
Error Detection and Error Classification:

Failure Awareness in Data Transfer Scheduling ∗

Mehmet Balman1 and Tevfik Kosar2
1Computational Research Division, Lawrence Berkeley National Laboratory

Berkeley, CA 94720, USA
2Department of Computer Science, Louisiana State University

Baton Rouge, LA 70803, USA

Email: mbalman@lbl.gov kosar@lsu.edu

2010

Abstract

Data transfer in distributed environment is prone to frequent failures resulting from
back-end system level problems, like connectivity failure which is technically untraceable
by users. Error messages are not logged efficiently, and sometimes are not relevant/useful
from users’ point-of-view. Our study explores the possibility of an efficient error detection
and reporting system for such environments. Prior knowledge about the environment
and awareness of the actual reason behind a failure would enable higher level planners to
make better and accurate decisions. It is necessary to have well defined error detection
and error reporting methods to increase the usability and serviceability of existing data
transfer protocols and data management systems. We investigate the applicability of
early error detection and error classification techniques and propose an error reporting
framework and a failure-aware data transfer life cycle to improve arrangement of data
transfer operations and to enhance decision making of data transfer schedulers.

Keywords: error detection, error classification, network exploration, data movement
between distributed repositories, scheduling bulk data transfer operations

Reference to this paper should be made as follows: Balman, M. and Kosar, T. (2010)
’Error detection and error classification: failure awareness in data transfer scheduling’,
Int. J. Autonomic Computing, Vol. 1, No. 4, pp.425-446

∗
This document was prepared as an account of work sponsored by the United States Government. While this document is believed

to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufac-
turer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Govern-
ment or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California

1 Introduction

Although latency and throughput are the main performance factors of data transfers (both in
highly distributed and closely coupled environments), usability and efficiency of distributed
data transfers also depend on some other aspects such as error detection and error reporting.
Failure during data transfer in distributed environment is quite common. The major drawback
in distributed data transfer is that the user sometimes is not aware of technical facts like the
back-end network connectivity failures. In most cases the users do not have enough information
to infer what went wrong during data transfer because they do not have access to the
remote resources, or messages got lost due to system malfunction. Tracking the problem and
reporting it back correctly to the user is important to give user a sense of a consistent system.

Distributed wide area networks differ from local area networks in terms of network
topology, data transmission protocols, congestion management, latency, and bandwidth. High
latency and limited bandwidth are the basic network characteristics affecting data transfer
performance in distributed network environments. Moreover, communication protocols in
distributed environments have some idiosyncrasies. Security, authentication and authorization
are some of the other important issues in distributed data transfers. Since we deal with shared
resources, even a simple file transfer over the Internet will be affected by many of the above
factors, and if there is a high failure rate, we need to pay close attention. Hence, developing
an efficient failure detection and recovery system for distributed networks is very crucial.

There has been many efforts to implement file transfer protocols over distributed
environments conforming to the security framework of the overall system. These solutions
should ideally exploit communication channel to tune-up network and to satisfy high
throughput and minimum transfer time (Allcock et al., 2005; Allcock, 2003; GridFtp, 2006;
FDT, 2009). Parallel data transfers, concurrent connections, and tuning network protocols
such as setting TCP buffer are some of the techniques applied (Balman and Kosar, 2007a,
2009a; Yildirim et al., 2008; Dong and Akl, 2007). On the other hand, detecting an erroneous
situation as early as possible before initiating the transfer, and reporting the reason of a
failed transfer with useful information for recovery, should also be studied in order to supply
better quality of service in distributed data transfers.

Large-scale scientific and commercial applications consists of complex workflows where
execution processes have data dependencies between each other. Scheduling and ordering of
data movement tasks not only enhance the overall performance but also prevents failures and
inefficient resource sharing (Balman and Kosar, 2007a,b; Kosar and Balman, 2008). Users
usually do not have access to remote distributed resources and may not track the reason for
a data transfer failure. If underlying protocol is unable to return useful information about
the cause of a failed transfer, it is also inapplicable and not very useful for high level planners
and data transfer schedulers to develop fault tolerant structures.

Early error detection enables high level planners and workflow managers to have knowledge
about a possible failure and a malfunctioning service in the environment. Instead of starting
the data transfer job and waiting for failure to happen, those high level planners can simply

2

search for another system or an alternative service to transfer data. Besides, classification
and reporting of erroneous cases will help us to make better decisions.

The problem that we should mitigate first is the lack of sufficient information to clarify
the reasons for a failed data transfer. Our study has two main aspects: error detection and
error classification. In error detection, we focus on making data transfer scheduler aware
of whether destination host/service is available, and also making the scheduler able to select
suitable data transfer services. We also explore techniques to trace an operation when transfer
is in progress in order to detect failures and performance problems. In error classification,
we propose an elaborate error reporting framework to clarify and distinguish failures with
possible reasons. Moreover, we discuss the progress cycle of a data transfer operation in
which several steps are examined before actually starting the data transmission operation.

In this paper, we extend our initial study Balman and Kosar (2009b) on early error
detection and classification, and present the architecture of an actual system for failure-aware
data transfer scheduling. The outline is as follows. In Section 2, we first introduce the
data-aware computing and data scheduling in distributed environments. In Section 3, we
highlight some related work in failure-aware data scheduling. In Section 4, we propose
a structural failure detection and error reporting mechanism. In Section 5, we introduce
network exploration and we explain possible methodologies for using network exploration
techniques in early error detection. In Section 6, we propose a failure-aware process cycle
for data transfer operations, we analyze methods to keep track of operations while transfer
is in progress, and we venture into how to use those methods in a data transfer scheduler. In
Section 7, we elaborate on implementation issues and explain integration of error detection
and classification into our data scheduler Stork (2009), (Kosar and Balman, 2008). We
evaluate our methodology and give details about some real life experiments in Section 8.
Finally, we put our conclusion, future work and open research problems in the area.

2 Scheduling Data Transfer Jobs

Data-aware computing and data scheduling approaches in distributed environments have
been described in details in (Kosar and Balman, 2008; Balman and Kosar, 2007a). This
section provides a brief summary about data-intensive computing for large scale applications.
We encourage readers to look at Balman and Kosar (2007a) for data scheduling models and
use cases in distributed environments. In addition, Balman (2008) gives more information
about implementation issues and presents the structure of Stork (2009) data scheduler.

