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Abstract 

The non-abelian analog of the Landau-Pomeranchuk-Migdal effect is investi-

gated in perturbative QCD. Extending our previous studies, the suppression 

of induced soft bremsstrahlung due to multiple scatterings of quarks in the 

spinor representation is considered. The effective formation time of gluon 

radiation due to the color interference is shown to depend on the color repre-

sentation of the emitting parton, and an improved formula for the radiative 

energy loss is derived that interpolates between the factorization and Bethe-

Heitler limits. 
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I. INTRODUCTION 

Ultra.relativistic hea.vy ion collisions a.t future collider energies of BNL Relativistic Heavy 

Ion Collider (RHIC) and CERN Large Hadron Collicler (LHC) are expected to reveal novel 

QCD dynamics not accessible a.t present fixed target energies. 'When the transverse mo

mentum transfer involved in each nucleon-nucleon collision is small, PT ;S AQco, effective 

models based on meson-exchange and resonance formation are sufficient to describe multiple 

interaction between hadrons. Those interactions lead to collective behavior in low energy · 

heavy ion collisions as first observed in Beva.la.c experiments [1] and recently at A GS ener

gies [2]. \~'hen PT becomes large enough to resolve individual partons inside a nucleon, the 

dynamics is best described on the parton level via perturbative QCD. Though hard parton 

interactions occur at CERN-SPS energies (Eiab < 200 AGeV), they play a negligible role in 

the global features of heavy ion collisions. However, at collider energies (Ecm > 100 AGeV) 

the importance of hard or semihard parton scatterings is clearly seen in high-energy pp and 

pp collisions [3]. They are therefore also expected to be dominant in heavy ion collisions at 

RHIC and LHC energies [4,.5]. 

Since hard pa1-ton scatterings occur very early ("' 0.01 fm/c) and their rates are calculable 

via perturba.tive QCD (pQCD), we proposed in [6,7] that high PT parton jets could serve 

as a unique probe of the qua:rk-gluon plasma. formed due to copious mini-jet production 

over longer time scales(> O.( fm/c). The systematics of jet quenching provides information 

on the stopping power, dE/ dz, of high energy pa.rtons in dens~ matter [8]. The stopping 

power is in turn controlled by the color screening scale, p, in the medium. Thus, jets 

provide information on that interesting dynamical scale in deconfined matter. At very high 

energy densities, that scale is expected to be large compared to confinement scale [9]. At 

temperatures, T ~ Tc, for example, \Ve expect p "'gT ~ AQCD· In that case, most partonic 

interactions have high momentum transfers and perturbative QCD methods may apply to 

the calculation of multiple collision amplitudes. 

In Ref. [10] a systematic study of QCD multiple collision theory was initiated with the aim 

of deriving the non-abelian analog of the Landau-Pomeranchuk-l\1igdal (LPM) effect. That 

effect, first derived in the case of QED [11,12]long ago, involves the destructive interference 

between Bremsstrahlung radiation amplitudes. It suppresses radiation relative to the Bethe

Heitler formula in kinematic regions where the radiation formation time is long compared 

to the mean free path. In QCD a similar effect is ,also expected because it mainly follows 

from general relativistic uncertainty principle arguments. However, we showed in [10] that 

specific non-abelian effects influence the detailed interference pattern in the case of QCD. 

The LP.l'vf effect in QCD is especially important for estimating the energy loss, dE/dz,of 

an energetic parton traversing a dense QCD medium. \Ve note that there exists considerable 
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controversy in the literature on the magnitude and energy dependence of the energy loss in 

QCD [13-17]. In this paper we extend our derivation in [10] to clarify further this effect and 

improve our previous estimates of dE I dz. 

In the next section, we consider in detail the problem of induced gluon radiation from a 

spin 1/2 quark suffering two elastic scatterings. This provides an insight into the applicability 

of the effective potential model used in Ref. [10] to calculate multiple collision amplitudes. 

We show why radiation from the target partons is negligible although such amplitudes 

are absolutely necessary to ensure gauge invariance. On the other hand, gauge invariance 

constrains all gluon propagators to be regulated by the same screening mass in the potential 

model. In section 3, the QCD radiation interference pattern is shown to be expressible as a 

function of an effective formation time that depends on the color representation of the jet 

parton. In section 4, that formation time is used to calculate the average radiative energy 

loss dE I dz and derive a simple formula. that interpolates between the factorization and 

Bethe-Heitler limits as a function of a dimensionless ratio depending on the incident parton 

energy E, the screening scale and the mean free path. Finally, section 5 contains a. summary 

and closing remarks. 

