomposition, Humus Formation, Carbon
Sequestration (Springer, Berlin).

9. Aponte C, García LV, Marañón T (2012) Tree species effect on litter decomposition
and nutrient release in mediterranean oak forests changes over time. Ecosystems
(N Y) 15(7):1204–1218.

10. Berg B, et al. (2010) Factors influencing limit values for pine needle litter decomposition: A
synthesis for boreal and temperate pine forest systems. Biogeochemistry 100(1-3):57–73.

11. Berg B, Steffen KT, McClaugherty C (2007) Litter decomposition rate is dependent on
litter Mn concentrations. Biogeochemistry 82(1):29–39.

Keiluweit et al. PNAS | Published online September 8, 2015 | E5259

EC
O
LO

G
Y

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S
PN

A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1508945112/-/DCSupplemental/pnas.201508945SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1508945112/-/DCSupplemental/pnas.201508945SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1508945112/-/DCSupplemental/pnas.201508945SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1508945112/-/DCSupplemental/pnas.201508945SI.pdf?targetid=nameddest=STXT


12. Davey MP, Berg B, Emmett BA, Rowland P (2007) Decomposition of oak leaf litter is
related to initial litter Mn concentrations. Can J Bot 85(1):16–24.

13. De Marco A, et al. (2012) Decomposition of black locust and black pine leaf litter in
two coeval forest stands on Mount Vesuvius and dynamics of organic components
assessed through proximate analysis and NMR spectroscopy. Soil Biol Biochem 51:
1–15.

14. Heim A, Frey B (2004) Early stage litter decomposition rates for Swiss forests.
Biogeochemistry 70(3):299–313.

15. Trum F, Titeux H, Cornelis J-T, Delvaux B (2011) Effects of manganese addition on
carbon release from forest floor horizons. Can J For Res 41(3):643–648.

16. Hofrichter M (2002) Review: Lignin conversion by manganese peroxidase (MnP).
Enzyme Microb Technol 30(4):454–466.

17. Perez J, Jeffries TW (1992) Roles of manganese and organic acid chelators in regu-
lating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrys-
osporium. Appl Environ Microbiol 58(8):2402–2409.

18. Bugg TDH, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in
lignin degradation and bio-product formation. Curr Opin Biotechnol 22(3):394–400.

19. Diaz JM, et al. (2013) Widespread production of extracellular superoxide by hetero-
trophic bacteria. Science 340(6137):1223–1226.

20. Marschner H (1986) Mineral Nutrition of Higher Plants (Academic, Amsterdam).
21. Mukhopadhyay MJ, Sharma A (1991) Manganese in cell metabolism of higher plants.

Bot Rev 57(2):117–149.
22. Preston CM, Nault JR, Trofymow JA, Smyth C (2009) Chemical changes during 6 years of

decomposition of 11 litters in some canadian forest sites. Part 1. Elemental composition,
tannins, phenolics, and proximate fractions. Ecosystems (N Y) 12(7):1053–1077.

23. Tam S-C, Sposito G, Senesi N (1991) Spectroscopic and chemical evidence of variability
across a pine litter layer. Soil Sci Soc Am J 55(5):1320–1325.

24. Herndon EM, Martínez CE, Brantley SL (2014) Spectroscopic (XANES/XRF) characteriza-
tion of contaminant manganese cycling in a temperate watershed. Biogeochemistry
121(3):505–517.

25. Blanchette RA (1984) Manganese accumulation in wood decayed by white rot fungi.
Phytopathology 74(6):725–730.

26. Hansel CM, Zeiner CA, Santelli CM, Webb SM (2012) Mn(II) oxidation by an ascomy-
cete fungus is linked to superoxide production during asexual reproduction. Proc Natl
Acad Sci USA 109(31):12621–12625.

27. Thompson IA, Huber DM, Guest CA, Schulze DG (2005) Fungal manganese oxidation
in a reduced soil. Environ Microbiol 7(9):1480–1487.

28. Zhang Y, et al. (2015) Chemical composition of organic matter in a deep soil changed
with a positive priming effect due to glucose addition as investigated by 13C NMR
spectroscopy. Soil Biol Biochem 85:137–144.

29. Hanley L, Zimmermann R (2009) Light and molecular ions: The emergence of vacuum
UV single-photon ionization in MS. Anal Chem 81(11):4174–4182.

30. Adam T, Zimmermann R (2007) Determination of single photon ionization cross
sections for quantitative analysis of complex organic mixtures. Anal Bioanal Chem
389(6):1941–1951.

31. Liu SY, et al. (2013) Synchrotron-based mass spectrometry to investigate the molec-
ular properties of mineral-organic associations. Anal Chem 85(12):6100–6106.

32. Takahashi LK, et al. (2011) Vacuum-ultraviolet photoionization and mass spectro-
metric characterization of lignin monomers coniferyl and sinapyl alcohols. J Phys
Chem A 115(15):3279–3290.