Computation in science focus on many areas such as astronomy, biology, climatology,
high-energy physics and nanotechnology. Although, applications from different disciplines
have different characteristics; their requirements fall into similar fundamental categories in
terms of data management. Workflow management, metadata description, efficient access
and data movement between distributed storage resources, and visualization are some of
the necessities for applications using simulations, experiments, or other forms of information
to generate and process the data.

3

Figure 1: Data-aware System Model

The SuperNova project in astronomy is producing terabytes of data per day, and a
tremendous increase is expected in the volume of data in the next few years (Aldering
et al, 2002). The LSST (Large Synoptic Survey Telescope) is scanning the sky for transient
objects and producing more than ten terabytes of data per simulation (Tyson, 2002).
Similarly, simulations in bimolecular engineering generate huge data-sets to be shared
between geographically distributed sites. In climate research, data from every measurement
and simulation is more than one terabyte. In high-energy physics (CERN, 2007), processing
of petabytes of experimental data remains the main problem affecting quality of the real-time
decision making. In Kosar (2005), data handling issues of Blast (Altschul et al., 1990), a
bioinformatics application, and CMS (2007), a high energy physics application, have been
discussed. Disadvantages of current methodologies to move data between execution processes
and possible benefits by using a data scheduler have been explained.

Large scale data-intensive applications can be evaluated in four phases. First, we require
workflow managers to define the dependencies of execution sequences in the application layer.
Second, higher level planners are used to select and match appropriate resources. Then, a
data-aware scheduler is required to organize requests and schedule them not only considering
computing resources but also data movement issues. Finally, we have data placement modules
and traditional CPU schedulers to serve upper layers and complete job execution or data
transfer. Figure 1 represents a detailed view of data-intensive system structure.

We can simply classify the steps in a large scale application as follows: (1) obtain
data from experiments or simulate to generate data; (2) transfer data and organize for
pre-processing; (3) data analysis; (4) move data for post-processing. We usually transfer
data to separate centers for individual analysis; even though, different science groups may
require only some parts of the data such that data set groups from different activities may
be used to extract some features. A simple flow in the overall process is shown in Figure 2.

4

Figure 2: Data Flow in Large-Scale Applications

One important feature is fault tolerant transfer of data objects. Storage servers may
create problems due to too many concurrent write requests; data may be corrupted because
of a faulty hardware; transfer can hang without any acknowledgement. We necessitate a
scheduling mechanism which can collect information from separate sites and order data
transfer jobs accordingly in order to enhance the overall system performance. We should
minimize the possibility of failures and also handle faulty transfer in a transparent way.

3 Related Work

One interesting study investigating reasons behind failures in large scale production Grids
uses data mining techniques to explore the relationship between failures and environmental
properties (Cieslak et al., 2008). Troubleshooting via data mining has been applied to
diagnose reason behind a failure in real workloads, like many jobs running in a campus
Grid. Failures have been classified according to execution environments, job and machine
properties; such that, predefined decision points lead to correlations that are indicating root
cause of erroneous cases (Cieslak et al., 2008). On the other hand, the proposed system
does not aim immediate error detection. In our study, we focus on detecting erroneous cases
on the fly and make scheduling decisions according to failure classification.

The importance of error propagation and categorization of errors in Grid computing
has been mentioned clearly in Thain and Livny (2002). This study builds a theory for error
propagation which provides more robust distributed environment by considering the scope of
errors. The new structure has three types; implicit, explicit and escaping errors (Thain and
Livny, 2002). An implicit error represents an invalid functionality. Explicit errors are due
to an inability to accomplish the requested operation (Thain and Livny, 2002). Explicit and
escaping errors are connected to our focus in error classification; however, this error scope has
been basically designed for Java Universe in Condor (Thain et al., 2003; CONDOR, 2008).
We essentially concentrate on errors in data transfers for distributed large scale applications.

A fault tolerant middleware has been described in Kola et al. (2004) for data intensive
distributed applications by examining the environmental conditions and classifying failures
such that a suitable strategy can be applied to handle operations in a transient way. The

5

methodology described in Kola et al. (2004) uses log information from the job scheduler
and the data placement scheduler and takes the next action according to user policies. We
extend the error detection by including network exploration techniques and also proposed
a better and more detailed classification methodology. In contrast, we explicitly focus on
data transfers and our system structure handles operation in the perspective of data transfer
scheduling without interfering the other components in the system.

4 Structural Failure Detection and Error Reporting

Every data transfer protocol comes with different methodology for initiating and processing
the data transfer and also specific functionality in terms of authentication mechanism,
protocol parameter control, and data channel usage. We are limited by the capability of
the underlying data transfer protocol to get any information about a failure.

Although, data transfer protocols notify if an error occurred and ensure the successful
transmission of data, there is no generic error code to classify failure reason in every protocol.
Besides, majority of those implementations are contented with returning error messages
which are not specific and not explaining the situation in the environment causing this error.

As an example, a data transfer tool may return an error reporting that communication is
aborted after a portion of a data file has been transmitted over the network. In such a case,
there may be many reasons resulting in this failure; the remote host server may be down,
or file transfer service is not functioning in the host, or file transfer service is not supporting
some of the features requested, there may be a mal-functionality in the service protocol,
or user credentials are not satisfied, or any other problem occurred in the source server.

Besides stating the problem with proper reasons, a higher level planner or a data transfer
scheduler need information about the cause of a failure to perform the next action accordingly.
If service or host server is not available temporarily, data transmission can be repeated
afterwards; If there is not enough space in the remote server, another resource can be searched;
if protocol is not supporting some features set to enhance performance, suitable parameters
can be applied; another protocol or another service using the same protocol can be selected.

4.1 Framework for Error Classification

Our error reporting framework consists of generic operation types to capture information
about progressing stages of every operation supported by different protocols. We classify
operation types into 7 categories, as can be seen in Figure 3.