II. THE POTENTIAL MODEL AND GAUGE INVARIANCE 

To analyze multiple pa.rton scatterings and the induced gluon radiation, certain simpli

fications have to be made for the interaction. Consider the scattering of a high energy jet 

parton in a color neutral quark-gluon plasma. If the average distance, ~z =>..,between two 

successive scatterings is large compared to the color screening length, ).. » f.l-l, the effective 

average random color field produced by the target. partons can be modeled by a static Debye 

screened potential: 

-iq·X 
lfO· ( ) Aa ( ) -iq·X ya e 1 .4.4' q = AA' q e = g .4.4'-q-::-2-+-f.l-::-2' (1) 

where J.l is the color screening mass, ya are the generators of SU(:3) corresponding to the 

representation of the target patton at x. The initial and final color indices, A, A', of the 

target parton are averaged and summed over when calculating the ensemble averaged cross 

sections. This model potential was used in Ref. [10] to calculate cross sections of multiple 

scattering and induced radiation. However, to obtain a gauge invariant amplitude of gluon 

radiation in QCD, every diagram with the fixed number of final gluon lines has to be taken 

into account, including gluon radiation from the target parton line. Radiation from target 

partons cannot be described by the above static model potential. The relative importance 

of different diagrams to the net energy loss depends on the choice of the gauge. In the 



light-cone gauge one expects that radiation from target legs to be negligible as compared to 

that from the high energy beam pa.rton. 

To estimate the importance of target radiation to the energy loss of a fast parton and to 

see how the gauge invariance constrains the potential model, consider the simplest case of 

induced radiation from qua.rk-qua.rk scatterings. The Born amplitude f01; (p;, k;)-+ (PJ, k1) 

through one gluon exchange is, 

(2) 

where A, A', B, and B' are the initial and final color indices of the beam and target partons, 

respectively. The corresponding elastic cross section is, 

(3) 

where C!Jl = Cpj2N = 2/9 is the color factor for a single elastic quark-quark scattering 

and s,tt, and t are the l\1a.ndelstam variables. 

For induced radiation, there are all together three groups of diagrams as showri in Fig. 1. 

If we rewrite the three amplitudes a.s 

M (i) -M(il ~.~. 
1·a.d = Jt. E ' (4) 

then gauge invariance implies tha.t 
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"' Jvt (i) /.:'' = 0 L.... Jl· , (5) 
·i=l 

where € and k are, respectively, the polarization and momentum of the radiated gluon. In 

the soft radiation limit, we can neglect all the terms proportional to kJ.t- in M~) which does 

not contribute to M~l k''(P = 0). The complete and gauge invariant amplitude for induced 

gluon radiation is, 

(6) 

where b is the color index of the radiated gluon, and 

(7) 
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are the color matrices associated with gluon radiation from the internal gluon line (Fig. 1c). 

The three terms in Eq. (6) correspond to the radiation from the projectile (Fig. 1a), target 

parton (Fig. 1b) and the internal gluon line (Fig. 1c). As one can see, no term alone is 

separately invariant under a gauge transformation f.~-' --+ f.~-'+ c k~-'. Only the total amplitude 

is gauge invariant. 

In the potential model, one simply neglects the radiation from the target lines and replac~ 

the gluon-exchange amplitude associated with the target parton, gTAA'u(kJ )1~-'u(ki)/(ki
k1) 2 , by an effective potential g1'

0 A:4_.1,. The potential given by Eq. (1) is regularized by the 

color screening mass squared, p2 . However in Eq. (6), if any of the gluon propagators is 

regulated, gauge inva.ria.nce is preserved only if all propagators are regulated with the same 

mass squared, p2 • In particular, the two propagators in the internal radiation diagram must 

both be regulated by the same scale. 

vVhile gauge invariance i~ manifest only if all diagrams are added, we now show that, in 

the A+ = 0 gauge, only the projectile diagrams contribute significantly to the radiation of 

soft gluons in the dominant kinematic range for the net energy loss. \Ve consider the case 

that a gluon with light-cone momentum and polarization, 

(8) 

is radiated off a. high energy quark with initial momentum 

(9) 

