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DESIGN STRATEGIES FOR MONOLITIDC ADAPTIVE METAL MIRRORS 

Malcolm R. Howells, 
Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley CA 94720, USA. 

ABSTRACT 
The design principles and special advantages of monolithic adaptive metal mirrors have 
been described in an earlier paper1• The present paper provides analysis for 
understanding the response of such mirrors to the unintended torques they receive from 
the flexural hinges which connect them to the bending system. The analysis includes 
mirrors both with and without water-cooling channels. The torsional rigidities of the 
usual types of flexural hinge and of the most common mirrors are calculated thus 
allowing the hinge-induced distortions of any mirror surface to be estimated. Two 
strategies for reducing such errors are proposed. One involves the design of sufficiently 
flexible hinges and the other the elimination of the hinge rotations (and therefore their 
torques) altogether by means of a new design principle. Some analysis of the latter 
scheme is provided including a prescription for choosing suitable design parameters. 

KEYWORDS 
Grazing-incidence mirrors, adaptive optics, flexural hinges, x-ray focusing, high-power mirrors 

1.0 INTRODUCTION 
Monolithic adaptive mirrors for grazing incidence applications can be cut from a single block of 

metal using a wire, electric discharge machining (EDM) system. The cut shape is designed to act as a 
single flexural mechanism comprising both the mirror and its bending device. This type of all-metal 
component is particularly well-suited for grazing-incidence x-ray mirrors for synchrotron radiation beam 
lines and is compatible with intensive water-cooling arrangements. In an earlier paper1 we have 
described the principles of monolithic design and its advantages for mirror systems as well as the theory 
that allows one to achieve prescribed mirror shapes by means of a controlled variation of the mirror 
thickness with position. The ideas in reference 1 have already been applied successfully to a number of 
mirrors manufactured commercially by Rockwell Power Systems2 and Photon Sciences Intemational3 . 

The above paper also provides a number of references describing earlier work on adaptive x-ray mirrors. 
The closest antecedent to the monolithic schemes considered here is the mirror described by Ice et al4 

which is a water-cooled metal mirror bent into a circular shape by a single, point load. In the present 
paper we continue the treatment of the theory of adaptive monolithic mirrors paying special attention to 
the effects of the three hinges which together provide the force system which deforms the mirror. 

In reference 1 we discussed the design shown in Fig. 1 which would, for example, provide a 
circular reflecting surface if the mirror thickness were made proportional to the cube root of the distance 
from the end. The mirror is bent by applying a point load in the center and the circular shape will be 
good over the region where the cube root law is obeyed provided that the assumptions of beam theory 
are satisfied5 and that the three narrow webs of material linking the mirror to the bending mechanism 
behave as perfect (torque-free) hinges. In the earlier paper we also discussed the consequences of 
having a non-zero torque at the center hinge which would apply an unwanted moment to the mirror at its 
center leading to a corresponding twist ("S"-shaped error) of the mirror surface. Torque by the center 
hinge is potentially more harmful than by the end ones but it is eliminated in the design of Fig. 1 by the 
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rectangle mechanism fghi The latter ensures that the rigid member ej moves up or down without 
rotation so that the "hinge" ate never rotates and thus never torques the mirror. 

Although the design of Fig. 1 has been used quite successfully, it continues to have the weakness 
that the two hinges at the ends do rotate as the mirror bends and therefore they do torque the mirror and 
cause small distortions ("M" or "W" shaped errors). Moreover the size of this error appears to be such 
that it could be a barrier to achieving microradian or submicroradian accuracy on mirrors fabricated by 
monolithic bending techniques. In view of the practical importance of the problem and the fact that we 
believe we have solutions to it, we consider the question of the distorting effect of the hinges on the 
mirror in more detail in this paper. 

In schemes such as that of Fig. 1, in which some of the hinges rotate, the strategy must be to 
arrive at a hinge design with a sufficiently low torsional rigidity (torque per unit angle) that the resulting 
mirror distortions are within tolerance. This is the simplest approach and, on present experience, seems 
to be satisfactory down to about 0.5-1 arc second tolerances at moderate curvatures (>lOOm radius, say). 
However, we believe that this design principle has not yet been carried to its limit 

To implement such an approach requires an understanding of the torsional rigiditie$ of both the 
mirror and the hinges and of the stresses that will develop. We provide a treatment of the torsional 
rigidity of mirrors in section 2 including those with a uniform section and those with a cube-root 
thickness variation both with and without cooling channels. In section 3 we describe the torsional 
properties of the types of flexural hinges normally used in monolithic mirrors and in section 4 we show 
how the mirror performance depends on the relative sizes of the torsional rigidities of the hinge and the 
mirror. 

