
l 
f•\ 

' 

LBL-35892 
UC-414 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Physics Division 

Submitted to Physical Review D 

Nonleptonic Two-Body Decays 
of D Mesons in Broken SU(3) 

I. Hinchliffe and T.A. Kaeding 

February 1995 

---
:::0 , 

(") "TT ..... c, 
-,o:::c 
OC'DITI 
CIIIZ ...... (") 
QIZITI 
r+O 
(Dr+(") 

0 
"tJ 

Ill -< ...... 
a.---co . 
t1l 
ISl 

r-...... 
tr (") .., 0 
Ql "C .., '< 
'< . .-

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

r-
Ill 
r-
I 

w 
t1l 
Ill 
~ 
[\) 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



February 10, 1995 LBL-35892 

Nonleptonic Two-Body Decays of D Mesons in 
Broken SU(3)* 

Ian Hinchliffe and Thomas A. Kaedingt 

Theoretical Physics Group 

Lawrence Berkeley Laboratory 

University of California 

Berkeley, California 94720 

Abstract 

Decays of the D mesons to two pseudoscalars, to two vectors, and 

to pseudoscalar plus vector are discussed in the context of broken 

flavor SU(3). A few assumptions are used to reduce the number of 

parameters. Amplitudes are fit to the available data, and predictions 

of branching ratios for unmeasured modes are made. 
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Introduction 

Many data are available on the hadronic two-body decays of charmed mesons. 

Theoretical models that attempt to systematize the decay patterns have been 

available for many years. These models usually make dynamical assumptions 

in order to reduce the number of amplitudes that contribute to a particular 

decay. For example, the large Nc approximation [1] [2], or the heavy-quark 

effective theory [3]. It is not clear a priori how well such approximations 

should work and hence how seriously to take a conflict between a prediction • 

and a measured value. Another approach is to assume that the matrix el

ements factorize [4]. This model is quite successful in describing observed 

modes, but again, it is difficult to know whether a discrepancy is due to 

an incorrect measurement of the failure of the assumption. A more general 

approach based on a diagrammatic classification [5], with different assump

tions also exists. In many cases attempts are made to obtain predictions of 

unmeasured modes from these models. 

SU(3) is badly broken in these decays, so models based on exact sym

metry [6] are not useful. An attempt at a complete parameterization of 

the SU(3)-breaking has been conspicuously missing, due to the large num

ber of reduced matrix elements involved. We set out to remedy this omis

sion. This work gives a full parameterization of the decays of the D mesons 

into final states of two pseudoscalars (PP), two vectors (VV) and a pseu

doscalar plus a vector (PV), including SU(3)-breaking. The elements of 

this parameterization-the particle representations, the weak hamiltonian, the 

breaking operator, and the reduced matrix elements-are discussed in the fol

lowing sections. We make only very few assumptions to limit the number of 

parameters. We fit the parameters to the available data of two-body decays 

and predict many unmeasured modes. Because a few of the parameters are 

not constrained, we indicate which branching fractions are needed to predict 

the rest of certain classes of modes. We comment on the case of D s ~ rt' p+, 
where the model is barely consistent with data. 
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1 Particle States in Flavor SU(3) 

In a model based on flavor SU(3), the particles are denoted by their SU(3) 
representation. The fundamental representation is the triplet (3) of quarks 

u, d, and s. The three D mesons {D0
, n+, n;} form an antitriplet (3) 

representation. The pseudoscalars { 1r+, 1r0
, 1r-, !{+, !{0 , !{-, K 0 , 7Js} form 

an octet (8) representation, as do the vectors {p+, p0 , p-, !{*+, !{*0 , [{*-, 

K*0 , w8 }. The 771 and w1 are each singlets. The physical ry, 7]1
, cp, and ware 

linear combinations of them, with mixing angles -17.3° [7] and 39° [8] for 

7]-7]1 and cp-w respectively.~ 

2 The Weak Hamiltonian 

The decays of the D mesons are mediated by the weak hamiltonian. Ignoring 

QCD corrections, the hamiltonian in terms of the quark fields is 

~cos2Bc u1tt(1 - ls)d S!tt(l - ls)c 

+ ~cosOcsinOc u1tL(1 -ls)s S!tt(l-!s)c 

- ~cosOcsinOc u1tt(1 -!s)d d1tt(l -ls)c 

- ~sin20c U/tt(1 -!s)s J1A1 -ls)c. 

