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1. Introduction 
 
Biologists are awash with genomic sequence data. In large part, this is due to the rapid 
acceleration in the generation of DNA sequence that occurred as public and private 
research institutes raced to sequence the human genome. In parallel with the large human 
genome effort, mostly smaller genomes of other important model organisms were 
sequenced. Projects following on these initial efforts have made use of technological 
advances and the DNA sequencing infrastructure that was built for the human and other 
organism genome projects. As a result, the genome sequences of many organisms are 
available in high quality draft form. 
 
While in many ways this is good news, there are limitations to the biological insights that 
can be gleaned from DNA sequences alone; genome sequences offer only a bird’s eye 
view of the biological processes endemic to an organism or community. Fortunately, the 
genome sequences now being produced at such a high rate can serve as the foundation for 
other global experimental platforms such as proteomics. Proteomic methods offer a 
“snapshot” of the proteins present at a point in time for a given biological sample. 
Current global proteomics methods combine enzymatic digestion, separations, mass 
spectrometry and database searching for peptide identification. One key aspect of 
proteomics is the prediction of peptide sequences from mass spectrometry data. “Global” 
proteomic analysis uses computational matching of experimental mass spectra with 
predicted spectra based on databases of gene models that are often generated 
computationally. Thus, the quality of gene models predicted from a genome sequence is 
crucial in the generation of high quality peptide identifications. Once peptides are 
identified they can be assigned to their parent protein. Proteins identified as expressed in 
a given experiment are most useful when compared to other expressed proteins in a larger 
biological context or biochemical pathway.  
 
In this chapter we will discuss the automatic annotation and the generation of high quality 
gene models, the setup and execution of global proteomics experiments that are 
quantitative and statistically rigorous and finally add biological context to proteomics. 
 
2. Gene modeling  
 
Genome sequencing has evolved dramatically in the last few years. The sequence of the 
first bacterial genome of Haemophilus influenzae was published in 1995 (Fleischmann et 
al, 1995) shortly followed by the first sequenced eukaryotic genome of Saccharomyces 
cerevisiae (Goffeau et al. 1996). Several large genome sequencing centers were 



established around the world for large scale production sequencing and have an average 
sequencing capacity of 3Gbases per month, or roughly an equivalent of the human 
genome size. New short-read sequencing technologies promise to make genome sequence 
affordable for small laboratories and research groups. Anticipated massive amounts of 
sequence data require adequate efforts and tools for analysis and interpretation of these 
data. Genome annotation is one of the first steps in analysis of genome sequence and 
includes finding genes, describing their structures and functions.  Approaches used for 
gene prediction in prokaryotes and eukaryotes are different. Finding genes in prokaryotes 
is relatively straightforward task because of simple gene structure (uninterrupted open 
reading frame, or ORFs) and high gene density, with almost the entire DNA used for 
coding. In contrast, eukaryotic genes have complex exon-intron structures and a 
significant fraction of eukaryotic genome sequence corresponds to non-coding DNA (for 
example, gene deserts in human (Taylor, 2005)). 
 
Despite significant efforts in many research groups, unlike in prokaryotes, there are no 
completely automated methods to predict gene models in eukaryotic genomes.  Most of 
the eukaryotic gene predictors that have been developed and tuned for  human or other 
higher eukaryote genomes, are not applicable to another genome, and show low accuracy 
even between vertebrate genomes (Burset and Guigo 1996). Eukaryotic gene predictors 
require training for every organism on a set of known genes from that organism’s 
genome. This information is used to derive genome-specific parameters that then are used 
to predict genes in whole genome. Several benchmarks were developed to evaluate 
current gene predictors for human (EGASP, Guigo et al, 2007), fruit fly (GASP, Reese et 
al, 2000), maize (Yao et al, 2005), and other genomes (e.g., NGASP, 
www.wormbase.org).  
 
Gene predictors 
Eukaryotic gene predictors can be roughly described as ab initio (for example, Fgenesh, 
Salamov & Solovyev, 2000; Augustus, Stanke & Waack, 2003; SNAP, Korf, 2004; 
GeneMark, Lukashin & Borodovsky, 1998), homology-based (GeneWise, Birney & 
Durbin, 2000; Fgenesh+, Salamov & Solovyev, 2000), EST-based (GrailEXP, Xu et al., 
1997; PASA, Haas et al., 2003), synteny-based (Twinscan, Tenney et al., 2004), and 
hybrid methods (EuGene, Schiex et al., 2001; Combiner Allen et al., 2004; TWAIN, 
Majoros et al., 2005)). They differ in balance between content-based (distinguishing 
exons from introns or intergenic regions by, for example, nucleotide composition) and 
signal-based parameters (defining starts and ends of exons and genes) (Solovyev, 2002). 
The content information can come from homology to proteins, ESTs and genome 
conservation as well as coding potentials derived from a training set of genes. Signals 
while mostly conserved can be refined based on homology gene models and ESTs 
aligned to genomic sequence. In general, the predicted models will be highly inaccurate if 
the genome that the gene finding algorithm is applied to is different in gene structure than 
the genome that the algorithm was trained on (Korf, 2004).   
 
Given a sufficient number of known genes or full-length cDNAs for a particular genome, 
gene prediction parameters can be computed and used for genome-wide gene prediction. 
Often for the most of newly sequenced genomes we do not have full-length cDNAs and 



some characteristics of gene structure in a given genome can be inferred from ESTs. 
They can be directly mapped to genome assembly or used in EST-based gene predictors 
such as PASA (Haas et al., 2003). Reliable homology-based gene models built with 
GeneWise (Birney & Durbin, 2000) or Fgenesh+ (Salamov & Solovyev, 2000) offer 
another source of information for training gene predictors. While these predictions lack 
UTR regions, close protein homologs often retain very similar exon-intron structures. In 
addition, genomes of closely related organisms can help to recover content and signal 
information using synteny-based gene prediction methods.  These methods were 
successfully used in human, mouse and rat (SLAM, Dewey et al 2004) C.elegans 
(TwinScan, Wei et al, 2005), Aspergillus genomes (TWAIN, Majoros et al. 2005), 
Cryptococcus neomorphans (TwinScan, Tenney et al. 2004), and Phytophthoras (Tyler et 
al., 2006). These methods predict exons with a reasonable quality but suffer from 
chimerism in genome scale application and, therefore, often used mostly to correct 
models of orthologous genes. 
 
