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Abstract 

Many pre-existing air conditioner load control programs can provide valuable operational 
flexibility but have not been incorporated into electricity ancillary service markets or grid 
operations. Multiple demonstrations have shown that residential air conditioner (AC) response 
can deliver resources quickly and can provide contingency reserves. A key policy hurdle to be 
overcome before AC load control can be fully incorporated into markets is how to balance the 
accuracy, cost, and complexity of methods available for the settlement of load curtailment. 
Overcoming this hurdle requires a means for assessing the accuracy of shorter-term AC load 
control demand reduction estimation approaches in an unbiased manner. This paper applies such 
a method to compare the accuracy of approaches varying in cost and complexity – including 
regression analysis, load matching and control group approaches – using feeder data, household 
data and AC end-use data. We recommend a practical approach for settlement, relying on an 
annually updated set of tables, with pre-calculated reduction estimates. These tables allow users 
to look up the demand reduction per device based on daily maximum temperature, geographic 
region and hour of day, simplifying settlement and providing a solution to the policy problem 
presented in this paper. 
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1. Introduction 

Adding variable generation such as wind and solar to an existing power system increases the 
need for flexible resources to respond to system changes and uncertainties, including wind 
ramps, demand ramps and forced transmission or generation outages. Flexible resources are 
defined by the speed in which they can increase (ramp up) or decrease (ramp down) production. 
Traditionally, much of the system flexibility required to maintain reliability is obtained from 
peaking generation units. However, using generators to provide operational flexibility can 
impose significant costs and lead to extra wear and tear on the generating equipment. In 2010, 
the North American Electric Reliability Council (NERC), which sets reliability standards for 
operation of the electric grid, investigated emerging flexible resources, including demand 
response, battery storage and electric vehicles (North American Electric Reliability Council 
(NERC), 2010). It identified residential air conditioner (AC) response as an existing technology 
that is particularly valuable because it is typically available during peak load times when energy 
and ancillary services are expensive and when generation is typically in short supply. The study 
recommended adjusting regional and federal reliability standards that might limit the deployment 
of these resources, developing operation infrastructure, and modifying market rules or non-
market rules/procedures that limit technically capable resources from providing flexibility. 
Several markets in North America, including those in Texas, New York, Ontario, and California, 
are currently in the process for developing standards to incorporate demand response and other 
emerging flexible resources. 

Residential AC response is particularly well suited for providing operators flexibility and, more 
specifically, contingency response, which requires fast deployments to stabilize the grid, but are 
used infrequently (<30 times per year) and for short periods (usually less than 10 min). Recent 
advances in communications technology allow for more precise control of AC units and operator 
visibility. Residential AC response is a disseminate resource that is not subject to transmission 
constraints and can be used to deliver specific incremental load reductions at specific locations. 
In addition, as we detail below, the operational capability of residential AC load control program 
and their ability to be used for grid operation has been tested extensively in recent years. It is 
also a large pre-existing resource that can be incorporated into grid operations through 
adjustments in reliability standards, market rules, and load control dispatch practices. Based on 
the Federal Energy Regulatory Commission 2010 Demand Response (DR) survey, there are over 
4.8 million households and over 200,000 businesses currently enrolled in AC load control 
programs (Federal Regulatory Energy Commission, 2011). Historically, these resources have 
been used for emergency operations and to offset the need to build additional peak generation, 
but they can also provide operators' significant flexibility if incorporated into ancillary service 
electricity markets. 

To date, there have been several studies that have tested the potential of controlling residential 
AC loads in order to provide flexible operating reserves and assessed the ability of integrating 
control of AC loads into operations. The conceptual framework and the policy reasons for using 
AC as spinning reserves were detailed in a series of reports by the Oakridge and Lawrence 
Berkeley National Laboratories (Eto et al., 2010 and Kueck et al., 2001). In addition, Lawrence 
Berkeley National Laboratory, Pacific Gas and Electric (PG&E) and Southern California Edison 
(SCE) sponsored a series of demonstration studies testing the ability to use AC load control to 
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provide operating reserves (Kirby, 2003, Eto et al., 2007, Eto et al., 2009, Sullivan et al., 
2009 and Gifford et al., 2010). 