(1) 

Note that the operators if. create quarks and so transform as a triplet, while q 

transforms as the antitriplet. Using the Clebsch-Gordan coefficients for the 

expansion of the product 3 x 3 x 3, we can classify the operators according 

t I<* denotes J<*(892); r/ denotes 77'(958). 
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to irreducible representations of SU(3) as follows: 

(ud)(sc) -~6(-~, 1, 1) -7215(-~, 1, 1), 

(us)(dc) )26(~,0,0) + )215(~, 1,0), 

(ud)(Jc) Js3G, t, t) + t3'G, t, t)- t6G, t, t) 
-7315(~, ~' ~)- Jk15(~, ~' ~), 

(us)(sc) = Js3G, ~' ~) + t3'G, ~' t) + ~6(~, t, t) + }I15G, ~' t), 
(2) 

where ( ijq') denotes iJ!IL ( 1 - Is )q'. The numbers in parentheses are hyper

charge, total isospin, and third component of isospin of the particular mem

bers ofthe SU(3) representations. The weak hamiltonian can now be written 

in terms of the representations 3, 3', 6, and 15 as 

Hweak Gpsin2 0c ~-~6(~,0,0)- ~15(~,1,0)] 
+ GF cos2 Oc -16(-~ 1 1)- !.15(-~ 1 1)] 

2 3' ' 2 3' ' 

+ Gp cos Oc sin Oc 
(3) 

[726(~, ~, ~) + 7s15a, ~, ~) + 7s15(~, ~, ~)]. 
Note that the 3 and 3' representations do not appear in the uncorrected 

Hweak [9]. Because the QCD corrections are multiplicative and do not mix 

the SU(3) representations, the 3 and 3' will also not appear in Hweak(mc)· 

Since the decays of the D mesons occur at the scale of the c-quark mass, 

we must allow the QCD evolution of the various operators from the W
mass scale, where Equation ( 1) is valid, to the e-m ass scale. The operators 

represented by the 15 are symmetric under quark interchange, and those rep

resented by the 6 are antisymmetric. The QCD renormalization of operators 

with these symmetry properties has been calculated [10]. We find that 

[ as(Mw)] at + 
15 -7 15 X X [~r4 

as(mb) e>s(mc) ' 

6 -7 6 X [ as(Mw)] a; X [ a 5 (mb)] a~ 
as(mb) as(mc) ' 

(4) 

where 
a+ 6 

Nr 33-2NJ' 

aNr 
-12 

33-2NJ' 

(5) 
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in the regime where there are Nf flavor degrees of freedom. Taking into 

account the change in the number of active flavors as the b-quark threshold 

is crossed, and using a(Mz) = 0.119, we obtain 

15 -4 0.81 15, 

6 -4 1.5 6. 

With Equation (3) as the boundary condition, we have 

Hweak(mc) = ~ sin2 Oc ~-0.81 15(~, 1, 0)- 1.5 6(~, 0, o)] 
+ ~cos2 0c -0.8115(-~,1,1) -1.5 6(-~,1,1)] 
+ ~cos Oc sin Oc [0.81 x )3 15G, ~' ~) 

+ 0.81 X -h 15(~, ~' ~) + 1.5 X v'2 6(~, ~' ~)]. 

(6) 

(7) 

Note that the QCD corrections do not introduce any new phases into the 

process. Unfortunately, until the values of the reduced matrix elements (dis

cussed below) are known, the coefficients in Equation (7) are of little use. 

3 Parameterization 

3.1 SU(3) Breaking 

For a complete parameterization of any process in flavor SU(3), we must 

include explicit breaking. Since we know that the source of flavor SU(3) 
breaking among the pions and kaons is the difference between the quark 

masses, we do this with an operator M which transforms as an 8. Although 

the quark mass difference is insufficient to explain the large SU(3) breaking 

that will be found, an octet is the simplest nontrivial operator that can be 

used. 

We can express Mas 

(8) 

where Ai are the usual Gell-Mann matrices. The term in a represents break

ing of the isospin SU(2) subgroup. This breaking, proportional to the differ

ence between up and down quark masses, is expected to be very small and we 
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neglect it in the following. The constant f3 can be absorbed into the reduced 

matrix elements. Hence M can be reduced to 

M=As. (9) 

3.2 Reduced Matrix Elements 

Now consider the most general parameterization of the decays in the context 

of the flavor SU(3) symmetry. For each possible contraction of the represen

tations into an SU(3) singlet there must be one parameter, i.e., one reduced 

matrix element. The representations involved are those in Section 1: D (3), 

H (6 + 15), and two of P and V (each 1 or 8). In addition, we must include 

all possible ways of involving the symmetry-breaking parameter M. We as

sume that the breaking is linear in M. Each reduced matrix element is, in 

principle, complex. We have chosen to contract D with H, then contract 

the products (PP, PV, VV) (and then possibly with M), and finally contract 

the two parts into the singlet. Our labels for the reduced matrix elements 

reflects this. For example, the matrix element denoted (DH15 ) 8 ((PP)tM)8 

is obtained by contracting D and the 15 component of H into an octet, con

tracting PP into a singlet which combines with M to become another octet, 

and contracting the two resulting octets into the singlet. 

