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Abstract

The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant
pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6
necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of
pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18
genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number
of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple
inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or
more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18
Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary
metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the
Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having
fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting
faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including
oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a
possible function in response to oxidative stress.
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Introduction

Dothideomycetes is the largest and most ecologically diverse class of

fungi [1]. One or more members of this class infect almost every

major crop, including those involved in the production of food,

feed, fiber and biofuel. In addition to housing important plant

pathogens, the class includes fungi with an unparalleled diversity

of life history strategies and metabolic profiles. Dothideomycetes are

present on every continent, including Antarctica, and are very

important to ecosystem health and global carbon cycling as

saprotrophs and degraders of plant biomass. Many are tolerant of

environmental extremes including heat, cold, solar radiation and

desiccation. Some produce enzymes that help degrade rocks [2]

while others are associated with alcoholic vapors [3]. A few are
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pathogens of humans or livestock, and two of the species that are

ubiquitous colonizers of dead plant biomass affect human health as

well because they are important allergens known to exacerbate

asthma [4]. Adaptations to fresh- or salt-water aquatic habitats

have occurred multiple times within Dothideomycetes [5,6]. Other

Dothideomycetes are lichenized and grow on exposed surfaces of

rocks, plants or manmade structures [7]. Some are associated with

plants asymptomatically as endophytes or epiphytes. In addition, a

single lineage exists in a symbiotic relationship with plant roots as

ectomycorrhizae with a broad host and geographic range [8].

Dothideomycete taxonomy has been strongly influenced by

classifications based on the development and morphology of the

sexual structures (e.g., bitunicate asci or meiosporangia). How-

ever, the advent of DNA sequence comparisons indicated that

species with these typical traits reside in two classes, Dothideomycetes

and Eurotiomycetes (e.g., Aspergillus and relatives). Dothideomycetes

share a most recent common ancestor with another class,

Arthoniomycetes, a small group of mainly lichenized and lichenico-

lous fungi [9,10]. Recent phylogenetic analyses also indicate that

Dothideomycetes, Arthoniomycetes and Eurotiomycetes form a larger clade

with a fourth diverse class of mainly lichenized fungi, Lecanor-

omycetes, but their interclass relationships remain poorly resolved

and await additional evidence from genome-scale analyses.

Importantly, the resolution of these relationships is necessary to

further resolve the evolution of fungal ecologies (e.g., lichens,

endophytes, etc. [11])

Current taxonomy of the Dothideomycetes divides the class into 12

orders containing more than 1,300 genera and 19,000 species

[12,13]. The majority of lineages in the class remains unsampled

with DNA sequence data and resists cultivation. For example,

there are recent DNA-based hints at diversity consistent with

several additional orders [7,14,15]. Within the currently defined

orders ecological diversity remains high. Although all members of

one order, the Jahnulales, are aquatic from fresh water or very

damp habitats [16] and the Trypetheliales contains lichenized species

[7], members of the remaining orders are mostly terrestrial

saprotrophs, with diverse lifestyles that have independently

evolved multiple times [17].

Plant pathogens occur in at least six of the 12 orders. The two

largest dothideomycete orders, Pleosporales and Capnodiales, each

contain a large number of highly destructive plant pathogens.

These include some of the most important diseases of the cereal

crops wheat, barley and maize, trees such as pine and poplar,

dicots including soybeans, canola and tomato, and tropical fruits

including bananas. The allergens of Davidiella tassiana (aka

Cladosporium herbarum) and Alternaria alternata are the most important

of all known fungal allergens and represent two of the four

allergens associated with these two orders.

Their high economic impact and intriguing biological diversity

have stimulated much interest in genomic sequencing of

Dothideomycetes. Key representatives have been sequenced through

the Fungal Genome program at the U.S. Department of Energy

Joint Genome Institute (JGI), which has had an emphasis on

Dothideomycetes for several years [18]. The sequenced species are

important to agriculture, especially those that are pathogens of

bioenergy crops, or they represent phylogenetic and ecological

diversity like AFTOL (Assembling the Fungal Tree of Life) targets

[19], or they are of interest to bioenergy production because of

their unusual physiology such as Baudoinia compniacensis, whose

growth on outdoor surfaces is induced by fugitive ethanol vapor

emissions from spirit maturation warehouses and bakeries [20].

These extensive efforts have yielded more sequences of fungi in the

Dothideomycetes than any other class, providing an unparalleled

opportunity for comparative genomics.

Here we report new genome sequences of 14 dothideomycete

genomes and use them in comparative analyses with those of four

Dothideomycetes published previously [21,22,23,24], plus represen-

tative outgroups from the Ascomycota and Basidiomycota (Table 1), a

total of 39 genomes. Among the 18 sequenced dothideomycete

genomes, nine are from species of the order Pleosporales, seven from

the order Capnodiales and two from the order Hysteriales. From the

perspective of lifestyle, fifteen are from species of plant pathogens

(six necrotrophs, eight hemibiotrophs and one biotroph) and three

are saprotrophs.

The order Pleosporales comprises the necrotroph Cochliobolus

heterostrophus (isolates C4 and C5) and the hemibiotroph Setosphaeria

turcica which infect corn (Zea mays), the hemibiotroph Cochliobolus

sativus which infects barley, wheat and several other cereal crops,

the necrotrophs Pyrenophora tritici-repentis and Stagonospora nodorum

which infect wheat (Triticum aestivum), the necrotroph Pyrenophora

teres forma teres which infects barley (Hordeum vulgare), and the

necrotroph Alternaria brassicicola and the hemibiotroph Leptosphaeria

maculans which infect plants in the Brassicaceae.

The order Capnodiales comprises the hemibiotroph Mycosphaerella

graminicola (Zymoseptoria tritici) which infects wheat, the hemibio-

troph Dothistroma septosporum (Mycosphaerella pini) which infects more

than 70 species of pine, the hemibiotrophs Mycosphaerella populorum

(Septoria musiva) and Mycosphaerella populicola (Septoria populicola) which

infect species of poplar, the hemibiotroph Mycosphaerella fijiensis

which infects bananas (Musa spp.), the biotroph Cladosporium fulvum

(Passalora fulva) which infects tomato (Solanum lycopersicum), and the

extremophilic saprotroph Baudoinia compniacensis. The latter’s

primary known habitat is various exposed substrates near liquor

maturation warehouses and commercial bakeries [20], where

ambient ethanol vapors provoke its colonization.

The order Hysteriales comprises the two saprotrophs Hysterium

pulicare and Rhytidhysteron rufulum. Phylogenetically these species

form a sister group to the plant pathogens in the Pleosporales [25],

and are usually associated with dead or dying plant tissues.

Comparative genomic analysis of 18 Dothideomycetes provides

valuable insights into fundamental questions regarding fungal

lifestyles, evolution and adaptation to diverse ecological niches,

Author Summary

Dothideomycetes is the largest and most ecologically
diverse class of fungi that includes many plant pathogens
with high economic impact. Currently 18 genome
sequences of Dothideomycetes are available, 14 of which
are newly described in this paper and in several compan-
ion papers, allowing unprecedented resolution in compar-
ative analyses. These 18 organisms have diverse lifestyles
and strategies of plant pathogenesis. Three feed on dead
organic matter only, six are necrotrophs (killing the host
plant cells), one is a biotroph (forming an association with
and thus feeding on the living cells of the host plant cells)
and 8 are hemibiotrophs (having an initial biotrophic
stage, and killing the host plant at a later stage). These
various lifestyles are also reflected in the gene sets present
in each group. For example, sets of genes involved in
carbohydrate degradation and secondary metabolism are
expanded in necrotrophs. Many genes involved in path-
ogenesis are located near repetitive sequences, which are
believed to speed up their evolution. Blocks of genes with
conserved gene order were identified. In addition to this
we deduce that the mechanism for mesosynteny, a type of
genome evolution particular to Dothideomycetes, is by
intra-chromosomal inversions.

Comparative Genomics of Eighteen Dothideomycetes
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Figure 1. Estimated phylogeny and divergence times of Dothideomycetes, based on sequences of three protein-coding genes.
Species with a sequenced genome that are included in this study are highlighted in dark blue. Vertical lines in blue and green indicate minimum and
maximum ages for specific nodes, respectively. The age ranges for highlighted taxa are indicated by blocks with different shades of gray. Horizontal
green lines indicate bootstrap recovery for specific nodes – thickened branches represent more than 70%, normal branches, 50–70% and less than
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especially as they relate to plant pathogenicity and biomass

conversion.

Results/Discussion

Dothideomycetes phylogeny and divergence time
estimates

The class Dothideomycetes comprises a huge diversity of fungi. To

place the sequenced species in a broader evolutionary context, a

three-gene phylogenetic tree was made representing 11 of 12

currently accepted orders in Dothideomycetes (Figure 1). This 67-

taxon phylogeny is congruent with a tree made from 51

orthologous genes obtained from the 18 genome-sampled strains

(Figure 2A) and previous phylogenies [17]. Divergence time

estimates are indicated and age ranges of the taxonomic groups

relevant for this paper are indicated in differently shaded gray

blocks in Figure 1.

The class of Dothideomycetes last shared a common ancestor more

than 280 million years ago (MYA). Genome sampling in this class

is currently focused on two large and diverse orders, Pleosporales

and Capnodiales, and to a lesser extent on Hysteriales. The main

radiation of Capnodiales likely happened between 179 and 131

MYA, while a similar event likely occurred for the Pleosporales at a

later date, between 133 and 97 MYA. This latter estimation is very

likely influenced by our limited sampling of early-diverging

lineages in Pleosporales. However, differences in divergence times

become more pronounced in the two highlighted families with

more representative sampling. Mycosphaerellaceae, as defined

currently, represents an ancient (diversifying at least 87 MYA)

clade compared to Pleosporaceae (diversifying at least 17 MYA). The

sampled Hysteriales shared a common ancestor at least 40 MYA.

Figure 1 also illustrates that the strains currently labeled with the

genus name Mycosphaerella diversified across a longer time than all

species in Pleosporaceae and its several sister lineages. These lineages

are included in suborder Pleosporineae which represents a well

recovered phylogenetic node containing the four main families of

plant pathogens in Pleosporales.

Additional considerations concerning phylogeny and nomen-

clature of Dothideomycetes are discussed in Text S1.