During the interaction, the beam quark exchanges a momentum 

(10) 

with a target quark which has a typical thermal momentum, 

(11) 

with 1\1 "' T in the plasma rest frame. We focus on the limit defined by x <{:: 1, however, 

with the condition, :cP+ ~ Af ~ (}.L· By requiring both of the final quarks to emerge on 

mass shell, one finds that, 

2 
+ ql. 

q ~- .~1' 

(q - k )2 k-2 
- .L .L + 1. 

q ~ (1- :c)P+ :cP+" 
(12) 

The final momenta of the beam and target partons are, respectively, 

.) 



(13) 

With the above kinematics, one can obtain the momentum elements of the radiation ampli

tudes: 

t: • p 1 f. · Pi . (j_ · k.1 
--~--=2 ; 
k · p 1 k · p; ki 

(14) 

t: • k; "'·) t:l_ • k.1 t: • 1 .. 1 "'·) €.1 · q.L 

k · J.:; - - (X p+) 2 ' J.: • k j - -X p+ .J\1 . 
(15) 

In the large xP+ ~ I.:.L limit, we see that the magnitude of the matrix elements involving 

target parton radiation in Eq. (15) are much smaller than those involving projectile radiation 

in Eq. (14). As we will see below, the LPM effect limits the radiation to x < Af-l2 / p+ and 

k.L < f-l· Therefore, as long as >..p ~ 1, the contribution to the energy loss in the main 

kinematic range is dominated by the projectile radiation in this gauge. However, as we have 

demonstrated, the small target contributions to the radiation amplitude are amplified if t:J.L 

is replaced by 1.~ 1'. As a result of this amplification, those amplitudes cannot be neglected 

when considering gauge inva.riance even though they can be neglected for calculating the 

energy loss. 

Ta.king into account only the dominant contributions to the radiation amplitude, we have 

the factorized amplitude, 

lA Met ·-n 
Jvl1·ad= 1./\..1, . Tn. Ta 

AA'· BB' 

...,.., ·). _ [k.1 q.L -:- k.1 l Ta [Ta Tb] 
1\.-1 ~ _t.gf..L. 1 .• 2 + k )2 AA' ' BB'' 

"·.L ( q.L - .L 
(16) 

where Mel is the elastic amplitude as given in Eq. (2), and 'R1 is d~fined as the radiation 

amplitude induced by a. single scattering. For later convenience, all the color matrix elements 

are included in the definition of the radiation amplitude 'R1 . \Vith the above approximations, 

we recover the differential cross section for induced gluon bremsstrahlung by a single collision 

as originally derived by Gun ion and Bertsch [1 8], 

dC7 dC7d dn.(l) 

dtdycF k.L = dt dyd2 l.~.L' 
(17) 

where the spectrum for the radiated gluon is, 

(18) 
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In the square modulus of the radiation amplitude, an average and a. sum over initial and 

final color indices and polarization are understood. \Vc see that the spectrum has a uniform 

distribution in central rapidity region (small x) which is a well known feature of QCD soft 

radiation [19]. This feature is consistent with the hadron distributions predicted by Lund 

string models and the "string effects" in e+ e- three jets events [20,21], all being the results of 

interference effects of pQCD radiation. To demonstrate this a little in detail, let us consider 

only the radiation amplitude from the beam quark in Eq. (6), 

R _ [ t: · p 1 (l"bl"a.) t: · Pi (Ta.Tb) l ya. \..- -- BB'- -- BB' AA 1 • 

k · p 1 k~ ·Pi 
(19) 

The corresponding gluon spectrum is (beside a. factor 1l2(27r ?), 

1 --2 [ E · Pi E · p J ]
2 

C A . E · Pi E · p 1 -IR-1 = CF ----- + -2----, 
c~Jl k>p; k··p1 2 k·p;k·p1 

(20) 

where CF '= (N2 
- 1 )I2N and C.-1 = N are the second order Casimir for quarks in the 

fundamental and for gluons in the adjoint representation, respectively. Note that the first 

term is identical to gluon radiation induced by an abelian gau~e interaction like a photon 

exchange and does not contribute to t.hc gluon spectrum in central rapidity region due to 

the destructive interference of the initial and rinal state radiations. The second term arises 

from the non-abelian interactions with the tatget partons and is the main contribution to 

the central region. 