Unfortunately, the above parameterization involves far more parameters 

than there exist data. Therefore we make two important assumptions. First, 

we assume that we can separate the spin and flavor dynamics of the pro

cesses, i.e., that the relative strengths of the reduced matrix elements are 

the same in the PP, PV, and VV cases. This implies that only forty-eight 

reduced SU(3) matrix elements are needed. They are labeled with S and 

0 for the singlet and octet representations, rather than with PP, PV, or 

VV. In order to distinguish the spin· states we introduce two parameters, 

called "PV" and "VV." Second, we assume that the phase of each reduced 

matrix element is given solely by the representation of the product parti

cles (before M is included). Bose symmetry for PP and VV and an ap-
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propriate phase rotation of the particle fields reduces the list of phases to 

(TJir/I)I, (TJiwl)I, (w1wi)1, (PTJI)s, (Pw1)s, (VTJl)s, (Vw1)s, (PP)I, (PP)21, 
(PV)I, (PV)s,, (PV)10, (PV)fo, (PV)21, (VV)I, and (VV)27. One should 

note that we cannot determine the relative phases between PP, PV, and VV. 
The amplitude for each decay mode can be expressed as a sum over the 

reduced matrix elements with the appropriate Clebsch-Gordan coefficients: 

A(Dj ~Xi) = L CijkRkSi. 
k 

(10) 

Here Rk are the reduced SU(3) matrix elements and Si are the parameters 

that we call PP = 1, PV, and VV. The SU(3) Clebsch-Gordan factors Ci 
were calculated by computer. Many of the routines used are described in 

[11 ]. 

3.3 Linear Combinations of Reduced Matrix Elements 

There are 45 measured values for the two-body decay modes and an addi

tional 13 modes where upper limits exist.§ It would appear that there are 

still more parameters than data, and therefore the model lacks predictability. 

However; there are only forty linearly independent combinations of the SU(3) 
reduced matrix elements that contribute to the possible decay modes of the 

D mesons. With the assumption of the last section concerning the phases of 

the reduced matrix elements, the linear combinations fall into these classes: 

§The data are from the Particle Data Group [8], together with [13] for the mode D+ --+ 
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involving ( S S)I: L(l) 

involving (S0)8 : L(2)' . 
' 

L(s) 

involving (OOh: L(9) 

involving ( OO)s: L(lO), . 
' 

L(Is) 

involving (OO)s': L(17), . 
' 

L(23) 

involving ( 00)10: L(24),. 
' 

L(2s) 

involving ( OO)I-0 : L(29),. 
' 

L(33) 

involving ( 00)27: L(34), . 
' 

L(4o) 

We write them each as a sum over the reduced matrix elements, viz., 

L(n) = ""'C~ R· 
~ m z, (11) 

2 

and normalize them for convenience by setting 

(12) 

Now Equation (10) is replaced by 

A(D · _,.X·) = ""'C~'. L(n) S. J 2 ~ 2Jn 2· (13) 
n 

The L(n) replace the reduced matrix elements in our parameterization of 

the amplitudes. The forty linearly independent combinations contain matrix 

elements including those that involve the breaking operator M. It is not 

possible to divide the linear combinations into a set that contains only matrix 

elements without Manda set containing only matrix elements with M. Of 

the forty combinations, three are not constrained by the available data. We 

call them L(l), L(2), and L(3 ). They are discussed below. 

The replacement of the set of reduced matrix elements by the set of 

linear combinations that contribute to the possible decay modes reduces the 

number of parameters by eight. The total number is now fifty three. These 
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parameters are fit to the data; the individual reduced matrix elements are 

no longer considered. 