Variation in genome sizes across diverse Dothideomycetes
Genome sizes show dramatic variation among the Dothideo-

mycetes (Figure 2B, Table S1), from 21.88 Mbp in Baudoinia

compniacensis to 74.14 Mbp in Mycosphaerella fijiensis. The corre-

50% are indicated with dashed lines. In some cases relevant horizontal lines were stylistically extended to highlight node labels. Only families with
multiple genomes are indicated. Orders, suborders and families that contain important plant-pathogenic species are colored brown and those
containing majority lichenized species are green. Brown squares indicate plant pathogenic and green triangles lichenized species. Saprotrophs and
fungi with other nutritional modes are not labeled.
doi:10.1371/journal.ppat.1003037.g001

Figure 2. Phylogeny and genome characteristics of the 18 studied Dothideomycetes. A. Genome-based phylogenetic tree of 18
Dothideomycetes computed using 51 conserved protein families. Bootstrap values are indicated on the branches. Lifestyles and strategies of
pathogenesis (green circle for necrotrophs, orange circle for saprotrophs and blue circle for [hemi]biotrophs) are indicated. Aspergillus nidulans was
used as an outgroup and its branch on the tree is not drawn to scale. B. Genome size and repeat content. Repeat content varies widely among
Dothideomycetes, but in general the largest part consists of long terminal repeats. Asterisks indicate genomes that were sequenced exclusively with
Illumina technology. Repeat content in these genomes is likely an underestimate. C. Number of predicted genes, broken down by level of
conservation. D. Gene counts of classes that have been implicated in plant pathogenesis. Members of Capnodiales have fewer genes in these classes
than Pleosporales and Hysteriales (with the exception of Cladosporium fulvum). This trend is also illustrated by the estimated gene counts for the last
common ancestors of the indicated taxa (below the x-axis), which correspond to the taxa in (A). See also Figure S3. Bars on all graphs (B, C, and D)
correspond to the organisms on the tree in (A).
doi:10.1371/journal.ppat.1003037.g002
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lation between genome size and repeat content (0.91) is larger

than the correlation between genome size and gene count (0.59)

or between genome size and gene content (0.71), suggesting that

the repeat content generally plays the largest role in determining

genome size. When the genomes that have been sequenced

exclusively using Illumina technology are excluded (see Table

S1), the correlation between genome size and repeat content is

even higher (0.94). Repeat content in Illumina-sequenced

genomes is likely to be underestimated, since short repetitive

reads are difficult to assemble into long repeat regions (as

discussed in [26]). This underestimation is most apparent when

C. heterostrophus strain C5 (Sanger assembly, 8.64% repeat

content) is compared to strain C4 (Illumina assembly, 0.83%

repeat content). To better estimate the repetitive content of

Illumina-sequenced genomes an additional analysis was per-

formed using the unassembled sequence reads and the

assembler ALLPATHS-LG [26]. This analysis estimates the

percentage of sequence reads that are repetitive. These

percentages are considerably higher than those in Figure 2B

(20% for P. teres f. teres, 9% for H. pulicare, 18% for R. rufulum,

and 20% for C. heterostrophus C4), but it should be noted that they

were obtained using fundamentally different methods, making

direct comparisons difficult. It is clear, however, that repeat

content is underestimated in Illumina assemblies (and possibly

also in Sanger/454 assemblies).

The smallest of the 18 genomes is that of the extremophile B.

compniacensis, which has four features consistent with its size

compared to the other Dothideomycetes: lower repeat content; lower

number of genes; fewer genes with an intron; and shorter

intergenic space (Table S1). The largest genomes, those of M.

fijiensis and C. fulvum, contain 39.5% and 44.4% repeats,

respectively, which are among the largest fractions reported in

fungi.

From macro- to mesosynteny
The range of evolutionary distances among the members of this

group of organisms offers a unique perspective on evolution of

genome organization. It has been shown previously that filamen-

tous Ascomycota and particularly Dothideomycetes display a phenom-

enon recently designated as mesosynteny [27]. Mesosynteny is

characterized by conservation within chromosomes of gene

content but not gene order or orientation, and this was

demonstrated by whole-genome DNA comparisons. In organisms

displaying mesosynteny most chromosomal rearrangements are

intra- rather than inter-chromosomal.

When synteny analysis is extended from four [27] to 18

dothideomycete genomes, a range of syntenic relationships

between organisms becomes apparent, from macro- to mesosyn-

teny (Figure 3 and Table S2). Mesosynteny is found in the majority

of genome-genome comparisons between species of Dothideomycetes.

Figure 3. Whole-genome DNA comparison of Cochliobolus heterostrophus C5 to progressively distantly related organisms reveals the
process leading from macrosynteny to mesosynteny. A. Strains C4 and C5 of C. heterostrophus are progeny of C. heterostrophus backcrosses
and show clear macrosynteny. B. When C. heterostrophus C5 is compared to C. sativus, macrosynteny is observed. However, intra-chromosomal
inversions are observed in several comparisons of scaffold pairs. C. Numerous intra-chromosomal inversions have occurred in all scaffolds when
compared to Setosphaeria turcica. D. A pattern of mesosynteny is observed when compared to Stagonospora nodorum. Syntenic regions are short
and spread across the scaffold pairs. Scaffolds in this figure are not drawn to scale and only a subset of the scaffolds is depicted.
doi:10.1371/journal.ppat.1003037.g003
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Figure 4. Simulation of chromosome evolution leading to mesosynteny. A. Two identical sequences show perfect macrosynteny. B. This is
also the case for scaffold_1 of Cochliobolus heterostrophus C4 and scaffold_2 of C. heterostrophus C5, reflecting their close relationship as progeny. C.
The two sequences from (A) have each undergone one random inversion. D. Scaffold_4 of C. heterostrophus C5 and scaffold_9 of C. sativus show a
very similar pattern as in (C). E. The two sequences in (A) have each undergone 25 random inversions. F. Scaffold_8 of Setosphaeria turcica and part of
scaffold_10 of C. heterostrophus C5 show a pattern of syntenic regions progressively spreading across the scaffolds similar to that in (E) G. The two
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In contrast, macrosynteny is observed only in pairwise compar-

isons of the most closely related organisms: the three Cochliobolus

genomes and between M. populicola and M. populorum. Nearly

perfect macrosynteny is observed when strains C4 and C5 of C.

heterostrophus are compared (Figure 3A), reflecting their close

relationship as progeny of a backcross series. Mostly macro-

syntenic conservation also is seen when either of the C. heterostrophus

strains is compared to C. sativus (last common ancestor estimated

less than 1 MYA, Figure 1). Interestingly, however, large intra-

chromosomal inversions have taken place in several sequence pairs

(Figure 3B). The same phenomenon is observed in a comparison

between M. populicola and M. populorum. The signature of

macrosynteny is less clear and the pattern of mesosynteny

becomes stronger in a comparison between C. heterostrophus C5

and S. turcica (Figure 3C, last common ancestor estimated 5–6

MYA). Finally, when C. heterostrophus C5 is compared to the more

distantly related S. nodorum a pattern of mesosynteny is observed

(Figure 3D, last common ancestor estimated 45–61 MYA) that is

very similar to that observed between other pairs of Dothideomycetes

[27]. We hypothesize that the intra-chromosomal inversions

observed between the genomes of C. heterostrophus and C. sativus

are the first steps in the development of the mesosyntenic patterns

observed between more distantly related Dothideomycetes.

To test whether inversions could generate the observed patterns

of mesosynteny, we ran a simulation of the evolution of a diverging

pair of chromosomes undergoing intra-chromosomal inversions.

Initially, the chromosome pairs are identical and therefore fully

macrosyntenic (Figure 4A), similar to the pattern observed

between C. heterostrophus strains C4 and C5 (Figure 4B). After

one random intra-chromosomal inversion in each chromosome

(Figure 4C), the pattern is very similar to that observed between C.

heterostrophus C5 and C. sativus (Figure 4D). After 25 random

inversions, syntenic regions are progressively spreading across the

scaffolds (Figure 4E), similar to what is observed for C. heterostrophus

C5 and S. turcica (Figure 4F). After 500 random inversions

(Figure 4G), the pattern is very similar to that observed between D.

septosporum and M. populorum (Figure 4H), which diverged from the

same ancestor an estimated 74–100 MYA (Figure 1). This

simulation shows that intra-chromosomal inversions alone are

sufficient to obtain a pattern of mesosynteny between two genomes

during evolution.

In most genomes all the chromosomes/scaffolds show meso-

synteny with at least one chromosome/scaffold from another

Dothideomycete. The exceptions are L. maculans (lm_SuperCon-

tig_22_v2), M. graminicola (chr_16 and chr_19), and M. fijiensis

(scaffold_11, scaffold_15, scaffold_17, scaffold_18, and scaf-

fold_20). Interestingly, all these scaffolds/chromosomes are

(predicted to be) dispensable (see section ‘Putatively dispensable

chromosomes’, below).

Interestingly, the inversion breakpoints are associated with

simple repeats (i.e., low-complexity DNA such as dinucleotide

repeats). Among relatively closely related mesosyntenic scaffold

pairs, these simple repeats are over-represented in the 500 bp up-

and downstream of these breakpoints, compared to the rest of the

respective scaffolds (comparisons 1, 2 and 3 in Table S3). In more

distantly related scaffold pairs this pattern is not observed

(comparison 4 in Table S3), presumably because ancient inversion

sites have since changed considerably.

Although the exact mechanism leading to mesosynteny is still

unknown, this extended analysis using 18 genomes of Dothideomy-

cetes was consistent with the simulations and added sufficient

resolution to be able to show that frequent intra-chromosomal

inversions most likely played a major role in the origin of this

phenomenon. Whether the frequency and placement of simple

repeats is different in the Dothideomycetes than organisms that do not

show patterns of mesosynteny is not known.

Microsynteny is conserved across large groups of
Dothideomycetes

Chromosomal rearrangement events (such as those leading to

mesosynteny) will theoretically result eventually in a random

distribution of genes across chromosomes, except for certain

clusters of genes associated with a common function for which

physical clustering is beneficial (e.g., secondary metabolism).

Although physical clustering of functionally related fungal genes

does occur, it is considerably more rare than in prokaryotes. The

physical clustering of genes across related organisms can therefore

give insight into functional relationships between genes.

In the genomes of the 18 Dothideomycetes two blocks of genes were

identified that were conserved in 15 and 14 of the 18 studied

strains. Both blocks consist of at least 5 genes that are located in a

block of at most 10 genes (Tables S4 and S5). Block 1 consists of

genes with annotations that do not seem obviously related from a

functional point of view. In contrast, block 2 contains genes

encoding two dehydrogenases and two (oxido)reductases, which

strongly suggests a functional connection. These two blocks were

not present in any of the outgroups used in this study.

Interestingly, in L. maculans 3 of 6 genes in block 1 are at least 2-

fold down-regulated and all 5 genes in block 2 are at least 2-fold

up-regulated in leaves 7 or 14 days after infection, when compared

to expression in mycelium (reanalyzed expression data obtained

from previously published whole-genome microarray data [23];

see also ‘comparative transcriptomics during pathogenesis’ in Text

S3, Tables S6 and S7). This apparent co-regulation in L. maculans

may be an effect of the physical clustering on the chromosome, but

it also suggests a related functional role where co-location may

provide a fitness advantage. Because the genes in block 2 in L.

maculans were up-regulated in infected leaves, they could play a

role in pathogenesis in that organism. Since they are conserved in

nearly all sequenced genomes of Dothideomycetes, these blocks may

have been present in the common ancestor of all Dothideomycetes

and were maintained throughout their evolutionary history.