Annotation pipelines 
Since each gene prediction method has its own advantages and drawbacks combining 
different methods can improve overall quality of gene models.  Methods to select entire 
gene models such as Bayesian framework (Pavlovic et al. 2002), to assemble model 
fragments into de novo models (e.g., EuGene (Schiex et al, 2001), or to combine multiple 
sources of information such as gene models and ESTs (Allen et al. 2004)) have been 
proposed.  Annotation pipelines employed at the genome sequencing centers usually use 
several gene predictors. In addition to increasing overall accuracy of annotations, they 
offer scalable solutions. ENSEMBL pipeline was used for most of vertebrates genomes 
(Potter et al, 2004). The US DOE Joint Genome Institute (JGI) Annotation Pipeline 
includes Fgenesh (Salamov & Solovyev, 2000), GeneWise (Birney & Durbin. 2000), and 
Fgenesh+ (Salamov & Solovyev, 2000) with a number of in-house developments to use 
ESTs and select a best representative model for every locus among the number of 
predicted genes. The Broad Institute used similar set of tools for annotation of fungal 
genomes. The Institute for Genome Research (TIGR) /J. Craig Venter Institute (JCVI) 
annotation team trains several gene predictors but use a subset of them for final 
annotations. Genome sequencing consortia use additional gene predictors (Dujon et al. 
2004,Braun et al. 2005, Jaillon et al, 2007).  
 
After gene models are predicted, the corresponding predicted proteins are functionally 
annotated.  Functions can be inferred by sequences similarity to other proteins from, for 
example, UniProt or GenBank as determined by protein sequence alignments using Blast 
(Altschul et al., 1998).  InterProScan (Zdobnov et al., 2001) combines several domain-
search methods to predict domains including SignalP and TargetP (Emanuelsson et al. 
2007) for more specialized analysis.  Comparison with the specialized databases (e.g., 
KEGG (Kanehisa et al. 2004)) allows one to map the predicted proteins onto metabolic 
pathways, Gene Ontology (Ashbruner et al, 2000) and KOG (Tatusov et al. 2003) 
categories provide the user with multiple entry points into the annotation data.   
 
The overall workflow is similar between the different pipelines and includes the 
following major steps common to all:  



 1. Repeat masking to exclude transposons from the final set of gene models,  
 2. Mapping ESTs and homologs as seeds for gene predictors, 
 3. Gene prediction using several methods, 
 4. Gene annotation via domain prediction and homology searches.  
Additional experimental data available at the time of genome annotation is becoming 
more often an integral part of validation modules of these pipelines. 
 
Experimental validation and annotation of predicted gene models  
Accuracy of predicted genes depends on derived parameters and varies from genome to 
genome. A significant fraction of predicted genes with no similarity to any protein in 
GenBank lacks annotation. Experimentally derived data (ESTs, microarrays, proteomics) 
can not only validate predicted gene structures but also add annotation by describing 
conditions under which a particular gene or protein was expressed. Predicted gene 
models can be validated using gene expression data.  Evidence for predicted transcripts 
can be collected from ESTs/cDNAs overlapping with a gene model, microarrays with 
oligonucleotide probes corresponding to the predicted transcripts, and tiling arrays where 
probes are evenly distributed throughout the genome sequences. In addition comparative 
analysis of ESTs from different libraries or microarray probe hybridization level under 
different conditions provides biological insights and annotation information. These 
resources are stored in genome databases as well as larger repositories (ArrayExpress, 
Parkinson et al, 2005; GEO, Barrett et al, 2005). In addition to a wide variety of 
proteomics biomedical studies, other examples include secreted proteins in fungi that 
degrade of biomass (Medina et al. 2005, Medina et al. 2004, Vanden Wymelenberg et al. 
2005), or have symbiotic relationships with plants (Bestel-Corre et al. 2004; Martin et al, 
2008). For example, 10,048 genes were predicted for the genome of Phanerochaette 
crysosporium using 10.6x genome sequence assembly processed with the JGI Annotation 
Pipeline. Processing mass-spectroscopy data by running against MASCOT db resulted in 
identification of 4,697 peptide supporting 1,489 genes including 193 peptides supporting 
splice sites. Genome browser of the JGI Genome Portal illustrates peptide support for 
predicted gene models (Fig 1) (Zhou et al, in press).  
 

 
 
Figure1. Peptides mapped to genome assembly provide experimental support for 
predicted gene models in Phanerochaete chrysosporium genome 
 



Challenging genes that require validation with proteomics 
While proteomics is valuable in validating predictions of protein coding genes, an 
additional value comes from its ability to distinguish between protein coding and non-
coding genes, transcripts for both of which can be equally supported by ESTs or 
microarrays.  
 
Pseudogenes:. Remnants of genes that are no longer transcriptionally active are called 
pseudogenes.  Based on their origin they are subdivided into processed (emerged trough 
retrotransposition of processed transcripts back into genomic sequence) and 
nonprocessed (duplicated, not active and therefore mutated genes).  Pseudogenes often 
have features that make them appear to be genes. Sometimes they are expressed based on 
EST or microarray evidence.  Increased rates of mutation can introduce stop codons or 
frameshifts. The frameshifts can be result of either sequencing error or genomic mutation, 
especially for non-expressed genes, and possible be resolved with proteomics. 
 
Seleno proteins:  Selenocysteine (Sec), a rare amino acid that significantly increases 
enzymatic activity of a protein, is coded by a nucleotide triplet UAG normally interpreted 
as a stop codon. In presence of cis-acting mRNA structure, called selenocysteine 
insertion sequence (SECIS) element, this codon is recognized by seleno-cystein tRNA, 
which integrates a Sec amino acid into protein sequence. Presence of stop codon in the 
middle of sequence of a predicted gene/transcript makes it a viable pseudogene 
candidate, but since some pseudogenes are expressed in form of RNA, only protein 
expression can support this type of proteins. 
 
Non-coding genes: Often clusters of ESTs suggest missing genes in places where no 
gene model was predicted. Lack of a gene model indicates lack of significant coding 
potential, homology in that locus, which could be due to incorrect training or a specific 
genes. Finding ORF does not necessarily mean coding genes since a long ORF can be 
found even in non-coding RNAs. 
 