In the initialization phase, all parameters are set and connection is established to have
control over the protocol. Information about supported features of the target data transfer
service is gathered in feature select phase. In the configure phase, all parameters are set
for tuning up the protocol or extending some supported features. Next, we check existence
and status of files or directories in the remote or local data resources. Later, we perform the
actual data transmit operation over the communication channel. After transfer operation has
completed, some simple tests, like looking at checksum and comparing size both in source

6

and destination, are performed to examine the successful transmission of data. Finally, there
is finalizing operation to successfully close connections, and deactivate specific modules, and
clear unused protocol handles.

Figure 3: Data Transfer Operations

The main purpose of classifying data transfer operation in several categories is to better
understand at which stage an error has occurred. File transfer protocols such as GridFtp
(2008) generate error codes and error messages However, proposed error reporting framework
will help both users and higher level planners to recognize the error condition such that in
respect of the stage where error occurred different actions can be taken.

The specific error messages returned by data transfer protocols may not be useful to
classify and report error cases. In our structural model, we define each operation in a different
stage and order. First, status information of a file will be examined, and then in the later
stages, checksum or size of a file will be requested. We initialize required transfer handles,
activate modules specific to the protocol and prepare the system to connect and transmit
information. A failure in the fist stages shows that either protocol is not supported or a proper
connection can not be established. If failure happens during the parameter configuration
phase, different set of tune-up options can be used to accomplish a successful transfer. User
specific errors such as invalid file names, permission and authorization problems, or an
attempt to get non-existing resource can be detected in the status phase.

As an example, a directory transfer operation can fail since used file transfer protocol
is not supporting directory listing. In such a case, it will fail in the status phase before
proceeding to the transmit phase. Therefore, we can provide a better logging facility which
can be parsed and used by a higher level planner to get information in which stage operation
failed. Besides, we can also understand in which point an error has occurred in each stage.
In order to capture errors caused by network failures or mal-functionality in the protocol, we

7

Figure 4: Error Reporting Framework for Data Transfer Operations

keep state information in every phase. If we get an error after a file transfer operation has
already been initiated and data transmission is started for processing, we treat the problem
according to the fact that a problem may occurred in the network or remote site. Therefore,
we define the operation object with three state types to keep track of status information
between each phase. An operation can be in (a) start, (b) processing, and (c) end state. An
error condition may have different meanings whether it is before or after processing state in
the operation. Figure 4 shows the interaction of operations in the error reporting framework.

Categorizing possible operations in data transfers also provides more legible reporting in
terms of users such that we do not need to deal with protocol specific error messages generated
by different tools. On the other hand, data transfer tools and programming APIs are capable of
reporting errors. Moreover, programming APIs and protocol specific tools are the best possible
sources to get specific error messages. Thus, the proposed framework and categorization is not
an alternative to the error reporting capabilities of the protocol specific tools or APIs. Rather,
it is on top of them and using error messages generated to keep the condition in each phase.

5 Error Detection with Network Exploration

Network exploration is a commonly used methodology in system and network administration
for network inventory, host and service monitoring, and especially for security audits. On
a computer network with the fact that services are not advertising themselves by a service
discovery protocol, it is very much valuable to discover computers available on the network,
and to determine what services are running. Moreover, today’s security scanners are able
to gather lots of useful information from remote network computers. Network discovery tools
can determine name and version of offered services, operating system version of available
hosts on the network, presence of firewalls, type of packet filtering methods, filtered ports,
device types, and even vendor of network cards in local area networks (Host Detection,

8

2001; Nmap, 2008; Port Scanning, 1997). We experimented network exploration and service
detection techniques and used Nmap features inside data movement operations to resolve
host, scan predefined ports, and determine available services.

Before initiating a data transfer operation in which source host will connect a file transfer
service running on a remote server and transmit data over a network channel, it is important
to get prior knowledge in order to decrease error detection time. In addition, it is also useful
at the time of scheduling to know whether destination host and service is available or not;
such that, a data transfer job which would fail because destination host or service is not
reachable, will not be processed until that error condition is recovered. In addition to the
advantage of prior error detection, information about active services in the target machine
would help data transfer scheduler discover and use alternative transfer protocol.

The following five layers have been proposed in Kola et al. (2004) as basic structure to
make data intensive applications fault tolerant: (1) DNS resolve, (2) Host Alive, (3) Port
Open, (4) Service Available, (5) Test service (transfer test data before starting the actual
data placement). Normally, only root privileged users have access to ICMP layer which
is used to detect whether remote host is up or down (ping utility). On the other hand,
network scanners like Nmap (2008) (Port Scanning, 1997), are able to handle this by directly
accessing the Ethernet hardware using specialized libraries and not using the underlying
network layer. We recognize the need to implement a service detection mechanism in which
the following steps will be focused on: (1) DNS resolve, (2) Port Open, (3) Service Available
(a simple test to examine functionality of the data transfer service).

Network exploration puts extra overhead, but according to our first hand experiments,
shown in Section 8, it provides much quicker detection and recovery if compared with a
failure reported by a transfer module without the ability of early error detection. One other
possible drawbacks is that accessing network for detection may bother system administrators.
Interaction of network probing applications with security appliances, such as IDS or Firewall,
is an important concern since any such appliance will try to detect and block network scans
However, we use limited set of exploration techniques to resolve host address and to explore
given hosts also return available data transfer services. We emphasize that a very small set of
network probing methods (i.e. some functionality in Nmap) and simple network exploration
and discovery approaches are used for early error detection. Therefore, our integration only
includes special functionalities such that transfer modules return with relevant error messages
if availability of host and service is not justified.

In our recent study (Balman, 2007, 2008), we discuss our experiments with network
scanner implementations and clarify applicability of those mechanisms in Stork data scheduler.
Our proposed error reporting framework and a failure aware data transfer life cycle benefits
from network exploration tools. In Appendix A, we have explained network exploration in
details and give information about Nmap (2008) (Nmap Manual, 2008) network scanner tool.

9

5.1 Practice in Port Scanning

We have studied simple port scanners which support TCP connect() scan and SYN scan.
In SYN scan, root privileges are required in order to use raw IP packets. Also, we have
implemented a simple port scanner using TCP connect scanning technique. Our initial effort to
write a network exploration function enabling Stork (2009) data placement scheduler to detect
whether remote host and service is available, before initiating the data transfer jobs. We have
integrated host exploration feature in Stork scheduler transfer modules such that data place-
ment jobs return with relevant error messages if availability of host and service is not justified.