The same microsynteny analysis was performed on two

Dothideomycetes subsets: the Pleosporales (excluding C. heterostrophus

strain C4, since it is very similar to strain C5) and the

Mycosphaerellaceae (see Figure 1). This resulted in 502 and 58

syntenic blocks of genes present in at least 75% of the studied

organisms in each group, respectively (Tables S8 and S9). This

difference can be explained (at least in part) by the much shorter

evolutionary distances among the 8 examined Pleosporales (last

common ancestor estimated 41–61 MYA, Figure 1), compared to

those among the 6 studied Mycosphaerellaceae (last common ancestor

estimated 87–117 MYA). An analysis of functional annotation

terms of the genes in syntenic blocks reveals enrichment of genes

involved in a wide variety of biological processes in the Pleosporales

(Table S10). In the Mycosphaerellaceae, however, genes enriched in

sequences from (A) have each undergone 500 random inversions. Syntenic regions are short and spread homogeneously across the two scaffolds. H.
Scaffold_1 of Dothistroma septosporum and scaffold_1 of Mycosphaerella populorum show a very similar pattern as in (G). Scaffolds in this figure are
not drawn to scale.
doi:10.1371/journal.ppat.1003037.g004
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conserved blocks are mostly involved in transcriptional regulation

(Table S11).

It was shown previously that the MAT1 mating type loci of

several Pleosporales show conservation of gene order [28]. In our

microsynteny analysis the MAT1 locus corresponds to the

adjacent syntenic blocks 141 and 142 (Table S8). In addition to

the 3 genes described previously, our study reveals that at least 10

genes have been conserved in location across at least 6

Dothideomycetes.

Despite the progressive reshuffling of the chromosomes by the

processes behind mesosynteny, many syntenic blocks of genes have

remained intact. For closely related species, this can be explained

by the short evolutionary time in which chromosomal rearrange-

ments could occur. The syntenic gene blocks identified across

Dothideomycetes, however, most likely were selected for during

evolution. Molecular manipulation of the genes in these syntenic

blocks should help reveal function and possible reasons for the

conservation of their gene order.

Putatively dispensable chromosomes
The sequenced strain of M. graminicola has been shown

previously to contain 8 dispensable chromosomes [24]. One or

more of these chromosomes could be missing in progeny of sexual

crosses and in field isolates. However, isolates missing one or more

of these dispensable chromosomes show no obvious phenotypic

changes compared to their parents or other progeny isolates [29].

Similarly dispensable chromosomes (in the literature also referred

to as supernumerary chromosomes, B chromosomes or mini-

chromosomes [30]) have been identified previously in the

Dothideomycetes L. maculans [31], C. heterostrophus [32] and A. alternata

[33], as well as in several other filamentous fungi (reviewed in

[30]).

Figure 5. The full and core proteomes of the 18 Dothideomycetes. A. The full proteome of the Dothideomycetes contains 215,225 proteins and
for the majority of these the function according to KOG [93] is unknown or poorly characterized. B. The core proteome contains the 66,761 proteins
from multi-gene families that had at least one member in each Dothideomycete. Relative to (A), this set of proteins has more KOG annotations than
the full proteome. In particular genes involved in metabolism are over-represented.
doi:10.1371/journal.ppat.1003037.g005

Table 3. Summary of expansion and depletion of PFAM domains and multi-gene families in various comparisons based on
phylogeny and lifestyle (Table 1).

PFAM domain Multi-gene families

Comparison
Expanded (of which
unique)

Depleted (of which
absent)

Expanded (of which
unique)

Depleted (of which
absent)

Dothideomycetes versus ascomycete and
basidiomycete outgroups

233 (2) 37 (3) 3358 (840) 280 (116)

Dothideomycete plant pathogens versus other
plant pathogens

69 (10) 21 (9) 2098 (1411) 1209 (1081)

Pleosporales versus Capnodiales 137 (39) 67 (31) 2995 (2468) 2129 (1917)

Necrotrophic versus (hemi)biotrophic
dothideomycete plant pathogens

4 (4) 21 (21) 299 (299) 1195 (1195)

Dothideomycete cereal pathogens versus other
Dothideomycetes

6 (6) 14 (14) 492 (492) 359 (359)

Dothideomycete tree pathogens versus other
Dothideomycetes

4 (4) 77 (77) 1220 (974) 2226 (2226)

Dothideomycete saprotrophs versus
dothideomycete plant pathogens

7 (7) 25 (25) 516 (511) 551 (550)

All expanded and depleted PFAM domains and multi-gene families (as well as the statistics) are given in Tables S14 and S15, respectively.
doi:10.1371/journal.ppat.1003037.t003
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Compared to the core chromosomes, the dispensable chromo-

somes of M. graminicola are generally smaller, have a lower GC

content, have higher repeat content, are less gene dense, and the

percentage of predicted proteins with a PFAM domain is lower

(Table 2). Using these criteria, we screened the other Dothideomy-

cetes for chromosomes or scaffolds that are potentially dispensable.

Only scaffolds larger than 100 kbp were taken into account.

Scaffolds containing long rDNA repeats (as determined by

RNAmmer [34]) were removed from the dataset as they probably

represent unplaced contigs.

Genome scaffolds with the above mentioned characteristics of

the M. graminicola dispensome were identified in five other

Dothideomycetes: 14 in M. fijiensis, 2 in L. maculans, and 1 each in

C. heterostrophus C5, S. turcica and S. nodorum (Table 2, Table S12). L.

maculans has been shown previously by pulsed-field gel electro-

phoresis to contain at least one dispensable chromosome of 650 to

950 kbp [31]. It was identified previously as supercontig 22

(730 kbp) [23], but it may also include supercontig 29 (200 kbp),

since this supercontig shows very similar characteristics to

supercontig 22 (Table S12). To our knowledge, no dispensable

chromosomes have been identified previously in S. nodorum or S.

turcica. In contrast to the M. graminicola sequence, none of these

genomes is finished so it is possible that these potentially

dispensable scaffolds are in fact part of larger core chromosomes,

and additional dispensable chromosomes with other characteristics

may also exist. Segregation patterns in progeny of a cross could

determine whether these scaffolds indeed are dispensable.

The origin and evolutionary benefit of dispensable chromo-

somes is unknown, although horizontal transfer from other fungi

has been suggested as a possible origin [24]. The observation that

chromosomal rearrangements take place mostly within chromo-

somes (see above) causes these dispensable chromosomes to remain

isolated and have a separate evolutionary history from the core

chromosomes, regardless of whether they have a function.

Gene content comparison across phylogeny and lifestyle
Predicted gene complements within the Dothideomycetes range

from 9,739 in M. populicola to 13,336 in C. heterostrophus C5

(Figure 2C and Table S1). There is considerably less variation in

gene count than in repeat content (Figure 2B). The 18 gene sets

allowed us to identify gene core families conserved in all sequenced

Dothidemycetes as well as those evolving in species-specific manner.

Identifying multi-gene families, we clustered all 215,225 predicted

proteins in the Dothideomycetes into 42,182 families. Next, based on

these families, predicted proteins were classified as being either

unique to an organism, present in two or more Dothideomycetes (but

not other Ascomycota), present in Dothideomycetes and other Ascomycota

(but not in Basidiomycota), or present in Ascomycota and Basidiomycota

(see Table 1 for the outgroups used). The overall pattern of

conservation is very similar across Dothideomycetes, with the

exception that species with a sequenced close relative have fewer

unique proteins, as expected (Figure 2C).

The core proteome was determined by identifying multi-gene

families that contained at least one member in each of the

Dothideomycetes. This resulted in 3,083 multi-gene families, contain-

ing a total of 66,761 proteins. Of these 3,083 families, 1,787

contained exactly 1 member in all Dothideomycetes, representing

highly conserved single-copy gene families. The KOG annotations

of the predicted proteins show that the core proteome is generally

better annotated than the full set of proteins (Figure 5).

Furthermore, proteins involved in metabolism are over-represent-

ed in the core proteome compared to the complete proteome. The

proportion of the total proteome included in the core is indicated

for individual Dothideomycetes in Figure S1. The counts of core

proteins range from 3,884 in M. populicola to 4,811 in R. rufulum.

Non-core proteins can give insight into species-specific processes.

Functional annotation terms that are over-represented in the non-

core proteome of the individual Dothideomycetes are given in Table

S13. Numerous terms are under-represented in this set of proteins,

including those related to metabolism (as expected), but also

proteins with a transmembrane domain, peptidases, and glycoside

hydrolase CAZymes. In contrast, small secreted proteins and

carbohydrate esterase CAZymes are frequently over represented.

These gene classes are further discussed below.

The availability of a large set of fungal genomes provides

sufficient resolution for meaningful comparisons among groups

of organisms based on phylogeny or lifestyle. Predicted

proteomes from the 18 Dothideomycetes were compared to those

of an outgroup consisting of 12 other Ascomycota and 9

Basidiomycota. Furthermore, taxonomic groups within the

Dothideomycetes were compared to each other, as were groups

based on lifestyle.

Although Dothideomycetes have few unique PFAM domains that

are not found in the outgroup of 12 Ascomycota and 9 Basidiomycota,

genes representing 233 PFAM domains are expanded in

Dothideomycetes (Tables 3 and S14). Notable examples include a

domain involved in signaling (response regulator receiver domain),

metabolism (succinylglutamate desuccinylase/aspartoacylase do-

main), several glycoside hydrolases (see CAZY below) and a DNA

photolyase domain.

Comparison of the dothideomycete plant pathogens to other

fungal plant pathogens reveals 10 PFAM domains that are unique

to Dothideomycetes pathogens and 69 PFAM domains that are

expanded (Tables 3 and S14). This set includes a domain of the

SUR7/PalI family (which is believed to be a membrane-bound

sensor), a mannose-6-phosphate receptor domain and several

domains of unknown function (DUFs). Although the exact roles of

these proteins are currently unknown, they may be involved in a

dothideomycete-specific strategy of pathogenesis.

The proteomes of the Capnodiales and the Pleosporales differ in

part with respect to peptidases (see also proteases) and glycoside

hydrolases (see also CAZY).

Cereal pathogens contain a lipase domain that is absent in other

Dothideomycetes, as well as a putative DNA binding domain (DDT).

Although these differences could be explained by phylogeny (most

cereal pathogens analyzed except for M. graminicola belong to the

Pleosporales) they are an interesting class of genes to investigate

further. Tree pathogens are enriched in a specific hydrolase,

whereas saprotrophs are enriched in a specific peptidase (Tables 3

and S14).

Since the PFAM database only contains previously described

domains, novel gene families can be missed. For this reason, the

same comparisons as above were made for multi-gene families that

were identified based on similarity followed by Markov clustering.

The resulting numbers are higher than for the PFAMs (Tables 3

and S15). Frequently these multi-gene families have no functional

annotations assigned to them. For example, 3,358 multi-gene

families are expanded in Dothideomycetes, compared to the out-

groups used. Of those, 1,360 (41%) have no PFAM domains

assigned to them, meaning that they contain mostly novel proteins.

This again shows that Dothideomycetes contain many unique and

novel proteins that may be involved in their specific lifestyle and

strategy of pathogenesis.

