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THEORETICAL OVERVIEW OF CHEMICAL DYNAMICS 

W. H. MILLER 
Department of Chemistry, University of California, and 
Chemical Sciences Division, Lawrence Berkeley Laboratory 
Berkeley, California 94720 USA 

1. Introduction ~ 
Chemical dynamics is the link between the potential energy surface (or 
surfaces) and physically observable chemical phenomena The potential 
surface comes in principle from an ab initio quantum chemistry calculation 
(within the Born-Oppenheimer approximation) though in practice it is often 
constructed by some more approximate model, e.g., semiempirical quantum 
chemistry or totally empirical "force field" models. The purpose of this 
Overview is to give a brief snapshot of the present state of the methodology 
and scope of applications in this area. I will concentrate on chemical 
dynamics in the gas phase, though much of the methodology (and 
mentality!) of this field has carried over to the study of dynamical processes 
in condensed phases, gas-surface collision processes, and also dynamics in 
biomolecular systems. In these latter fields of application there is obviously 
strong input from and overlap with statistical mechanics. 

Even the field of gas phase theoretical chemical dynamics is too large, 
however, to give anything but a cursory treatment in a brief overview. I 
will thus attempt to point out what I think are presently some of the major 
currents in theoretical chemical dynamics, with references to useful reviews, 
and I apologize beforehand that the overview will necessarily be biased to 
areas with which I am most familiar. Sections 2, 3 and 4 discuss molecular 
collision processes (i.e., scattering), perhaps the most well-defined and 
rigorous approach to studying chemical dynamics, and Sections 5 and 6 
discuss intramolecular dynamics·and laser-induced processes. 

The four volume set edited by Baer1 is a recent collection of more 
detailed reviews of the field, and the two volume set edited by Miller-2 an 
earlier one. Other more recent collections of reviews are the volume by 



Bemstein3 and that by Bowman.4 

2 . Elastic Scattering 
The study of elastic scattering is today quite passe, but in the early days of 
chemical dynamics (the 1960's) it served in important "test bed" role, both 
experimentally and theoretically, for developing the tools to be used to study 
more interesting processes. E.g., elastic scattering of the rare gas atoms5 

with each other in the early 1970's was the first test of Y. T. Lee's new 
"universal" detector in a crossed molecular beam apparatus, applications of 
which to this and many other processes led to his sharing the 1986 Nobel 
Prize in Chemistry. Lee's measurements of the differential scattering cross 
sections allowed the defmitive determination of the intermolecular potential 
energy function V(r) of essentially all the rare gas atoms with each other. 

The fully rigorous quantum mechanical elastic differential cross 
section is given by6 

where the phase shift Ttl (E) for orbital angular momentum 1 and energy E 
is determined from the asymptotic form of the regular solution of the radial 
Schrodinger equation, 

(2.2) 
with asymptotic boundary condition 

lim f.tE(r) oc si~ kr - 1t; +Tt.t (E)} 
r~oo . (2.3) 

The procedure is, given the potential function V(r) and a value of the energy 
E, to solve the Schrodinger equation, Eq. (2.2), for all values of 1 to obtain 
the phase shifts, and then to compute the cross section from Eq. (2.1). 
Even though hundreds (or thousands) of values of l's may be needed for 
the sum in Eq. (2.1) to converge, this is nevertheless a trivial calculation 
nowadays. The potential function V(r) is typically determined by assuming 

2 



.. 

a functional fonn involving a set of parameters, carrying out the calculation 
of crE(8) as described, and adjusting the parameters in the potential in a least 
squares procedure to fit the experimental cross section. Though this least 
squares fitting procedure is not as elegant as fonnal "inversion" approaches, 
it is in practice the most general and straight-foxward approach. 

Elastic scattering was also the theoretical workhorse in earlier years 
for developing many approximate theoretical methods, and though these 
approximations are no longer needed for elastic scattering calculations they 
still serve as useful guides for dealing with more complex processes. 