$./stork.transfer.globus-url-copy ftp://virtdev/tmp/a gsiftp://virdtdev/tmp/b

Transferring from: ftp://virtdev/tmp/a to: gsiftp://virtdev/tmp/b with arguments:

$cat out.7478

Network error: can not resolve destination host - virdtdev !

$./stork.transfer.globus-url-copy file://virttest/tmp/a gsiftp://virtdev/tmp/b

Transferring from: file://virttest/tmp/a to: gsiftp://virtdev/tmp/b with arguments:

$cat out.7585

Network error: destination port virtdev:2811 is not open !

5.2 Practice with Nmap

Nmap is an open source tool for network mapping and security scanning. It uses raw IP
packages in a ”novel way” for network exploration and service detection (Nmap Manual,
2008). Nmap is a very powerful tool and it is extremely fast,and does not use the underlying
network layer in the operating system. After its first version, many new features such as
better detection algorithms, new scan types and supported protocols have been developed in
the following versions (Nmap, 2008; Nmap Manual, 2008). Besides many useful characteristics,
Nmap provides XML output format to be easily interpreted.

A typical Nmap scan is shown below:

$ nmap -A -p1-10000 -d gridhub.cct.lsu.edu

.......

DNS resolution of 1 IPs took 0.00s. Mode: Async [#: 4, OK: 1, NX: 0, DR: 0, SF: 0, TR: 1, CN: 0]

........

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 3.6.1p2 (protocol 2.0)

2222/tcp open ssh OpenSSH 3.9p1 NCSA_GSSAPI_3.5 GSI (protocol 1.99)

2811/tcp open ftp vsftpd or WU-FTPD

......

We experimented network exploration and service detection techniques and used Nmap
features inside data placement operations to resolve host, scan ports, and determine available
services. More information about Stork error detection modules implementation details to
integrate and use Nmap features for service detection and host discovery can be found in
Balman (2007).

10

6 Data Transfer Life Cycle

We propose to examine availability of the remote server and functionality of file transfer
service before initiating the transfer. As it has been discussed in Section 5, we can easily test
whether we can access the remote host over the network. By using the network exploration
techniques, we can also detect available services running on remote site. One further step is
to examine the functionality of the file transfer protocol such that we ensure it is responding
as expected before starting the actual data transfer job. This can be accomplished by some
simple file transfers or by executing basic functions in the client interface of the protocol.

A data transfer operation which passed all initial tests and which has been started, can
fail after transferring some amount of data. In order to better understand the reason behind
failure, we go further and perform initial tests again after an error occurred. We do not rely
only on the error messages generated by transfer tools of client interfaces. As an example,
a failure in a data transfer operations can be due to a network problem, host machine failure,
or interruption in the service running on remote site. Applying network and service tests,
and also protocol examination will enable us to decide on whether we should retry and start
again the data transfer operation.

First, we check whether we can access the remote machine on wide-area network.
Determining the availability of the remote site does not bring serious overhead. In order
to perform a remote file transfer, we need to activate the data transfer module, initiate the
client interfaces, and connect to the service. Examining the network and then initiating the
connection is much more efficient, if operation will fail due to a network problem.

After testing the connection availability, we perform service detection techniques such
that we ensure the requested service is running in the remote site. This step has twofolds;
we simply detect a possible failure due to unavailable service in the target host, and we can
use the information of other available services to use an alternative protocol in data transfer.

The next step is checking whether remote service is functioning properly. This step has a
crucial role in early error detection such that misconfiguration or any other problems in data
transfer service can be detected here. Network failures other than server related problems
can be detected in previous stages, but if remote service is malfunctioning we do not need
to wait to recover or to retry the operation.

As it has been described in Section 4, it is also important to understand in which stage an
error has occurred. If file transfer operation is interrupted due to host or service inaccessibility,
the data scheduler or higher level planners can issue this operation later when error case
has recovered. However, some other actions should be taken if there is a failure due protocol
mis-functionality or permission error on the remote server.

We have prepared a testbed to detect possible erroneous cases in distributed data transfers
and used GridFtp as our file transfer protocol. During our experiments with GridFtp (2008),
the most common error message returned by the client interface was closed connection by
remote host. This error appeared not only for network problems but also certificate and

11

Figure 5: Data Transfer Progress Cycle

permission issues in the remote system such that GridFtp server could not establish the
data connection. In such a case, it is very much useful to perform initial network tests and
understand the reason of the failure.

Therefore, we propose a structural error reporting framework in which data transfer
operation is surrounded by particular tests scenarios. As it can be seen in Figure 5, we
apply network and protocol tests even after a failed data transfer operation in order to
classify erroneous cases. The purpose of those network and protocol examinations is not only
detecting errors as early as possible but also reporting errors with as much detail as possible.

6.1 A Case Study with GridFtp Data Transfer Protocol

GridFtp client API (GridFtp, 2008; Allcock, 2003) provides an asynchronous mechanism such
that operations are started and callback functions are called by the interface asynchronously.
In order to prepare an error case which can not be reported and detected by current tools
like globus-url-copy (Globus, 2008), we temporarily modified the configuration of the test
server and change the hostname of the machine. GridFtp server program continued on
execution properly and responded as expected to client calls provided by client interface.
However, it has never responded with a callback to the client due to the misconfiguration
in the server. GridFtp uses two communication channel one for control operations and the
other for data communication. One possible reason behind this situation is that data channel
connection could not be established.

Our experiments, in which we are generating artificial errors for testing purpose, shows

12

that current data transfer protocol are not always able to generate adequate log information;
therefore we also focus on tracing the transfer job and preparing the infrastructure to explore
dynamic instrumentation while transfer is in progress.

The following gives a glimpse of the possible erroneous situation where artificial faults
are injected by modifying the network settings of the test server.

$ globus-url-copy -dbg -v -r

gsiftp://dsl-turtle06.csc.lsu.edu/tmp/test/*.txt file:///tmp/1/ &

........................