Below we discuss specific classes of genes that have been shown

to be involved in plant pathogenesis: small secreted proteins, genes

involved in secondary metabolism, carbohydrate-active enzymes,

peptidases, and lipases. In addition to these, kinases are discussed

in Text S2, Table S16 and Figure S2.
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Small secreted proteins and candidate effectors
It is apparent that some small secreted proteins (SSPs) play an

important role in plant-fungus interactions [35,36]. SSPs were

identified in the genomes of the 18 Dothideomycetes and of the

outgroups (Table S17). Counts varied from 67 in the saprotroph B.

compniacensis to 251 in C. heterostrophus C4 and are within a similar

range as other members of the Ascomycota (from 50 in Saccharomyces

cerevisiae to 389 in Magnaporthe grisea) and Basidiomycota (from 40 in

Cryptococcus neoformans to 540 in Melampsora laricis-populina) when

using 200 amino acids as the upper limit for protein size. The

three saprotrophs (B. compniacensis, R. rufulum and H. pulicare) are

among the Dothideomycetes with the lowest number of predicted

SSPs, confirming that SSPs are likely to be involved in plant-

pathogen interactions. The Pleosporales generally have higher

numbers of SSPs than the Capnodiales, which is also illustrated by

the estimated numbers of SSPs in the last common ancestor of

these respective taxonomic groups (189 and 134 for Pleosporales and

Capnodiales, respectively [Figures 2D and S3]).

Of the predicted SSPs in Dothideomycetes, 8.3% had at least one

PFAM domain. This is less than the 51.6% for all proteins,

reflecting the fact that the function of SSPs is frequently unknown.

The percentage of cysteine residues in the SSPs was higher than in

the other proteins. Of all proteins, 9.8% resided in a singleton

orthologous cluster (i.e., gene families with only one protein from

only one organism). For the predicted SSPs this amount was

21.3%, reflecting the fact that this class of proteins is frequently

species-specific.

Secondary metabolism
Secondary metabolites were among the first factors shown to be

required for virulence and host specificity of necrotrophs in the

Dothideomycetes [37,38]. Filamentous ascomycete genomes, includ-

ing those of the Dothideomycetes, carry large numbers of genes

encoding enzymes for secondary metabolite production (nonribo-

somal peptide synthetases (NPS), polyketide synthases (PKS) and

terpene synthases (TPS) [39,40]), in contrast to genomes of early

diverging ascomycetes (yeasts) and basidiomycetes (Figure S4 and

Table S18). With this in mind, we screened the 18 genomes for

counterparts of highly curated C. heterostrophus NPSs, PKSs and the

less well studied TPSs and found that most were not conserved and

thus there is extreme diversity among species (Tables S19, S20,

21). This distribution supports the hypothesis that the metabolites

biosynthesized by these enzymes are good candidates for

involvement in species diversification, virulence, and/or host-

specificity.

Generally, the numbers of genes encoding enzymes for

secondary metabolite production are more numerous in the

Pleosporales and Hysteriales than in the Capnodiales (Figures 2D and

S3), and this is especially the case for the PKSs. This is also

illustrated by the estimated number of genes encoding enzymes for

secondary metabolite production in the respective last common

ancestors of the Pleosporales (40 genes), Hysteriales (46 genes), and

Capnodiales (24 genes).

The numbers of NPSs were high in the 18 Dothideomycetes,

ranging from a low of 2 in the saprotroph B. compniacensis to a high

Figure 6. Heat map of CAZY families in the Dothideomycetes.
Both the CAZY families and the organisms are hierarchically clustered.
The clustering of organisms largely follows the phylogeny in Figure 2A.
Notable exceptions are the observation that the biotroph C. fulvum
clusters as an outgroup to the hemibiotrophs and saprotroph within
the Capnodiales, and the observation that the two pathogens of
Brassica spp. (L. maculans and A. brassicicola) cluster together.
doi:10.1371/journal.ppat.1003037.g006
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of 44 in P. teres f. teres. These numbers were also high in the

Sordariomycetes, Eurotiomycetes, and Leotiomycetes, in contrast to

numbers in the yeasts and basidiomycetes (Figure S4 and Table

S18). Numbers are higher in Pleosporales and Hysteriales than in

Capnodiales (with the exception of A. brassicicola). In general, there

are only a few fully conserved NPS genes/proteins across the fungi

[39], including the 18 dothideomycete genomes examined here

(Table S19). Only NPS10 (unknown product, mutants of C.

heterostrophus are sensitive to oxidative stress) was perfectly

conserved across the 18 dothideomycete genomes, in agreement

with the earlier hypotheses [39] that NPS10 is among the more

ancestral NPSs.

The next most highly conserved NPS (present in 17 of the 18

Dothideomycetes) is the counterpart of C. heterostrophus NPS2

(responsible for siderophore biosynthesis and intracellular iron

storage). The latter is a critical cellular function, presumably

required to prevent the Fenton reaction and concomitant

accumulation of reactive oxygen species. Note that B. compniacensis,

C. fulvum, D. septosporum and M. populorum have only two NPS

orthologs each and that these are NPS10 and NPS2, discussed

above. NPS2 proteins in Pleosporales and Hysteriales have four

adenylating (AMP) domains, while those in the Capnodiales have

three, similar to the other major groups of ascomycetes and

basidiomycetes [41]. Next in degree of conservation is NPS4

(present in 10 of the 18 genomes, unknown product, C.

heterostrophus, A. brassicicola and F. graminearum nps4 mutant colonies

are hydrophilic, rather than hydrophobic, like wild type [42]) and

NPS6 (present in 11 of the 18 genomes; responsible for

extracellular siderophore biosynthesis and thus competition for

iron in the plant-fungal interaction). NPS6 has been shown to be

involved in virulence of C. heterostrophus to corn, of C. miyabeanus to

rice, of A. brassicicola to Arabidopsis thaliana and of Fusarium

graminearum to wheat and for oxidative stress management (in vitro)

[43].

The remaining C. heterostrophus NPS representatives are discon-

tinuously distributed across the 18 genomes. The greatest

conservation was found for members of the Pleosporales, and the

fewest for the Capnodiales. These genes are known to be rapidly

evolving and thus highly diverse, with a tendency to ‘pop up’ in

disparate genomes. For example, the three-AMP-domain NPS for

biosynthesis of A. alternata AM-toxin (Acc # BAI44739) has a

perfect match in M. graminicola (JGI protein ID 56291) and the

four-AMP-domain NPS, HTS1 (Acc # AAA33023), for C.

carbonum HC-toxin biosynthesis, has orthologs in S. turcica and P.

tritici repentis [44].

The numbers of Type I PKSs ranged from two in the

saprotroph B. compniacensis to 34 in R. rufulum (Figure S4 and

Table S18). Type III PKSs, known to be rare in filamentous fungi,

had no members in the Capnodiales (with the exception of M.

graminicola) and one member in the Pleosporales. Only one PKS

protein, responsible for melanin biosynthesis, was universally

conserved in all 18 genomes (with the exception of A. brassicicola)

(Table S20). For many fungi, melanin is a virulence determinant

[45,46]. PKS1 and PKS2, required for T-toxin production and

high virulence on maize, are found only in C. heterostrophus race T

(strain C4). PKSs 4, 7, 20 and 25 are found only in all C.

heterostrophus strains, while PKS11 and PKS24 were found in C.

heterostrophus and C. sativus only. C. heterostrophus PKS24 is a hybrid

NPS:PKS (NPS7:PKS24) and the entire protein is present in C.

sativus (i.e., the NPS component is also present (Table S19). Some

C. heterostrophus PKS orthologs (PKS6, 10, 13, 14, 16, 17, 21 and

22) were not present in C. sativus, yet were present in other species.

With few exceptions (e.g., PKS17, which is present in M.

graminicola and not other species in the Pleosporales), species that

carried these genes tended to be those with a closer phylogenetic

relationship.

The pattern of distribution of TPSs follows that of NPSs and

PKSs in that few are conserved across the 18 Dothideomycetes. Most

highly conserved is the C. heterostrophus protein ID 1098898, which

shows .80% identity in all the genomes of Pleosporales and

Hysteriales, but not of Capnodiales (Table S20). The best blast hit for

this protein is lanosterol synthase, described as an integral

membrane protein associated with the cytosolic side of the

endoplasmic reticulum in eukaryotes. To our knowledge none of

these TPSs has been functionally characterized in any of the 18

dothideomycete genomes and they thus represent untapped

candidates for roles in species specificity, host specificity and/or

virulence.

An example of a well described secondary metabolite pathway

in Dothideomycetes is the biosynthesis of dothistromin

[47,48,49,50,51]. Analyses with a core set of D. septosporum

dothistromin genes suggested that only two of the other

dothideomycete species, C. fulvum (sister species to D. septosporum)

and R. rufulum, have a putative orthologous gene set (Text S4 and

Figure S5), showing that it is discontinuously present across

relatively distantly related Dothideomycetes.

The power of availability of multiple genomes for comparison

cannot be over emphasized for fast-evolving genes such as those

involved in secondary metabolism. Given that PKS, NPS and TPS

orthologs are discontinuously distributed across genomes [39,40]

(Tables S19, S20, S21), a larger dataset is likely to uncover more

orthologs in distantly related fungi. The debate continues

regarding whether the tendency for duplication (gain) and loss,

and recombination, coupled with the fast-evolving nature of these

genes which erases evolutionary origin (for example due to RIP in

the proximity of TE repeats, see above), are the basis of spotty

distribution or whether there is support for the notion of horizontal

transfer. We suggest both are likely.

Carbohydrate-active enzymes
Plant cell wall polysaccharides function both as a physical

barrier to plant pathogens and as a carbon source for plant

pathogens and saprotrophs alike. Because of the enormous

structural and functional diversity of these complex carbohydrates,

the enzymes involved in their breakdown show a remarkable

functional diversity. Carbohydrate-active enzymes (CAZymes)

such as glycoside hydrolases (GH), polysaccharide lyases (PL)

and carbohydrate esterases (CE), and CAZyme components such

as the carbohydrate-binding modules (CBMs) therefore represent

powerful reporters of the lifestyle of fungi, because (i) the latter

achieve the digestion of complex carbohydrates extracellularly and

(ii) sequence-based families of CAZymes correlate with structural

and functional properties, although precise substrate specificities

can be hard to predict [52]. In fact, whilst the sequence-based

families of CAZymes frequently group together enzymes of

varying substrate specificities, the functional correlation is often

improved when considering broad substrate categories, especially

among the different classes of plant polysaccharides (cellulose,

hemicellulose, pectin). We have thus probed the CAZyme

repertoires of the 18 Dothideomycetes to obtain clues to their

digestive potential, especially against plant cell wall polysaccha-

rides.