Combined, the demonstration studies showed that: 

• Residential AC load control reduces demand quickly. AC units begin to noticeably shut 
down or cycle compressors within 60 s of when the load control signal is sent out and 
reach 80% of capacity within 3 min. 

• The effect of short-duration residential AC curtailments on customer comfort is 
negligible. 

• AC load drops can be observed on near real time basis using samples. 
• The demand reductions observed in the samples were also observed in the distribution 

feeder circuits. 

A key policy hurdle to be overcome before AC load control can be fully incorporated into 
markets is how to quickly and accurately measure shorter-term (e.g., ten's of minutes to a couple 
of hours) demand reductions from residential AC curtailments for settlement. This is an 
important policy question that will affect the ability of residential AC load control programs to 
participate in electric markets. The challenge is that measurements for settlement and operations 
need to be conducted in real time or on a monthly basis—much faster than traditional program 
evaluations, which are conducted on an annual basis. In addition, measuring demand reductions, 
sometimes referred to as “negawatts,” is an entirely different task than measuring power 
production. While power production is metered and thus is measured directly, demand reductions 
cannot be metered. They must be estimated by indirect approaches. In principle, the reduction is 
simply the difference between electricity use with and without the AC curtailment. However, it is 
not possible to directly observe or meter what electricity use would have been in the absence of 
curtailment. Instead, the electricity that would have been used in the absence of the curtailment – 
the counterfactual, sometimes referred to as the baseline – must be estimated. In doing so, it is 
important to systematically eliminate or control for alternative explanations for the change in 
electricity consumption. 

Much of the existing research on estimating demand reductions for settlement has focused on 
large industrial and commercial customers because electricity markets operated by Independent 
System Operators (ISO) have allowed these customers to participate in energy and capacity 
markets for well over a decade. The accuracy of many day-matching baselines for settlement of 
large commercial and industrial customers has been studied on several occasions. In 2003, 
KEMA compared the accuracy of 6 settlement baselines in 2003 using 646 accounts from 
multiple regions across the U.S (Coughlin et al., 2008). In 2004, Quantum Consulting and 
Summit Blue Consulting (2004) estimated the accuracy of 4 settlement baselines using data from 
450 accounts in California, none of which were enrolled in DR programs. In 2008, Lawrence 
Berkeley National Laboratory (2008), (Kema, 2003) compared accuracy of 7 alternate settlement 
baselines using data from 32 sites in California. It was the first study to assess accuracy by 
comparing actual and predicted baseline load for demand response program participants. All 
prior studies had drawn conclusions based on results from non-participants or comparisons of 
one estimate to another. Since then, assessments of baseline accuracy have relied on the use of 
proxy event days because this allows a comparison of estimated values to actual known values. 
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Several additional studies have been conducted since, all of which focused on large commercial 
and industrial customers (Braithwait and Armstrong, 2009, Braithwait and Armstrong, 2010, 
KEMA, Inc., 2011 and Bode et al., 2010). 

This paper presents a method for assessing the accuracy of shorter-term residential AC load 
control demand reduction estimation approaches and compares the accuracy of various 
alternatives for measuring AC reductions using three data sources: feeder data, household data 
and AC end-use data. The method relies on inserting pre-determined values measured in prior 
studies into naturally occurring electricity use. It then measures how well each approach 
estimates (or “predicts”) the known demand reductions under different conditions. In total, we 
evaluate 10 different demand reduction estimation approaches using feeder data, household data 
and end-use AC data. The approaches tested include both within- and between-subject 
estimators. Within-subject estimators use customer's electricity use patterns during days when 
AC units are not curtailed to estimate AC load absent curtailment operations during actual event 
days, while between-subject estimators rely on an external control group of AC units that is not 
curtailed to provide information about electricity use absent curtailment. 

While highly accurate results are desirable, there is often a tradeoff between simplicity and 
incremental accuracy. In order to help gauge the benefit of more complex and costly approaches, 
each of the estimation approaches are compared with one of the simplest and least technical 
approaches—a set of tables with pre-calculated load reduction estimates. These tables are based 
on annual evaluations and allow users to look up the demand reduction per device based on the 
daily maximum temperature, geographic region and hour of day. They facilitate quick settlement 
when resources are dispatched and provide operators a quick estimate of the DR resources 
available for operations. 