Polycystronic genes: proteomics data can resolve conflict between different ORFs found 
in the same genes, either in gene in low GC w/o any stops, or in polycystronic genes, 
where several genes are expressed as the same transcript to be processed before 
translation.  
 
Caveat: Resolving mass specta requires a database of protein sequences which are 
derived from predicted gene models. To support predicted gene models we use the same 
gene models to resolve mass spectra. One option is to this is use all ORFs in 6 frame 
translation derived directly from genomic sequence. However, exon-intron structure of 
eukaryotic genes make this difficult. Only peptides that align entirely within a single 
exon can be resolved this way and peptides aligned across a splice site will be lost. 
 
3. Proteomics Experimental Design 
 
In the majority of proteome studies investigators, are interested in comparing the proteins 
expressed in a cell or tissue under one condition versus another (i.e. normal vs. diseased). 



Originally, proteome studies were conducted using two-dimensional polyacrylamide gel 
electrophoreses (2D-PAGE, Righetti et al., 2004). In this method, proteins are separated 
by isoelectric point and then by size. After running the sample, the gel is stained with a 
protein binding dye. Image analysis is performed to compare each stained gel from the 
two (or more) conditions. A ‘spot” of interest can be excised from the gel and the protein 
identified using mass spectrometry (Gevaert and Vandekerckhove, 2000). Technology 
has been developed to allow two samples to be analyzed on a single gel by labeling each 
sample with a different fluorescent dye (Marouga et al., 2005).  However, currently the 
field of proteomics is dominated by relatively high-throughput mass spectrometry based 
approaches.  
 
In these methods, high pressure liquid chromatographs (HPLC) are coupled directly to 
mass spectrometers (MS), as peptides elute from the HPLC column they are converted to 
the gas phase by electrospray ionization (Cole, 2000; Griffiths et al., 2001) and drawn 
into the inlet of the MS. Currently, different types of MS and HPLC platforms are used 
across proteomics focused laboratories. For the basic shotgun approach to proteomics, 
peptides isolated from cells are digested by a protease (typically trypsin) with defined 
cleavage sites. The resulting peptides are analyzed by HPLC/MS techniques. For an 
example of the complexity of the resulting sample, we consider the worm Caenorhabditis 
elegans. The C. elegans genome encodes approximately 20,000 ORFs which 
theoretically can produce close to a million tryptic peptides (Conrads et al., 2000). Since 
tryptic digest samples are too complex to resolve each individual peptide in time by 
HPLC, an identical sample injected run through a HPLC/MS system will have a limited 
number of overlap of identifications (this is often referred to as undersampling, Figure 2).  
 

 
Figure 2. Peptides observed from NADP-dependent isocitrate dehydrogenase in total 
soluble proteome analyses of Trichoderma reesei. Each column represents an individual 
LC/MS injection of sample and each row represents a peptide from isocitrate 
dehydrogenase that has been observed at some time in previous experiments. White 
indicates the peptide was observed in the sample and grey indicates the peptide was not 
observed. Blue lines separate five different samples examined. Each sample has three 
bench top replicates, each of those replicates had three LC/MS technical replicates 
resulting in nine injections for each of the five samples.   



 
Determining differences in protein expression between samples is less intuitive than with 
the 2D-PAGE method and there are several methods utilized in current research 
(reviewed in Bantsacheff et al. (2007) and Nesvizhskii et al. (2007)). Perhaps the most 
straightforward is called “spectral counting”, which entails counting the number of 
spectra a peptide (or peptides) from a protein was observed in during a HPLC/MS 
analysis (Mann and Wilm, 1994). The counts from two different sample types are 
compared to identify proteins that are differentially expressed.  
 
For model systems with defined growth media, stable isotope labeling strategies are often 
performed (Ong et al., 2002). In these studies, one cell condition (normal) may be grown 
in baseline media and the other cell is grown with media where stable heavy isotope 
labeled amino acids are substituted. Equivalent amounts of cells or protein extracts from 
the two cells are combined and processed for analysis. The ratio of mass spectral 
intensities between the heavy and light isotopically labeled peptides is used for relative 
quantitation. For cells with undefined growth media such as human tissue samples, a 
similar strategy can be used with affinity labels (ICAT, Gygi et al., iTRAQ, Ross et al., 
2004). The affinity tag is produced in two versions, heavy and light. The protein extract 
from one condition is treated with the heavy reagent and extract from the other condition 
of interest with the light reagent. Equivalent amounts of labeled extract are them 
combined for processing and LC/MS analysis. One advantage of affinity labeling 
methods is that they can isolate specific peptides (with ICAT only cysteine containing 
peptides), thereby reducing overall sample complexity. 
 
Software such as MASIC (Monroe, 2006) is used to determine the mass spectral 
intensities of peptides. The process starts with the parent ion (mass to charge ratio) that 
was identified for a peptide and extracts the elution profile (extracted ion chromatogram) 
of that ion from the mass spectra collected for that LC/MS injection. Essentially this is a 
plot of the parent ion intensity over time. The peak area and maximum peak intensity can 
be calculated and used for quantitation.  
 
The same method can be applied to non-isotopically labeled samples for relative 
quantitation. Non-labeled experiments are not limited by the number of heavy 
isotopically labeled amino acids or affinity tags available. But regardless of method 
utilized, all experiments benefit from a strong experimental design. Caution must be 
taken to reduce sample preparation variability and prevent experimental processing from 
biasing data. Experimental bias can result from preparing all “like” samples together and 
separate from the remaining conditions of an experiment or having only one replicate per 
sample.  
 
4. Proteomics Sample Processing 
 
It should not be surprising given the various methods for proteome studies, that there are 
also a myriad of approaches for sample processing. Often an investigator will focus on 
isolating a specific type of protein from a sample. For example if an investigator is 
interested in isolating only phosphorylated proteins, they can choose from an affinity 



labeling technique (PhIAT, Goshe et al., 2001) or a chromatographic method (IMAC, 
Ficarro, 2002). Too numerous to discuss here, sample processing methods are reviewed 
by Canas et al. (2007) and Bodzon-Kilakowska et al. (2007). Here we outline a basic 
procedure for total soluble protein proteome sample processing. 
 