The unconstrained combination £(l) contributes to the modes D0 -+ 'T]'T], 

'TJ'TJ', 'TJ''TJ', TJ¢>, 'T]W, 'TJ'¢>, 'TJ'w, ¢>¢>, ¢>w, and ww. Because these modes are un

observed, the phases of (TJ1w1h, and (w1w1h are also unconstrained. The 

remaining unconstrained linear combinations are £(2) and £(3). They con

tribute to the above modes, and also to modes of the types D 0 -+ 'T]f<0 and 

Ds -+ 'T]f<+. By "type" we mean a class of modes that contain mesons of 

the same flavors and charges. Thus the type Ds -+ 'T]K+ contains the modes 
D -+ '111{+ '11'}\+ '111{*+ '11, J<*+ "-J<+ wK+ A..]{*+ wJ<*+ and no others 

S 'I l 'I l 'I l 'I l 'f' l l 'f' l l • 

With the exception of the limit on the branching ratio for Ds -+ ¢>J<+, there 

are no data for these modes. We still have some freedom in the definition of 

£(2) and £(3) that allows modes of the type D 0 -+ 'T]f<0 to depend on only one 

of them (choose £(2l). This will allow us to estimate one of their branching 

fractions and thereby make some predictions of the other modes of this type. 

4 Data and Fitting Thereof 

The data used to determine the parameters are listed in Tables 1-5. These are 

the modes for which there exist either experimental values or experimental 

limits. In the VV modes, S and D waves are possible. Data exist from E691 

[14] for the modes D 0 -+ K*0 l and D+ -+ [(*0 p+. These are consistent with 

the S- and D-waves both having significant amplitudes and are inconsistent 

with either being zero. The ratios of S- and D-wave amplitudes from these 

two modes are taken as additional data, and the overall ratio of S- to D

wave amplitudes for the VV modes is allowed to vary in the fit. Its value is 

determined by the two modes mentioned above, and depends very little on 

the other data. 

For each mode we remove the phase space and Cabibbo factors and reduce 

the branching ratio to a decay amplitude in arbitrary units. Because the 
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vector particles have substantial widths, the phase space for modes involving 

a vector is integrated over the relativistic Breit-Wigner for that resonance. 

The effect of this is important for those modes where the sum of the particle 

masses is within a few widths of the D-mass. The modes D0 -+ </J/{*0 , <PK*0 , 

and D+ -+ <PI<*+ would be forbidden if the widths were set to zero. Each 

amplitude is now expressed as a sum of Clebsch-Gordan coefficients times 

the parameters that represent the reduced matrix elements, and finally as a 

sum over the linearly independent combinations of reduced matrix elements. 

The parameters were fit to the data amplitudes with MINUIT, release 93.11 

[12]. The total x2 was found to be 30.9 for seven degrees of freedom, indi

cating that the overall fit was poor. However, more than half of the x2 arose 

from only one mode. The mode in question is D s -+ r/ p+. The experimental 

value for the branching ratio Ds -+ rt' p+ cannot be accommodated in our 

scheme. It is measured [15] to be larger than that for Ds -+ ryp+, an a priori 

surprising result. We note that the angular distribution of the decay pions 

is barely consistent with that expected. A confirmation of this experimental 

value would be very significant as all other models [4] also predict a ratio of 

B(Ds-+ ry'p+)j B(Ds-+ ryp+) of less than one. 

We decided to reject the experimental value for the branching fraction of 

Ds -+ ry'p+. The result is a better fit, from which the branching ratios are 

reported in the tables. The total x2 is now 11.6 for six degrees of freedom. 

5 Predictions 

5.1 Predictions from the Fit Parameters 

From the fit values of the parameters the branching ratios of decay modes 

were calculated. In Table 1 are presented the modes for which there exist 

experimental values. Our calculated branching ratios are consistent with 

the data, with the exception of n+ -+ K*0 /{*+ and D s -+ TJ1 p+ 0 For the 

former the fit prefers a branching ratio that is three standard deviations 
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below the reported experimental value. The latter was removed before the 

fit (see Section 4) because its experimental value was questioned. For this 

mode we predict a branching ratio of (1.5 ~ti)%, well below the reported 

experimental value [15]. Tables 2-4 contain modes for which there is no 

experimental information or for which there is an experimental limit. We 

have attempted to predict the branching ratio of each mode from the fit. 

However, in some cases the uncertainties are so large that we are able only to 

provide (90% confidence level) limits on the branching ratios. Notice that in 

all cases in which there are experimental limits, our predicted branching ratio 

or predicted limit is in the allowed region. We are unable to say anything 

about the mode ns --+ p01r+, because the uncertainty on its prediction is 

greater than the experimental limit. 

There are two modes, ns --+ 1r+1r
0 and ns --+ p+ p0 , which are forbidden 

in a model without isospin breaking. They are predicted to be identically 

zero. The modes that are kinematically forbidden are no --+ r/'ry', ry'<P, and 

<P<P. The modes involving the linear combinations L(l), L(2), and L(3) are 

discussed below. Any PP, PV, or VV mode not appearing in the tables is 

higher order in the weak coupling Gp. 