Table S22 shows that the genomes of the 18 examined

Dothideomycetes encode almost 6,000 catabolic CAZyme catalytic

domains (GHs, PLs, CEs) and CBMs but only 1,700 glycosyl-

transferases (GTs) involved in the assembly of fungal cell wall

polysaccharides, N- and O-glycoproteins and reserve carbohy-

drates. The GTs, which assume roles that are not directly
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connected to the external environment show much less variation

among the 18 genomes (min 83, max 110, average 96) than the

digestive components: GHs (min 156, max 292, average 238); PLs

(min 0, max 23, average 10); CEs (min 14, max 51, average 35);

CBMs (min 17, max 101, average 48).

Generally, the numbers of CAZymes are higher in the

Pleosporales and Hysteriales than in the Capnodiales (Figure 2D). At

the individual family level (Table S22) the differences are even

more striking and hierarchical clustering based on CAZyme family

numbers (Figure 6) divides the 18 genomes into two major groups,

with the Capnodiales on one side and the Hysteriales and Pleosporales

on the other. The division into these two groups is dominated by

differences in the number of CAZymes acting on cellulose. The

strongest difference is found with family GH61 (enzymes

performing oxidative cleavage of cellulose [53]), where Hysteriales

and Pleosporales have an average of 24 genes (min 20, max 30) but

Capnodiales have between one and three only (Table S22). GH61 is

not the sole cellulolytic family affected as families GH6, GH7,

GH45 and CBM1 also show a clear expansion in Pleosporales and

Hysteriales compared to Capnodiales, suggesting that the latter order

of Dothideomycetes (containing mostly hemibiotrophs) does not

extensively digest cellulose or that it employs another strategy

for its digestion. This situation is reminiscent of the white rot/

brown rot dichotomy [54,55].

The difference between Capnodiales and other Dothideomycetes

extends to the digestive enzymes directed against the other plant

cell wall polysaccharides, specifically xylan and pectin. For

instance, the two xylanase families GH10 and GH11 and the

two acetylxylan esterase families CE1 and CE3 are significantly

expanded in Pleosporales and Hysteriales compared to Capnodiales

(Table S22). Patterns of enzymes involved in pectin digestion show

a similar pattern, as the pectate lyases (families PL1 and PL3) and

pectin methylesterases (family CE8) are expanded in Pleosporales

(average 14.1 genes) compared to Capnodiales (average 6.0 genes)

(Table S22). Also, Capnodiales encode fewer proteins with family

CBM18 chitin-binding domains, than Pleosporales and Hysteriales.

Chitin being produced by fungi and not plants, the mutiplication

of these domains perhaps reflects different strategies of Dothiodeo-

mycetes to evade recognition by plant defence mechanisms as shown

for C. fulvum [36,56,57] and proposed for M. graminicola [24].

Not all CAZymes are under-represented in the Capnodiales. For

example, family GH64 is more abundant in Capnodiales (av. 4.7)

than in Pleosporales and Hysteriales (av. 1), and family GH114 is

more abundant in the two Hysteriales saprotrophs (av. 7 genes) than

Pleosporales (av. 1.6) and Capnodiales (av. 0.4). No fungal enzyme

from these families has been characterized so far.

Altogether, genome mining revealed that the overall distribu-

tion of genes encoding enzymes for plant cell wall digestion

globally follows the taxonomical division of Capnodiales and

Pleosporales, and that it probably corresponds to different strategies

for (or extents of) the breakdown of cellulose, as well as xylan and

pectin. Constraints perhaps just as important as the precise

composition of plant cell walls may well have shaped the

carbohydrate-active enzyme profile of Dothideomycetes, such as the

strategy of penetration through the outer layers of plant tissues, the

strategy to break down crystalline cellulose and the strategy to

evade plant defense mechanisms.

Peptidases
Peptidases are important hydrolytic enzymes in plant pathogens

that may have roles in signaling, nutrition, degradation of host

Table 4. Summary of gene classes that are over-represented in repeat regions (i.e., the 2000 bp flanking predicted transposable
elements).

TE repeat content
(%) Over-representation of gene classes in repeat regions

Small secreted
proteins

All secreted
proteins

Secondary
metabolism

Expanded orphan
multi-gene families

Alternaria brassicicola 5.58 N

Baudoinia compniacensis 0.4

Cladosporium fulvum 44.24

Cochliobolus heterostrophus C5 7.77 N N N

Cochliobolus heterostrophus C4 (*) 0

Cochliobolus sativus 5.44 N N N

Dothistroma septosporum 0.67

Hysterium pulicare (*) 0.57

Leptosphaeria maculans 30.93 N N N N

Mycosphaerella fijiensis 38.97 N

Mycosphaerella graminicola 11.66 N N

Mycosphaerella populicola 20.81 N

Mycosphaerella populorum 3.56 N N N

Pyrenophora tritici-repentis 11.44 N N N N

Pyrenophora teres f. teres (*) 1.98 N

Rhytidhysteron rufulum (*) 0.18

Setosphaeria turcica 11.16 N N N N

Stagonospora nodorum 2.37 N N

See also Table S27 for more information. Genomes labeled with an asterisk (*) have been sequenced exclusively using Illumina technology.
doi:10.1371/journal.ppat.1003037.t004
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plant tissues and digestion of proteins involved in the plant

response against pathogens [58,59,60,61]. Peptidase-encoding

genes were catalogued in the predicted proteomes of the 18

genomes of Dothideomycetes and those of 21 other Ascomycota and

Basidiomycota species according to the MEROPS database (Table

S23, Figure S6). Secreted peptidases were studied separately, since

these are more likely to be involved in pathogen-host interactions.

Dothideomycetes have a larger range of different exo- and endo-

peptidases than plant pathogens found in other fungal classes

(Figure S7A) [62]. These proteins include several secreted

peptidases of the MEROPS subfamilies A01, S08, S09 and S10

expected to efficiently digest proteins and/or with an acidic

optimum able to work in inhospitable environments of the

extracellular matrix (A01, C13, G01, M35, M20 and S10) (Table

S23, Figure S7B) [62]. The genomes of the Dothideomycetes contain

fewer non-secreted and secreted aspartic peptidases (A01) than

those of the plant-pathogenic necrotrophs of the Leotiomycetes

(Botrytis cinerea and Sclerotinia sclerotiorum) and the saprotrophs and

ectomycorrhizal symbionts of the Agaricomycetes (C. cinereus, P.

chrysosporium, P. placenta, S. commune and L. bicolor), but this is

compensated for by having the highest content in secreted metallo-

(carboxypeptidases of the M14 subfamily and exopeptidases M28)

and serine-peptidases of the carboxypeptidases S10 subfamily

(Table S23, Figure S7AB). Within the Dothideomycetes the Pleosporales

are specifically enriched in zinc-metallopeptidases of the M14 (5–9

models vs. 0–4 in Capnodiales and Hysteriales) and M28 subfamilies

(10–13 models in Pleosporales vs. 6–9 in the others). Among the M14

secreted carboxypeptidases, three that are found in all members of

the Pleosporales (and also found in the Sordariomycetes) have been lost

in all of the fungi belonging to the orders Hysteriales and Capnodiales

(Table S23, Figure S8).

Secreted zinc-metallopeptidases as well as trypsin (S01) and subtilisin

(S08 and S53) serine-peptidases are known to have a potential role in

pathogenicity and to be putatively involved in direct cell wall

degradation by plant pathogens, as hydroxyproline-rich glycoproteins

are possible targets of these enzymes [63,64,65]. Trypsin-like

peptidases are limited in many fungal genomes to only one to five

models found in each species, whereas plant pathogens are generally

enriched in subtilisin-like proteins. Interestingly, within Dothideomycetes

genes encoding secreted S08 subtilisin-like proteins is lower in the

Capnodiales and Hysteriales (average 4.8 models vs. 7.3 in Pleosporales),

whereas genes encoding aorsin and grifolisin-like peptidases of the S53

subfamily are higher (average 5.7 models vs. 2.3 models in Pleosporales).

The selection of specific subfamilies of peptidases in each of these

fungal orders suggests that differences in the properties of the enzymes

could have provided functional advantages to their respective common

ancestors.

Another notable difference within the Dothideomycetes is that the

genomes of the wheat pathogen M. graminicola and poplar

pathogens M. populurum and M. populicola encode more oligopepti-

dases of the M03B subfamily (six for M. populorum, four for M.

populicola and 18 for M. graminicola) than any other fungus analyzed.

Lipases
Several lipases are known to play important roles in plant

pathogenicity. Fungal pathogens secrete lipases and cutinases that

catalyze the hydrolysis of ester bonds from fatty acid polymers,

facilitating fungal penetration through the cuticle [66,67]. A

genome-wide analysis of lipase-encoding genes among the

Dothideomycetes revealed that 14 families are conserved among

these fungi, with considerable variations between species and

taxonomical groups (Table S24, Figure S9). Secreted lipases are

more likely to be involved in pathogen-host interactions than non-

secreted lipases. Seven families of secreted lipases are conserved

among the Dothideomycetes. Generally, Pleosporales and Hysteriales

have higher numbers of lipases and secreted lipases than the

Capnodiales (Figure 2D). This difference is most apparent in the

cutinases, which are esterases capable of breaking the thick cutin

protection of external plant tissues. While the examined pathogens

have an average of 8.9 and 4.5 genes encoding secreted cutinases

Figure 7. The RIP index (TpA/ApT) of genes as a function of the distance from a transposable element. The RIP index is highest near the
transposable elements and levels off after approximately 2000 bp, signifying that these regions are subjected to repeat induced point mutations.
doi:10.1371/journal.ppat.1003037.g007
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in the Pleosporales and Capnodiales, respectively, the saprotrophs

have 0 to 3 secreted cutinases each. The same distribution pattern

is observed for plant pathogens versus non-pathogens in the

outgroup, and can be explained by the fact that cutinases serve to

break through the plant surface. Although the role of cutinases in

fungal pathogenicity stayed controversial for a long time, the

relationship with pathogenicity has been proven in several

knockout studies [67,68]. Furthermore, there are several examples

of cutinases playing various roles in the establishment of infection

by being involved in spore attachment [69,70], surface signaling

[71], and dissolution of the plant cuticle during penetration [72].

Enrichment of potential effector genes in proximity to
Transposable Elements

As mentioned above, there is a large variation in numbers of

transposable elements among species, from approximately 40% in

C. fulvum [73] and M. fijiensis to almost no repeats in B. compniacensis

(Figure 2B, Tables 4 and S25). Repeats are under-represented in

genomes sequenced exclusively using Illumina technology due to

limitations of the technology so are not directly comparable to

those sequenced by other means. The majority of TEs (over 40%

of repeat content) in most genomes are long terminal repeat (LTR)

retrotransposons. DNA transposons and non-LTR retrotranspo-

sons are observed in smaller proportions, with predominantly C.

fulvum, L. maculans and M. fijiensis showing a considerable

percentage of their genomes being comprised of repeats of these

types. The most frequently identified family of transposable

elements is Gypsy (Table S25). All 18 Dothideomycetes have the

same components of the silencing machinery encoded in their

genomes (Table S26), so this does not offer an explanation for the

differences in numbers of TEs.