To do better than this and to deal with cases where we expect a large bending force or a large 
amount of bend, which implies thicker hinges and greater hinge torques, we need a new design principle. 
We need to develop a design in which all three hinges that connect to the mirror have zero rotation and 
thus apply zero (unintended) torque to the mirror. We have developed such a design and give a 
description and analysis of it in section 5. 

2.0 DISTORTION OF A MIRROR BY APPLICATION OF COUPLES 
We will analyze the mirrors and hinge types of interest using standard beam theory. The validity 

conditions for such an analysis have been discussed by Roark5 and although the conditions are usually 
well satisfied by adaptive mirrors this is not generally the case for the hinges linking the mirror to the 
driver. Nevertheless we will proceed to use beam theory for both and defer till later the question of its 
validity for hinges. 

2.1 Twisting of a uniform mirror at its center 
The general equation of beam theory is 

d2 
YI(x) :;' = M(x) 

dx 
(1) 

where Y is the Young's modulus, I the section moment of inertia and M the bending moment (see Fig. 
2a). For a rectangular section of height h, and width b, l=bft1 /12. We consider first the case of a mirror 
of uniform cross section with fixed ends, subjected to a torque C at its center. For this case we have 
/(x)=/o=constant and M(x)=(L/2-x)CIL. Integrating (1) twice and applying the boundary conditions 
(y).x=0=0 and (y)x=L/2=0, we arrive at the following equation for the slope 
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Ylo dy = Cx _ Cx
2 

_ CL 
dx 2 2L 12 

from which we can conclude that the torsional rigidity of the mirror ('t'um) is given by 

C 12Y/0 "t' = =--
um dyl L 

dx x=O 

2.2 Twisting of a "cube-root" mirror at its center 
For a cube-root mirror we have 

(2) 

(3) 

I(x)= 
2~o (~ -x) (4) 

So using the same M(x) as before and substituting it and (4) into (1) we find that the equation simplifies 
to · 

~ (5) 

where /o now refers specifically to /(0). The constant bending moment indicates constant curvature 
meaning that the twist at the center will produce two circular curves of opposite sense. (5) leads 
similarly to an expression for the torsional rigidity 't'cm of the center of a cube-root mirror. 

8Y/0 
"t'cm=L 6) 

2.3. Twisting of a uniform mirror at both ends 
For a monolithic mirror one usually has a strongly constrained symmetrical situation where the 

center and the ends of the mirror are maintained in definite positions by the bending forces. If we 
superpose on that the hinge torques at the ends and consider only the errors produced by such torques 
then we can take the boundary conditions to be 

Ylx=O = Eldxdyl = Ylx=L/2 = 0 (7) 
~x=O 

and compute the value of Cl(dyldx)x=U2 as before. The extra boundary condition is needed to calculate 
the forces on the mirror since for this /case the forces depend on the elastic properties of the mirror and 
cannot be determined from statics. The result is 

"t' = 8Y/o (8) 
ume L 

2.4. Twisting of a composite mirror at both ends 
The most realistic case for our purposes is a constrained cube root mirror which has a small 

section of length t1L at each end with constant thickness (see Fig. 1 for example). One reason for 

including such a straight section is to allow cooling channels to enter and leave through the ends of the 
mirror. The situation is again "statically indeterminate" and we proceed using the same boundary 
conditions (equation (7)) as before to 

2Y/0 

"t' - L compe- 2 
6(1- x) + ln(2x) -1 
3-4x2 
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where x=ALIL. The conclusion of the calculation expressed in equation (9) is that 'rcot¥e is slightly 

higher than the torsional rigidity of a similarly constrained uniform mirror of thickness equal to the end 
thickness of the composite mirror. This is reasonable and if we take as an example an end thickness of 
half the center thickness, we find that 

AL 1 
-=-
L 16 

'Ccompe = 1.524 
'CIUTU! 