One of the most important examples of this is the semiclassical 
·approximation to quantum mechanics: in 1959 Ford and Wheeler7 described 
the explicit sequence of approximations by which the rigorous quantum 
cross section ofEqs. (2.1)-(2.3) degenerates to the completely classical 
cross section, 

(2.4) 

where ~ = ~(8) are the values of impact parameters b which classically 

scatter at angle e. i.e., the roots of the equation 

IE>(b)l = e, (2.5) 

where E>(b) is the classical deflection angle as a function of b, 

1
00 

2b V(r) b2 -1/2 
E>(b) = 1t - dr- ( 1 - - - -) , 

r2 E r2 
0 (2.6) 

and r0 is the classical turning point (the largest valuer for which the 
integrand of Eq. (2.6) is zero.) The essential approximations are to use the 
WKB approximation for the phase shift and the Legendre polynomial, to 
replace the sum over ~ by an integral, and then evaluate the integral by the 
stationary phase approximation. The result is 
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b .}112 . 12 O'sc(8) = L . k . eH~k/li , 

k sm810'(bk)l 
(2.7) 

where {bk} are the same as in the classical cross section; they emerge 

semiclassically as the values of.£ (.€ = kb, k = V 2mE/Fi2
) for which the 

phase in the integral over ...e is stationary and thus make the dominate 
contribution to the sum/integral. The phases { <I>Ic} are the classical action for 
the kth trajectory that classically scatters at angle e. 

Eqs. (2.1), (2.4), and (2.7) show the generic structure relating 
quantum, classical, and the semiclassical correction in scattering cross 
sections. Eq. (2.7) shows clearly that 

O'sc(8) = O'cL(8) +interference terms, (2.8) 

so that it is interference between the different classical contributions to the 
cross section that is the most fundamental effect of quantum mechanics. 
Bernstein's 1966 review6 of the semiclassical description of quantum 
effects in elastic scattering is still one of the best and most comprehensive, 
and that by Berry and Mount8 is also insightful. Recently Child9 has 
reviewed semiclassical theory more generally. 

3 . Inelastic Scattering 
Inelastic scattering of atoms and molecules is clearly of more physical 
interest than elastic scattering. This includes excitation or relaxation of 
rotational and vibrational degrees of freedom and also of electronic states. 
Rotational/vibrational inelasticity is important in understanding classical 
transport phenomena in gases, and the vibrational relaxation of highly 
excited molecules is of crucial importance for describing "unimolecular" 
reaction in the Lindeman mechanism, 10 · 

A+B~A*+B 

A*+B~A+B 

A* ~ products . 

(3.1a) 

(3.1b) 

(3.1c) 

I.e., after collisional e:ccitation of A to A* by the bath gas B -or A* may 
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be produced "hot" as the product of some preceding chemical reaction -
the important consideration is the competition between collisional 
stabilization of A* by the bath gas. Eq. (3.lb). and the unimolecular 
decomposition of A*, Eq. (3.lc). Currently, therefore, there is much effort 
devoted to learning more quantitatively about vibrational de-activation of 
highly excited vibrational states. 11 Electronically inelastic collisions are 
important in many gas laser systems, in the upper atmosphere. and in 
plasmas. Many of these applications involve one of the collision partners 
being an ion. 

The quantum mechanical description of an inelastic scattering process 
is straightforward. Leaving aside details involving angular momentum, the 
wavefunction for the generic situation is expanded as 

'l'i(r,~) = L $j(~)fj~i(r), 
j 

. -(3.2) 

where { <j>j(~)} denotes the bound-state eigenfunctions for the internal 
(rotatiomil. vibrational. and electronic) degrees of freedom (with~ 
collectively denoting the appropriate coordinates) of the colliding molecules, 
and r is the radial (translational) coordinate, i.e .• the distance between the 
centers of mass of the two molecules. The radial function (matrix) { fj~i(r)} 
is determined by the coupled-channel (channel being the historical term for 
the various internal states) Schrodinger equation. 

(- 2
1i

2 ~- Ej) ~~i(r) + L Vj,j'(r)fj'~i(r) = 0 , (3.3) 
1..1. dr2 j' 

where Vj,j, (r) is the matrix of the interaction potential V(~,r) with respect to 
the basis of internal states, 

(3.4) 

and Ej = E-c;, where E is the total energy and Ej the energy eigenvalue 
corresponding to <l>j (i.e .. Ej is the available translational energy for channel 
j). The boundary conditions for the radial functions are that they be regular 
for r ~ 0, and for large r have an incoming radial wave in initial channel i 
and outgoing waves in all open channels, 