200 PBSZ=1048576

debug: sending command:

PASV

debug: response from gsiftp://dsl-turtle06.csc.lsu.edu/tmp/test:

227 Entering Passive Mode (130,39,225,167,213,123)

debug: sending command:

MLSD /tmp/test

...................... HANGS here

$strace -p 21298

..........

read(7, "632 FwMAAFDPNc7O+iHi7AWKmv2vJIi2"..., 100) = 100

........

fcntl64(8, F_GETFL) = 0x2 (flags O_RDWR)

fcntl64(8, F_SETFL, O_RDWR|O_NONBLOCK) = 0

connect(8, {sa_family=AF_INET, sin_port=htons(54526),

sin_addr=inet_addr("130.39.225.167")}, 16) = -1 EINPROGRESS

write(7, "ENC FwMAADDma01sEymyaFdU7edOLDZY"..., 78) = 78

select(9, [4 7], [], NULL, NULL

...................... HANGS here

Globus-url-copy and client interface of GridFtp are not capable of detecting such an
erroneous case. In our experiments, they both stacked and continued waiting for a callback call
which will never be received. In our proposed structural framework, we test the connectivity
and communication network beforehand. We are able to determine an approximate value
about the round trip time and we can set a time-out for data transfer operations. In the
protocol test stage, if we cannot get response within this time-out limit, we can mark this
remote service as faulty. In the following, we give more information on dealing with those
type of erroneous cases by tracing data transfer operations.

6.2 Discussion on Dynamic Instrumentation: Tracing While Transfer in
Progress

Exploring performance and failure issues while transfer is in progress is quite difficult. We have
discussed problems that can occur in the network connection and we studied possible solutions
methodologies. However, it is hard to trace if we have a problem while transfer is in progress.
We have searched for possible techniques to trace a data transfer operation in order to detect
failures and problems as soon as possible and report them to the data placement scheduler.

13

The remote data transfer server may not return back any data in the data channel due
to some misconfiguration or some other server side problem. As it has been explained in
the previous sub-section, if the callback function defined in GridFtp protocol is not executed,
the client will hang since it has been waiting for an answer from the server. During the data
transmit phase, which is defined in the structural error detection framework, we can benefit
from tracing the running executable if we can capture useful information such as the amount
of data transferred and the number of connections opened.

We have searched dynamic system tracing facilities and studied Dtrace (Cantrill, 2007;
Cantrill et al., 2004). Dtrace brings the ability to dynamically instrument user-level and kernel-
level application. It provides a C-like control language to define predicates and actions at a
given point of instrumentation (Cantrill et al., 2004). Dtrace architecture consists of basically
providers, probes, actions and predicates. A probe is a programmable sensor such that it fires
when the registered event happens. If the predicate expression if validated, then the action is
triggered. Providers offer the probes to the Dtrace framework such that they pass control to
the Dtrace when a probe is registered. There are providers for monitoring scheduling service,
system calls, I/O devices, and I/O requests, IP, virtual memory, etc. (Cantrill et al., 2004).

Dtrace (2007) and similar tools have great importance in terms of dynamically tracing a
running system. Many example scripts for performance monitoring are provided in Dtrace
ToolKit (2007); moreover, there is an effort on developing Dtrace network providers for
network observability (Cantrill et al., 2004). On the other hand, there are also alternative
tools like SystemTap (2007) in which we are also able to track reads and writes on socket
initiated by the process.

The asynchronous property of GridFtp protocol makes it hard to track an operation when
transfer is in progress. We first initiate a transfer operation and register read/write functions
with appropriate callback functions, and then, wait callback functions to be executed. We
studied instrumentation techniques to trace our client application in order to understand the
reason behind the error case where client hangs and waits forever. Using dynamic system
tracking tools, we can see that there is no data transmission in progress, and we can make
decision about the error condition.

Moreover, there are many other data transfer tools for specific protocol and we may not
want to implement them from scratch according to the error reporting framework. Therefore,
tracing the data placement application using external tools will enable us to capture the
system calls, track network connections, and get information about the amount of data sent
and received, and will help us to solve many other system related issues.

7 Integration into Data Transfer Scheduler

Scientific applications especially in several areas such as physics, biology, and astronomy have
become more data intensive such that storage requirements went from giga- to peta-scale (Hey
and Trefethen, 2003; Atlas, 2007; CMS, 2007; Holtman, 2001; Allcock et al., 2001b). Through
the use of geographically distributed resources, organizations gain access to the resources

14

Figure 6: Integration of Structural Failure Detection and Error Reporting Framework into
Data Scheduler

needed for their large-scale applications. On the other hand, We deal with a dynamic network
layer where data movement middleware needs to adapt to the changing conditions in the
environment. Furthermore, heterogeneous resource and different data access and security
protocols are some other challenges. Complex middleware is required to orchestrate the use
of these storage and network resources between collaborating parties, and to manage the
end-to-end distribution of data. We have presented a data scheduler, Stork (2009), in order
to organize data movement operations in collaborative peta-scale computing systems.

Stork data scheduler has a modular architecture such that data transfer operations are
executed by external transfer modules (Kosar and Livny, 2004). We propose an abstract
connection layer inside the data scheduler to keep track of network statistics. This enables
us to utilize previous status information of failed operations.

For every source-destination pair encountered so far, the data scheduler updates network
information such as host accessibility, available data transfer services. Whether an error
condition has encountered, the status for the target host and service are updated. Therefore,

15

Table 1: Experiments with and without Network Exploration

(a) Overhead of Early Error Detection for Successful Transfers

average trans-
fer time

overhead of early de-
tection

network rtt=0.548 ms small files 4.505 (secs) 0.025 (secs)
large files 32.245 (secs) 0.046 (secs)

network rtt=5.131 ms small files 10.505 (secs) 0.36 (secs)
large files 92.245 (secs) 0.46 (secs)

(b) Benefit of Network Detection Feature for Failed Transfers (Error Recognition Time)

without network exploration with network exploration

firewall blocking 0.28 (secs) 0.001 (secs)

service unavailable 3.01 (secs) 0.001 (secs)

the scheduler can use this information and delay data transfer jobs which are requesting
transfer operations to or from a remote service that has been marked as faulty. The error
reporting framework and tracing transfer operations are sub-processes besides the main
server for better scheduling decisions.

The data transfer life cycle explained in this study is designed as the failure aware process
cycle in Stork data placement scheduler. Figure 6 shows a brief summary about integration
of error detection and classification model into the data scheduler. In the near future, we are
also planning to reshape Stork scheduling architecture according to the information gathered
from detection steps and information obtained from error reporting framework.