Repetitive sequences in fungal genomes have been shown

previously to be a target of the Repeat Induced Point mutation

(RIP) machinery [74,75]. To analyze the effect of proximity of a

gene to a repeat region, the RIP index of these genes was

calculated as a function of distance to the repeat sequences. Only

repeats that belonged to a known family of transposable elements

were taken into account (Figure 2B).

Overall, the closer a gene was located to a repeat, the more

likely a RIP signature was detected (Figure 7). The RIP index

TpA/ApT measures the frequency of TpA RIP products,

correcting for false positives due to AT-rich regions. Higher

values of the TpA/ApT RIP index indicate a stronger RIP

response [74,76]. Based on this index the effect is strongest within

the first 500 bp nearest the repeat and then drops more slowly and

disappears at approximately 2000 bp from the repeats.

Next, we determined what genes are over-represented in the

2000 bp around the repeats. Only genes that (at least partially)

overlap this region, but that do not overlap a repeat were taken

into account. This was done to exclude the pseudogenes that are

frequently found inside TE repeat sequences, but were either

included in gene sets or not depending on annotation strategy of

the different sequencing centers. Interestingly, in several genomes

the genes encoding small secreted proteins, proteins involved in

secondary metabolism, or members of expanded orphan multi-

gene families are over-represented in the regions flanking repeats

compared to the rest of the genome (Tables 4 and S27). Most

genomes with a TE content of at least 2% have at least one of

these functional annotation terms over-represented in the flanking

regions around repeats with the exception of C. fulvum, in which

however several genes in the proximity of TEs were reported as

affected by RIP [73]. An expanded orphan multi-gene family is

defined here as a gene family with at least 2 members that is

present in only one Dothideomycete and in none of the outgroups.

Family members frequently include small secreted proteins, but

relatively few PFAM domains (Table S28).

In L. maculans, AT-rich blocks composed of transposable

elements were previously shown to occasionally harbor genes

encoding small secreted proteins, and those genes were more

subjected to RIP than other genes [23]. We show here that this is a

widely occurring phenomenon among Dothideomycetes, although not

universal. Our analysis shows that not only genes encoding small

secreted proteins, but also genes involved in secondary metabolism

are preferentially located in the vicinity of transposable elements.

The products of some members of these classes of genes have been

implicated as effectors in pathogenesis [36]. The potential

evolutionary benefit of co-localization of repeat elements and

effector genes is a higher rate of mutation due to RIP, which in

turn may lead to a higher rate of evolution. This would allow the

pathogen to adapt more quickly to the host plant’s defenses.

Furthermore, the observation that members of expanded orphan

multi-gene families are over-represented near TEs suggests that

TEs may have a function in species-specific gene family expansion

in these organisms, presumably due to TE mobility.

Conclusions
Dothideomycetes is one of the largest groups of fungal plant

pathogens, the genomic sequences of which were largely unknown

until now. Here we described 14 newly sequenced genomes of

Dothideomycetes and compared them with each other, the four

previously published Dothideomycetes and with 21 other previously

sequenced fungal genomes. The 18 sequenced dothideomycete

genomes are members of the three major orders of Capnodiales,

Pleosporales, and Hysteriales, and represent a range of evolutionary

distances within over 280 MYA since their common ancestor, as

well as a variety of lifestyles and plant host associations. This added

resolution makes it possible for the first time at such a large scale to

explore genome organization, evolution, and differences between

saprotrophic and the various modes of pathogenic lifestyles in

Dothideomycetes.

There are large variations in genome size between the

Dothideomycetes, which can be largely explained by the repetitive

content of the individual genomes. Chromosome structural

evolution in this class of fungi proceeds largely by intra-

chromosomal rearrangements. A gradient of synteny from macro-

to mesosynteny was observed in comparisons between species

depending on evolutionary distance and agreed with simulation

analyses of chromosomal evolution by frequent inversions. The

high rate of inversions may be facilitated by the occurrence of

simple repeats at the boundaries of inverted segments. Whether

this phenomenon of frequent inversions is fortuitous or has been

selected for to allow for rapid rates of evolution is not known. Gene

order has not been completely reshuffled by these inversions, since

blocks of genes with conserved order have been identified across

Dothideomycetes. Their function and the reason for their conserva-

tion are currently unknown, but the observation that in one case in

L. maculans all the genes in one conserved block of genes are up-

regulated during plant infection suggests that co-regulation may be

an important factor in pathogenesis.

A structural feature of the Dothideomycetes is the presence of

seemingly dispensable chromosomes with no obvious function

[24,31,32,33]. Although dispensable chromosomes are known in

other fungi, they usually are very few in number and have clear

roles in niche adaptation, usually conditioning host specificity.

Analyses of the 18 genomes of Dothideomycetes identified one to

many scaffolds in multiple species that have the characteristics of

dispensable chromosomes, so this phenomenon may occur

commonly among the fungi in this class. Why and how these
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putatively dispensable chromosomes are maintained through long

periods of evolutionary history is not known. However, the intra-

chromosomal rearrangements leading to mesosynteny could keep

dispensable chromosomes intact and may at least in part explain

their apparent longevity.

The 18-genome comparative analysis also identified several

functional adaptations of Dothideomycetes to their specific lifestyles.

Genes encoding protein classes that were shown previously to play

important roles as effectors in pathogenicity (e.g., enzymes for

secondary metabolite production, carbohydrate-active enzymes,

small secreted proteins, peptidases, and lipases) were found in all

Dothideomycetes. However, large variations in these numbers exist

between the different fungi. Generally, the Pleosporales and

Hysteriales have higher numbers of these genes than the Capnodiales.

This is also illustrated by the estimated gene counts of the

respective last common ancestors for each of these groups. Possibly

these last common ancestors each had different lifestyles or modes

of pathogenesis. In the current set of organisms, necrotrophs are

found exclusively in the Pleosporales, whereas six out of seven

Capnodiales are (hemi)biotrophs. For a necrotroph, having a large

arsenal of different types of effector genes presumably allows it to

efficiently attack and kill the host plant in various ways. In

contrast, (hemi)biotrophs spend an extended part of their life cycle

in a stealth mode of pathogenicity, evading the host plant’s

defenses. In such a situation expressing a large arsenal of effectors

could be detrimental, as it could lead to detection by the host plant

and triggering of its defenses. The smaller set of effectors in

members of the Capnodiales presumably allows them to evade this

detection, as proposed previously for M. graminicola [24]. Another

method would be to efficiently down-regulate these genes during

stealth pathogenesis, which also may be the case for the three

hemibiotrophs in the Pleosporales. An analysis of gene expression

during the various stages of the life cycle should shed further light

on this. For saprotrophs such as those in the Hysteriales having a

large arsenal of these genes would be beneficial to efficiently obtain

nutrients from their environment, and this is reflected in their gene

complement. The extremophilic saprotroph B. compniacensis

appears to have adopted a different strategy than other

Dothideomycetes by reducing its genome size and complement of

effectors.

In addition to the various modes of pathogenicity, we have

identified numerous protein domains and multi-gene families that

are expanded in pathogens of cereal or trees, when compared to

the other Dothideomycetes. Their role is generally unknown,

however. It should be noted that host plant specificity may be

determined by a small set of genes and may therefore not show up

in genome-wide comparisons. The exact role of these domains and

of effectors in general cannot be predicted from large-scale

comparative studies and require genome- or gene-focused analyses

and experiments. However, an initial comparison of in planta

transcriptomes can already suggest genes that may be important

for pathogenicity.

We have shown that genes for effector proteins, previously

shown to occur in AT-rich and gene-poor regions in the genome

of L. maculans [23], occur often in close proximity to transposable

elements (TEs) in several Dothideomycetes. TEs are frequently a

target of Repeat Induced Point (RIP) mutations, and we have

shown that RIP also occurs in the flanking regions surrounding

these TEs. Co-localization of TEs and effector genes therefore

exposes these genes to a higher rate of point mutations. This could

possibly accelerate their rates of evolution and thereby provide an

advantage in the arms race against their hosts. We also have

shown that orphan multi-gene families (i.e. gene families with at

least two members, but only found in one Dothideomycete) frequently

co-localize with TEs. A possible explanation for this is that the

high TE mobility rate functions as a driving force behind the

duplication of these genes, allowing rapid species-specific gene

family expansion and diversification.

As demonstrated by these results, the power of comparative

genomics is huge and will become increasingly important as more

genomes are sequenced. For fungi in general and Dothideomycetes in

particular the field is ascending rapidly. Several other Dothideomy-

cetes have been sequenced or are in progress and will provide

greater representation of the extensive pathogenic and ecological

diversity in this largest class of fungi. Completion of the 1000

Fungal Genomes project (http://jgi.doe.gov/fungi) at the US

DOE Joint Genome Institute plus numerous genomes sequenced

through other initiatives provide a huge wealth of virtually

untapped resources for future progress in understanding fungal

biology and evolution.

Materials and Methods

Data availability
All genome assemblies and annotations can be interactively

accessed through the JGI fungal genome portal MycoCosm [77] at

http://jgi.doe.gov/fungi. The 14 new Dothideomycete genomes

discussed here are also deposited to DDBJ/EMBL/GenBank

under the following accessions numbers Alternaria brassicicola ATCC

96836: ACIW00000000, Baudoinia compniacensis UAMH 10762:

AEIF00000000, Cladosporium fulvum CBS131901 (race 0WU):

AMRR00000000, Cochliobolus heterostrophus ATCC 48331 (race T,

strain C4): AIHU00000000, Cochliobolus heterostrophus ATCC 48331

(race O, strain C5): AIDY00000000, Cochliobolus sativus ND90Pr:

AEIN00000000, Dothistroma septosporum CBS128990 (NZE10):

AIEN00000000, Hysterium pulicare CBS 123377: PRJNA81797,

Mycosphaerella fijiensis CIRAD86: AIHZ00000000, Mycosphaerella

populicola P02.02b: AIDU00000000, Mycosphaerella populorum

SO2202: AEFD00000000, Pyrenophora tritici-repentis Pt-1C-BFP:

AAXI00000000, Rhytidhysteron rufulum CBS 306.38: PRJNA81799,

Setosphaeria turcica Et28A: AIHT00000000. The four additional

genomes of Leptosphaeria maculans JN3 [23], Mycosphaerella graminicola

IPO323 [24], Pyrenophora teres f. teres 0–1 [22], and Stagonospora

nodorum SN15 [21] used in the comparative analyses were

published earlier.

Genome sequencing and assembly
The genomes of the 14 new Dothideomycetes discussed in this

report were sequenced by several sequencing centers (Table 1)

using various sequencing platforms and analyzed using different

strategies, most of which are discussed in detail in genome-centric

publications [44,73,78]. Additional genome-centric papers are

planned for M. fijiensis, C. heterostrophus C5, C. heterostrophus C4, C.

sativus, S. turcica, M. populicola, M. populorum, and B. compniacensis.