After harvesting the cells or tissues, samples are typically stored frozen until all 
biological replicates can be processed in parallel (or according to your experimental 
design). Depending on sampling techniques, experimental (bench) replicates can be 
initated either before or after cell lysis. For example, if one can easily determine cell 
number, replicate samples can be produced by putting an equal number of cells into 
separate tubes. Each tube will be processed separately through out the entire method. 
Cells may be lysed chemically or mechanically depending on the model system 
employed. Lysis is often done in the presence of a high molaritiy chaotrophic salt such as 
urea or guanidine to denature proteins as soon as the cell contents are released. Protease 
inhibitors may also be added to the lysis buffer. Cell debris is then removed from the 
samples by centrifugation and the supernatant is reserved for further processing. 
The cell lysate is subsequently assayed to determine protein concentration usually using 
the BCA (Smith et al., 1985) method due to its tolerance of high salt. Experimental 
replicates may also be started at this stage for those systems where cell number is not 
easily assayed, simply by aliquoting equivalent amounts of protein to separate tubes. 
Many researchers also denature the protein sample by incubating with TCEP (Tris(2-
carboxyethyl) phoshpine) and chemically modify cysteines by incubation with 
iodoacetamide to prevent disulfide bond formation. Samples are now ready for tryptic 
digestion. 
 
For effective digestion, samples must be diluted with buffer to reduce the concentration 
of salt to a level tolerated by the enzyme, and ensure the sample is at the appropriate pH. 
Trypsin is added to the sample in a ratio of anywhere from 1 part trypsin and 20 to 100 
parts sample protein. Trypsin is prepared according to manufacturers instructions added 
to the sample and incubated at 37° C overnight.  
 
Before processing by HPLC/MS peptides from the sample are separated from salts and 
concentrated using solid phase extraction.  This procedure uses a matrix of silica beads to 
which are attached chains of hydrocarbon 18 carbons in length (reverse phase). Solid 
phase extraction cartridges are typically made to attached to a vacuum manifold that 
allows liquid to be pulled through the column and provide a place to collect the final 
eluate of peptides. The resin is first activated by adding 2-4 column volumes of methanol. 
After activation, the column is not allowed to dry. Then water (2-4 column volumes) is 
added to equilibrate the resin to aqueous conditions. Sample is then added to the column 
and washed with 6 to 8 column volumes of water or volatile buffer (ammonium 
bicarbonate). Peptides are eluted with 2 column volumes of organic solvent, often 80 to 
100% acetonitrile. The samples are dried using a centrifugal vacuum concentrator and 
can be stored frozen until HPLC/MS analysis. 
 
It is difficult to describe a “typical” HPLC/MS experiment as techniques to improve the 
chromatographic separation of peptides and detection by mass spectrometry is a very 



active area of research. Usually reverse phase (essentially separation of peptides by 
hydrophobicity) chromatography is used and eluate from the HPLC column is injected 
directly into the mass spectrometer in real time. Multidimensional separations can also be 
performed where the sample is separated in one dimension by strong cation exchange 
into fractions which are then subjected to reverse phase separation. It is possible to do 
this “on-line” with a single biphasic column (Washburn et al. 2001), as well as 
separately.  
 
The columns used are fused silica with inner diameters in 75 to 150 microns which are 
packed with 3-5 micron reverse phase particles. After the column is equilibrated in 
aqueous with dilute volatile acid (ensuring peptides will be positively charged) samples 
can be injected onto the column. The peptide samples isolated by solid phase extraction 
are resuspended in the same solvent used to equilibrate the column. Peptides will be 
eluted off the column by adding increasing amounts of organic solvent containing the 
same acid. Gradient profiles used vary across investigators, one example is shown in 
Figure 3. 
 

 
Figure 3. An example of a solvent gradient used for eluting peptides from a HPLC 
column. For 15 minutes after the sample in injected the column remains at 100% solvent 
A (0.1% formic acid). Then a linear gradient from 100% to 20% solvent B 
(90%acetonitrile, 0.1% formic acid) over 5 minutes, followed by another linear gradient 
from 20% solvent B to 50% solvent B over 55 minutes and finally a linear gradient from 
50% solvent B to 95% solvent B over 5 minutes. Before the next sample is injected the 
column must be reequilibrated in solvent A. 
 
Mass spectrometers are typically run in a data dependent mode, choosing the most 
intense ions observed in a survey (MS) scan isolating those ions for fragmentation 
(MS/MS scan) in subsequent scans. Thousands of scans can be collected for a single 
HPLC/MS injection. Since the manner of peptide fragmentation is predictable, the mass 
to charge ratio from the survey scan and the ions produced by fragmentation are used for 
identification. Software programs like Sequest (Eng et al., 1994) and X!tandem (Craig 
and Beavis, 2003) perform probability based identification by utilizing the data from the 



mass spectrometer and comparing it to the expected peptide fragmentation for all tryptic 
peptides from an in silico tryptic digest of all proteins from a defined protein database 
(i.e., SwissPro or the predicted proteins from an organism whose genome has been 
sequenced).  
 
Data analysis is an extremely important aspect of proteome studies, which deserves more 
than the cursory mention that we include here. Often an experiment will involve dozens if 
not hundreds of HPLC/MS injections, where data files are large. Thousands of peptides 
are identified in a single analysis and laboratories which specialize in proteomics often 
have their own data management systems (Kiebel et al., 2006). 
 
5. Statistical Modeling of Proteomics Data 
 
A biological study of peptides by liquid chromatography (LC) coupled with mass 
spectrometry (MS) produces a large, complex, but sparse data set due to the design of the 
study, the LC/MS queuing plan for study samples, and the (often incomplete) observation 
of numerous peptides across the study’s sample collection. Consider a study of cells 
grown with exposure to five different concentrations of pesticide, each condition having 
multiple samples with replicate LC/MS injections. The realized design has an intricate 
structure spanning thousands of peptide measurements perforated with missing 
observations. To ensure valid and objective biological conclusions, a statistical method 
for an LC/MS-based biological study should formulate a design-complementing queuing 
plan that complements experimental design so that data suitable for the appropriate 
statistical modeling is collected. Then a matching statistical analysis can be performed.  
Statistical modeling is defining, fitting and interpreting a probability model. The simplest 
statistical algorithm is an exercise in statistical modeling if the intention is to make 
inferences about problems behind the data. Under each application, a (potentially invalid) 
probability model implicitly looms. The validity of this exercise depends upon an 
understanding and application of basic statistical concepts that underpin designing, fitting 
and interpreting probability models. Numerous internet resources offer quick, outstanding 
refreshers about important basic statistical concepts. These include Wikipedia 
(Wikipedia, 2008), NIST SEMATECH e-Handbook of Statistical Methods (NIST, 2008), 
Electronic Statistics Textbook (StatSoft, Inc., 2008), EBook (UCLA Department of 
Statistics, 2008) and MathWorld Probability and Statistics (Wolfram, Inc. 2008). 
 