2.6. Effect of cooling channels on the torsional properties of mirrors 

(10) 

The control of the shape of the type of adaptive mirrors we are considering here depends on 
being able to program /(x), the moment of inertia of the cross section area of the mirror to any desired 
value. Naturally if the mirror has cooling channels, the shape of the cross section area is modified and 
the section moment is reduced. To deal with this we propose to increase the thickness, h(x), at each 
position along the mirror length to that value which restores l(x) to its original value (before cooling 
channels were introduced). Once we have calculated the new form of h, the EDM machine can be 
programmed to cut that form as easily as any other. 

In calculating the consequences of cooling channels we adopt a general method which applies to 
the removal of any shape or shapes from the initially rectangular cross section. This includes in 
particular, circular or rectangular cooling channels and the portion ofa circle removed when a concave 
cylinder is ground into a flat mirror blank. Remembering that /(x) must be calculated relative to the 
neutral axis and that this shifts when the shape of the section changes, we proceed as follows: 

Let the ith shape to be removed have area Ai and center of gravity distant Si from the mirror 
surface. Let h be the new thickness value that will restore the section moment to the value l=bh(x)3f12 
that prevailed before the shapes were removed. Taking moments about the new neutral axis (assumed to 
be distant f from the bottom of the, section) we find 

h-f f ~ 
(h- f)b-

2
-=fb2- ~Ai(f-si). 

l 

(11) 

Now let the moment of inertia of A i about an axis through its center of gravity parallel to the neutral 
axes be /i. Then the equation for h is 

f
3
b (f)

2 
(h-f)

3
b (h-f)

2 
2 Io =-u+ fb 2 + 

12 
+(h- f)b -

2
- - ~(li+Ai(f-si)) 

l 

(12) 

In arriving at (12) we have used the parallel-axis theorem which states that if the moment of inertia of an 
area A is IG about an axis through the center of gravity and I about a parallel axis displaced by z, then 
l=IG+Az2• Collecting terms we get 

where 

According to ( 11) 

b 3 2 (h2b ) 10 =Jh + f (bh-P)-2f 2 -Q -R-S 

P= LAi: Q= LAisi: R= LAis?: S= Lli 
. i 

h2b --Q 
f=-=-2 __ 

hb-P 
so substituting for fin (13) we finally get 
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(
bh3 ) (h2b )

2 

3-R-S-(r: (bh-P)- 2-Q . =0 (15) 

which is a quartic in h with everything else known. The correct solution is the one which is slightly 
greater than the original value of h(x). 

3.0 TWISTING OF FLEXURAL HINGES 

3.1. Torsional rigidity of a double-sided notch-hinge 
The most useful type of flexural hinges for monolithic mirror designs are the so-called "notch" 

hinges made by drilling two circular holes or a hole and a straight edge close to each other (Fig. 2b, 2c). 
We now apply the above type of theory to this hinge which is assumed to be loaded by a pure torque. 
For the case illustrated in Fig. 2b, using equation (1) and /(x)=bh3J12, we arrive flrst at the differential 
equation 

d2y 12C 1 

dx2 = by [ ( ) ]3 . · 2 p-~ p2 - x 2 + t 
(16) 

The boundary condition is (dyldx)x=-p=O and (9) can be integrated using a standard form 6 to give the 
torsional rigidity, 'rhinge=C!(dyldx)x=p as 

'rhinge = 12 { 1 1 [ 8p2 12ap -l(Q)]} p -+- a+--+--tan -
a Q2 a Q t 

(17) 

where a=2p+t and Q2=4pt+t2. Considering the limit p >>t, we flnd that the third term of the square 
bracket is the dominant one and (17) can be approximated by · 

2Ybt512 

. 'Chinge = 91r..[jJ (18) 

which agrees with the result of Paros and Weisbord7. This expression is widely used and it has been 
tested8 experimentally for two different thickness webs. It gave errors of about 20% for plt=2.2 and 3.7. 

To simplify the presentation of results we consider the torsional rigidity of the notch hinge in 
ratio to that of a flat rectangular beam of the same material and identical length, 2p , width, b, and center 

thickness, t. The torsional rigidity of the rectangular-beam hinge is given by 

Ybt3 

'rbeam = 24p 

so that the ratio G(y)='rhingd'rbeam can be calculated from this and equation (17). 