5.2 Unconstrained Linear Combinations 

There remain three linearly independent combinations of the reduced matrix 

elements that are not constrained by the data. The combination L(l) con

tributes only to-modes of the type no --+ ryry. L(2) contributes to the types 

no --+ rJrJ and no --+ ryl<0
• L(3) contributes to these modes, and to modes of 

the type ns --+ ryJ<+. 
The first unconstrained linear combination L(l) contributes only to ampli

tudes involving (SS)I. These amplitudes, it is worth noting, are due entirely 

to SU(3) breaking. However, when we include the phases, we must make four 

estimates in order to obtain two predictions of modes of the type no --+ rJrJ· 

This would be an unproductive endeavor, and so we forego it. 
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In order to predict the modes of the types no-+ ryK0 and ns -+ ryK+, 
we need two new inputs. In order to show the variability of the resulting 

predictions, we try three different sets of inputs. Scheme A is motivated by 

the recent CLEO measurement of the doubly-suppressed mode no -+ 1r- J{+ 

[17], in which this mode is found to have a branching ratio of about three 

times that of the corresponding unsuppressed mode, no -+ 1r+ K-. For this 

scheme, the two inputs are 

B(n°-+ ryK0
) = 3 tan4 Be B(n°-+ ryK0

), 

B(ns-+ ryK+) = 3 tan2 Be B(ns -+ ry1r+). 
(14) 

The linear combinations L(2) and L(3) are then constrained and the remaining 

branching ratios in the column for scheme A in Table 5 are found. The 

predictions for scheme B are based on the following estimates: 

B(n° -+ ryK0
) = 3 tan4 Be B(n°-+ ryK0

), 

B(ns -+ ¢K+) = 3 tan2 Be B(ns -+ cp1r+). 

A third scheme (C) is considered also. It is based on these estimates: 

B(n°-+ ¢K0
) = 3 tan4 Be B(n°-+ ¢K0

), 

B(ns -+ ¢K+) = ~ tan2 Be B(ns -+ cp1r+). 

(15) 

(16) 

The resulting predictions are again in Table 5. The spread in these values 

provides an indication of the expected ranges for these quantities. 

One should note that arbitrary choices of the above modes may fail to give 

an acceptable fit, given the constraints from measured modes. For example, 

an apparently reasonable choice would have been 

B(n° -+ ryK0
) = tan4 Be B(n° -+ ryK0

), 

B(ns -+ ryK+) = tan2 Be B(ns -+ 771r+). 
(17) 

A consistent fit cannot be obtained to implement this. The parameters 

L(2) and L(3) could not be given values to accommodate B(n° -+ ryK0 ) < 
0.0052%. 
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5.3 Modes Involving Axial Vectors 

There are a few modes inyolving axial vectors that have been observed or for: 

which there are experimental limits. However, those that involve K(1270) 

and K(1400) are mixtures with the 1 +- octet, which we can call B since 

it includes the bt (1235). Therefore, in order to include these modes in our 

framework, we require two new parameters, "PA" and "PB." In addition, 

we must also accommodate the mixing between ft(l) and f 1 (s) to become 

ft(1285) and ! 1 (1510), as well as the new phases that are introduced. There 

are too few experimental observations of the PA and PB modes to make this 

endeavor fruitful. For that reason, they are not included here. 

6 Comments on Models 

It is clear from the data alone that significant SU(3) breaking is necessary 

in any successful model of D decays. For example, B(D0 
-7 ]{+ K-) = 

B(D0 
-7 7r+7r-) in exact SU(3), yet they are in reality quite different. Models 

based on exact SU(3) [6), [9], [18] (or even on nonet symmetry [19]) are thus 

not admitted by the data. 

Models of D decays based on heavy-quark effective theory (e.g., [3]) have 

as yet not developed to the point at which individual nonleptonic decays can 

be calculated. The question of whether HQET is applicable to the c quark 

is still unsettled. The HQET is based on an expansion in the parameter 

Aqcn ~ 0.2 
me 

(18) 

and assumes that it is small. Certainly this would be a good assumption 

in the case of the b quark, but perhaps not so here. Until we are able to 

calculate branching fractions in HQET, we must reserve judgement on its 

applicability to the D mesons. 