5 



.tim f. ·(r) - - e-ikjr 8· . + eikj~ S· ·(E) 
J(-1 .1/2 J,1 .1/2 ],1 ' 

r-7oo VJ VJ 
(3.5) 

where Vj = ~ 2Ejl~ is the translational velocity for channels j, and Sj,i is the 
S-matrix, in terms of which all scattering cross sections can be expressed. 
Using Eq. (3.5) in Eq. (3.2) shows that the full wavefunction has the 
following form are large r, 

(3.6) 

from which one more clearly sees that the initial channel i has an incoming 
radial wave, and all channels have outgoing (scattered) waves. The S: 
matrix is a unitary matrix and has the interpretation as the probability 
amplitude for the i-7j transition; the transition probability is thus 

(3.7) 

When angular momentum- the orbital angular momentum of relative 
motion (i.e., the angular degrees of freedom of the translational coordinate 
vector f) plus any angular momentum from the internal degrees of freedom 
- is taken account of, one fmds that the total angular momentum J is 
conserved (because of the isotropy of space) and is thus a diagonal label of 

the S-matrix, ~)E). The state-to-state differential cross section- the most 
detailed possible scattering observable - is then given by 

(3.8) 

where d:nm.(e) is the Wigner rotation function, and mi>mj are the projections 
of the total angular momentum onto the initial and fmal relative velocity 
vectors. One can easily recognize the sense in which Eq. (3.8) is the 
generalization of Eq. (2.1) for the elastic scattering of two structureless 
particles; in the latter case J-7.t (i.e., the orbital angular momentum ..e is the 

total angular momentum), mj and mi --7 0, <foo00(9) = P 1 (cos9), and 

(3.9) 

6 
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The theoretical task, therefore, is to solve Eq. (3.3) with the boundary 

conditions of Eq. (3.5) to obtain the S-matrix, in terms of which the 
inelastic cross sections are given by~- (3.8). Such calculations are 
relatively straight-forward nowadays, 1 although they can be time 
consuming if the number of channels is large; the largest calculations which . 
are reasonable at present involve up to -1000 coupled channels. This may 
seem like a large number, but consider the number of rotational/vibrational 
states of a diatomic molecule that have an energy below an energy E, 

N(E) = L L (2j+1) h(E-Evj) . 

v=O j=O (3.10) 

Using a simple rigid rotor-harmonic oscillator approximation for the en~rgy 
levels, 

Evj = nro Cv+}) + Bj(j+ 1) ' 

where ro is the vibrational frequency and B the rotation constant, gives 

N(E):: E2 
2nroB (3.11a) 

ForE= 0.1 eV, nro = 2000 cm·1, and B = 1 cm·1, which are typical of a 
relatively small diatomic molecule (02, N2, CO), Eq. (3.11a) gives N-
160, not too large a number of channels. But for 12 (nro = 215 cm·1, B = 
0.037 cm-1) at this energy one has N = 40,000! And this is the number of 
channels for only one diatomic molecule; for the collision of two diatomics 
at energy E one has 

N(E):: E4 ' 
4!nro 1nro zB 1B2 (3.1lb) 

:: ~ N1N2, (3.1lc) 

where N1 and N2 are the number of channels for molecules 1 and 2, 
respectively. Thus the number of channels involved can become 
unmanageably large very quickly! 

Typically, however, the more channels there are that are strongly 
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coupled in an inelastic collision the better it is to approximate the dynamics 
by classical mechanics; i.e., there are more channels the heavier the 
particles, but this is also the limit in which classical mechanics is a better 
approximation. Thus there have been many classical trajectory simulations 
of inelastic collision processes. 13 These have the advantage that no 
approximations other than the use of classical mechanics need be made, and 
the number of classical equations of motion to be solved (Hamiltonian's 
equations) grows linearly with the number of particles, while the numbers 
of coupled channels in the coupled-channel Schrodinger equation grows 
exponentially with this number. 

There also exist a wide variety of approximate quantum mechanical 
and semiclassical theories. 14 In various limits some of the degrees of 
freedom can be treated as slow or fast compared to others, leading to 
sudden or adiabatic approximations, and in some cases the coupling . _ 
between translational and internal motion can make perturbation theory a 
useful approximation. 