The genomes of A. brassicicola, C. heterostrophus C5, M. fijiensis and P.

tritici-repentis were sequenced using Sanger technology, assembled

using Arachne [79], and improved using a genetic linkage map (M.

fijiensis), optical map (P. tritici-repentis), or targeted finishing (C.

heterostrophus C5). The genomes of C. fulvum and M. populicola were

sequenced using 454 reads and assembled with Celera Assembler

[73] and Newbler [80], respectively. The genomes of C.

heterostrophus C4, H. pulicare, and R. rufulum were sequencing using

Illumina technology only and assembled using ALLPATHS-LG

(C4, [26]) and Velvet (both Hysteriales, [81]). The rest are hybrid

assemblies sequenced using combinations of 454, Illumina and

optionally Sanger reads, all assembled with Newbler [80].

Assembly characteristics are summarized in Figure 2B and Table

S1.
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Genome annotation
Genomes sequenced by different organizations were annotated

using different gene prediction pipelines. The P. tritici-repentis

genome was annotated using the Broad Institute’s pipeline [44],

the A. brassicicola genome was annotated using an ENSEMBL

annotation pipeline [78] and the C. fulvum assembled scaffolds

were annotated using the Cyrille2 workflow management system

[73]. For H. pulicare and R. rufulum, contigs greater than 300 bp

were used for ab initio gene prediction in the software package

Augustus [82] using the Aspergillus fumigatus gene predictions [83]

for model guidance. The remaining 9 genomes were annotated

using the JGI annotation pipeline, which combines multiple tools

for gene prediction, annotation, and analysis, and deposits the

results in the JGI Fungal Genome Portal MycoCosm (http://jgi.

doe.gov/fungi) [77]. The assembled genomic scaffolds were

masked using RepeatMasker [84] with the RepBase fungal library

of 234 fungal repeats [85] and genome-specific libraries derived

using RepeatScout [86] (see Repeat content below). Multiple sets of

gene models were predicted for each assembly, and automated

filtering based on homology and EST support was applied to

produce a final non-redundant GeneCatalog representing the best

gene model found at each genomic locus. The gene-prediction

methods were: EST-based predictions with EST map (http://

softberry.com) using raw ESTs and assembled EST contigs for

each genome; homology-based predictions with Fgenesh+ [87] and

Genewise [88], with homology seeded by BLASTx alignments of

the GenBank non-redundant sequence database (NR: http://

www.ncbi.nlm.nih.gov/BLAST/) to the genomic scaffolds; and ab

inito predictions using Fgenesh [87]) and GeneMark [89]. Genewise

models were extended to include 59 start and/or 39 stop codons

when possible. Additional EST-extended sets were generated using

BLAT-aligned [90] EST data to add 59 UTRs, 39 UTRs, and

CDS regions that were supported by ESTs but had been omitted

by the initial prediction methods.

The predicted gene models from the genomes of Dothideomycetes

and the outgroups were functionally annotated using the same

pipeline for each genome, allowing comparison across species.

Functional annotation by similarity to genes from the GenBank

non-redundant set using BLASTp alignments [91] and hardware-

accelerated double-affine Smith-Waterman alignments (http://

www.timelogic.com) against SwissProt (http://www.expasy.org/

sprot), the Kyoto Encyclopedia of Genes and Genomes (KEGG)

[92], and eukaryotic orthologous groups of proteins (KOG) [93];

analyzed for signal sequences and transmembrane domains with

SignalP [94] and TMHMM [95]; and functional domains were

predicted using InterProScan [96]. Enzyme commission (EC)

numbers (http://www.expasy.org/enzyme) were assigned based

on KEGG hits, and Gene Ontology (GO) terms [97] were

assigned based on Interpro and SwissProt hits. Multi-gene families

in all the species in Table 1 were predicted using the JGI clustering

pipeline. First, an all-versus-all blastp analysis is performed using

an E-value of 1e-5 as cut off value. Next, for each blastp hit pair a

modified blast score is calculated: blast score * cov1 * cov2. Here,

cov1 and cov2 are the alignment coverages for protein 1 and 2 of

the pair, respectively. This alignment coverage is a fraction of 1.

This modified blast score is used as input for the MCL Markov

clustering program [98,99], using an inflation parameter of 4.

Each resulting cluster is considered a multi-gene family.

The functional annotations for all eighteen genomes are

summarized in Figure 2 and in Table S1. In addition to this,

repeats, lipases, CAZymes, peptidases, small secreted proteins,

genes involved in secondary metabolism, and kinases in all 18

genomes were more extensively annotated as described below.

The estimated gene counts of the last common ancestors of the

taxa indicated in Figure 2D have been inferred using CAFÉ

[100].

Repeat content
For all 18 genomes RepeatScout [86] was used to generate de

novo predictions of transposable elements (TE). The output of

RepeatScout is a library of consensus sequences corresponding to

each family of identified repeats. We selected all repeat families

which had a Blastn (and Blastx) hits to Repbase sequences [85]

and also included families with a copy number of more than 150 in

the genome. All potential repeats were searched for structural

elements usually found at termini of TE, such as LTRs (long

terminal repeats), TIRs (terminal inverted repeats) and TSDs

(target site duplications). TEs were classified by a combination of

similarity to Repbase sequences [85] and availability of structural

repeats according to the procedures outlined previously [101].

Simple repetitive sequences (i.e., low-complexity DNA regions)

were identified using RepeatMasker [84].

For the Illumina-only genomes an additional analysis was

performed to estimate repeat content, using the FindErrors

module of the ALLPATHS-LG assembler [26]. Briefly, a k-mer

histogram using K = 24 bp is constructed and partitioned into bins

corresponding to likely sequencing error, unique genome se-

quence, possible polymorphism, possible repetitive genome

sequence, and highly represented k-mers based on the locations

of peaks in the k-mer histogram. The sum of the counts

corresponding to the bin associated with repetitive content is

reported as the estimate.

Over-representation of functional annotation terms in genes

overlapping a 2-kpb flank upstream or downstream of a TE repeat

(but that did not overlap any TE repeat) was calculated as

described below. Genes overlapping TE repeats were excluded

from this analysis because their predictions varied widely among

the genomes; they were actively removed from some gene sets

whereas they were left untouched in others. It was outside the

scope of this paper to re-predict genes for each genome.

Representation analysis
Custom scripts were developed in Python and R to analyze

over- and under-representation of functional annotation terms in

sets of genes using the Fisher Exact test. The Benjamini-Hochberg

correction was used to correct for multiple testing using a p-value

of 0.05, where applicable.

Estimating phylogenetic relationships and divergence
times

The broad phylogeny in Figure 1 was performed with partial

sequences of translation elongation factor-1 alpha (TEF1) and the

largest and second-largest subunits of DNA-directed RNA

polymerase II (RPB1, RPB2). DNA sequences were downloaded

from GenBank as indicated in Table S29 or obtained from

genome data available at the Fungal Genome portal at JGI. Each

of the individual genes was conceptually translated in BioEdit

[102] after the introns were removed. The amino acid sequences

were aligned in SATé [103] using MAFFT [104] as the external

sequence alignment tool and RAxML [105] as the tree estimator.

The final data matrix had 67 taxa and 1129 characters with 31%

missing and gap characters. Two isolates of Arthoniomycetes

(Simonyella variegata and Opegrapha dolomitica), the sister class to

Dothideomycetes, were used as outgroups. The three protein

sequence alignments were individually subjected to model testing

with ProtTest v.2.4, using the Aikake information criterion (AIC)

and default settings at http://darwin.uvigo.es/software/
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prottest2_server.html [106]. This resulted in a choice of the

following models: TEF1: LG; RPB1: RTREV; and RPB2: LG. A

maximum-likelihood phylogenetic analysis of the concatenated

alignment with partitioned models for each gene marker was

performed with a gamma model of rate heterogeneity at the

CIPRES web portal [107] using RAxML v. 7.2.8 [105,108]. Fifty

maximum-likelihood (ML) searches were done, each one starting

from a separate randomized tree, and the best-scoring tree was

selected with a final likelihood score of 224058.182470. One

thousand non-parametric bootstrap iterations were run and the

resulting replicates plotted onto the best-scoring tree obtained

previously. The RAxML tree was used to apply a penalized

likelihood analysis in the program r8s v1.7 [109] to produce a

chronogram. This meant that phylogenetic uncertainty was not

incorporated in this analysis. We used two dates suggested in a

more comprehensive analysis in previous work [110]. The root of

the tree (and the split between Dothideomycetes and Arthoniomycetes)

was set to ages of 420 and 309 MYA, respectively. These represent

the upper and lower bound dates of a 95% confidence interval

determined using a Bayesian approach in BEAST [111] as applied

previously [110]. In our analysis the Langley-Fitch method and a

truncated Newton method with bound constraints were applied

following Taylor and Berbee [112].

For the genome-based tree in Figure 2, orthologous groups of

genes (having exactly one gene for each organism in Table 1) were

identified from the multi-gene family set described above. There

were 51 of these orthologous groups and the corresponding

proteins for the organisms belonging to the Dothideomycetes were

concatenated. The sequences were aligned using MAFFT 6.717b

[113] and well-aligned regions were extracted using Gblocks 0.91b

[114]. The parallelized version of RAxML 7.2.8 [105,108] with

the PROTGAMMAWAG model with 100 rapid bootstrap

partitions was used to calculate a species tree. The tree was

visualized using Dendroscope 2.7.4 [115].

Whole-genome DNA synteny
Whole-genome DNA synteny was calculated using VISTA

[116] and visualized using the DotPlot function as implemented in

the JGI Genome Portals [77]. Significance of whole-genome

synteny was determined using the methods described previously

[27], with modifications. For all combinations of genomes (genome

A and genome B), all combinations of their sequences (sequence A

from genome A and sequence B from genome B) were tested for

significant sequence conservation. Only sequences of at least

500 kbp were used in these analyses. The probability of synteny

(Psyn) between sequence A of genome A and sequence B of genome

B was calculated using a one-tailed cumulative binomial test

described previously [27], with the modification that n = 100;

x = (length conserved in sequence A * length conserved in

sequence B)/(length of sequence A * length of sequence B) * n

and rounded to the nearest integer; p = (Total length conserved in

genome A * Total length conserved in genome B)/(Total length

genome A * Total length genome B)/number of sequence pair

combinations. A sequence pair was considered to have significant

amounts of sequence conservation if Psyn$0.999. The determina-

tion of the whole-genome synteny and its type (mesosynteny or

macrosynteny) were made using the significant pair ratio formula

and the 20-kbp cut off, respectively [27]. The level of synteny

degradation was computed using the pair exclusivity ratio [(Total

length of conserved regions between sequences A and B)/(Total

length of conserved regions for sequence A and all sequences of

genome B+Total length of conserved regions for sequence B and

all sequences of genome A)]. This formula is similar to that

described previously [27] with modifications and the result is a

fraction of 1. If the maximum value of all pair exclusivities of a

genome pair was less than 0.75, synteny was classified as degraded.

Gene order conservation
Gene order conservation across the 18 Dothideomycetes was

studied using a custom script written in Python. Multi-gene

families were determined as described above. Each gene of all

organisms was thus assigned to a multi-gene family and

orthologous relations between the genes could be determined.