The study presented in this article differs from the studies cited above because it focuses 
explicitly on the policy problem of how to measure demand reductions from residential AC 
response. In addition, it compares a wider range of approaches for estimating demand reductions, 
including day-matching baselines, weather-matching baselines, regression models, and 
approaches that rely on control groups. Finally, it also assesses how the accuracy of the demand 
reduction estimation approaches varies as a function of the data source employed. Decisions 
about whether to rely on end-use, household, or feeder data directly affect the ability to 
accurately measure demand reductions. This is because the data source affects the amount of 
background noise from which the signal – the demand reduction – must be identified. 

The remainder of this paper is structured as follows. Section 2 documents the methodology, 
including the data sources used, estimation approaches tested, and metrics used to assess 
accuracy. Section 3 presents the results. Section 4 concludes by discussing the implications of 
the findings. 

2. Methodology  

To assess the accuracy of different approaches for estimating AC demand reductions, we 
introduced pre-determined AC load curtailments on actual feeder, household, and AC end-use 
data from customers enrolled in Pacific Gas and Electric's SmartAC program (George et al., 
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2012, KEMA, 2009). That is, while the estimates of AC demand have been predetermined for 
purposes of this evaluation, they were developed from a prior analysis of recorded data collected 
on AC usage patterns and demand reductions by temperature conditions and geographic location. 
This process is used in order to ensure that the true demand reductions are known in advance. 
This enables us to determine exactly how well different approaches estimate these known 
demand reductions and whether or not they exhibit tendencies to over or underestimate them. 

A. Simulation framework 
 
Fig. 1 summarizes the general framework used for assessing the accuracy of the demand 
reduction estimation approaches. To implement the assessment framework, we 
 

1. Calculate the magnitude of controllable AC loads. This step estimates how much of 
the load from the data source can be controlled for each date and hour. This estimate 
is based on a sample of unperturbed AC end use data for 547 Pacific Gas and Electric 
residential customers. The load data was used to create 24 daily load profiles, based 
on temperature conditions, for each of 3 distinct climate regions. 

2. Select proxy curtailment events. In total, 15 curtailment days were randomly selected 
in 2009 and 2010 from the set of weekdays where daily maximum temperature 
exceeded 85 °F (29.5 °C). Days with a daily maximum temperature below 85 °F 
generally have little AC load in California because overnight temperatures cool off 
substantially compared to more humid regions in North America. In the hottest 
climate region – the Fresno/Bakersfield region of the California Central Valley – 
daily maximum temperatures exceeded 90 °F (32 °C) on 76% of summer days. In the 
second hottest region – the Northern part of the Central Valley near Stockton and 
Sacramento – daily maximum temperatures exceeded 90 °F on 43% of the days. 
Curtailment event start times were randomly selected between 12 PM and 10 PM 
with durations of one hour. One-hour events were simulated because residential smart 
meter data were only available on an hourly basis. In practice, most contingency 
reserves operations are much shorter, typically less than 10 min, though contingency 
reserves must be able to deliver resources for 90 min or up to 2 h, based on market 
rules. 

3. Calculate demand reductions. The demand reductions were estimated based on the 
variation observed in historical reductions of AC load from 34 curtailment events 
documented in annual program impact evaluations. The resulting relative (percent) 
demand reductions incorporate the effect of weather, plus a random variation 
component that reflects the variation in the historical evaluation results. The percent 
reductions were then multiplied by controllable AC loads to produce a simulated 
(estimated) demand reduction. With this process, the demand reductions for each 
curtailment event are known, making it possible to test how accurately each of the 
different settlement alternatives measures the load drop. 
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4. Apply demand reductions to unperturbed loads. During each of the proxy curtailment 

event periods, simulated demand reductions were subtracted from the unperturbed 
loads. In other words, we knew the actual demand with and without the simulated 
curtailments, as well as the magnitude of the demand reductions. For AC end-use 
data, the unperturbed load consisted of the sample of 547 AC units with directly 
metered end use data. The simulated percent demand reductions were applied directly 
to the actual loads. For household-level data, the unperturbed load consisted of smart 
meter data from 6000 households located in 204 randomly sampled feeders. For each 
feeder, 100 households participating in PG&E's AC load control program were 
randomly selected. For feeders with less than 100 participating households, we 
included data from all participants. The household data was aggregated to the feeder 
level prior to applying the demand reductions. Unperturbed feeder load was based on 
the same 204 randomly selected feeders; however, hourly data was only available for 
85 of those feeders. By applying the simulated demand reduction to unperturbed 
electric loads, we not only knew the actual curtailments, but were also able to 
realistically simulate the background noise and effect size. 