Classical S-matrix theory15·9 is a "rigorous" semiclassical theory, 
rigorous in that it incorporates the full classical mechanics for all degrees of 
freedom without approximation; it may be viewed as the generalization of 
the Ford and Wheeler semiclassical description of elastic scattering 
discussed in Section 2. Thus the inelastic transition probability in this 
theory is of the form 

i~~~,,li r sc I (k)112 J,l . 
p .. = p.. e ' 

J+--1 J,l 
k (3.12) 

where ~~{ is the purely classical contribution to the i-7j transition from the 
kth trajectory which leads to it- i.e., the completely classical transition 
probability is 

(3.13) 

-and 4> ~~] is a classical action integral along the corresponding trajectory. 
The semiclassical transition probability thus has the same structure as in Eq. 
(2.8), 
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pSC pCL . ro 
j~i = j~i + mte erence. (3.14) 

Interference between the different classical trajectories which contribute to 
the i-7j transition will thus cause interference effects (e.g., "rainbows") in 
the product distribution of internal states analogous to such effects in the 
angular distribution (i.e., differential cross section) for elastic scattering. 

4. Reactive Scattering 
Quantum mechanical reactive scattering16•17•3.4 provides the fundamental 
and rigorous description of chemical reactions and is thus the type of 
collision process of most interest to us. Unfortunately it is also the most 
complicated to deal with because of the lack of one physically appropriate 
set of coordinates for "translation" and "internal" degrees of freedom. I.e., 
the natural coordinates for describing translational and internal degree~ of 
freedom for the reactant molecules are not the natural ones for describing 
those of the products. See reference 16 for a fairly detailed discussion of 
this "coordinate problem" for reactive scattering. 

Because of this problem with coordinates, most of the modem ways 
of carrying out quantum reactive scattering calculations do not use the 
straight-forward coupled-channel expansion of Section 3 (though the use of 
hyperspherical coordinates 18 does allow this approach). Rather a 
variational method 19-21 is used to calculate the S-matrix, and this allows one 
to use.basis functions expressed in terms of different coordinates in a 
straight-forward manner. 

The variational approach received a major boost also when it was 
realized19a that the simplest variational method- the Kohn variational 
principle, which is essentially the Rayleigh-Ritz variational principle for 
eigenvalues modified to incorporate scattering boundary conditions - is 
free of anomalous (i.e., spurious, unphysical) singularities if it is 
formulated with S-matrix type boundary conditions rather than standing 
wave boundary conditions as had been typically used previously. It is 
useful first to state the Kohn variational approach for the general inelastic 
scattering case of Section 3. Thus the variational expression for the S­
matrix is 

(4.1) 

9 



where 'l'f and 'l'i are variational ("trial") wavefunctions of the form that 
satisfy the correct boundary conditions [cf. Eq. (3.6)] 

( J: ) e-ik ,er "' (!:) ""' eikjr "' (!:) S(O) 'I' ..e ~,r - - -u2 "' ..e ~ + £..J 112 '+' j ~ j,..e ' 
V,e j Vj (4.2) 

for 1 = i and f. In practice we have taken the trial function to be of the form 

where ci> _i~,r) is an asymptotically incoming radial wave in channell, . 

(4.4) 

and <I> 1 *is a corresponding outgoing wave. The functions {Xk} in Eq. 
(4.3) are an L2 basis that describes the interaction (small r) region of the 
composite molecular system. The coefficients { Cj . ..e } and { Ck..t} in Eq. 
(4.3) are the variational parameters with respect to which Eq. (4.1) for the 
S-matrix is extremized; i.e., substituting the functions 'Iff and 'l'i of the form 
ofEq. (4.3) into Eq. (4.1) gives the S-matrix as a quadratic function of 
these coefficients, and the variational condition 

a 
0 = i1C1.. S({Cj,r},{C..e.fl,{Cj,il,{C..e.il), 

(4.5) 

for each of the coefficients c~.. = cj,f• c ..e f' etc., leads to linear equations for 
the coefficients which are solved by matrix inversion. Using these 
variationally optimum coefficients in the expression for the S-matrix then 
gives the following variationally optimum result (within the given basis set) 
for the S-matrix, 

. T 
Sr · = ..L (Mr · - Mr • M-1 • M·' ,1 1i ,1 1) ' (4.6) 

where 

10 



(4.7a) 

j <cl>j*IH-Eicl> .t> \ 
M.t = I' <XIciH-Elcl>.t> (4.7b) 

for .£ = i and f, and 

(4.7c) 

Thus the scattering problem has been cast in the fonn of a standard quantum 
mechanical calculation, i.e., computing matrix elements of the Hamiltonian 
with respect to a set of basic functions and then performing a linear algebra 
calculation (i.e., the matrix inverse in Eq. (4.6)). 