Mixed-effects Modeling 
Mixed-effects linear statistical modeling (Pinheiro and Bates, 2000) is an established 
statistical methodology for the analysis of comparative, screening and time course 
experiments. A mixed-effects model includes terms for both fixed effects such as 
researcher-set treatments, and random effects due to subject response, instrument 
variability or other nuisance factors. The mixed-effects modeling approach uniquely 
suited to producing a LC/MS sample queuing plan and statistical analysis complementary 
to the often complex realized design of a biological study. A detailed discussion and 
example is described in Daly et al. (2008). Here we offer a brief overview.  
The basic steps are: 

1. Identify the LC/MS nuisance factors, 



2. Evaluate the design of the biological study, 
3. formulate the LC/MS queuing plan, 
4. explore the LC/MS data set, 
5. define and fit protein-level mixed effects models, 
6. group proteins based on estimates of biological parameters, 
7. draw biological conclusions about individual proteins and protein groups, 
8. alternatively, draw conclusions about the quality and performance of the LC/MS 

process. 
 

The mixed effects statistical model is characterized by three important elements. First, the 
model describes an LC/MS abundance measurement as a multiplicative function of study 
and processing factors. To facilitate modeling fitting, this multiplicative model is log 
transformed so that log(peptide abundance) is expressed as an additive model of study 
and processing factors. The model generates estimates of model goodness-of-fit, 
treatment and peptide effects, standard errors, and confidence intervals. Pertinent results 
are then transformed back to the original scale for biological interpretation. Second, the 
model has two disparate sets of terms-one set represents the biological design while a 
separate set represents the LC/MS sample processing plan. Third, the relative difference 
in LC/MS measurability between peptides is represented by a component measurability 
factor.  
 
A biologically induced difference between two conditions is often inferred from the ratio 
of a peptide’s LC/MS abundance estimates (i.e., a component’s relative abundance). The 
acceptance of forming this ratio to eliminate or significantly minimize the systematic 
effects of LC/MS processing, coupled with the common assumption that measurement 
error is relative (i.e., MS measurement error increases with measurement value) suggests 
that variation in MS abundances may be explained adequately with a multiplicative error 
probability model. Further, sample effects due to dilution/titration, fractionation, etc., are 
often multiplicative in nature. Consequently, log-transformed MS abundances may be 
effectively described by an additive statistical model (i.e., in matrix notation, model terms 
and coefficients are separable).  
 
Restricted maximum likelihood estimation (REML) is the method used for model fitting. 
REML was developed and refined to estimate more accurately variance components in 
random and mixed-effects models (Patterson and Thompson, 1971; Laird and Ware, 
1982; Searle et al., 1992). REML correctly tabulates the degrees of freedom for 
unbalanced data, improving error estimates and inferences. REML is better suited to 
fitting linear models to the often incomplete LC/MS datasets than other techniques such 
as ordinary least squares analysis or analysis of variance.  
 
Data Quality Issues 
Variance in LC/MS analysis is a significant challenge. Ideally, each protein which is 
processed would be extracted, digested, purified, separated by LC and observed by MS 
with equal efficiency. Proteins that are equimolar in a sample, would have comparable 
MS abundances proportional to their concentration, and in particular, abundances 
peptides from their parent protein would be but replicate measurements of the parent 



protein’s abundance. In reality LC/MS processing, some peptides are more easily 
measured (i.e., identified and quantified) by LC/MS than others (Purvine et al., 2004). 
Whether caused by peptide digestion efficacy, hydrophobicity, or ionization potential 
these nuisance factors directly affect the quantification of a component’s abundance. This 
LC/MS peptide measurability effect varies across peptide due to the cumulative, but 
differential effects of nuisance factors. Relative LC/MS peptide measurability, however, 
is very reliable across samples measured under similar conditions on the same LC/MS 
platform. That is unique peptides of a given protein most often display similar MS 
abundance profiles randomly perturbed by measurement error across a biological study. 
Differences in the LC/MS peptide measurability can be estimated and removed by mixed-
effects modeling to remove this source of variability and allow pooling of data from 
peptides of the same parent protein (Daly et al, 2008). The mixed effects modeling 
produces one model for each fitted protein. A single study may result in hundreds to a 
few thousand acceptable individual protein models. 
 
LC/MS processing introduces many nuisance factors unrelated to the biological factors of 
greatest interest, such as variability in instrument performance (“instrument drift”), 
utilizing different LC columns and electrospray emitters. Often a biological study is 
executed by one group in one location at one time while the resulting samples are 
analyzed using LC/MS by an independent group in a separate location at a later time. The 
study designers are advised to include various quality control samples and use a 
complementary LC/MS sample queuing plan to guard the validity and objectivity of their 
study. Here, the important statistical principles are randomization, replication, and 
blocking, of which blocking is key.  
 
A block is a set of samples spanning the interesting factors over which the nuisance 
factors are assumed to have a constant effect (the nuisance effect, however, may vary 
from block to block). Thus, block size, or number of samples in a block, is determined by 
the nuisance factor combinations. Consider a study investigating protein expression in 
diabetic tissue. Here, age, gender and body mass index (BMI) could be nuisance factors. 
A block in the diabetes design would be a sample from the diabetic tissue of interest with 
one combination of all nuisance factors-one tissue sample each from a non-diabetic, pre-
diabetic and diabetic matched on age, gender and BMI. In its simplest form, a block is 
one replicate of the full biological design, or a complete mini-experiment containing one 
sample from each treatment combination. Blocking is quite common in biological studies 
and an experiment’s blocks are the natural blocks for LC/MS processing. If the study 
design does not feature blocks, then study blocks solely for queuing LC/MS samples may 
be formed. Randomly select one sample from each treatment combination to fill a block. 
(Figure 4).  
 



