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Bonus Organisms in High-Throughput Eukaryotic Whole-Genome Shotgun Assembly
Jasmyn Pangilinan, Harris Shapiro, Hank Tu, Darren Platt

The DOE Joint Genome Institute has sequenced over 50 eukaryotic 
genomes, ranging in size from 15 MB to 1.6 GB, over a wide range of 
organism types.  In the course of doing so, it has become clear that a 
substantial fraction of these data sets contains “bonus” organisms, usually 
prokaryotes, in addition to the desired genome.  While some of these 
additional organisms are extraneous contamination, they are sometimes 
symbionts, and so can be of biological interest.

Abstract GC Content + Kitchen Sink BLAST Analysis High-Level Assembly QC Process
Jazz, the JGI WGS Assembler
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The GC content distribution of a given data set can be fit to a set of Gaussian curves to detect outliers such as prokaryotic
or organellar contamination.  The fraction of the area under each curve-fit Gaussian can then be used to estimate the 
amounts of the various types of contamination.

symbionts, and so can be of biological interest.

Therefore, it is desirable to assemble the “bonus” organisms along with the 
main genome.  This transforms the problem into one of metagenomic 
assembly, which is considerably more challenging than traditional whole-
genome shotgun (WGS) assembly.  The different organisms will usually be 
present at different sequence depths, which is difficult to handle in most 
WGS assemblers.  In addition, with multiple distinct genomes present, 
chimerism can produce cross-organism combinations.  Finally, there is no 
guarantee that only a single “bonus” organism will be present.  For 
example, one JGI project contained at least two different prokaryotic 
contaminants, plus a 145 KB plasmid of unknown origin.

Above is a GC content distribution for 10 384-well plates of an Aspergillus niger 3 kb library.  Based on this initial QC, the 
overall data set looks very clean with almost all the reads belonging to the mean GC peak at 0.5.  This is confirmed by the 
kitchen-sink BLAST results, which contain few anomalous hits.
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contaminants, plus a 145 KB plasmid of unknown origin.

We have developed techniques to routinely identify and handle such 
“bonus” organisms in a high-throughput sequencing environment.  
Approaches include screening and partitioning the unassembled data, and 
iterative subassemblies.  These methods are applicable not only to “bonus” 
organisms, but also to desired components such as organelles.  These 
procedures have the additional benefit of identifying, and allowing for the 
removal of, cloning artifacts such as E.coli and spurious vector inclusions.

To the left, the results of the assembly QC process for an 
early Emiliania huxleyi assembly are shown.  

Organellar scaffolds are present in distinct GC content 
bands.  This makes it straightforward to extract them from 
the assembly and, if necessary, use them as the starting 
points for subassemblies.

Multiple prokaryotic contaminants are also present, at 
different sequence depths and embedded in the main GC 
content peak.  This makes it difficult to extract all of the 
contaminant scaffolds.  Iterative subassemblies could 
improve the contiguity of the prokaryotic sequences and 
allow for better screening, but it is likely that additional 

Sequencing Project Bonus Organisms? 
Arabidopsis lyrata None. 
Aspergillus niger High-GC prokaryote (40 kb only). 
Aureococcus 
anophagefferens 

Probable high-GC prokaryote.  The prokaryotic scaffolds are embedded in the main organismÕs GC 
content peak, so confirmation is awaiting the next round of assembly. 

Batrachochytrium 
dendrobatidis 

Probable high-GC prokaryote. The prokaryotic scaffolds are embedded in the main organismÕs GC 
content peak, so confirmation awaiting the next round of assembly. 

Branchiostoma floridae None. 
C it ll I Hi h GC k (40 kb l )

Library QC Process

Create QC configuration file

Known bad 
data?

NoManually remove bad data • Various read/sequence statistics
• Amount of screened vector   

Check library plate count

Multiple, or unusually wide, peaks in the GC content distribution can often indicate the presence of a contaminant.  As 
shown above, the GC content distribution for the initial 10 384-well plates of a Trichoplax adhaerens 8 kb library contains a 
suspicious high-GC tail.  The kitchen-sink BLAST results suggest the presence at least one high-GC prokaryote.

g y
sequencing would be required to fully extract them.