The power of this variational result is that it applies as written also for 
reactive scattering provided one expands the defmition of the channel label 
also to include an arrangement labeL E.g., for an atom-diatom reaction, 
A+BC(vjm) ~ AB(v I jIm I )+C, the initial channel index i denotes the 
collection= (a,v,j,m), labeling the arrangement a and quantum state (v,j,m) 
of that arrangement; the fmal channel label in this case is f = (c,v I ,j I ,m I). 
The only modification of the above fonnulae in Eqs. (4.1)-(4.7) is in Eq. 
(4.4), noting that the coordinates appropriate for asymptotic channel.£ may 
be different for different channels, i.e., 

(4.41) 

Reference 16 discusses how this strategy of using different coordinates for 
different basis functions is the same as that in the LCAO approach for 
constructing molecular orbitals in electronic structure theory by using atomic 
orbitals which are expressed in tenns of spherical coordinates referenced to 
(i.e., "centered on") various nuclei. 

Many of the recent accurate quantum reactive scattering calculations 
have utilized the above approach;19-22 methods usin~ hyperspherical 
coordinates have been the primary alternative.23•24•1 Complete state-to­
state differential cross section calculations have been carried out for the 
H+H2 reaction and its isotopic variants, l9c.22 i.e., 

11 



H+H2(ortho) -7 H2(para)+H 

D+H2 ~ HD+H 

and also for the F+H2 ~ HF+H reaction. 23 Calculations for many other 
reaction have been carried out for J=O only. 

It is also useful to note that methods have been developed which allow 
one to calculate the cumulative reaction probability (CRP) for a reaction 
directly, without having to solve for the individual state-to-state S-matrix 
elements. 25 This is important because the thermally averaged rate consumt 
for a reaction can be expressed as the Boltzmann average of the CRP.~(E), 

k(T) = [2rcliQ,(T)r1 r dE e·Eil<IN(E). 

The CRP is a sum of reactive probabilities, i.e., squares of S-matrix 
elements, over all open reactant and product channels, 

N(E) = L 1Snp,nr(E)I2 , 
nr.np 

(4.8) 

(4.9) 

where fir(llo) labels the asymptotic channel states of the reactant (product). 
Miller et al. 26 showed that the CRP can also be expressed as 

N(E) = i (21t1i)2 tr[Fo(E-fbFo(E-H)] , (4.10) 

~ ~ 

where His the Hamiltonian operator and Fa flux operator. Eq. {4.10) 
forms the basis for a "direct" calculation since it is explicitly independent of 
individual reactant and product states. The heart of such calculations is 
fmding a useful way to represent the microcanonical density operator, 
o(E-H), and several efficient ways have been developed.26-29 

Finally, any of the inelastic and reactive collision processes may also 
involve changes in the electronic state.3° Formally, this requires only the 
addition of the electronic state index to the channel label in the coupled­
channel equations in Eq. (3.3) or basis functions in Eqs. (4.7). In practice, 

12 



however, it requires that one know the non-adiabatic coupling (the 
Hamiltonian matrix elements non-diagonal in the electronic state index) as 
well as the different potential energy surfaces (the diagonal matrix 
elements). 

5. Intramolecular Dynamics and Unimolecular Reactions 
The resurgence of modern research in high resolution spectroscopy has 
stimulated theoretical studies of intramolecular dynamics. New 
experimental techniques make it possible to excite molecules to much higher 
energy states-than ordinary one-photon absorption spectroscopy. The 
underlying vibrational motion is therefore much rriore complex and not 
usefully described by the standard normal mode picture. 

The theoretical approach for characterizing intramolecular dynamics is 
in principle quite straight-forward:31 since the molecular system is bounded, 
its quantum description is that of stationary states, i.e., eigenfunctions- and 
eigenvalues of the Hamiltonian. One thus just ( !) needs to choose an 
appropriate set of basis functions, form the Hamiltonian matrix, and 
diagonalize it, and this has indeed been carried out for a variety of small 
molecules, H20, HCN, .... Such calculations allow one to analyze the 
intramolecular motion in complete detail. 