5. Estimate the demand reductions using each data source and 10 estimation approaches. 
The demand reductions were calculated using feeder, household, and AC end use 
data. The estimation approaches tested included day- and weather-matching methods, 
regressions, and approaches that relied on control groups. 

6. Assess the accuracy of each of the estimation approaches. For each of the curtailment 
events, we knew the true load patterns without curtailment and the true demand 
reductions. As a result, we were able to assess the accuracy of each estimation 
approach. To standardize the comparison, we used metrics designed to assess if the 
estimation approaches systematically over or under-reported demand reductions 
(bias) and metrics that summarized how close the estimates were to the true demand 
reductions (goodness-of-fit). 
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B. Demand reduction estimation approaches 
 
Table 1 summarizes the estimation approaches we evaluated and provides greater detail for the 
fifth step in the simulation framework described above. A total of 10 different demand reduction 
estimation approaches were applied to feeder, whole household, and individual customer and 
aggregated AC end-use data. Individual AC load is the AC load for a single customer, while 
aggregated AC load is the combined AC load for multiple customers. With AC load, the order of 
aggregation and calculation can lead to different results. Calculating baselines for individual AC 
units and then aggregating program results produce a different answer than if the data is 
aggregated before calculating the baselines. This occurs because individual AC units tend to be 
either off or on while aggregated AC loads show a more continuous pattern. 

The least technical approach – a set of tables that provides estimates of the load curtailment 
based on daily maximum temperature, region, and hour of day – is used as a benchmark to assess 
the extent to which more complex demand reduction estimation approaches improve accuracy. 
The approaches can be classified into 2 broad categories: within- and between-subject 
estimators. 

Within-subject estimators use customer's electricity use patterns during days when AC units are 
not curtailed to estimate AC load absent curtailment operations during actual event days. They 
include demand reduction calculation methods such as individual customer regressions and day- 
and weather-matching baselines. They work because the AC curtailment is introduced on some 
days and not on others, making it possible to observe behavior with and without the load control 
in effect. 

Within-subject approaches can be less reliable when curtailment events lack comparable non-
event periods. For example, if an AC load control program is utilized on all of the hottest days, 
much like AC programs have normally been operated, there may not be any similarly hot days 
left over for comparison. However, contingency reserve operations are typically triggered by 
random generation or transmission outages. They tend to be short in duration and do not always 
affect the same hours. As a result, there are typically a large number of similar non-curtailment 
periods. 

Between-subject estimators rely on an external control group of AC units that are not curtailed to 
provide information about AC units that were curtailed and would have used electricity if they 
were not instructed to shed load. We considered two simple options that rely on random 
assignment to load control operations: a simple comparison of means and a difference-in-
differences calculation. 

1) Impact estimate tables. 
 
Impact estimate tables are the least technical demand reduction estimation approach and 
are typically constructed at the AC unit level. They are essentially a set of tables with 
pre-calculated load reduction estimates based on annual impact evaluations of historical 
curtailment. They allow the user to look up estimates of the reduction per AC unit based 
on the hour of day, temperature condition category, and climate region. These estimates 
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per AC unit can be multiplied by the number of AC units dispatched in each climate 
region and aggregated to obtain an estimate of the aggregate demand reduction. While 
not complex, the approach is practical and of low cost. It serves as a useful baseline for 
assessing how much value is added by using more complex demand reduction estimation 
approaches or requiring placing more extensive data requirements for settlement. 
 
The accuracy of the impact estimate tables was tested using a sub-sampling approach. 
Approximately one eighth of the data was sampled and used to develop the impact 
estimate tables. To assess accuracy, we then compared the estimates from the table to the 
known impacts for population, which were artificially introduced. The process is repeated 
100 times to reflect both sampling and estimation error. 