Another nona.belian feature in the induced gluon radiation amplitude, Eq. (16), is the 

singularity at k1. = ql. due to induced radiation along the direction of the exchanged gluon. 

For k1. ~ qJ.., we note that the induced radiation from a three gluon vertex can be neglected 

as compared to the leading contribution 1 I k~l. However, at large k1. ~ ql., this three gluon 

amplitude is important to change the gluon spectrum to a 1/ki behavior, leading to a 

finite average transverse momentum. Therefore, CfJ.. may serve as a cut-off for k1. when one 

neglects the amplitude with the three gluon vertices as we will do when we consider induced 

radiation by multiple scatterings in the next section. If one wishes to include the three gluon 

amplitude, then the singularity at k1. = ql. has to be regularized. As we have discussed 

above, the regularization scheme has to be the same a.s for the model potential or the gluon 

propagator in de7et I dt as required by gauge in variance. In our case, a. color screening mass 

J.l will be used. 

III. EFFECTIVE FORMATION TIME 

The radiation amplitude induced by multiple scatterings has been discussed in Ref. [10]. 

V\Te discuss here the special case of double scatterings to gain further insight into the problem. 
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Consider two static potentials sepa.rat.ed by a distance L, which is assumed to be much larger 

than the interaction length, 1/ Jl. In the abelian case, the radiation amplitude associated 

with double scatterings is (see Appendix), 

-nQED _ · [ ( E · Pi E • P) ik·x1 + ( E • P E • P 1) ik-x2 ] 
~~2 - 1.g -- - -- e -- - -- e , 

k · Pi k: · p k · p k · p 1 
(21) 

where p = (p~,pz, Pl.) is the four-momentum of the intermediate pa.rton line \Vhich is put on 

mass shell by the pole in one of the parton propagators, x 1 = (O,x1 ), and x 2 = (t2,x2 ) are 

the four-coordinates of the two potentials with t 2 = (z2 - zi)/vz = Lp0 /Pz· This formula has 

been recently used to discuss the interference effects on photon and dilepton production in 

a quark gluon plasma. [22,2:3]. Vve notice that the amplitude has two distinct contributions 

from each scattering. Especially, the diagram (Fig. 2b) with a gluon radiated from the 

intermediate line between the two scatterings contributes both as the final state radiation 

for the first scattering and the initial state radiation for the second scattering. The relative 

phase factor 

k · (:r2 - :ri) = w(1jv,- cosO)L = LjT(k) 

determines the interference between radiations from the two scatterings and is simply the 

ratio of the path length to the formation time defined as 

1 ·)w 
T(k) = ~ .:.__ 

v.,'(1fv= -cos 0) k]_ 
(22) 

The Bethe-Heitler limit is reached when L ~ T(!-:). In this limit, the intensity of induced 

radiation is additive in the number of scatterings. However, when L ~ T(k), the final state 

radiation amplitude from the first scattering is mostly cancelled by the initial state radiation 

amplitude from the second scattering. The radiation pattern then looks as if the parton has 

only suffered a single scattering from Pi to PJ. This destructive interference is often referred 

to as the La.nda.u-Pomeranchuk-l\1igda.l (LPM) effect. The corresponding limit is usually 

called the factorization limit. 

The radiation amplitude in QCD is similar to Eq. (21 ), except that one has to include 

different color factors for each diagram in Fig. 2. In the· high energy limit, E • p;f k · p; ~ 

E • pf k · p ~ E • p f / k · p f ~ 2(1. · k1./ k]_. The momentum dependence of each contribution can 

be factorized out and the radiation amplitude !"or diagrams in Fig. 2 is, 

(2:3) 

where we ha.ve included two color matrices from the potentials, a.nd b again represents 

the color index of the radiated gluon. The radiation amplitude from diagrams with three 

gluon vertices ha.s the same pha.se and color structures as in Eq. (2:3), but the momentum 
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dependence cannot .be factorized, since each term depends on the transverse momentum 

transfer which differs from one scattering to another. However, since we are interested in 

the soft radiation limit, J..~.1. < q.1. ,..._, p, the contributions from internal gluon line emissions 

can be neglected as shown in [10]. As we discussed above, however, those amplitudes serve 

to provide an effective cutoff (q.1.) ,..._, p for k.1.. 