(19) 

G(y) can then be 

expressed as a function of a single variable, the dimensionless shape parameter y=plt, as follows 
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G(y) = 'rhinge = 2/
2 

"beam 1 1 ( sl 12gy -1 tJ -+- g+-+--tan 
g !2 g f 

t=..J4y+1 (20) 

g=2y+1 
The expression G(y) is plotted as the continuous curve in Fig. 3. One can see that it approaches unity in 
the limit y--+0 as it should and that it increases rather slowly withy. One can also get an approximate 

expression for G(y) by using the Paros-and-Weisbord approximation for 'rhinge 

G(y): ~JY (21) 
3tr 

which is also plotted in Fig. 3 and is seen to be a surprisingly good approximation. The analytical 
results are compared in Fig 3 to two sets of finite element calculations due to Smith 9 and Andresen 10• 

It is noteworthy that the agreement is very good, much better than one would expect based on the usual 
validity conditions of beam theozr. This is perhaps due to the fact that only the region close to the 
center of the hinge (which is the most beam like) actually bends significantly. The most useful 
conclusion from Fig. 3 is that the Paros-and-Weisbord curve agrees so well with the finite element 
calculations (at least for y~1) that it can be safely used for essentially all design purposes. This 
conclusion of our analysis of the double-sided notch hinge can thus be summarized in the following very 
simple form 

(22) 

3.2. Torsional rigidity of a single-sided notch hinge 
The single-sided notch hinge is obtained by slicing the double-sided one longitudinally (Fig. 2). 

Equation (16) then shows that the torsional rigidity of the single-sided hinge is one eighth that of a 
double-sided hinge of the same radius and twice the center thickness. It seems likely that the single­
sided hinge may obey beam theory less well than the double-sided one because the latter but not the 
former has symmetry about the neutral axis. 

3.3. Torsional rigidity of composite hinges 
The flat beam is not only of interest as an easy reference for the above calculations but also as a 

part of the hinge. The combination of a circular and a straight section as shown in Fig. 4 provides a 
good compromise between the competing requrrements for high compressive or tensile strength and low 
torsional rigidity (i. e. low torque on the mirror). It also reduces the stress concentration which occurs 
near the center of pure circular hinges by spreading the region of bend. The flat-beam design does lead 
to a less ideal hinge in the sense of producing a less pure rotation about an axis, but a monolithic mirror 
does not rely on this aspect of the flexural hinges. 

In order to calculate the torsional rigidity of the combined hinge we have only to recognii:e that 
torsional rigidities connected in series add harmonically. That is if we join two beams of torsional 
rigidity 'rt and 'r2 end to end the torsional rigidity 'rror of the combined beam is given by 

1 1 1 -=-+- (23) 
"rot 'r 1 'r2 
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Suppose we have a circular hinge with y=l and that we add a straight section of equal length, 2p, in the 

center in the manner of Fig. 4. The torsional rigidity of the circular part would be about 2-rbeam from Fig. 

3 so from equation (23) the combined torsional rigidity would be 2'rbeamf3. Similarly if we insert n such 

sections in the center the combined torsional rigidity would be 2 'rbeamf(2n+ 1 ). This therefore represents 

a way to reduce the torsional rigidity without reducing the cross section (and thus the strength) which is 
exactly what we need for the present application. The amount of improvement is shown in Fig. 5. 

3.4. Stress in flexural hinges 
Another important element in.the design of flexural hinges is the stress which for the full-length 

notch hinges has a maximum at the center. For any beam the local bending stress is given by 
Yy' I R = My' I I where y' is a y coordinate measured relative to the neutral axis. These expressions for 
the stress can be evaluated by beam theory from the definitions given in section 2. The maximum stress, 
and the torsional rigidity of the main hinge shapes used in mirror design are tabulated for reference in 
Table 1. The torsional rigidity of composite hinges can be found from equation (23). 

,. 

Table 1: Design Formulas for flexural 
hinges 

Element Torsional rigidity Maximum 
shape stress 

Ybt3 Yt8 
(J --

~ 'rb =-- beam- 4p 
eam 24p 

~ 

~ 
G(y) Gbeam 

G(y) 'rbeam 
___f'\_ 

~ 
G(2y) 

8 
'rbeam 

G(2y) · 

8 
()beam 

\... 
2G(y) Gbeam 

2G(y) 'rbeam 
__( 

G(2y) 
4 'rbeam 

_G..:......;(2y::...:...) 
4 

(jbeam 

All the elements are taken to be of full length 2 p, 

width b, and full thickness t except that the quarter­
circle ones (which are formed by cutting the 
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semicircle. ones in half) have length p. G(y) is 

given by equation (20) or (21) where y=plt. 