 
 
Figure 4. A simple example of a LC/MS queue.Shown is a partial LC/MS queue for an 
experiment where a cell line is exposed to 4 different concentrations of pesticides. Here a 
block contains 5 LC/MS injections one from each sample types-control, and those 
exposed to concentrations B, C,  and D. Note that within each block the five different 
samples of peptides are in random order within each block.  
 
   
The general stability of an LCMS processing line, LC column or MS instrument may be 
assessed with a controlled experiment featuring the sequential processing of numerous 
replicates of the same quality control sample across one or more processing lines. Here 
the objective is to identify the longest run of injections, or block size, over which the 
nuisance effects of an LCMS processing line are relatively constant. Suppose the LC/MS 
block size is larger than the study block size, then the study blocks effectively become the 
LC/MS blocks. That said, the samples within each existing study block should be 
randomly ordered, and then these blocks should be randomly queued for LC/MS 
processing. The aim of the LC/MS sample queuing plan is to control the confounding of 
nuisance LC/MS processing factors with the biological factors of interest (Figure 5). 
Though specific LC/MS nuisance factors are many, most can be sufficiently controlled 
by grouping under the major categorical variables: sample preparation set, LC column ID 
and LC/MS data acquisition start time.  

 
Figure 5. Advantages of proper LC/MS queuing. 



A boxplot MS peptide abundances (y-axis) for 162 LC/MS injections of 27 separate total 
soluble digest of Trichoderma reesei. The red trend line is the median peptide abundance 
across all samples. Red dots are below six LC/MS injections that are well below the 
median observed for the remaining samples. All six are LC/MS technical replicates 
(injections) from a single bench top replicate, indicating a problem in the sample 
processing of this sample.  
 
 
The mixed-effects model may also include terms that reflect a more complex design of 
the biological experiment, and terms that break out other LC/MS processing effects such 
as differences in sample preparations and time of MS acquisition. Terms not supported by 
measurements, such as peptides only observed in one LC/MS injection are excluded. The 
effectiveness of this modeling is limited by the amount and pattern of missing 
observations. In effect, only the information in the observed abundances is retained while 
the information in missing observations is discarded. This need not be the case. If the 
abundance data is converted to observation presence/absence, or 1/0, data, then the 
differences in the probability of a peptide observation across treatments may be modeled 
using additional statistical methods.  
 
Overall the goal is to draw valid, objective, statistically defensible conclusions. As in the 
first look at the data, visual and tabular summaries are very effective. Here, however, the 
strength of the evidence need not be anecdotal because an appropriate analysis produces 
valid estimates of standard errors and confidence intervals. Careful interpretation, 
however, is required. It is important that the interpreter know the statistically valid 
interpretation of standard errors and confidence intervals. Each parameter estimate, or 
contrast of parameter estimates, has its own standard error and confidence interval.  
 
6. Integrating proteomic data with other high throughput data 
 
Technological advances in high-throughput technologies have been fueling a revolution 
in biology, enabling analyses of entire systems at a global scale (e.g., whole cells, tumors, 
or environmental communities).  Thus far, the discussion has focused on the global 
profiling of proteins using high-throughput mass spectrometry (e.g., normalization 
approaches).  In the context of systems biology this proteome information must be 
integrated with a plethora of additional information, both from other high-throughput 
“omic” technologies (e.g., transcriptomics and metabolomics), and supplementary 
information (e.g., functional annotations, cellular location predictions, regulatory 
elements).  This task of data integration, with an eye on systems biology, requires 
multiple layers of computational tasks, including linking to data management systems, 
bioinformatics tools and statistical and visualization methods. 
 
Data Management and Connectivity to Bioinformatics Tools 
There are many challenges with managing data from heterogeneous data sources that 
range from simple access to the data to performing complex queries and workflows on 
the data to answer targeted questions of interest.  In practice, the need to integrate and 
perform complex analyses on heterogeneous data sources results in ad hoc connections 



between databases and software tools by writing small scripts, cutting and pasting 
queries, and basic manual labor.  As a result, recent years have seen a surge in the 
development of new software tools focused on automating and simplifying these tasks.  
These bioinformatics resource tools tend to fall into four categories; semantic mapping, 
interoperation of heterogeneous bioinformatics databases, automated workflow analyses, 
and programs that integrate the data with bioinformatics software.  Semantic mapping 
approaches, such as ToolBus (Eckart et al., 2003) and Taverna (Oinn; 2004), focus on 
defining translation engines that ensures that entities across environments are 
appropriately related.  Alternatively, other approaches focus on the capability to access 
heterogeneous databases and merge directly on the data sources, such as BRIDGE 
(Goesmann et al., 2003).  These works have led to subsequent tools, such as 
BioWarehouse (Lee et al., 2006) and GenFlow (Oikawa et al., 2004), that offer a 
combination of semantic mapping and database access capabilities. Alternatively, one can 
focus on the goal of the integration and define specialized workflows (Lu et al., 2006; 
Peleg and Altmann 2002).  In some cases these methods are linked to statistical and 
visualization tools (Facius et al., 2005; Watson 2005).  

 
Some current approaches, such as BRM (Shah et al., 2007), Gaggle (Shannon et al., 
2006), and FACT (Kokocinski et al., 2005), focus on facilitating all of these capabilities 
(object mapping, database access, and generic workflows) into a single environment.  
Since both of these systems biology environments are built in Java, they can be easily 
installed and run by biologists and bioinformatics experts on publicly available websites: 
BRM (http://www.sysbio.org/dataresources/brm.stm) and Gaggle 
(http://gaggle.systemsbiology.net).  These two integration and analysis tools have 
commonalities and the underlying programming languages allow them to work together.  
The BRM working environment (Figure 6) is given as an example of the multi-layer 
analyses allowed by these multi-capability software programs.  On the top left is the 
project browser which allows the user to manage multiple heterogeneous datasets in a 
single space that gives information on each source, such as the number of rows and 
columns.  The data set browser on the bottom allows the user to evaluate multiple data 
types in one view and codes each data source by color.  To retrieve additional 
information associated with one or more data sources the data retrieval panel (top right) 
allows direct access to bioinformatics resources such as protein interactions (Bader et al., 
2000; Xanarios 2000), pathways (Kanehisa and Goto 2000), and annotation data 
(Wheeler et al., 2006; Kersey et al., 2004; Bairoch et al., 2005).  In addition, from this 
retrieval data panel, visualization softwares (Webb-Robertson et al., 2007; Shannon et al., 
2003) associated with different types of data can be launch directly without any 
additional installations from the user. 
 

http://www.sysbio.org/dataresources/brm.stm
http://gaggle.systemsbiology.net/


 
Figure 6:  A collage of the Bioinformatics Resource Manager (BRM) working 
environment, including the project browser (top left), data set browser (bottom), and data 
retrieval panel (top right) capabilities. 
 