The extrapolation of Eq. (2:3) to the general case of m number of scatterings is straight

forward with the result 

(24) 

The above amplitude contains m terms each having a common momentum dependence in 

the high energy limit, but with different color and phase factors. The above expression is 

also valid for a gluon beam jet, with the corresponding color matrices replaced by those 

of an adjoint representation. In Eq. (2tJ), we also assumed that all the potentials have a 
I 

color structure of a fundmcnta.l representation. One can gencra.lize to the case in which each 

individual potential could have any arbitrary color representation. However, our following 

results on the gluon spectrum and interference pattern will remain the same. With this in 

mind, we have the spectrum of soft bremsstrahlung associated with multiple scatterings in 

a color neutral ensemble, similar to Eq. (18), 

dn(m) 

dycJ2 J..~.1. 
(2.5) 

where c!;nl = ( Cpj2.N)m is the color factor for the elastic scattering cross section without 

radiation. Cm(k), defined as the "radiation formation factor" to characterize the interference 

pattern due to multiple scatterings, can be expressed as 

where the color coefficients, as computed in Ref. [10], are 

C Cmc i\T, 
ii=/F Aiv, 

C.·=- C..1 C.·l (1 - C.·l )i-j-lcmc.Ar for y· < i. 
lJ ·) ·)c ·)c·· F .\ , 

~ - ·F - 'F · 

(26) 

(27) 

For a gluon beam jet, one can simply change the dimension to that of an S'U( N) adjoint 

representation and replaces C2 = CF by the corresponding second order Casimir C2 = CA. 

We then obtain a general form for the radiation formation factor for a. high energy pa.rton 

jet, 



m i-1 

Cm(k) = rn- 7'2Re L 'L:(l - 7'2)i-j-leik·(xi-xj)' (28) 
i=l .i=l 

where 

7
_
2

= CA ={N
2
/(N

2
-l) forquarkswithC2 =CF. 

2C2 1/2 for gluons with c2 = CA 
(29) 

Similar to the special case of double scatterings, there are a. few interesting limits for the 

above general form of radiation formation factor and the induced gluon spectrum. When 

m = 1, C1 (k) = 1. 'vVe recover the gluon spectrum induced by a single scattering in 

Eq. (18) in the small k.1. limit. For multiple scatterings in the Bethe-Heitler limit when 

L;j = lzi- Zji ~ T(h7) for all i > j, the phase factors average to zero and the intensity of 

the radiation is additive in the number of scatterings, i.e., Cm(k) ~ nL In the factorization 

limit, one has Lij « T(k) for all i > j. In this case, the phase factors can be set to unity 

and the summations in Eq. (28) can be carried out to give 

Cm(k) ~ ~[l _ (1 _ ·r
2

)m] = { 8/9[1- ( -1/S)m] ·for quarks 
7'2 2( 1 - l/2m) for gluons 

(30) 

In contrast to the Bethe-Heitler limit, the factorization limit is independent of the number 

of collisions as m. -t oo, and the radiation formation factor approaches l/r2 = 2C2 /CA. 

It is interesting to note that the destructive interference for quarks in the fundamental 

representation is so effective that the radiation spectrum induced by many scatterings is 

even slightly less, 1/r2 = 8/9, than by a single scattering. For gluon jets, however, the 

interference is not as complete as for quarks. The induced radiation approaches 2 times 

that from a. single scattering. Using these values of Cm(k~) = 1/r2 = 2C2 /CA in Eqs. (25) 

and (18), the radiation intensity induced by multiple scatterings is proportional to 2C2 as 

compared to C A in the single scattering case. The gluon intensity radiated by a gluon jet 

is therefore 9/4 higher than that by a quark due to the interference in multiple scatterings. 

This dependence of LPI'vt effect in QCD on the color representation of the beam parton is a 

unique non-abelian effect. As we \Vill discuss in the following, the effective formation time 

of the radiation in a QCD medium should also take this non-abelian effect into account. 