Diagrammatical methods to the problem of D decays present us with a 

complementary approach to the one adopted in this work. The parameters 
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in the SU(3) framework represent sums of diagrams in the diagrammatical 

approach. A very general diagrammatical calculation of branching fractions 

. appears in [5]. Two shortcomings of their work lie in final-state interactions 

and in the inclusion of SU(3) breaking. The phases of the final-state inter

actions are added to the model, and are external to its central theme, and 

therefore appear as an ad-hoc mechanism to force a fit. SU(3) breaking is 

added to the calculation as an additive correction to the diagrams in which 

it is believed to be important. However, there is also hidden breaking in the 

addition of phases in the final-state interactions. The result is a model in 

which the size and source of SU(3) breaking is not easily discerned. It is 

difficult to draw any conclusions from the application of such a modeL 

The factorization method is a special case of the diagrammatical ap

proach. In it certain diagrams are considered unimportant (i.e., the anni

hilation diagrams). However, [4] find that these diagrams must be again 

included, as well as final-state transitions and intermediate resonances. The 

result is an eclectic model with little elegance. We are unable, because of 

the ad-hoc features, to comment on the reliability and predictability of this 

model. 

A description of nonleptonic D decays in a large-Nc (number of colors) 

expansion [2] is an elegant .one with few parameters. In it, the source of 

SU(3)-breaking is introduced my including ne~rby resonances. It is also a 

subset of the diagrammatical approach and neglects some diagrams based on 

their suppression by 1/Nc. One may argue that these diagrams are larger 

- than thought, and cite the fit of [5] as evidence of this. Nevertheless, [2] 

obtain excellent agreement with the data, with the exception of some modes 

involving TJ and rt'· In this model, SU(3) breaking is introduced only through 

the inclusion of resonances in one class of diagram. They obtain, in agreement 

with our work, large breaking. 

13 



Conclusions 

There now exist enough data to constrain all but three combinations of the 

reduced matrix elements of the broken SU(3) model of the decays of D 
mesons with the two assumptions discussed in Section 3.2. We have used 

these data to do so. Using the experimental information on 57 modes we are 

able to predict branching ratios or upper limits for an additional 53 modes. 

Only two measured modes are not easily accommodated in the fit. The 

measurement of a few additional modes involving TJ, TJ 1
, </J, w would enable 

another dozen or so modes to be predicted. 
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Table 1: Modes with positive experimental values. Branching ratios from 

data and from the fit are given. 

Mode Data BR Fit BR 

no ---7 I<- 7r+ 0.0401 ± 0.0014 0.0400 ± 0.0014 

no ---7 I<- J<+ 0.00454 ± 0.00029 0.00453 ± 0.00030 
no ---7 go 7ro 0.0205 ± 0.0026 0.0208 ± 0.0022 

no ---+ go J<O 0.0011 ± 0.0004 0.00103 ± 0.00043 

no ---7 7r- 7r+ 0.00159 ± 0.00012 0.00159 ± 0.00012 

no ---7 7r- J<+ 0.00031 ± 0.00014 0.00031 +0.00018 
-0.00014 

no ---7 7ro 7ro 0.00088 ± 0.00023 0.00087 ± 0.00025 

no ---7 1] go 0.0068 ± 0.0011 0.0069 ± 0.0011 

no ---7 ry' go 0.0166 ± 0.0029 0.0168 ± 0.0028 

no ---7 I<*- p+ 0.059 ± 0.024 0.063 ± 0.016 

no ---7 g*o Po 0.016 ± 0.004 0.0164 ± 0.0038 

no ---+ g*o J<*O 0.0029 ± 0.0015 0.0029 +0.0019 
-0.0014 

no ---+ W f{*O 0.011 ± 0.005 0.0099 ± 0.0044 

no ---+ ¢ Po 0.0019 ± 0.0005 0.00192 ± 0.00045 

no ---7 I<- p+ 0.104 ± 0.013 0.102 ± 0.013 

no ---7 I<- J<*+ 0.0034 ± 0.0008 0.00323 ± 0.00080 

no---+ go Po 0.0110 ± 0.0018 0.0110 ± 0.0017 

no ---7 J{*- 7r+ 0.049 ± 0.006 0.049 ± 0.0058 

no ---7 J{*- J<+ 0.0018 ± 0.0010 0.00209 ± 0.00087 

no ---+ g*o 7ro 0.030 ± 0.004 0.0301 ± 0.0039 

DO ---7 </J j{O 0.0083 ± 0.0012 0.0081 ± 0.0012 

DO ---7 W j{O 0.020 ± 0.004 0.0195 ± 0.0043 

Do ---+ 1J K*o 0.019 ± 0.005 0.0204 ± 0.0049 
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Mode Data BR Fit BR 
n+ ---7 Ko ?r+ 0.0274 ± 0.0029 0.0262 ± 0.0028 