These relations can be one-to-one, one-to-many or many-to-

many. The location of the first codon of the genes was used to

determine the order of those genes on a given scaffold. Next, a

sliding window with the size of 10 genes on a given scaffold of a

given organism was compared to all possible windows on all

scaffolds in all organisms. If a scaffold contained fewer than 10

genes, then all genes on that scaffold were considered in one

window. For each comparison, the number of represented

orthologous groups that was present in both windows was

determined. If this number was at least 5, then these two windows

were considered to be syntenic. If this syntenic window was

present at least once in at least 70% of the studied organisms, then

it was considered to be a conserved syntenic window. This analysis

was done for all possible windows in all studied organisms. Next,

overlapping conserved syntenic windows were combined into

conserved syntenic blocks.

Expansion and depletion of PFAM domains and multi-
gene families

The expansion and depletion of PFAM domains and multi-gene

families was determined by comparing genomes that were grouped

according to phylogeny, host or lifestyle. In each comparison, an

in-group of organisms was compared to an out-group. PFAM

domains and multi-gene families were only included if they were

present with at least one count in at least 50% of the organisms in

at least one of these groups. If a PFAM domain or multi-gene

family was unique to either the in-group or the out-group, or if it

was expanded in either the in-group or the out-group (as

determined by t-test and Wilcox rank test), then it was reported.

Small secreted proteins
Small secreted proteins (SSPs) are defined here as proteins that

are smaller than 200 aa, have a secretion signal as determined by

SignalP 3.0 [94] and have no transmembrane domain (TMM) as

determined by TMHMM 2.0 [117]. However, one transmem-

brane domain is allowed when present in the N-terminal 40 amino

acids, since this often corresponds to the secretion signal. An SSP

was labeled as ‘high cysteine’ when the percentage of cysteine

residues in the protein was at least twice as high as the average

percentage of cysteine residues in all predicted proteins of that

organism.

Secondary metabolism
The Hidden Markov Model (HMM) signatures previously

described for the AntiSMASH pipeline [118] were used to identify

and annotate putative polyketide synthase (PKS) and terpene

synthase (TPS) genes in all 18 genomes after validation on the

previously manually curated C. heterostrophus set. The same cut-off

values and logic were applied. Nonribosomal peptide synthetase

(NPS) encoding genes were identified using the method described

by Bushley and Turgeon [39], since AntiSMASH [118] performed

poorly on the previously manually curated set of C. heterostrophus

NPS genes. In all cases we used the annotated C. heterostrophus

proteins to query NPS, PKS, and TPS protein datasets extracted
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from the 18 dothideomycete genomes using a best-hit Blastp

search.

CAZyme annotation
The detection, module composition and family assignment of all

carbohydrate-active enzymes was performed just as for the daily

updates of the CAZy database (http://www.cazy.org) and

described previously [52]. Briefly, the method combines BLAST

and HMMer searches conducted against sequence libraries and

HMM profiles made of the individual functional modules featured

in the CAZy database. All positive hits were manually examined

by human curators for final validation. For the heat map only the

GH, PL and CE families were considered. Hierarchical clustering

of both families and organisms was performed with the program

MeV, which is part of the TM4 Software Suite [83]. Euclidian

distance was used as distance metric and complete linkage

clustering as linkage method. In Figure 6 only CAZymes with

more than 1 member in at least one organism were included, for

clarity.

Peptidases
Peptidases were predicted from the protein model catalogs of 40

fungi (Table 1). For each fungal genome considered, the protein

models were used as blastp query against full-length sequences of

the Merops database (e-value = 1e-04) (release 9.5; http://merops.

sanger.ac.uk). False positives were eliminated following unsuccess-

ful searches against peptidase units and peptidase domains of the

MEROPS (e-value = 1e-04) and the Pfam (V. 26.0; HMMER

searches, e-value = 1.0) databases, respectively. Similarity of the

models to putative peptidases was finally cross checked by parsing

hits obtained following a blastp search (e-value = 1e-04) on the

NCBI nr protein database. Prediction of putative secreted

peptidases was then carried out using a combination of the

SignalP 4.0 and TargetP 1.1 servers (http://www.cbs.dtu.dk/

services/).

Lipases
Putative lipases were classified according to BLASTp (E-value

cut-off of 1e-04) results obtained against the Lipase Engineering

Database (http://www.led.uni-stuttgart.de/). False positives were

eliminated by parsing hits obtained for the presence of lipase-

specific domains. Prediction of putative secreted lipases was

processed as described above for secreted peptidases.

Supporting Information

Figure S1 Ratio of predicted core and non-core proteins
in the 18 genomes of Dothideomycetes.

(TIFF)

Figure S2 Phylogeny and gene count of predicted casein
kinase 1 (CK1) genes in the genomes of 18 Dothideomy-
cetes.

(TIFF)

Figure S3 Gene counts of classes that have been
implicated in plant pathogenesis. Gene counts in extant

species (indicated right of the tree) and estimated gene counts in

inferred last common ancestors (indicated on the tree nodes) are

given. A. Genes encoding small secreted proteins. B. Genes

encoding proteins involved in secondary metabolite production. C.

Genes encoding carbohydrate-active enzymes (CAZymes). D.

Genes encoding secreted peptidases. E. Genes encoding secreted

lipases.

(TIFF)

Figure S4 Predicted genes involved in secondary me-
tabolism. Genomes of organisms belonging to the Pleosporales and

Hysteriales generally contain more genes involved in this process

than the Capnodiales, especially in the case of Polyketide synthase

Type I.

(TIFF)

Figure S5 Presence of aflatoxin-like genes in Dothideo-
mycetes and other fungi. Aflatoxin-like genes were found

using BLASTP (e-value of 1025) of predicted amino acid

sequences of Dothistroma septosporum dothistromin genes (main block

of 14 Ds genes) or Aspergillus flavus sterigmatocystin (verA [aflN] and

omtB [aflO]) or aflatoxin genes (omtA [aflP], ordA [aflQ]) (Yu et al

2004), against gene catalogues for all genomes shown, with

reciprocal BLAST back to the D. septosporum or A. flavus genomes.

Dark gray boxes indicate presence of a reciprocal best hit, light

gray indicates one-directional best hit, and white indicates no hit.

Dothideomycetes are D. septosporum (Ds), Cladosporium fulvum (Cf),

Mycosphaerella fijiensis (Mf), Mycosphaerella graminicola (Mg), Septoria

musiva (Sm), Septoria populicola (Sp), Baudoinia compniacensis (Bc),

Leptosphaeria maculans (Lm), Pyrenophora teres f. teres (Pt), Cochliobolus

sativus (Cs), Cochliobolus heterostrophus (Ch), Setosphaeria turcica (St),

Stagonospora nodorum (Sn), Pyrenophora tritici-repentis (Pr), Alternaria

brassicicola (Ab), Rhytidhysteron rufulum (Rr), Hysterium pulicare (Hp).

Eurotiomycetes (Euro) are Aspergillus nidulans (An), A. flavus (Af).

Leotiomycetes (Leo) are Sclerotinia sclerotiorum (Ss), Botrytis cinerea

(Bc). Sordariomycetes (Sord) are Verticillium dahliae (Vd), Magna-

porthe grisea (Mg), Fusarium oxysporum (Fo), Nectria haematococca (Nh),

Neurospora crassa (Nc), Trichoderma reesei (Tr), Chaetomium globosum

(Cg). Saccharomycotina (S) is Saccharomyces cerevisiae (Sc). Basidio-

mycete outgroups are the Agaricomycotina (Agar) Postia placenta

(Pp), Laccaria bicolor (Lb), Cryptococcus neoformans var. grubii (Cn),

Coprinopsis cinerea (Cc), Schizophyllum commune (Sc), Phanerochaete

chrysosporium (Ph); Pucciniomycotina (Puc) Puccinia graminis (Pg),

Melampsora laricis-populina (Ml); Ustilaginomycotina (Ust) Malassezia

globosa (Mg), Ustilago maydis (Um). Protein ID numbers of query

genes are 66976, 181128, 192192, 192193, 75691, 57312, 48495,

75546, 75609, 139960, 75656, 75692, 75547, 75566 (D. septosporum

genome) and AFL2G_07219.2, 07216.2, 07215.2, 07214.2 (A.

flavus genome). Note only Ds-HexA, PksA, DotA, AdhA, VbsA and AflR

have been functionally confirmed as dothistromin genes by gene

knockouts (Schwelm and Bradshaw 2010 and Bradshaw unpub-

lished); other Ds- genes are considered to be dothistromin genes on

the basis of similarity to AF genes and due to their proximities to

known dothistromin genes in the D. septosporum genome. BLASTP

of Ds-HexA and Ds-HexB both hit the same gene in each

Agaricomycotina species showing gray shading. In contrast, the

top matches of Ds-HexA and Ds-HexB were to a paralogous

divergent pair of putative fatty acid synthase genes in all

Dothideomycetes except Bc, Pt, St, Sn, Pr and all Sordariomycetes

except Fo. See also Text S4.

(TIFF)

Figure S6 Principal component analysis and hierarchi-
cal clustering of protease family assignments of 18
Dothideomycetes and outgroups. A matrix was constructed

containing the number of proteases assigned to each MEROPS

family in each fungal species. Analyses were performed with the

Rcmdr package of R, and the results graphed along the first two

components. Colored squares represent the centroid of each

cluster of species, indicated with the same color. Taxonomy: Ag.,

Agaricales; Cap., Capnodiales; Dia., Diaporthales; Hel., Helo-

tiales; Hyp., Hypocreales; Hys., Hysteriales; Mag., Magna-

porthales; Mal., Malasseziales; Pat., Patellariales; Ple., Pleospor-

ales; Pol. Polyporales; Sac., Saccharomycetales; Ure., Uredinales;
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Ust., Ustilaginales; Tre., Tremellales. Lifestyles: B., Biotroph; Ec.,

Ectomycorrhizal; En., Endophyte; OB., Obligate biotroph; S.,

Saprotroph; N., Necrotroph; H., Hemi-biotroph; U., Undeter-

mined.

(TIFF)

Figure S7 Distribution of peptidase families in Dothi-
deomycetes and other fungal classes. Putative peptidases

were classified based on the MEROPS database. A. Non-secreted

and secreted peptidases. B. Secreted peptidases. Letters above

columns indicate significant differences between peptidase content

means as determined by a Tukey’s HSD test after significant one-

way ANOVA.

(TIFF)

Figure S8 Number of genes encoding peptidases in the
genomes of Capnodiales, Pleosporales and Hysteriales
fungi.
(TIFF)

Figure S9 Principal component analysis and hierarchi-
cal clustering of lipase family assignments of 18
Dothideomycetes and outgroups. Colored squares represent

the centroid of each cluster of species, indicated with the same

color. Taxonomy: Ag., Agaricales; Cap., Capnodiales; Dia.,

Diaporthales; Hel., Helotiales; Hyp., Hypocreales; Hys., Hyster-
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