Bonus Organisms in JGI WGS Sequencing Projects

Capitella sp. I High-GC prokaryote (40 kb only).
Chlamydomonas reinhardtii Possible high-GC prokaryote. 
Chlorella sp. NC64A High-GC prokaryote. 
Citrus sinensis Probably none. 
Daphnia pulex High-GC prokaryote. 
Emiliania huxleyi At least 2 high-GC prokaryotes, plus a plasmid of unknown origin. 
Glomus intraradices One or more high-GC prokaryotes, mostly due to contamination of some of the source DNA. 
Glycine max Williams 82 Possible high-GC prokaryote.  Confirmation awaiting the initial assembly. 
Helobdella robusta Possible high-GC prokaryote.  Confirmation is awaiting the final assembly. 
Laccaria bicolor High-GC prokaryote. 
Lottia gigantea None. 
Melampsora larici-populina Probable high-GC prokaryote.  Confirmation is awaiting the initial assembly. 
Micromonas pusilla 
CCMP1545 

Potential high-GC prokaryote. 

Micromonas pusilla NOUM17 High-GC prokaryote. 
Mimulus guttatus None. 
Monosiga brevicollis Low-GC prokaryote. 
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Sometimes there are false alarms.  As shown above, the GC content distribution for the initial 10 384-well plates of a Citrus 
sinensis 3 kb library contains a well-separated high-GC peak.  However, superposition of the kitchen-sink BLAST results 
reveals that both peaks belong to the desired organism.

Organelle sequences can sometimes masquerade as prokaryotic contamination. With experience, the types of hits that lend 
themselves to misidentification can be quickly excluded. In addition, as organelles are often much smaller than g p y

Mycosphaerella graminicola None. 
Mycosphaerella fijiensis None. 
Naegleria gruberi None. 
Nectria haematococca mpVI High-GC prokaryote. 
Nematostella vectensis High-GC prokaryote. 
Ostreococcus sp. RCC809 Possible low-GC prokaryote.  Confirmation is awaiting the initial assembly. 
Phaeodactylum tricornutum None. 
Phycomyces blakesleeanus None. 
Physcomitrella patens 1-2 high-GC prokaryotes. 
Pichia stiptis None. 
Postia placenta None. 
Reniera sp. High-GC prokaryote. 
Selaginella moellendorfii None. 
Sorghum bicolor 1-2 high-GC prokaryotes. 
Sporobolomyces roseus None. 
Trichoderma atroviride None. 
Trichoderma virens None  
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• Lists of organelle GI numbers

Phrap analysis
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themselves to misidentification can be quickly excluded.  In addition, as organelles are often much smaller than 
prokaryotes, subassembling the suspect sequences can usually distinguish between the two cases.

Sometimes contamination creeps in during the library creation process, e.g. from contaminated sequencing reagents.  Such 
cases can often be distinguished by examining the fraction of apparent contamination by library and plate, with true 
contamination present in all of a project’s libraries, and across most (or all) of its plates.

More pathological cases arise due to mislabeled sequence in the NCBI  databases themselves.  During the course of 
analyzing several dozen sequencing projects, a number of anomalous sequences have been identified in the NCBI nt 
database.  Labeled as an assortment of eukaryotes, these sequences apparently contain substantial segments of E.coli.  
Cataloguing these anomalies avoids the spurious inclusion of contaminant sequence.  Examples include:

•gi|2315165|emb|Y14328.1|EHY14328: Submitted as “Entamoeba histolytica mRNA for 3E1 protein”, bases 263-839 align 
with  98.1% identify to E.coli.
•gi|54653446|gb|BT018665.1|: Submitted as “Zea mays clone EL01N0510B04.d mRNA sequence”, bases 4-365 align with 
98.6% identity to E.coli.

i|54652349| b|BT017568 1| S b itt d “Z l EL01N0426D07 RNA ” b 1 224 li ith Trichoderma virens None. 
Trichoplax adhaerens 1-2 high-GC prokaryotes. 
Volvox carteri High-GC prokaryote. 
Xenopus tropicalis 1-2 high-GC prokaryotes, plus a possible low-GC prokaryote. 
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Report generation
Projects with confirmed bonus organisms, where those organisms appear to be intrinsic to the source DNA, are highlighted 
in green.  Projects with non-intrinsic bonus organisms, or where the bonus organism has not yet been confirmed, are 
highlighted in blue.  17 additional JGI WGS sequencing projects are not listed, either because the necessary analyses have 
not yet been performed, or because insufficient sequence has been generated.

•gi|54652349|gb|BT017568.1|: Submitted as “Zea mays clone EL01N0426D07.c mRNA sequence”, bases 1-224 align with 
100% identity to E.coli.

As is clear from the table to the right, a substantial fraction of JGI sequencing projects contains bonus organisms.  To 
investigate whether this is an unusually high rate, we are currently applying our screening techniques to an assortment of 
projects in the NCBI Trace Archive.