2) Within subject estimators 
 

a. Day- and weather-matching baseline estimation approaches 

Day-matching baselines are a widely used technique for developing an estimate of 
what electricity use would have been in the absence of load control. The approach 
was developed and tested for large commercial and industrial (C&I) customers 
and have been used by Independent System Operators (ISOs) for settlement of 
DR products targeting large C&I customers. This approach relies solely on 
electricity use patterns when the AC unit is not controlled. A subset of weekdays 
when units were not cycled in close proximity to the event day is identified. The 
electricity use in each hour of the identified days is averaged to produce a 
baseline. While more accurate approaches are available, baselines are useful 
because they allow settlement to be conducted quickly and are relatively intuitive 
and easy to understand. They are also relatively accurate for commercial and 
industrial customers, since many of these customers are not particularly weather 
sensitive; it is unlikely that their load on hot event days will be much higher than 
on the days used to calculate the baseline. 

Many options exist for calculating day-matching baselines. They are often 
supplemented with corrections to incorporate information about usage patterns in 
the hours preceding an event—usually referred to as in-day or same-day 
adjustments. In-day adjustments are common and typically reduce the error 
between the unadjusted baseline and actual loads. 

Weather-matching baselines are a variation of day-matching approaches. The 
main difference is that the comparable days are based on average hourly load 
patterns during non-event days with similar weather conditions, as defined by 
temperature bins. These days may or may not be immediately prior to the 
curtailment event. For example, to produce a baseline for a weekday with a daily 
maximum temperature between 90 °F (32 °C) and 95 °F (35 °C), the first step 
would be to identify weekdays with similar temperatures and without AC 
curtailments. If there were six such days, the electricity use for each time period 
would be averaged for those six days to produce a baseline. As with the day-
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matching baseline, the weather-matching baseline can be calibrated or adjusted 
using actual usage patterns in the hours preceding an event. Given the weather 
sensitivity of AC load, this approach is preferable to using a simple baseline. 

b. Regression analysis estimation approaches 

Regression analysis quantifies how different, observable factors such as weather, 
hour of day, day of week, location, and cycling affect AC electricity use patterns. 
With regressions, the impacts are directly estimated through the regression model 
parameters. In other words, the impacts are the difference between the regression 
estimates of AC use with and without load control. 

The analysis consists of applying regression models separately at the unit of 
analysis. The regression specification is common over all units but estimated 
coefficients vary for each unit. The variables in the regression specifications 
model time-based and weather-based impacts. The fact that each feeder has its 
own specification automatically accounts for variables that are relatively constant 
for each unit, such as geographic location, mix of load control switches versus 
smart thermostats, and the strength of the communication network. Because the 
coefficients are specific to the unit, they can better explain the variation in 
weather sensitivity and load patterns. 

Regression analysis estimation approaches work because AC load control 
naturally produces an alternating or repeated treatment design. The primary 
intervention – AC load control – is present on some days and not on others, 
making it possible to observe AC use with and without cycling under similar 
conditions. A repeated introduction and removal of curtailment events allows for 
an assessment of whether the outcome – electricity consumption – rises or falls 
with the presence or absence of AC cycling. 

We tested four regression analysis estimation approaches; the appendix contains 
the mathematical expression of the regression models tested. 

3) Between-subject estimation approaches (control groups) 

Another way to estimate demand reductions is by using a control group of customers that 
does not participate in the event. In essence, the electricity demand patterns by the group 
that did not participate are used to infer what the usage patterns of the curtailment group 
would have been in the absence of curtailment. 

However, on its own, using a control group does not guarantee more accurate results. To 
eliminate alternative explanations for differences in electricity use, it is critical that the only 
systematic difference between the two groups is the fact that one group had their AC units 
curtailed while the other group did not. 
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The best way to ensure there are no systematic differences between the two groups is to 
randomly assign customers to the curtailment and control groups and use large sample sizes. 
Because of random assignment, on average, both groups can be expected to have similar 
characteristics such as household size and to experience the same weather, economic conditions, 
and occupancy patterns. The only systematic difference between the two groups is whether or 
not they were curtailed. 