To see analytically how Cm( k) interpolates between the Bethe-Heitler and factorization 

limits, let us average over the interaction points X; according to a. linear kinetic theory. We 

take an eik~~1al approximatiori [1 0] for the multiple scatterings so that the transverse phase 

factors can be neglected in the soft radiation limit, k.1. ~ qJ.. "'p. In a linear kinetic theory, 

the longitudinal separation between successive scatterings, L; = Zi+l- z;, has a distribution, 
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(31) 

which is controlled by the mean free path, A, of the scatterings. The averaging of the phase 

factors, 

[ 
1 l i- j 

1 - iAjr(J.:) 
(32) 

enables us to complete the summation in· Eq. (28). Neglecting terms proportional to (1-1·2 )m 

for relatively large m, vie have, 

(33) 

The non-abelian LPTvi effect in QCD is therefore controlled by the dimensionless ratio of the 

mean free path to an effective formation time, 

x(k) = A/Tqco(li:), (34) 

where the effective formation time in QCD depends on the color representation of the jet 

parton and is related to the usual abelian formation time in Eq.(22) as, 

(35) 

This formula for the radiation formation factor is illustrated in Fig. 3 as a function of 

r(k)/A for the case of five collisions (m = 5) and shows how Cm(k) interpolates between 

the Bethe-Heitler limit for small value of r(k)/ A and the factorization limit for large value 

of r(k)/ A. For radiation with average transverse momentum t.~l. """ Jl the additive Bethe

Heitler region is limited to rapiditics y < log(1·2 .\1t). In general, the radiation formation 

factor is proportional tom in the limit. of large m. \Ve can therefore regard the radiation as 

being additive to t:he number of scatterings with the radiation from each scattering simply 

suppressed by the factor x2 /(1 + x2
) clue to nonabelia.n LPM effect. Since this effective 

formation time is a result of the unique color interference effect in QCD, we should use it 

in the following to estimate the radiative energy loss by a. high energy parton traversing a 

color neutral quark-gluon plasma. 

IV. RADIATIVE ENERGY LOSS 

vVe now apply t.he en·ective formation time to derive a simple approximate formula for 

the induced radiative energy loss extending our previous result in [10]. As shown in the 
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previous section the radiation spectrum is given by Eq. (18) multiplied by the radiation 

formation factor Eq. (:3:3). That factor simply restricts 'the additive kinematic region to 

Tqco(k)/). < 1 and the the incremental change in that factor for each successive collision 

can be approximated by a pocket formula. dCm(k)jdm. ~ 0(>.- TQCD(k)) (see Fig.3). The 

additive radiative energy loss for each collision beyond the first one is then 

(36) 

where Tqco(k) is given by Eq. (:3.5), the second 0-function is for energy conservation, and 

the regularized gluon density distribution induced by a single scattering is, 

dn9 C.'\ O's q]_ 
d2 h~.tdy- ---;:2 J,:]_[(q.L- k.t)2 + IL2]' • 

(37) 

As discussed earlier, gauge inva.riance requires that the singularity at k.t = q.L in Eq. (18) 

must be regularized by the same color screening mass p a.s in the elastic cross section in 

the potential model. Since the transverse momentum transfer q.l. is the result of elastic 

scatterings, we have to average any function .f( q.L) of q.l. by the elastic cross section, 

(38) 

where s ~ 6ET is the average c.m. energy squared for the scattering of a. jet parton with 

energy E off the thermal partons at temperature T. For the dominant small angle scattering, 

the elastic cross sections are, 

(39) 

where Ci = 9/4, 1, 4/9 respectively for !HJ, gq and qq scatterings. This average can be 

approximated by replacing q]_ in the numerator of Eq. (37) with its average value, 

2 2 :3ET 
( <}.L) = fl 1 n -. -

2 
. 

2!l 
(40) 

In the denominator, we simply replace qi by ft 2 after the angula.r integration. The remaining 

integration in Eq. (:36) over the restricted phase space approximately leads to the simple 

analytic formula 

(41) 

(1'2£) ')(7'z) · (r2) 2] [ 2 4] 
1 + ~ - In - It>. + 1 + 4 p>. , ( 42) 

I+ (:.~~ r] -In [ ~: + I+ (~•:)'] ( 43) 
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rn small k.l. regime, the phase space is mainly restricted by a small effective formation 

time, 'TQCD < >., which gives the first term proportional to >.. For large k1., the radiation 

becomes additive in a restricted phase space constrained by energy conservation. That region 

contributes to the second term which appears to be proportional to the incident energy E. 

However, in the high energy limit the function 12 ex 1 IE and hence the radiated energy loss 

grows only as log2 E. 