4.0 APPLICATION TO MIRROR DESIGN 
The unwanted angular change (}um (the asymmetric slope error) at the center of a uniform mirror 

due to a rotation 8h of the hinge at the center would be 
'rhi 

Bum =(}h~· (24) 
'rum 

Similarly the angular error at the end of a composite mirror is 

8 - (} 'rhinge (25) 
compe- h 

'rcompe 

We can see from ·the expressions for 'Chinge and·~compe that the mirror bend angles are independent of Y 

and b as one might expect. The unintended distortion induced in other types of mirror by hinge torques 
can be calculated in similar fashion. 

Practical choices of values for p and tin Glidcop mirrors are 0.25-0.5 mm for p and 0.25-1.0 mm 

for t depending on the forces. The center hinge should have twice the thickness of the end hinges since 
it carries twice the load. From Fig. 5, one can see that one-to-three diameters of straight section in the 
center of the hinge is reasonable when there is a need to reduce the stiffness. 

Equations (24) and (25) and the earlier theory will often allows us to choose an overall design of 
mirror and hinges that can keep the hinge-induced distortions below a given tolerance. On the other 
hand, in cases where this is not possible, we need a new type of design where the hinge torques are 
intrinsically corrected and to this we now turn. 

5.0 MONOLITHIC MIRROR DESIGN WITil ZERO UNINTENDED STRESSES 
If we bend the mirror in Fig. 1 from flat to a concave radius Ro then the slope at the end increases 

from zero to lJ=sin-l(IJ2Ro) (where Lis the length of the mirror) and this is the amount by which the 

end hinges would normally have to rotate. In order to avoid hinge rotation altogether for the hinge at c 
in Fig. 1, we would need to rotate the rigid member cd anti clockwise from 0 to (} in synchronism with 

driving the curvature of the mirror from zero to 1/Ro. The member ab would have to rotate similarly but 
in the opposite direction. Our proposed mechanism. to accomplish this is shown in Fig. 6. It is drawn 
with maximum symmetry for clarity although, in practice, the base member would normally be much 
thicker than the mirror. The primary element of the flexure is a rhombus with four rigid members A"C', 
C"B', B"D' and D"A'. When the mirror is deformed from flat toward concave this drives A' and A" 
toward B' and B", thereby changing the angles of the rhombus. The usefulness of that is explained in the 
"equivalent circuit" in Fig. 7 where A' and A" have been compressed into A (and similarly for B, C and 
D) and we see that when A moves closer to B, then C and D must move further apart. The effect of this 
is that the large blocks to the right of C and left of D which are acting here like simple rigid members, 
also move away from the center and carry with them the points C and D. This is just what we want in 
order to avoid· rotation at the hinges at F and G. It remains to get the right amount of sideways 
movement at C and D. 
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Consider the rhombus first Let AB=2q, CD=2p and let the side of the rhombus equal r. Then 
we have q2=rLp2 or dp!dq= -qlp leading to 

A.p = - A.q !1.. = :_ AB (26) 
p 2DC 

where s is the sag of the mirror. Now consider the circle into which we are bending the mirror. The 
small angle 8 at the end of the mirror is given by 8 =LI2Ro and s=(LI2)2!2Ro therefore 

8= 4s. (27) 
L 

The condition we really want to satisfy is 

A.p =8 (28) 
u 

As a frrst step toward this we take the length of the mirror projected on the x-axis to be approximately 
constant This is not strictly accurate but we will consider departures from it later. So substituting for 
A.p from (26) and for 8 from (27) we arrive at 

AB 8u 
-=- (29) 
DC L 

which is the condition we are seeking. If we design the mechanism to obey this condition then we will 
have zero rotation of the hinges for all values of the sag. This conclusion does depend on the small­
angle approximation but the latter is very well satisfied for cases of interest to us(() normally less than a 

few milliradians). For simplicity we have discussed the progression from a sag, mirror curvature and 
end slope of zero toward some particular values s, 1/Ro and e. However, this is not a necessary 

limitation. In view of the linear relationships among s, 1/Ro and e, the above arguments would still 

hold for their increments in the event that s, 1/Ro and(} were being continuously tuned or had non zero 

values in the relaxed state of the mirror. 
We now consider extension of the above reasoning to account for the end regions, which do not 

bend to the right radius, and the fact that the length of the mirror surface projected on the x axis may 
change as the mirror bends. The end regions are uniform beams each of length A.L, and one can show 

that they bend by an angle exactly half the amount (A.LIR o) that would have obtained had they followed 

-the cube root prescription all the way to the end. It follows that this can be accounted for by inserting a 
factor (1-A.L/L) on the right hand side of equation (29). 