n+ ---7 J?O K+ 0.0078 ± 0.0017 0.0086 ± 0.0016 

n+ ---7 ?ro ?r+ 0.0025 ± 0.0007 0.00257 ± 0.00067 

n+ ---7 'I] ?r+ 0.0075 ± 0.0025 0.0068 ± 0.0021 

n+ ---7 1?*0 p+ 0.021 ± 0.014 0.0398 ± 0.0092 

n+ ---7 k*o K*+ 0.026 ± 0.011 0.0090 +0.0054 
-0.0041 

n+ ---7 J?O p+ 0.066 ± 0.025 0.071 ± 0.018 

n+ ---7 ?r+ K*o 0.00046 ± 0.00015 0.00046 ± 0.00014 

n+ ---7 k*o ?r+ 0.022 ± 0.004 0.0217 ± 0.0041 

n+ ---7 k*o K+ 0.0051 ± 0.0010 0.00463 ± 0.00097 

n+ ---7 ¢> ?r+ 0.0067 ± 0.0008 0.00674 ± 0.00078 

n+ ---7 ¢> K+ 0.00039 ± 0.00020 0.00039 +0.00027 
-0.00020 

Ds ---7 K 0 ]{+ 0.035 ± 0.007 0.0319 ± 0.0059 

Ds ---7 'I] ?r+ 0.019 ± 0.004 0.0204 ± 0.0039 

Ds ---7 7]1 ?r+ 0.047 ± 0.014 0.054 ± 0.012 

D s ---7 K*0 ]{*+ 0.056 ± 0.021 0.055 ± 0.018 

Ds ---7 c/> p+ 0.065 ± 0.017 0.056 ± 0.014 

Ds ---7 j{O ]{*+ 0.042 ± 0.010 0.043 ± 0.011 

Ds ---7 K*0 ]{+ 0.033 ± 0.005 0.0328 ± 0.0053 

Ds ---7 c/> ?r+ 0.035 ± 0.004 0.0349 ± 0.0040 

Ds ---7 7J p+ 0.100 ± 0.022 0.100 ± 0.019 
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Table 2: D0 modes with predicted branching ratios. Experimental limits are 

given when available. All limits are at 90% confidence. 

Mode Data BR Predicted BR Predicted limit 

Do -+ ?ro ]{o 0.00017 +0.00011 
-0.00008 

Do-+¢ f<.*O 0.00108 +0.00073 
-0.00054 

Do -+ Po ]{*o 0.00038 +0.00031 
-0.00022 

Do -+ ?ro Po 0.00014 +0.00018 
-0.00011 

Do-+ ?r- p+ 0.093 +0.133 
-0.075 

Do-+ p- ?r+ 0.094 +0.136 
-0.076 

Do -+ rJ ?ro 0.0060 +0.0092 
-0.0050 

Do -+ rJ Po 0.025 +0.041 < 0.092 -0.021 

Do -+ ]{*- ]{*+ 0.0024 +0.0041 < 0.0092 -0.0021 

Do-+ Po ]{o 0.0024 +0.0041 < 0.0091 -0.0021 

Do -+ TJ' f<.*O < 0.0011 0.00018 +0.00032 < 0.00070 -0.00016 

Do-+ p- ]{*+ 0.00022 +0.00038 < 0.00085 -0.00020 

Do-+ p- ]{+ 0.0020 +0.0035 < 0.0078 -0.0018 

Do -+ ¢ ?ro 0.024 +0.049 
-0.022 

Do -+ ?r- ]{*+ 0.0019 +0.0037 < 0.0080 -0.0018 

Do -+ ?ro ]{*o 0.0020 +0.0041 < 0.0087 -0.0019 

Do -+ [{O ]{*o < 0.0008 < 0.00052 

Do-+ w ?ro < 0.086 

Do -+ TJ' Po < 0.011 

Do-+ w Po < 0.084 

Do-+ p- p+ < 0.015 
Do -+ K*o ]{o < 0.0015 < 0.00061 

Do -+ TJ' ?ro < 0.057 

Do-+ Po Po < 0.0065 
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Table 3: n+ modes with predicted branching ratios. Experimental limits are 

given when available. All limits are at 90% confidence. 