8 Evaluation and Discussion

We have prepared a testbed in which erroneous conditions are injected into data transfers
to test our proposed structure. For our experiments, we used data files from SCOOP (2008)
project (Stamey et al., 2007) for hurricane Gustav simulations generated in 2008. Our test
environment includes LONI (2007) machines and also one another server in the same network
in which we have full administrative access to modify system specific attributes and generate
errors for testing purpose.

First, we examine the performance of early error detection system that is using network ex-
plorations techniques. We simple scheduled multiple data transfer operations with small (from
1MB to 100MB) and large files (from 1GB to 2GB) with and without early error detection
module, and then, we take average values of total transfer times to examine the overhead of
network exploration. As can be seen in Table 1(a), overhead is ignorable; besides, early error
detection module provides faster recognition of the network error, shown in Table 1(b). We
also would like to emphasize the benefit of accurate and more precise error classification system
we have proposed to be utilized in decision making process of the data placement scheduler.

16

Next, we have experimented the impact of error detection and classification in data
transfer scheduling. We used 250 data transfer jobs submitted to Stork scheduler and injected
different types of errors into the system while the scheduler is performing given requests.
Simply, we change the permission of target directories, forced certification to be expired;
such that, the problem in the data transfer occurs because of misconfiguration or improper
settings of input output parameters. Besides, there are other types of errors due to server
or network outages which can or can not be recovered later.

We measure the makespan for all jobs in the system with error classification and without
error classification. As expected, scheduler does better decision and do not retry failed jobs
if erroneous case cannot be recovered. Results presented in Figure 7 show a heavily loaded
queue in which all data transfer jobs are submitted initially. It takes longer to complete all
jobs when there is no classification, since scheduler retries the failed jobs assuming they can
be recovered in the next run. With error classification, failed jobs are classified according to
the error states where problems occur, so we do not retry every failed operation. Early error
detection feature provides fully classification and data transfer jobs that will fail are detected
in advance, so those jobs are not scheduled at all. However, the condition leading to failure
may disappear later. Failures are detected beforehand and those jobs are scheduled when
the problematic condition has been resolved. Therefore, we see almost the same performance
with early detection and recovery if compared to the case without any failure.

Stork, data placement scheduler, checks network connection and availability of the data
transfer protocol. Early error detection has been implemented as a new feature inside Stork
scheduler. The network exploration feature will also enable the scheduler to select alternative
protocols among available data transfer services provided in a remote storage site. Moreover,
we propose a generic framework such that error classification is not limited by GridFtp
operations. We have also been testing our model with other data transfer protocols like
iRods (SDSC, 2008).

The GridFtp transfer module in Stork is also able to verify the successful completion
of the operation by controlling checksum of each file. Moreover, it can recover from a failed
operation by restarting failed data transfer operations. The rescue file keeps track of failed
and succeeded file transfer operations. In case of a retry from a failure, the scheduler informs
the transfer module to recover and restart the transfer using the information from a rescue
file created by the checkpoint-enabled transfer module.

17

Figure 7: Performance Effect of Error Detection and Classification in Scheduling Data
Transfer Operations

A sample for Stork job submission is shown in the following:

[dest_url = "gsiftp://eric1.loni.org/scratch/user/";

arguments = "-p 4 -dbg -vb";

src_url = "file:///home/user/test/";

dap_type = "transfer";

verify_checksum = true;

verify_filesize = true;

set_permission = "755" ;

recursive_copy = true;

network_check = true;

checkpoint_transfer = true;

output = "user.out";

err = "user.err";

log = "userjob.log";]

Performance analysis shows that proposed framework does not put extra stress on transfer
operations. The overhead incurred by error detection approach is negligible. Besides, network
exploration methods provide much quicker detection and recovery if compared with a failure
reported by a transfer module without the ability of early error detection.

18

9 Conclusion and Future Work

Error detection and error classification have not been studied in details for distributed data
transfers. On the other hand, failure detection and error reporting are not only important
issues in fault tolerant architectures, but also crucial in designing and planning the overall
system architecture. We explore several mechanisms for early error detection and we define
a structural framework for error classification. Moreover, we describe a data transfer process
cycle in which main focus is to determine the erroneous situation in distributed data transfers.
We have experimented some of the features and implemented transfer modules to be used
inside Stork, data placement scheduler. We have tested our system with 105,000 data transfer
jobs for the movement of Hurricane Gustav dataset from the Scoop project. From first hand
experience, we believe that implementation of error detection and classification is unavoidable
in large sets of data transfers. We underline once more the importance of developing failure
aware data placement scheduling methodologies. Besides, we emphasize the need to explore
dynamic instrumentation while transfer is in progress.

Acknowledgements

This project is supported by the National Science Foundation under award numbers CNS-0619843
(PetaShare) and EPS-0701491 (CyberTools), and by the Board of Regents, State of Louisiana, under
Contract Numbers DOE/LEQSF (2004-07), NSF/LEQSF (2007-10)-CyberRII-01, and LEQSF(2007-
12)-ENH-PKSFI-PRS-03, and in part supported by the Office of Science, U.S. Department of Energy,
under contract no. DE-AC02-05CH11231.

References

DTrace (2007). DTrace Network Providers. Available online at http://opensolaris.org

Dtrace ToolKit (2007). Available online at http://opensolaris.org/os/community/dtrace

Nmap (2008). Available online at http://insecure.org/nmap

Nmap-Manual (2008). Nmap Reference Guide (Man Page). Available online at
http://insecure.org/nmap/man

Vscan (2007). Service and Application Version Detection. Available online at
http://insecure.org/nmap/vscan

Stork (2009). Stork Data Scheduler. Available online at http://www.cct.lsu.edu/ bal-
man/stork/downloads.php.

