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Abstract 

Effects on a transverse mode coupling instability in astor­
age ring by a strongly deformed rf bucket in a double rf 
system are studied. An eigenvalue equation, respectively 
the vanishing of the determinant of an infinite matrix, is 
derived from a Hamiltonian formalism. Truncation of this 
determinant permits solution of the problem on a com­
puter, and a code MOSDRF has been written which finds 
the_complex mode frequencies. The stability limits are de­
termined by equating the imaginary part of the solution 
to the radiation damping rate. The theory was applied to 
LEP with third higher-harmonic cavities, and the results 
were compared with those obtained by the Multi-particle 
simulation program FEDBAK. They agree well, and show 

· that the threshold current will be reduced rather than im­
proved. 

1 INTRODUCTION 

A number of methods have been proposed to overcome 
the limitation of bunch current by the transverse mode­
coupling (TMC) instability. One means to increase the 
threshold current is to lengthen the bunch, e.g., by wigglers 
or changing the damping partition numbers. However, this 
method is limited by the concurrent increase of the energy 
spread which cannot exceed the energy aperture of the 
machine. A way to increase the bunch length without 
increase of energy spread is the use of a second "higher 
harmonic" rf system [1]. The increase of the bunch length 
is largest when the phase and amplitude of the second 
rf system is adjusted such that the slope and the second 
derivative of the total rf voltage are zero at the bunch 
center (then, the synchrotron frequency vanishes there). 

The effects on the TMC instability is then not so obvi­
ous. On one hand, a longer bunch and a larger spread in 
synchrotron frequency should increase the threshold cur­
rent, but on the other hand, a smaller average synchrotron 
frequency tends to reduce it. The zero synchrotron tune 
at the bunch center may imply that the TMC instability 
can occur even at zero bunch current. In order to study 
this situation in detail, it was necessary to develop a the­
oretical description· which permits study of the equations 
of motion in a strongly deformed rf bucket. This is done 
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by describing the system in a Hamiltonian formalism [2]. 
The result can be expressed as an eigenvalue equation, 
respectively the vanishing of the determinant, of an infi­
nite matrix. Such a problem can be solved numerically by 
truncating the matrix to finite dimensions, given by the 
product of the number of radial and azimuthal modes to 
be included. For not too long bunches, these dimensions 
can be kept to quite small values. 

The eigenvalues yield the complex mode-frequencies -
and hence the frequency shift and growth rates - as func­
tion of bunch current. Contrary to the problem for a sin­
gle rf system, there is always a finite imaginary part, i.e. 
the growth rates are always non-zero. However, due to 
radiation damping (neglected in the Vlasov equation for­
mulation), a finite threshold is found nevertheless. The 
computer code MOSDRF has been written and is avail­
able on the CERN-IBM system. It has been applied to a 
third harmonic system for LEP at injection. Simulations 
have been also carried out using Myers'. multi-particle sim-· 
ulation program FEDBAK [3]. Both results show excellent 
agreement. It is found that the third harmonic rf system 
does not increase the TMC threshold at LEP. 

2 DISPERSION RELATION 

In this paper, we show only a final result of the Hamilto­
nian formalism. The derivation is given in ref. [2]. The 
complex coherent tune 11 can be obtained by solving the 
following dispersion relation: 

det(6mnbk/- N;:jk) = 0, (1) 

where the matrix N;:jk is given by 

where 
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where ZT is the transverse impedance at harmonic p' = Table 1: Main LEP parameters used for the calculations. 
p + v. Other notations are defined as follows: h is the 
harmonic number, / 0 is the bunch current, /3y is the beta 
function at impedance, Eo is the energy of the synchronous 
particle, e is the elementary charge, Vy is the betatron 
tune, and>.= 0.11419. The quantity (j<P is the rms bunch 
length in units of rf phase angle in the double rf system, 
and can be calculated from the rms bunch length in the 

Beam energy, Eo (GeV) 
Average machine radius, R (km) 
Momentum compaction factor, a 
Harmonic number of the single rf system, h 
Rms bunch length in the single rf system, (]'8 

(em) 

20.0 
4.2429 

0.000387 
31320 

2.5 

single rf system (j s as 1 Rms relative energy spread in the single rf 0.00137 
system, (J'e/Eo 