Mode Data BR Predicted BR Predicted limit 

n+ -t Pop+ 0.0066 ± 0.0023 

n+ -t TJ K+ 0.0032 +0.0030 
-0.0020 

n+ -t 7r+ f{o 0.017 +0.018 
-0.011 

n+ -t 7ro f{+ 0.0086 +0.0089 
-0.0057 

n+ -t 7ro p+ 0.0034 +0.0036 
-0.0023 

n+ -t ¢> K*+ 0.00031 +0.00035 
-0.00022 

n+ -t p+ f{*o 0.025 +0.031 
-0.018 

n+ -t Po!{*+ 0.0095 +0.0118 
-0.0071 

n+ -t p+ f{o 0.0087 +0.0119 
-0.0068 

n+ -t w K*+ 0.0022 +0.0031 
-0.0018 

n+ -t w 1r+ < 0.007 0.0024 +0.0036 
-0.0020 

n+ -t 7ro J<*+ 0.0103 +0.0162 
-0.0087 

n+ -t w p+ 0.0026 +0.0049 < 0.011 -0.0023 

n+ -t J{O J<*+ 0.0012 +0.0026 < 0.0054 -0.0011 

n+ -t TJ p+ < 0.012 0.0012 +0.0022 < 0.0048 -0.0011 

n+ -t TJ' J<+ 0.0016 +0.0041 < 0.0082 -0.0015 

n+ -t Po J<+ 0.0018 +0.0042 < 0.0086 -0.0017 

n+ -t TJ' 1T+ < 0.009 0.00094 +0.00237 < 0.0048 -0.00092 

n+ -t </> p+ < 0.015 < 0.0074 

n+ -t w J<+ < 0.0012 

n+ -t TJ' p+ < 0.015 < 0.00071 
n+ -t Po 7r+ < 0.0014 < 0.00091 

n+ -t TJ' J<*+ < 0.000082 

n+ -t TJ K*+ < 0.0022 
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Table 4: Ds modes with predicted branching ratios. Experimental limits are 

given when available. All limits are at 90% confidence. 

Mode Data BR Predicted BR Predicted limit 

Ds -t 1r° K+ 0.0059 +0.0048 
-0.0034 

Ds -t ?r+ K*o 0.038 +0.047 
-0.028 

Ds -t r/ p+ 12.0 ± 3.ot 0.015 +0.019 
-0.011 

Ds -t ?ro K*+ 0.077 +0.096 
-0.058 

Ds -t p° K*+ 0.0126 +0.0164 
-0.0096 

Ds -t p+ K 0 0.031 +0.043 
-0.024 

Ds -t l K+ 0.049 +0.071 
-0.040 

Ds -t W p+ 0.012 +0.030 < 0.061 -0.012 

Ds -t 1r+ K 0 < 0.007 < 0.0015 

Ds -t K° K*+ < 0.00039 

Ds -t K° K+ < 0.00046 ' 
Ds -t K*° K*+ < 0.00057 

Ds -t p+ K*0 < 0.0080 

Ds -t K*° K+ < 0.00025 

Ds -t W 1r+ < 0.017 < 0.0090 

Ds -t 11"0 p+ < 0.064 

Ds -t Po ?r+ < 0.0028 not significant 

Ds -t ?r+ ?ro =0 

Ds -t p+ Po =0 

tsee text. 
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Table 5: Modes based on estimates. The only available experimental limit is 

shown. Values marked with * are inputs. 

Mode DataBR Fit BR Fit BR Fit BR 

(scheme A) (scheme B) (scheme C) 
Do -+ TJ ]{o 0.000054* 0.000054* 0.00035 

Do -+ TJ' ]{o 0.00046 0.00046 0.00085 
Do -+ <P J{*o 0.000019 0.000019 0.000016 

Do-+ w J{*o 0.00027 0.00027 0.0012 

Do -+ <P ]{o 0.00054 0.00054 0.000066* 
Do-+ w ]{o 0.000096 0.000096 0.0014 

no -+ TJ ]{*0 0.00048 0.00048 0.00094 
Do -+ ry' ]{*o 0.0000083 0.0000083 0.0000024 

Ds -+ TJ ]{+ 0.0027* 0.00041 0.0031 

Ds -+ TJ 1 ]{+ 0.017 0.052 0.015 

Ds -+ <P ]{*+ 0.011 0.024 0.0095 

Ds-+ W ]{*+ 0.0057 0.028 0.0046 

Ds-+ </J ]{+ < 0.0025 0.00051 0.0033* 0.00037* 

Ds-+ W ]{+ 0.0064 0.019 0.0055 

Ds -+ TJ ]{*+ 0.00083 0.00015 0.00094 

D s -+ ry' J{*+ 0.00090 0.0028 0.00077 
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