SCOOP (2008). SURA Coastal Ocean Observing and Prediction (SCOOP) Program. Available
online at http://scoop.sura.org

SystemTap (2007). Available online at http://sourceware.org/systemtap/

Finger-Prints (2008). TCP/IP stack FingerPrinting. From Wikipedia. Available online at
http://en.wikipedia.org

Port-Scanning (1997). The Art of Port Scanning. Available online at http://insecure.org/nmap

19

Host Detection (2001). Advanced Host Detection Techniques To Validate Host Connectivity.
Synnergy Networks. 2001

Aldering, G. and SNAP Collaboration (2002). Overview of the SuperNova/Acceleration Probe
(SNAP). Available online at http://www.citebase.org/abstract?id=oai:arXiv.org:astro-ph/0209550

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A., Foster, I., Kesselman, C., Meder, S., Nefedova,
V., Quesnel, D., and Tuecke, S. (2001a). Secure, efficient data transport and replica management
for high-performance data-intensive computing. In IEEE Mass Storage Conference, San Diego, CA.

Allcock, B., Foster, I., Nefedova, V., Chervenak, A., Deelman, E., Kesselman, C., Lee, J., Sim,
A., Shoshani, A., Drach, B., and Williams, D. (2001b). High-performance remote access to
climate simulation data: A challenge problem for data grid technologies. In Supercomputing ’01:
Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM), pages 46–46, New
York, NY, USA. ACM Press.

Allcock, W. (2003). GridFTP Protocol Specification. Global grid forum. GFD.20.

Allcock, W., Bresnahan, J., Kettimuthu, R., and Link, M. (2005). The globus striped GridFTP
framework and server. In Proceedings of the ACM/IEEE conference on Supercomputing, page 54.
IEEE Computer Society.

Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. (1990). Basic local alignment search
tool. J Mol Biol, 215(3):403–10.

Atlas (2007). A Toroidal LHC ApparatuS Project (ATLAS). Available online at
http://atlas.web.cern.ch

Balman, M. (2007). Using Network Exploration and Service Detection Techniques in Stork-Data Place-
ment Scheduler. Center for Comp. & Technology, LSU http://csc.lsu.edu/b̃alman/technical.html.

Balman, M. (2008). Failure-awareness and dynamic adaptation in data scheduling. M.S. Thesis,
Louisiana State University.

Balman, M. and Kosar, T. (2009a). Dynamic adaptation of parallelism level in data transfer
scheduling. International Workshop on Adaptive Systems in Heterogeneous Environments (ASHEs
2009), Fukuoka, Japan.

Balman, M. and Kosar, T. (2009b). Early error detection and classification in data transfer
scheduling. Proceedings of International Workshop on P2P, Parallel, Grid and Internet Computing
(3PGIC-2009), Fukuoka, Japan.

Cantrill, B. (2007). Hidden in Plain Sight. ACM Queue 4 (1): 26-36.

Cantrill, B., Shapiro, M. W., and Leventhal, A. H. (2004). Dynamic Instrumentation of Production
Systems. Proceedings of the 2004 USENIX Annual Technical Conference.

CERN (2007). The world’s largest particle physics laboratory. European Organization for Nuclear
Research. Available online at http://public.web.cern.ch

Cieslak, D., Chawla, N., and Thain, D. (September 2008). Troubleshooting Thousands of Jobs
on Production Grids Using Data Mining Techniques. IEEE Grid Computing.

20

CMS (2007). The US Compact Muon Solenoid Project. Available online at
http://cmsinfo.cern.ch/outreach

CONDOR (2008). Condor project. Available online at http://www.cs.wisc.edu/condor/.

Dong, F. and Akl, S. G. (2007). Two-phase computation and data scheduling algorithms for
workflows in the grid. Parallel Processing, International Conference on, 0:66.

FDT (2009). Fast Data Transfer. Available online at http://monalisa.cern.ch/FDT

Globus-url-copy (2008) Globus Multi-protocol data movement. Available online at www.globus.org

GridFTP (2008) GridFTP Developer’s Guide. Available online at http://www.globus.org

GridFTP (2006). Protocol Extensions to FTP for the Grid. Available online at
http://www.globus.org/grid software/data/gridftp.php

Hey, T. and Trefethen, A. (2003). The Data Deluge: an e-Science Perspective. In F. Berman, G.
C. Fox, & Anthony Hey (Eds.), Grid Computing: Making the Global Infrastructure a Reality.
Chichester, UK: John Wiley & Sons, Ltd., pages 809–824.

Holtman, K. (July 2001). CMS data grid system overview and requirements. CMS Note
2001/037,CERN, 99.

Kola, G., Kosar, T., and Livny, M. (2004). Phoenix: Making Data-intensive Grid Applications
Fault-tolerant. In 5th IEEE/ACM International Workshop on Grid Computing.

Kosar, T. (2005). Data Placement in Widely Distributed Systems. Ph.D. Thesis, University of
Wisconsin-Madison.

Kosar, T. and Balman, M. (2008). A new paradigm: Data-aware scheduling in grid computing.
Future Generation Computer Systems, The International Journal of Grid Computing: Theory,
Methods and Applications, Elsevier, 2008, DOI: 10.1016/j.future.2008.09.006.

Kosar, T. and Livny, M. (March 2004). Stork: Making Data Placement a First Class Citizen in
the Grid. In International Conference on Distributed Computing Systems.

LONI (2007). Louisiana Optical Network Initiative. Available online at http://www.loni.org

Mate, P. (2007) Internet Security. Available online at http://www.cs.wright.edu/ pmateti

Balman, M. and Kosar, T. (2007a). Data scheduling for large scale distributed applications. In the
5th ICEIS Doctoral Consortium, In conjunction with the International Conference on Enterprise
Information Systems (ICEIS’07). Funchal, Madeira-Portugal.

Balman, M. and Kosar, T. (2007b). From Micro- to Macro-processing: A Generic Data Management
Model. In Poster presentation, The 8th IEEE/ACM International Conference on Grid Computing.
(Grid2007)Austin.

SDSC (2008). San Diego Supercomputer Center iRODS project. https://www.irods.org/.

Stamey, B., V.Wang, and Koterba, M. (August, 2007). Predicting the next storm surge flood. Sea
Technology, pages 10–15.

21

Teo, L. (2007), Network Probes Explained: Understanding Port Scans and Ping Sweeps. available
online at http://www.linuxjournal.com/article/4234

Thain, D. and Livny, M. (2002). Error scope on a computational grid: Theory and practice. In
Proceedings of the 11th IEEE Symposium on High Performance Distributed Computing (HPDC’02),
pages 199–208. IEEE Computer Society.