33. Sposito G (2008) The Chemistry of Soils (Oxford Univ Press, Oxford), 2nd Ed.
34. Preston CM, Nault JR, Trofymow JA (2009) Chemical changes during 6 years of de-

composition of 11 litters in some canadian forest sites. Part 2. 13C abundance, solid-
state 13C NMR spectroscopy and the meaning of “lignin.” Ecosystems (N Y) 12(7):
1078–1102.

35. �Snajdr J, et al. (2011) Transformation of Quercus petraea litter: Successive changes in
litter chemistry are reflected in differential enzyme activity and changes in the mi-
crobial community composition. FEMS Microbiol Ecol 75(2):291–303.

36. Ponge J-F (1988) Étude écologique d’un humus forestier par l’observation d’un petit
volume. III. La couche F1 d’un moder sous Pinus sylvestris. Pedobiologia (Jena) 31(1-2):
1–64.

37. Ponge J-F (1985) Étude écologique d’un humus forestier par l’observation d’un petit
volume. II. La couche L2 d’un moder sous Pinus sylvestris. Pedobiologia (Jena) 28(2):
73–114.

38. Ponge J-F (1984) Étude écologique d’un humus forestier par l’observation d’un petit
volume, premiers résultats. I. La couche L1 d’un moder sous pin sylvestre. Revue
d’Ecologie et de Biologie du Sol 21(2):161–187.

39. Stewart D (1996) Fourier transform infrared microspectroscopy of plant tissues. Appl
Spectrosc 50(3):357–365.

40. Yu H, Hu J, Fan J, Chang J (2012) One-pot conversion of sugars and lignin in ionic
liquid and recycling of ionic liquid. Ind Eng Chem Res 51(8):3452–3457.

41. Martínez AT, et al. (2005) Biodegradation of lignocellulosics: Microbial, chemical, and
enzymatic aspects of the fungal attack of lignin. Int Microbiol 8(3):195–204.

42. Eastwood DC, et al. (2011) The plant cell wall-decomposing machinery underlies the
functional diversity of forest fungi. Science 333(6043):762–765.

43. Cheng L, et al. (2010) Atmospheric CO2 enrichment facilitates cation release from soil.
Ecol Lett 13(3):284–291.

44. Natali SM, Sañudo-Wilhelmy SA, Lerdau MT (2009) Plant and soil mediation of ele-
vated CO2 impacts on trace metals. Ecosystems (N Y) 12(5):715–727.

45. Lynch JP, St.Clair SB (2004) Mineral stress: The missing link in understanding how
global climate change will affect plants in real world soils. Field Crops Res 90(1):
101–115.

46. Sulzman EW, Brant JB, Bowden RD, Lajtha K (2005) Contribution of aboveground
litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an
old growth coniferous forest. Biogeochemistry 73(1):231–256.

47. Griffiths RP, Caldwell BA, Cromack K, Jr, Morita RY (1990) Douglas-fir forest soils
colonized by ectomycorrhizal mats. I. Seasonal variation in nitrogen chemistry and
nitrogen cycle transformation rates. Can J Res 20(2):211–218.

48. Griffiths RP, Caldwell BA (1992) Mycorrhizal mat communities in forest soils.
Mycorrhizas in Ecosystems, eds Read DJ, Lewis DH, Fitter AH, Alexander I (CAB In-
ternational, Wallingford, UK).

49. Courchesne F, Turmel MC (2007) Extractable Al, Fe, Mn, and Si. Soil Sampling and
Methods of Analysis, eds Carter MR, Gregorich EG (CRC, Boca Raton, FL), 2nd Ed.

50. Manceau A, Marcus MA, Grangeon S (2012) Determination of Mn valence states in
mixed-valent manganates by XANES spectroscopy. Am Mineral 97(5-6):816–827.

51. Lytle FW, et al. (1984) Measurement of soft X-ray absorption spectra with a fluores-
cent ion chamber detector. Nucl Instrum Methods Phys Res A 226(2–3):542–548.

52. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray
absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12(Pt 4):537–541.

53. Mao J-D, et al. (2000) Quantitative characterization of humic substances by solid-state
carbon-13 nuclear magnetic resonance. Soil Sci Soc Am J 64(3):873–884.

54. Skjemstad J, Frost R, Barron P (1983) Structural units in humic acids from south-eastern
Queensland soils as determined by 13nmr spectroscopy. Soil Res 21(4):539–547.

55. Solomon D, et al. (2007) Long-term impacts of anthropogenic perturbations on dy-
namics and speciation of organic carbon in tropical forest and subtropical grassland
ecosystems. Glob Change Biol 13(2):511–530.

56. Kögel-Knabner I (2002) The macromolecular organic composition of plant and mi-
crobial residues as inputs to soil organic matter. Soil Biol Biochem 34(2):139–162.

E5260 | www.pnas.org/cgi/doi/10.1073/pnas.1508945112 Keiluweit et al.

www.pnas.org/cgi/doi/10.1073/pnas.1508945112