Because the ability to carry out these rigorous quantum calculations is 
limited to small molecular systems - very much the same kind of 
limitations as noted above for reactive scattering- there are a variety of 
approximate methods which are used. Some of these are still within a 
quantum framework- e.g., various perturbative approximations, 
sudden/adiabatic separations - and others use classical mechanics, 13 either 
completely classically or within a semiclassical framework. 

The important questions in intramolecular dynamics have to do with 
how the energy moves between different degrees of freedom. E.g., if a 
laser excites motion that is predominantly CH stretch motion in benzene, 
how quickly does this energy move into other degrees of freedom in the 
molecule, and which of the other degrees of freedom are most effective in 
accepting this energy?32 This question becomes even more interesting if 
some degrees of freedom lead to bond-breaking, in which case one is 
talking about unimolecular reactions.10 

The rigorous quantum mechanical description of unimolecular 
reactions is that of Siegert eigenstates. 33 These are eigenfunctions of the 
Schrodinger equation with outgoing wave boundary conditions, and 
because of the complex boundary condition the eigenvalues are complex, 
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{ En-ir r/2}. The real part of the eigenvalue is the energy of the metastable 
state of the molecule, and its unimolecular decay rate is given in terms of the 
imaginary part, r /h. (This latter relation is only true if these resonance 
states are non-overlapping, i.e., r n clE on the average, which means that 
the molecule on the average lives for at least a few bound state motions 
before it decays.) The unimolecular decay of the formaldehyde molecule, 

is one of the best characterized unimolecular reactions, a large number of its 
complex eigenvalues { En-ir 0/2} having been determined experimentally. 34 

Another major question regarding intramolecular dynamics and 
unimolecular reactions is the extent to which the underlying dynamics can 
be described as chaotic or not35 Chaotic dynamics is a concept from, 
classical mechanics, and the quantum analog is that the set of eigenstates 
(bound or Siegert) in some energy interval are "strongly mixed", i.e., 
representable only as a long expansion in any separable basis. The opposite 
limit of chaotic dynamics is completely integrable (or separable) motion, 
which in quantum mechanics means that in some set of coordinates the 
wavefunction would be a product of factors, one for each degree of 
freedom. Reality, of course, typically lies somewhere between these 
extremes, with the molecular dynamics appearing to behave chaotically or 
not depending on the level of excitation and the particular degrees of 
freedom which are excited. Most of the discussions of chaotic dynamics 
have been theoretical, for it is very difficult to fmd a well-defined 
experimental signature of chaos. It is often stated that such a signature is 
that a spectrum is "intrinsically unassignable", but this is of course very 
hard to distinguish from a spectrum that is simply very difficult to assign. 

For molecules undergoing unimolecular decomposition, one measure 
of chaotic dynamics is the distribution of the unimolecular decay rates for 
individual molecular eigenstates that all have (approximately) the same 
energy (and total angular momentum). The more chaotic the underlying · 
dynamics the narrower will be this distribution about the average, but there 
will nevertheless be some fluctuations about the average even if the 
dynamics is completely chaotic. 34•36 This type of analysis has recently · 
been carried out for the unimolecular decay of formaldehyde noted above, 
and the experimental distributions are consistent with the interpretation that 
the dynamics is indeed chaotic. 

Finally, it should be noted that the enormous amount of experimental 
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work on van der Waals clusters has stimulated much theoretical effort in 
describing these systems.37 Especially interesting has been the vibrational 
predissociation38 caused when a laser is used to excite one of the "tight" 
molecular vibrations, e.g., 

Ar •• HC.l(v=O) + hv -7 Ar •• HC.l(v=l) 

Ar •• HC.l(v=l) -7 Ar + HC.l(v=O). 

6. Photon-Induced Processes 

(5.2a) 

(5.2b) 

A variety of photon-induced processes other than simple spectroscopy are 
also under study nowadays. Photodissociation39 with infrared lasers, 
which cause vibrational excitation, and also with visible and UV lasers, . 
which cause electronic excitation, are important processes in their own. right 
as well as being useful ways of probing reaction dynamics. 