 
Statistical Integration 
There are many levels of integration that can be performed when evaluating multiple 
omics data sources as well as ancillary information (e.g., gene ontologies).  The task is 
often complicated due to the heterogeneity of the data; for example, quantitative variables 
on multiple scale and categorical information.  Many reviews have also been completed 
on integration of omics data focused towards systems biology (Aggarwal and Lee 2003; 
Reif et al., 2004; Nie et al., 2007).  However, these reviews tend to focus on a generalized 
need and not the specifics of the statistical methods that may be employed.  De 
Keersmaecker et al., (2006) nicely discusses the guiding principles of integration, such as 
balancing sensitivity and false discovery rates, global versus query specific analyses, 
supervised versus unsupervised methods, and sequential versus concurrent methods. 
 
In general, statistical methods tend to fall into two categories, unsupervised (exploratory) 
analyses or supervised learning.  Unsupervised methods, such as principal component 
analysis (PCA) (Johnson and Wichern 1992), optimize some feature of the data, such as 
variance, which may reveal clustering tendencies of the data in a lower dimensionality.  
These methods are for exploration purposes to try to identify underlying structure in the 
data.  Alternatively, supervised learning assumes that the response is known, or has been 



measured, and the goal is to find a correlative model between the set of features and the 
response, such as with regression (Neter et al., 1996).  These methods are predictive in 
the sense that if one attains the set of features for a new observation the response can be 
predicted from the model.   

 
In respect to statistical data integration, irrelevant to the actual statistical model 
employed, there are generally three basic approaches to merge the data for statistical 
analysis, which is highly dependent upon the type of data that is being considered.  The 
first is feature integration where the individual datasets are merged into a global dataset 
and then evaluated using either supervised or unsupervised learning.  The second is to 
individually evaluate each dataset with methods, such as clustering, and then statistically 
merge the results.  The last method is to transform each dataset into an alternate 
representation, such as a network or kernel, and merge the data in this new dimensional 
space: these methods are usually used in conjunction with supervised learning.  These 
three strategies are described briefly, as well as the benefits and caveats of each approach.  
 
Feature Integration 
One of the most common approaches in data integration is simply feature integration. If 
dataset A consists of m features, ],,[ 21 mA fffD = , and dataset B consists of n features, 

],,[ 21 nB gggD = , than the integrated dataset is simply:  
],,,,,[ 2121 nmAB gggfffD = .                                        (1) 

This can be performed by either be by merging the two datasets such that each 
observation in one dataset matches that in another, e.g., each protein corresponds to a 
gene, or by attempting to separate specific events, such as the toxicity of a compound so 
that the biological samples are the observations and the biomolecular molecules are the 
features.  The task of merging data for the goal of integrating microarray and proteomic 
data has been reviewed (Waters et al., 2006) and can be accomplished using tools such as 
those previously described.  Additionally, Cox et al. (2005) give a review of clustering 
and correlation based approaches for merged datasets.  This approach is only feasible 
when the variables are of a common type, e.g., qualitative, since normalization is 
typically a necessity to put each variable on the same scale.  However, given the 
appropriate scaled dataset, most multivariate statistical methods, such as clustering or 
regression, could be employed to analyze trends or relationships in the data.  In the field 
of proteomics, this approach is most commonly used to merge ancillary information with 
peptide identification results to improve the quality of the results, i.e., improve sensitivity 
(Anderson et al., 2003; Cannon et al., 2005).  These approaches describe a peptide as a 
set of disparate features associated with identification metrics, such as the cross 
correlation score from SEQUEST (Eng et al., 1994) and fraction of matched peaks, and 
use the supervised learning algorithm support vector machine (SVM) (Cristianini and 
Shawe-Taylor 2000; Vapnik 1995) to determine correct from incorrect identifications.  
 
The primary caveats of feature integration are the need for a one-to-one correspondence 
between objects in each dataset and that variable types, such as categorical information, 
are difficult to merge.  In addition, the contribution of each feature is often not evident 
but of interest.  Thus, feature selection methods typically follow the initial analyses.  



Overall, with feature integration, care must be taken to assure that the data are 
appropriate to merge and properly normalized. 
 
Individual Analyses Followed by Integration 
An alternative approach to integration is to evaluate each dataset individually and then 
merge the results of each analysis.  An unsupervised approach to this task is to cluster 
each dataset into some number of clusters and then merge the clusterings, commonly 
referred to as metaclustering (Topchy et al., 2004; Zeng et al., 2002). These methods 
have been demonstrated to be of use in biology (Barutcuoglu et al., Kano et al., 2005; 
Kasturi and Acharya 2004) If each observation is treated as a probability of being 
associated with a specific cluster than a simple Bayesian approach can be taken to merge 
these results.  Two primary benefits of this approach is the capability to integrate multiple 
data formats, e.g., qualitative and quantitative, and the low dimensionality of the results 
are conducive to visualization (Havre et al., 2005).  Figure 7 gives an example where 
three types of experimental data (Powerblot, FTICR proteomics, and microarray) over a 
time course.  For each dataset at each time point the dataset are clustered into three 
classes (up-regulated, down-regulated, neither).  The top and bottom axes demonstrate 
which colored lines belong to each data type and their respective results at each time 
point.  As seen in the figure, common trends among the three datasets can be easily 
observed.  In addition, the bottom metaclustering is a merged result over the entire time 
course to highlight statistical trends among the data. 
 