(j.;. = 1.28678 ( !:_)1/2 
"' (n2- 1)1/4 (J's R ' (5) 

where R is the average machine radius and n is the ratio 
of the harmonic number of the higher-harmonic rf system 
to that of the main rf system. In Eq. 3, the amplitude 
dependent synchrotron tune is given by 

where v80 is the synchrotron tune in the absence of the 
higher-harmonic system. The function e~lml)(z) is given 
by 

e<_lml)(z) = 2x1Tl+i( k! )1/2 LC1T!-t)(>.z4) 
k r(~+k+~). k , 

(7) 
where L~a) are the generalized Laguerre polynomials, and 

r is the Gamma function. The function ImJ(t(j<P) is given 
by 

where Jm is the Bessel function. 

3 CALCULATION RESULTS 

Let us apply the present formalism to LEP to see how the 
mode-coupling instability will be affected by installation 
of third harmonic cavities into the current single rf sys­
tem. The main LEP parameters used for calculations are 
summarized in Table 1. The impedance model is based 
on Zotter's estimate [5] (the peak value is inflated to ac­
commodate the contribution from bellows in this single 
resonator model). Figures 1 and 2 show analytical re­
sults of the coherent tune shift and the growth (damping) 
rate of an unstable mode in the double rf system. Five 
azimuthal modes (m=-3,-2,-1,0,1) and four radial modes 
(k=0,1,2,3) were included in this calculation. Calculations 
with a larger number of modes confirmed that the results 
were converged with these dimensions. Contrary to the 
problem for a single rf system, the growth rate is always 
non-zero. By equating the growth rate to the radiation 
damping rate, one can determine the threshold current to 
be 0.306 rnA. The corresponding tune shift is -0.0153. 

Simulations have been also carried out using the pro­
gram FEDBAK for the identical LEP parameters. The 
squares and diamonds in Figure 3 show the bunch length 
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Radiation damping time, Ty (sec) 0.405 
Synchrotron tune of the single rf system, Qs 0.09 
Ratio of the higher-harmonic frequency to 3 
the main frequency, n 
Peak voltage of the main rf system, V1rf 84 
(MV) 
Peak voltage of the 3rd harmonic rf system, 27.6 
V3n(MV) -
Rms bunch length in the double rf system, 4.44 
(J',pR/h (em) 
Beta function at the impedance, /3y (m) 40.7 
Resonant frequency of the broadband 
impeda~ce, fr (GHz) 

2.0 

Peak value of the broadband impedance, 2.0 
Rr (MO/m) 
Q-factor of the broadband impedance, Q 1.0 

(J'z and the threshold current Ith as a function of the rf 
phase of the 3rd harmonic cavity, respectively. The bunch 
length is largest at the right phase which diminishes the 
slope and the second derivative of the total rf voltage. The 
threshold current is found to be 0.305 rnA, in excellent 
agreement with the analytical result of 0.306 rnA. Figure 
4 shows the coherent vertical tune shift as a function of 
the rf phase of the 3rd harmonic cavity. Simulation results 
marked by squares agree well with the analytical result of 
-0.0153. 

Next, let us examine effects of the bunch length on the 
threshold current. Figure 5 shows the threshold current 
as a function of the bunch· length, when the energy spread 
is increased from the nominal value (the maximum bunch 
length (J'z=6.3cm corresponds to the case where the energy 
spread is twice larger than the nominal value). Results by 
the theory and simulations show excellent agreement over 
the wide range of the bunch length. Both results show 
an improvement of the threshold current. However, cal­
culation results with the same energy spread, but without 
higher harmonic cavities, show an even better improve­
ment. For instance, the threshold current with doubled 
(jd E in the single rf system is about 1.4 rnA, while the 
corresponding value in the double rf system is only 0.9 rnA. 

4 CONCLUSIONS 

The results by the theory and simulations on the TMC 
instability in the double rf system at LEP show excellent 
agreement. Both results predict that higher harmonic cav­
ities will not improve the stability limit at injection. 
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Figure 1: Coherent tune shift as a function of the bunch 
current. 
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Figure 3: Bunch length and the threshold current versus 
the rf phase of the 3rd harmonic cavity. 
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Figure 2: Growth rate as a function of the bunch current. Figure 4: Coherent tune shift versus the rf phase of the 
3rd harmonic cavity. 
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Figure 5: The threshold current as a function of the bunch 
length. 
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