The above derivation assumed that the mean free path is much larger than the interaction 

range specified by 1 I Jl. As we shall discuss below, this is satisfied in a quark gluon plasma 

at least in the weak coupling limit.. Therefore, \Ve can neglect the second term in 11 . For 

a high energy jet parton, E ~ JL, we can also neglect the second term in 12• The resulting 

radiative energy loss reduces in that case to the simple form, 

( 44) 

which depends on a dimensionless variable, 

( 45) 

Since we have used gluon spectrum from a single scattering in Eq. (18) which is valid for 

all values of k1., the full integration over /i:1. results in the logarithmic energy dependence of 

dEradldz. This logarithmic dependence was absent in our derivation in Ref. [10] since there 

only the contribution from the very soft k1. < fl region was considered. 

We see that the radiative energy loss dEradl dz thus obtained interpolates between the 

factorization and Bet.he-Heitler limits as a function of .the dimensionless ratio ~- In the 

factorization limit, we fix 1'/\ ~ 1 ancl let E -+ oo, so that ~ ~ 1. In this case, we can 

neglect the second term in Eq. (44) and have, 

( 46) 

Thus, the radiative energy loss in the factorization limit has only a logarithmic energy 

dependence (in a.clclition to the energ)" dependence of (qi_) ). Due to the non-abelian nature 

of the color interference, the resultant energy loss for a gluon (C2 = CA) is 914 times larger 

than that for a quark (C2 = Cr). In the other extreme limit, we fixE and let JlA-+ oo, 

so that ~ ~ 1. In this case, the mean free path exceeds the effective formation time. The 

radiation from each scattering adds up. \Ve then recover the linear dependence of the energy 

loss dEradldz on the incident. energy E (modulo logarithms), 

( 47) 



as m the Bethe-Heitler formula. In both cases, the radiative energy loss is proportional 

to the average of the transverse momentum transfer, (q]_), which is controlled by the color 

screening mass as in Eq. (40). 

To see more clearly how the factorization limit is approached, we now estimate ~ for 

a pa.rton propagating inside a high temperature quark-gluon plasma. From Eq. (39) and 

the perturba.tive QCD expressions for the quark and gluon densities at temperature, T, the 

mean free path for :3 quark flavors is 

( 48) 

( 49) 

where ((3) ~ 1.2. \Ve emphasize that the above mean free path corresponds approximately 

to the color relaxation mean free path, ,\.:, and not the momentum relaxation mean free 

path, Ap. As shown in Rd. [24], --\..,. "' asAp is generally the shorter of the two in QCD. The 

reason why the color relaxation mean free path controls the radiation pattern is that the 

color current responsible for emitting the gluons is coherent only over a. distance scale Ac. 

It take a much longer path length to stop a. parton. However, unlike in QED, this longer 

momentum relaxation mean free path is irrelevant for nonabelian radiation. 

Using Eqs. ( 48) and ( 49) and the pcrturba.tive color electric screening mass, J.L 2 = 47ra5 T 2 , 

we see that~ appearing in the logarithms has a common energy and temperature dependence 

for both quarks and gluons, 

r2E G:3((:3) E 9 E 
~ - -- - - ~ -- for both c7 and g. 
""-, 2- 1(:. 3 1, ·) 3T' Af'- )iT . -1!" 

(50) 

\Vith the above expression for ~, we plot the radiative energy loss in Fig. 4 as a. function 

of the beam energy inside a plasma at temperature T = :300 MeV with a 5 = 0.3. The 

solid line is the full expression in Eq. ( 41) while the dashed line is the factorization limit 

corresponding to the first. term in Eq. (44). \Ve see that Eq. (46) approximates Eq. (44) 

quite well in this parameter range. The energy dependence of the radiative energy loss is 

due to the double logarithmic function in the formula one of which comes from the energy 

dependence of the average transverse momentum (q]..) in Eq. ( 40). 

The energy loss of a quark in dense matter due to elastic scattering was first estimated 

by Bjorken [25] and later was studied in detail [26] in terms of finite temperature QCD. 