The demand reductions were calculated in one of two methods: 

• A simple comparison of means: with this approach, for each time period, demand 
reductions are estimated as the difference between the group that did not have their AC 
loads curtailed and one that did. 

• A weather-matched difference-in-differences calculation: this approach is useful when 
sample sizes are smaller. The demand reduction is calculated as the difference between 
the two groups, but then adjusted with one additional step. We subtracted out differences 
between the two groups observed during days without curtailments and similar weather. 
This nets out differences that are irrelevant and mainly due to sampling variation. 

To simulate the effect of sampling accuracy, we (1) randomly selected a sample of customers, 
(2) randomly assigned half of them to receive the curtailment and half to act as the control group, 
(3) simulated the impacts for the group assigned curtailment, (4) calculated the demand reduction 
using the control group, and (5) recorded the degree of error in the estimate. This process was 
repeated 100 times to reflect the distribution of errors in the estimation approach. 

C. Metrics for assessing accuracy 

Since AC load control programs aggregate tens and sometimes hundreds of thousands of the AC 
units, the focus is less on the accuracy of estimates for individual AC units or feeders and more 
on the overall accuracy of the results for the program and for larger zones in the electric grid.  

To standardize the comparison between various estimation approaches, we used metrics designed 
to assess to what extent the estimates systematically over or under-estimated the known, true 
demand reductions (bias) as well as metrics that summarized how close the estimates were to the 
known, true demand reductions (goodness-of-fit). An accurate estimator produces results that are 
on average unbiased and minimize amount of error for individual periods (i.e., it has a high 
goodness-of-fit). 

In comparing various demand reduction estimation approaches, it is important to understand 
whether an approach is unbiased on average and accurate for individual curtailment hours. An 
approach that produces correct measurements on average can perform poorly for individual 
events. This occurs if the errors cancel each other out. 
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Table 2 summarizes the metrics for bias and goodness-of-fit used to assess the different 
estimation approaches. It includes a brief description and the corresponding mathematical 
equations. 
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3. Results 

This section summarizes the accuracy of the estimation approaches tested. In total, we evaluated 
10 estimation approaches that relied on either feeder data, household data, or end-use AC data. 
Each combination of data source and estimation approach is considered as a separate alternative. 
Results are shown for bias, using the mean percent error (MPE), and for goodness-of-fit, using 
the mean absolute percent error (MAPE), and normalized root mean square error (CV RMSE). 
To illustrate, a bias statistic of 5% indicates that the approach tends to overestimate demand 
reductions by 5%. In contrast, the goodness-of-fit metrics selected indicate the magnitude of the 
errors for individual curtailment periods, with lower values indicating less error. MPE can be 
positive or negative, while MAPE and CV RMSE can only be positive. 

Table 3 shows results for the within-subjects estimation approaches and compares those results 
with the impact estimate tables for the average event day. The within-subjects' approaches 
include three different day-matching baseline methodologies, a weather-baseline methodology, 
and four regression models. As a reference, the table also shows impact estimate tables, which 
are the least technical approach available, and serve as a benchmark to test more sophisticated 
approaches. The impact estimate results shown here are for a sample of 500 customers drawn, 
100 times, and show both the median result and a 90% confidence band around that result. 

 

Feeder data provides the worst results across the board, regardless of the estimation approach 
employed. Simply put, feeder data includes a lot of irrelevant load variation that dilutes the 
signal and makes it harder to detect. It includes load variation due to customers that are not 
enrolled in the AC load curtailment program (including commercial and industrial businesses), 
as well as end-uses that are not AC related. It is difficult to pinpoint the amount of load being 
curtailed by an AC program because the program signal is very small, while the noise of other 
loads is large. For the average feeder, the curtailment events led to an average reduction of 0.2% 
for the feeder loads. Even for the feeders with the highest penetration of load control devices, the 
curtailments rarely exceed more than 1% or 2% of the feeder loads. While demand reductions 
can be observed in feeders with high AC load control penetration on very hot afternoons, they 
are not a viable option for settlement. Not only does it lead to inaccurate demand reduction 
estimates, but many utilities such as PG&E cannot readily access sub-hourly data for a large 
share of their feeders. 
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Table 3 also shows that baseline approaches are inferior to regression approaches. The day-
matching baselines that are typically used for large C&I customers produced the least accurate 
estimates of residential AC demand reductions. They both exhibited larger bias and more error 
for individual curtailment periods (goodness-of-fit). This is likely because residential AC loads 
are far more weather-sensitive than large C&I loads. Weather-matching baselines tend to provide 
results that are lower in bias and have better goodness-of-fit than day-matching approaches 
because they better account for residential AC weather sensitivity. They work well with 
aggregated AC end-use data, less so with household data. The regressions are much better at 
providing accurate estimates of load curtailments than day- or weather-matching baselines. They 
produce the most accurate results and perform with both AC end-use and household data. 
Regression methods 1 and 4 do particularly well. (Regression specifications are included in the 
Appendix to this article.) 