 



Figure 7:  The Juxter visualization tool demonstrates the capability to integrate invidual 
datasets, in this case Powerblot, FTICR, and Microarray data, each at an individual time 
point.  The top and bottom tiers represent the data type which each layer in the 
visualization shows which genes or proteins fall into the categories of up-, down-, or non-
regulated at each time point.  The last layer in the visualization gives the statistically 
merged results over the entire time course. 
 
Alternative to classifying or clustering the data, as seen in Figure 2, often in proteomics 
and biology, the end goal is to find a set of biomolecules that are relevant to the question 
of interest, e.g., which proteins are associated with a virulent versus non-virulent 
pathogen.  In this case researchers commonly use statistical tests of significance and 
assign p-values, or normalized false discovery rates, to each biomolecule.  Thus, all the 
datasets can be reduced down to a set of p-values, which can then be merged into a level 
of significance associated with related entities.  Recent years have seen these methods 
become much more robust by accounting for biological nuances and using multiple 
statistics to evaluate the significance of individual biolomolecular species (e.g., genes, 
proteins, metabolites).  Fagan et al., (2007) first evaluate each dataset using PCA to 
visualize relationships in each data source and reduce the dimensionality of the 
integration task.  They then use co-inertia analysis to evaluate correlations across 
thedatasets, which better accounts for biological issues that arise in direct correlation 
analyses because of post-transcriptional and -translational regulations.  POINTILLIST 
(Hwang et al., 2006) uses a weighted version of several statistical metrics of significance 
to derive a network model where the integrated p-value measure indicates the degree of 
confidence in a node or edge being a true component of the system of interest where a 
node represents a biomolecular species.   
 
The benefit of these methods, both integration of clusters and statistical levels of 
significance, is that they can better handle datasets of vastly different sizes and types.  
Additionally, normalization only needs to be performed within each dataset.  Even 
further, as seen in Figure 2, there doesn’t need to be a one-to-one mapping between 
datasets under the condition that clusterings are the end goal.  Some of the statistical 
significance integration approaches can account for missing data, a common problem in 
proteomics.  The caveats is that in many cases since there may not be a one-to-one 
mapping between the datasets, interpretation may be difficult and time-consuming. 
 
Integration in Feature Space via Data Transformation 
In supervised learning it is often the case that the data is transformed into an alterative 
representation, such as a relationship or a kernel matrix.  In biology, often data is 
represented as the relationship between biomolecular entities, for example correlations 
between genes that might relate to a common regulation or links between proteins that 
represent possible interactions.  These relationship matrices can be merged into a more 
accurate view of the system using methods such as Bayesian networks where the 
relationship matrices are the input (Gilchrist et al., 2004; Huttenhower and Troyanskaya  
2006; Troyanskaya et al., 2003).  This approach is slightly different from that described 
above since the relationship matrix itself is not typically the final result for an individual 
dataset, but an intermediate representation used for the task of learning.  Since the data 



are merged at an intermediate form a major benefit of this approach is that the data do not 
have to have a one-to-one mapping.  The largest caveat is that these methods are often 
computationally intensive in learning the parameters of the model. 
 
A more abstract approach to integration of transformed data is kernel fusion.  A kernel 
function is a transformed projection of the data that in principle enhances linear 
separability.  Kernel functions are especially powerful for dataset that are not linearly 
separable by mapping the data into a space that can be linearly separated by a SVM.  
Individual kernel functions for each dataset can be merged into an integrated kernel 
(Lanckriet et al., 2004), 

nnInt KKKK µµµ +++= 2211 ,                                          (2) 
where Ki is the kernel associated with the i-th dataset.  KInt can be used to build a 
supervised model in the same manner as for a single data source.  This is a very powerful 
statistical approach, however it has the same caveats as the feature integration method; a 
onoe-to-one mapping between biomolecular entities.  However, with this approach it is 
much easier to integrate information from other computational tools, such similarity 
between entities by protein domains or sequence similarity. 
 
7. Summary 
 
In 1958 Francis Crick laid out the “Central Dogma” of biology:  
 

“…once ‘information’ has passed into protein it cannot get out 
again. In more detail, the transfer of information from nucleic 
acid to nucleic acid, or from nucleic acid to protein may be 
possible, but transfer from protein to protein, or from protein to 
nucleic acid is impossible. Information means here the precise 
determination of sequence, either of bases in the nucleic acid or 
of amino acid residues in the protein.” (Crick 1958) 

 
In other words, proteins are an endpoint for the information encoded within the genome. 
Thus, they should and do merit a strong research focus. The structure of proteins, 
however, makes there study at a global scale much more difficult than that of nucleic acid 
for which high throughput sequencing and hybridization approaches exist. The study of 
all of the proteins encoded by the genome, or the “proteome” (the term coined by 
Australian researcher Marc Wilkins in 1994) relies on protein or peptide separation 
followed by mass spectrometry. This approach has proven to be the most efficient 
method to identify protein sequences en masse. However, given the complex mixtures 
and the nature of the approach, there are several caveats associated with modern 
proteomics.  
 
We have explored in this chapter many caveats associated with current proteomics 
methods. Gene models are crucial to proteomics, because they are used as the basis for 
database searching algorithms that are used to match mass spectra generated by global 
proteomics. Incorrect models leads to both false positive and false negative peptide 
sequence information. Processing of samples for proteomic analysis is also important – 



developing a method for protein isolation can be generalized, but with the breadth of 
organisms being studied, sample cleanup can vary. Also crucial to processing, is the 
overall experimental design. A statistically rigorous design is integral to downstream 
analysis and can be useful in identifying samples that fail due to processing or instrument 
error. The correct design of an experiment also translates to the ability to apply statistical 
modeling approaches that move proteomics from a qualitative method to a quantitative 
method. Finally, tools and methods for the integration of proteomic and other high 
throughput global analyses such as microarrays and metabolomics, are needed because 
the proteome is only one tool of several that are needed to build a hypotheses and models 
of biological systems.  
 
The proteomics field continues to advance rapidly. Looking forward, we will need further 
advances in gene modeling, mass spectrometry, rigorous statistical approaches and 
bioinformatics tools for proteomics to have the robustness of methods currently in use for 
genome sequencing and transcriptome analysis. Event though there will be improvements 
and refinements moving forwards, there is still much that we can learn using currently 
available approaches to proteome analysis. 
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