~ = ~(1- ~). (30) 

The fractional change in length due to bending has a geometrical component equal to 

approximately L2 /(12R6) which is small in cases of practical interest. There is also a length change due 
the bending strain. This may not always be small but it is small at a depth below the mirror surface 
equal to the average depth h, of the neutral axis which is 

. ~=~[!(~-2tr +(2trJ (31) 

Fortunately, for cube-root mirrors with straight end sections, it is normally very convenient to place the 
effective hinge points at such a depth. Under these conditions we can then apply equation (29) directly 
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which allows the right shape for the rhombus to be determined and one can see that the ratio ABICD will 
normally have values around 0.5-1 which are convenient to manufacture. 

CONCLUSIONS 
We have continued the analysis of monolithic adaptive x-ray mirrors begun in reference 1. We 

have calculated the torsional rigidities of various types of mirror and flexural hinge used in designing 
such devices allowing the systematic errors in the mirror surface due to hinge-induced torques to be 
evaluated. In many cases this understanding will allow sufficiently low-torque hinges to be designed by 
introducing straight sections in the center of the notch-type hinges. We have also shown how the 
bending properties of mirrors with cooling channels can be arranged to be the same as those. without · 
cooling channels. On the other hand for the most challenging cases where the hinge torques cannot be 
reduced sufficiently, we have proposed a new type of flexure design in which the hinge rotations, and 
hence also their torques, are reduced essentially to zero. We have analyzed the latter scheme and 
provided a simple prescription for choosing suitable design parameters. 
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FIGURE CAPTIONS 

1. Basic design of a monolithic adaptive mirror from 1• Note the link eif which prevents horizontal 

motion of the mirror center and the rectangle linkage fghi which constrains the member ej to 

move without rotation when driven. The hinges ab and cd ensure that temperature differentials 

between the mirror and the base do not lead to significant thermal stresses or changes in the 

mirror radius. 

2. Geometry and notation for discussion of (a) flat-beain hinges, (b) double-sided notch hinges and 

(c) single-sided notch hinges. 

3. The torsional rigidity of a double-sided notch hinge in ratio to that of a flat-beam hinge of the 

same parameters according to various forms of calculation. (a) full formula (equation (17)), (b) 
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Paros-and-Weisbord approximate formula G(y) = 16-J'Y /37!, (c) Smith-et-a! finite element fit9, 

(d) (crosses) finite element calculations by Andresen10• The s.tress concentration factors (from 

Roark Table 375, plotted as (e), are close to unity when the beam theory and finite element 

curves agree well and show departures from unity when they begin to disagree as one would 

expect 

4. Designs for composite hinges formed by joining a flat-beam hinge in series with two halves of a 

notch hinge. The purpose of such designs is to achieve a reduced torsional rigidity compared to 

a pure notch hinge without reducing the cross sectional area anq hence the strength. 

5. The factors by which the torsional rigidity of double-sided notch hinges is reduced by the 

introduction of straight sections in the center. 

6. New type of adaptive mirror mechanism incorporating a system to cancel the rotations (and 

hence the error-producing torques) of all three of the hinges which connect to the mirror. The 

operating principle of the mechanism is explained in Fig. 7. 

7. "Equivalent circuit" explaining the action of the rhombus mechanism at the center of the device· 

shown in Fig. 6 where A' and A" have now been compressed into A (and similarly for B, C and 

D) . When the mirror bends more concave, A and B move toward each other causing C and D to 

move away from each other. This moves point E to the right causing a small anti clockwise 

rotation of the link EF. The same change of mirror curvature also rotates the right hand end of 

the mirror anti clockwise and if the two rotations are arranged to be equal, (the prescription for 

which is explained in the text) then the hinge F will not rotate. This eliminates the hinge-induced 

distortions. 
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