As the table shows, alternatives that rely on AC end-use data tend to do the best job of estimating 
the true demand reductions. Individual AC loads show a very clear usage pattern – they are 
either on or off – those patterns are very difficult to predict, as any individual AC unit's load can 
be rather volatile. Aggregated AC data can be more accurate because it is easier to predict the 
aggregate behavior of many customers than to accurately predict the individual behavior of one 
customer. 

Even though it provides the most accurate results, collecting large amounts of AC end-use data is 
an expensive proposition. Generally, data loggers must be installed on individual AC units and 
retrieved at the end of a study period or have data transmittal capability. Data collection of AC 
end-use data requires large expenditures in both labor and capital. On the other hand, household-
level data is much easier to collect, especially as smart meters become more and more common. 

Several evaluations have recently relied on smart meter data from tens or hundreds of thousands 
of households with very little incremental cost (George et al., 2012 and Hartmann et al., 2012). 
While household load data is “noisier” than AC end-use data because it includes the load of 
many other household devices, the AC load is still quite easy to detect, especially on hotter days. 
This makes it an affordable and very useful data source. 

The impact estimate tables provide fairly good results. In terms of bias, they consistently do 
better than baseline approaches, and the median result only shows bias of 0.1%, which is better 
than even the regression approaches. Their goodness-of-fit statistics are not quite as good, 
indicating that while they do a good job of estimating demand reductions for the average event 
day, there is considerable variation across individual event days. In addition, goodness-of-fit 
does not improve as sample size increases; the results shown in the table are for a sample of 500 
customers, but our results for a sample of 2000 customers are very similar. Importantly, the 
quality of results using this approach depends on the amount of historical event data 
incorporated, the quality of the underlying evaluations, and the granularity of the cell tables. 

However, considering the simplicity of this very low-cost approach, impact estimate tables 
provide a good method of achieving a relatively accurate settlement. Regression approaches are 
preferable for accurate ex-post measurement and verification, but impact estimate tables are 
quite capable of providing quick, unbiased results for settlement purposes. 
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Table 4 shows results for the two between-subjects methods. The first approach is a simple 
comparison of means, while the second approach is a difference-in-differences calculation. With 
the first approach, demand reductions are estimated as the difference between the group that did 
not have their AC loads curtailed and one that did. With the second approach, the difference 
between the two groups is also calculated for the curtailment day. However, differences between 
the two groups observed during days without curtailments and similar weather are then 
subtracted out. This additional step nets out differences that are irrelevant and mainly due to 
sampling variation. It improves precision of the estimates, particularly if smaller samples are 
employed. The table also shows results for the impact estimate table approach using a sample 
size of 500 customers. 

 

By definition, between-subjects approaches require aggregating multiple customers into two 
groups to make a comparison. Thus, individual AC data does not lend itself to doing this type of 
comparison. In addition, it is not possible to carry out a meaningful comparison between 
randomly assigned groups of feeders. Thus, the table only shows results for aggregated AC data 
and household data. In comparing the results of AC end-use and household data, it is important 
to keep in mind that collecting AC end-use data is prohibitively expensive in comparison to 
extracting household data from smart meters that have or will be deployed. Collecting AC data 
for an entire summer for a sample of 500 customers can cost from $300,000 to $600,000. 

