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Abstract 
Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37% of the 
described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This 
diverse phylum includes the mushrooms, wood rots, symbionts, and plant and animal 
pathogens.  To better understand the diversity of phenotypes in basidiomycetes, we 
performed a comparative analysis of 35 basidiomycete fungi spanning the diversity of 
the phylum. Phylogenetic patterns of lignocellulose degrading genes suggest a 
continuum rather than a sharp dichotomy between the white rot and brown rot modes of 
wood decay.  Patterns of secondary metabolic enzymes give additional insight into the 
broad array of phenotypes found in the basidiomycetes.  We suggest that the profile of 
an organism in lignocellulose-targeting genes can be used to predict its nutritional 
mode, and predict Dacryopinax sp. as a brown rot; Botryobasidium botryosum and 
Jaapia argillacea as white rots. 
 

All genome data were downloaded from jgi.doe.gov/fungi 

Maximum likelihood phylogeny of 35 basidiomycete and selected ascomycete 
fungi based on 237 widely conserved genes.  Taxonomic orders with more than 
one organism are noted with black vertical bars 
 

Genomes overview.  Genome size in basidiomycetes varies over an order of 
magnitude with M. globosoa (9.0 Mb) and M. laricis-populina (101 Mb) at the 
extremes.  Repeat content varies from a few percent (M. globosa, S. roseus, U. 
maydis, W. sebi), to ~40 percent (L. bicolor, F. mediterranea, P. graminis, M. 
laricis-populina) 

Rate of protein family discovery. MCL clustering of 
protein sequences was used to identify protein 
families.  For each number of genomes, samples of 
genomes of a given number were randomly 
generated, and the protein families were counted.  
The figure illustrates that, in terms of protein family 
discovery, good gains are still being made from 
genome sequencing of basidiomycetes. 
 

Correlating genotype with degradative phenotype.  Distribution of 28 CAZy families and 
lignin-active enzymes (AA) identified as nonrandomly evolving in basidiomycetes, and selected 
secondary metabolism protein faimilies.  Each organism’s number of genes from each family is 
shown in the white/red map.  The correlation of each family with the white rot (WR), brown rot 
(BR), and plant pathogen (PP) phenotype is shown in the blue/orange map. 
 
Notice that the AA2 (lignin peroxidase), AA3_2 (cellobiose dehydrogenase), and several CAZys 
correlate with the WR phenotype.  Notice also that R-PKS (reducing polyketide syntases) 
families IV and V correlate with the BR phenotype. 
 

Phylum-wide expansions in lignin peroxidases.  Maximum likelihood tree 
constructed from lignin peroxidase protein sequences.  Sequences from white rots are 
colored by organism, with mono- and paraphyletic regions shaded accordingly.   
 
Notice large organism-specific expansions in Galerina marginata, Auricularia delicata, 
Fomitiporia mediterranea, Trametes versicolor, and Phanerochaete chrysosporium. 
 
Analysis of chromosomal gene position suggests that lignin peroxidase expansions 
were driven in part by tandem duplication.  Above, three Trametes versicolor scaffold 
regions are shown in which lignin peroxidase genes are found in clusters (implying 
tandem duplication).. 

Predicting degradative phenotype from lignocellulose 
genes.  Principal components analysis (PCA) was performed 
using selected lignocelluose genes as features.  Genomes are 
shown plotted on the first two principal components from PCA of 
the lignocellulose genes of the organisms.  Note the separation 
of brown rots (brown), white rots (blue).  We predict that B. 
botryosum and J. argillacea are white rots, and that 
Dacryopinax sp. is a brown rot.  Our results also raise questions 
about the traditional classification of S. commune as a white rot. 

Distribution of CAZymes in basidiomycetes.  The majority of CAZymes 
(carbohydrate-active enzymes) are found in Agaricomycotina, with the largest 
proportion shared by the three subphyla.  Pucciniomycotina and 
Ustilaginomycotina have just a few CAZymes unique to them. 
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