Thain, D., Tannenbaum, T., and Linvy, M. (2003). Grid Computing: Making the Global Infrastructure
a Reality. In Condor and the Grid, number ISBN:0-470-85319-0, pages 299–336. John Wiley.

Tyson, J. A. (2002). Large Synoptic Survey Telescope: Overview. In Tyson, J. A. and Wolff, S.,
editors, Survey and Other Telescope Technologies and Discoveries. Edited by Tyson, J. Anthony;
Wolff, Sidney. Proceedings of the SPIE, Volume 4836, pp. 10-20 (2002)., pages 10–20.

Yildirim, E., Balman, M., and Kosar, T. (2008). Dynamically tuning level of parallelism in wide
area data transfers. In DADC ’08: Proceedings of the 2008 international workshop on Data-aware
distributed computing, pages 39–48, New York, NY, USA. ACM.

A Appendix: Network Exploration

Network exploration is a commonly used methodology in system and network administration
for network inventory, host and service monitoring, and especially for security audits.

Moreover, today’s security scanners are able to gather lots of useful information from
remote network computers. Network discovery tools can determine name and version of
offered services, presence of firewalls, type of packet filtering methods, filtered ports, device
types, and even vendor of network cards in local area networks (Host Detection, 2001; Nmap
Manual, 2008).

We can basically classify network mapping into the following sub-categories (Nmap
Manual, 2008): (a) Host Discovery, (b) Port Scanning, (c) Version Detection, (d) OS Detection.

Host discovery is defined by detecting available hosts on a network. Most common
approach is to use ”ping” utility to determine whether a host is reachable or not across
an IP network. Ping sends ICMP echo request packets and waits for a corresponding
ICMP echo response from a target the computer machine, then calculates the round-trip
time (Port Scanning, 1997). Operating system detection is accomplished by TCP/IP stack
Finger-Printing (2008). TCP/IP flag settings may vary from one TCP stack implementation
to another. Different implementations respond differently if incorrect data is sent. Thus,
a combination of data is sent to the system in order to discover its version according to the
response (Mate, 2007). In service detection, we first connect once an open port is found, and
then, wait for the initial welcome banner because common services like FTP, SSH usually
identify themselves in the welcome banner (Vscan, 2007). Basically, service scanners connect
to the port and compare returned data in order to determine the program using that port.

22

A.1 Port Scanning

Port scanning is one basic technique used by system administrators to find out open ports in
order to check the security of the computer. There are 65535 port numbers in TCP/IP, and
they have been categorized in three ranges (Mate, 2007; Port Scanning, 1997; Teo, 2007): Well
known ports (0-1023), Registered Ports (1024-49151), Dynamic/Private Ports (49152-65535).

A port scan to a specific port results in generally three states (Mate, 2007). If host sends
back a reply, it shows that the port is open, and a there is a service listening on that port. If
reply says that the connection is denied, port status is closed and there is no service listening
on that port. The third port status is filtered or blocked in which no response from the
target host is sent back.

Port scanning has been classified as portscan, which searches a single host for open ports,
and portsweep, which searches multiple hosts on a network to find a specific open port (Teo,
2007). The simplest port scanning technique is TCP scan in which network function of
the underlying operating system is used such that user does not require special privileges. In
TCP scan, connect() system call returns success if port is open and listening, otherwise port
is not accessible. However, this method will easily will be detected and logged by the system.
Therefore, there are also many other techniques to proceed not be detected by auditing utilities.

Port scanning methodology has been classified as follows (Port Scanning, 1997): (1) TCP
connect() scanning, (2) TCP SYN (half-open) scanning, (3) TCP FIN (stealth) scanning, (4)
TCP FTP-proxy (bounce attach scanning), (5) SNY/FIN (fragmented IP packets) scanning,
(6) UDP recvfrom() scanning, (7) UDP raw ICMP port unreachable scanning, (8) ICMP
scanning (ping-sweep), (9) Reverse-ident scanning.

In TCP SYN-scan, which is usually known as half-open scan, we do not rely on provided
network functions such that port scanner send a raw IP packet and gets the response. Instead
of using TCP three-way handshake protocol, a SYN packet is sent pretending that a real
connection will be opened (Port Scanning, 1997; Mate, 2007). If port is open and listening, a
SIN—ACK packet would be received. Otherwise, RST packet will be sent back from target
host. When port scanner receives a SIN—ACK packet and determines port is open, it immedi-
ately closes the connection by sending a RST packet back (Port Scanning, 1997; Mate, 2007).
The advantage of half-open scan is that this access to the port is not logged by many systems.

Using raw IP packet gives full control in TCP stack, but root privileges are required
to prepare custom IP packets. On the other hand, sophisticated scanning tools provide
specialized network libraries and novel ways to use of raw IP packets (Nmap Manual, 2008).

Another stealth scanning technique is sending a FIN packet and attempting to close a
connection which is not open. It is expected that operating system will generate an error and
will reply back an RST packet if the target port is closed. If port is open, the sent packet
will just be ignored and no response to the scanner indicates there is a service listening on
that port. However, operating system may not behave as expected and reply back always
with RST packets to FIN requests (Port Scanning, 1997; Mate, 2007).

23

In fragmented packet scanning, TCP header is divided into several IP fragments (Mate,
2007; Port Scanning, 1997). Since packet filters do not usually queue all IP fragments, port
scanner can bypass the firewall. In FTP bounce attack scanning, port scanner take advantage
of the vulnerability of FTP server which supports proxy FTP connections. FTP servers
accept a request which ask the server to open a data connection to a third party host on a
given port (Port Scanning, 1997). Generated response code will help port scanner to identify
the port and hide where scan attach is coming from.

In UDP scan, it is expected that system will response with ICMP port unreachable message
if port is not open (Port Scanning, 1997). Non-privileged users cannot access this unreachable
error message, but operating system can indirectly inform the user and scanner can determine
port availability according to the difference in returned error messages (Port Scanning, 1997).
ICMP echo packets are used to determine host availability. In ident scan, we take advantage
of the ident service which gives information about the user that owns the service running on a
specific port, so scanner can determine whether port is open and active (Port Scanning, 1997).

24