Despite the fact that the aggregated AC data source only has 500 customers, it exhibits less bias 
and better goodness-of-fit than household data with a sample size of 500 or 1000 customers. This 
echoes the results shown in the within-subjects comparison; aggregated AC data includes only 
the “signal” of AC usage with none of the “noise” of other end-uses found in household data. 
With household sample sizes of 2000 or more, household data does do better than 500 AC units. 
Increasing the sample size tightens up the confidence bands for both bias and goodness-of-fit 
statistics considerably. 

The difference-in-differences approach is more accurate than the simple comparison of means. 
The additional step of netting out random differences that are mainly due to sampling variation 
improves measurement precision considerably, especially for smaller sample sizes. 

Both impact estimate tables and between-subjects approaches do not tend to over or 
underestimate impacts, provided sample sizes are large enough. However, goodness-of-fit is 
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considerably improved when using the between-subjects approaches, indicating that these 
approaches do much better for individual event days. Some other considerations regarding the 
use of impact estimate tables have already been described above. 

Comparing Table 1 and Table 2, it is clear that a between-subjects design using household data 
and a sample size of 2000 customers does a better job of estimating curtailment on both average 
and individual event days than any within-subjects approach; in addition, it also does a better job 
of estimating curtailment on individual days than the impact estimate tables. 

Residential AC load control devices are well suited for between-subject approaches that rely on 
random assignment. It is possible to randomly assign and/or rotate curtailment operations rather 
than have to deny or delay an intervention for a subset of customers. For example, with many 
systems, it is possible to instruct the load control device of a house to shed load and to instruct 
the load control devices at an adjacent house not to do so. This approach was successfully 
executed in the 2011 evaluation of Pacific Gas & Electric's SmartAC program, where 
approximately 140,000 AC units were randomly assigned to 10 different groups and test 
operations were systematically called for research purposes (George et al., 2012). For each 
curtailment event, one or two groups were curtailed and the remaining groups served as controls. 
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4. Conclusions and policy implications 

Residential AC load control programs are substantial, existing resources that can be deployed 
quickly. If integrated into grid operations and ancillary service markets, they can provide 
operators with a resource that can be deployed quickly in response to system shocks or 
unexpected changes in demand or supply that requires a fast response. In order to fully 
incorporate AC load control into grid operations and markets, it is necessary to define the rules 
and requirements for settlement. 

Much of the debate to date regarding settlement methods for demand reduction has focused on 
day-matching baselines, metering requirements, and telemetry. Our research shows that day-
matching baselines, which, as shown in previous research, can be accurate to measure reductions 
in commercial and industrial DR programs, are not well suited for measuring AC demand 
reductions. Moreover, more granular meters do not necessarily increase the accuracy of demand 
reduction measurement because measuring demand reduction is fundamentally different than 
measuring the output from generation resources. 

The fact that relatively accurate estimates can be cheaply and quickly obtained using pre-
calculated tables of demand reduction estimates raises several interesting policy questions. Is it 
really necessary to use more complex and more expensive estimation approaches for each 
individual AC curtailment event? How much value does the incremental accuracy of more 
complex estimation approaches and metering provide for settlement? How much value is gained 
by increasingly granular measurement (1 min versus 15 min versus 1 min data)? 

As a solution to the policy problem identified at the outset of this paper – how to quickly, 
cheaply, and accurately measure residential AC load curtailments for settlement – we 
recommend a practical approach, using tables with pre-calculated load reductions per AC unit to 
estimate demand reductions during the summer and conducting a more detailed evaluation at the 
end of the summer to reconcile settlements. The demand reduction tables should be updated on 
an annual basis using a transparent process that allows for independent verification by a third 
party. As the measurement uncertainty in annual evaluations improves and the number of AC 
load operations increases, the accuracy of the tables is expected to increase. The use of such 
tables allows for quick settlement when resources are dispatched and provide operators a quick 
estimate of the DR resources available for operations. This approach will go a long way toward 
solving the policy problem of how to quickly, cheaply, and accurately measure short-term 
reductions for settlement. 

The accuracy of pre-calculated tables depends in part on the amount of historical curtailment 
data incorporated, the quality of the evaluations, and the granularity of the tables. When possible, 
it is highly recommended that direct load control program administrators systematically execute 
test operations to better define the performance of the programs and that they rely on large 
sample sizes, with random assignment of devices to curtailment operations, and a difference-in-
differences method. 
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