Although photodissociation is often referred to as a "half collision", its 
quantum mechanical description requires the full scattering wavefunction for 
the dissociative products. Thus, if l'lfi,l> is the wavefunction for the initial 
state, in electronic state 1, then the state-to-state photodissociation cross 
section is given by 

(6.1) 

where 'I'E.r,2 is the scattering wavefunction for total energy E = Ei + liro in 
electronic state 2, and where i and f denote the quantum numbers of the 
nuclear degrees of freedom in the initial and final states. (~ is the dipole 
operator and E the polarization direction of the electronic field vector.) The 
primary task in computing such cross sections is carrying out the scattering 
calculation on the fmal potential energy surface (i.e., electronic state 2) to 
obtain the scattering wavefunction that appears in Eq. (6.1). 

Photodissociation, as described above, corresponds to a continuous 
wave (CW) laser with frequency ro and polarization E. Eq. (6.1) is also a 
perturbative result, valid for one-photon dipole allowed transitions. (It is 
derived via the long time limit of first order time-dependent perturbative 
theory, leading to the usual Golden Rule expression.) Existence of high 
power lasers, and more importantly pulsed lasers with controlled wave 
forms, however, has created interest recently in exploring more general 
ways that electromagnetic radiation can be used to study and to influence 
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molecular behavior. Within the standard semiclassical approximation for 
treating the interaction of the molecular system and the laser, one considers 
the following time-dependent Hamiltonian, 

(6.2) 

This is an operator within the space of the molecular degrees of freedom, 

Hmol being the field-free Hamiltonian of the molecular system and ~ its 
dipole operator. (Eq. (6.2) obviously also involves the dipole 
approximation for the coupling between the laser and the molecular degrees 
of freedom.) For a laser pulse, one has E(t)~O for t~-oo and +oo, so that 
one can consider transition probabilities Pf~i induced between initial and 

fmal states li> and If> that are eigenstates ofHmol· Pf~i is a functional of 
the electric field vector, -pf~i[E(t)] , 

and one can consider the possibility of optimizing the field to enhance 
specific transitions. Seve~ different strategies have been pursued for 

(6.3) 

choosing the electric field E(t), i.e., the laser pulse (or pulses), to affect 
transitions of interest. Some methods are based on ultrashort (femtosecond, 
10·15 sec) pulses,40 and others rely on the coherence of two (or more) CW 
lasers.41 A sequence of pulses42 (stimulated Raman) has also been 
discussed as a means of enhancing specific dynamical processes. The 
optimization problem has been considered quite generally as a variational 
problem,43•44 i.e., maximizing the functional in Eq. (6.3) subject to some 
constraints (e.g., a given total pulse power). These approaches all suggest 
interesting future directions for theoretical studies as the experimental 
technologies progress to make "laser control" a practical reality. 

7 . The Future 
Predictions of future scientific developments are often quite worthless, 

but I believe that one can at least envision further progress in theoretical 
chemical dynamics along two fronts: (1) extension of rigorous methodology 
to provide benchmark results for larger, though still small, molecular 
systems, and (2) application of approximate dynamical treatments to 
evermore complex chemical systems. Prediction (1) will happen without 
question if for no other reason than the fact that computer power will 
continue to grow. I was amazed to see a recent advertisement for a new 
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portable 'notebook' type computer that performs at 8 to 10 megaflops 
(floating point operations per second) with 16 megabytes of internal 
memory. I saw in some old notes of mine that the CDC 7600, the top 
supercomputer all through the 1970's, performed at 3 megaflops! The latest 
IBM RS 6000 workstation performs at more than 100 megaflops. In 
addition to increased computer power, though, one should also see 
advances in methodology that will make the application of rigorous 
treatments possible for more interesting chemical systems. 

There will nevertheless be interest in modeling chemical dynamics of 
molecular systems much beyond the capacity of rigorous quantum 
treatments. For some years already, many groups model biomolecular 
systems using classical trajectory simulation methods. The ideal situation 
would be to combine the accurate quantum treatment of a small sub-system, 
which involves the primary chemical process of interest, with a more., 
approximate treatment of the much larger remainder of the system. Because 
classical mechanics is feasible for treating many degrees of freedom, this 
suggests using it as the "more approximate" method. 

One thus seeks ways to combine the accurate quantum treatment of a 
few degrees of freedom with a classical or semiclassical treatment of the 
many remaining degrees of freedom. There are many such approaches that 
already exist, but no single one has emerged as the most generally accurate 
and useful model. Maybe there is no one universal such approach, but this 
is an area of intense interest and effort, and one expects to see progress. 
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