For our purpose, a. simple estimate taking into account both the thermal average and color 

screening will suffice. In terms of ela.stic cross sections and the density distributions for 

quarks and gluons in a plasma, we have, 

14 



(51) 

where v ~ qlf2w is the energy tra.nsfcr of the jet parton to a thermal pa.rton with energy 

w during an elastic scattering, (ql) is the average transverse momentum transfer given by 

Eq. (40). Similar to Eqs. (48) and (49), we have, 

·) 2 

( pq)· (pg) -ITO's 2 
f7qq 1 + r7qg ~ = --2-T ' 

-W -'-'.: /l 
(52) 

9 •) 2 

(£3_) ( Pg) _ _ -ITO's y2 
f7gq 2"'-' + f7gg 2w - 4 p2 · (53) 

The elastic energy loss of a fast pa.rton inside a quark gluon plasma at temperature T is 

then given by, 

dEc~ = C. :3~To.·; T2( 2) 
1- 2 ') 2 qJ. . (.. -Jl 

(54) 

For comparison, we plot this clastic energy loss in Fig. 4. In general, it is much smaller than 

the radiative energy loss and has a. wea.ker energy dependence (single logarithmic). 

Using Eqs. (40), (46) and (.SO), t.he total energy loss can be expressed as, 

(55) 

It is interesting to note that both the clastic and radiative energy loss have the same color 
/ 

coefficient C2 . For high energy pa.rtons, the radiative energy loss is dominate over the elastic 

one. For E = :30 Ge V, T = :300 lVIe V, and O.s ~ 0.:3, the total energy loss for a propagating 

quark is dE/dz ~ :3.6 GeV /fm. Only about 2.S% of this amount comes from elastic energy 

loss. 

V. SUMMARY AND DISCUSSIONS 

\Ve extended our previous derivation by considering the role of gauge inva.riance and 

target radiation in the case of spin 1/2 quarks to improve our estimate of radiative energy 

loss of a fast patton inside a. quark gluon plasma. Our main result [Eq. 44)] interpolates 

between the factorization and Bethe-I-Ieitler limits, and has unique nonabelian properties. 

The factorization limit is of course consistent with the general bound [16] imposed by the 

uncertainty principle, but reveals peculiar energy and temperature dependence of the mean 

square radiation tra.nsYcrse momentum controlling that energy loss. The total energy loss 

is very sensitive to the color screening scale in the plasma. The double logarithmic energy 

15 



dependence of dEradldz is the result of non-abelian aspects of the LPM effect in QCD. The 

same effect should be responsible for the limited gluon equilibration rate as· discussed in 

Ref. [27]. 

Our derivation improves that in [8,10] in a number of ways. First, an effective formation 

time rqco in QCD radiation was used to account for the color interference due to multiple 

scatterings. The dependence of this effective formation time on the color representation of 

the jet parton gave rise to the different color factors, proportional to c2' for the radiative 

energy loss of a quark and gluon. In contrast both are proportional to C A in the case of a 

single scattering. Secondly, the gluon spectrum including radiation from both the jet line and 

the internal gluon line and regulated consistently with the requirement of gauge invariance 

was used. However, Eq. (44) is still an idealization to the physically realizable situation 

in nuclear collisions because a number of strong assumptions were made in its derivation. 

The strongest is the extrapolation of pQCD in a regime g "' 1 and the assumption that the 

interaction range is small compared to the color relaxation mean free path. We have therefore 

left with an explicit dependence on J.t in dE I dz since strong nonperturbative variations of 

J.t(T) occur in the vicinity of Tc. The basic result that dE I dz is proportional to 112 is however 

very general and consistent with the uncertainty bounds in [16]. Therefore, in a separate 

paper [28], we will investigate the phenomenological consequences of interesting temperature 

dependence of J.t(T) suggested by lattice calculations. 
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APPENDIX 

The radiation amplitude within multiple scattering theory has been derived in Ref. [10] 

in a general from. In this appendix we usc the radiation induced by double scattering as an 

example to demonstrate how the general formula arises from the multiple scattering theory. 

\iVe consider the scattering of a. high energy particle off potentials as given by Eq. (1). For 

simplicity, let us first neglect the color indices as in the case of QED. The amplitude for a 

single scattering is then 

(A1) 

(A2) 

where E = E; = E1 and the amplitude f(E, t) is defined such tha.t the differential cross 

section is given by 

da 2 
di = rri/(E, l)l , (A3) 

and O'i, a 1 are the initial and final polarizations which should be averaged and summed 

over in the calculation of cross sections. One can check that with the definition of A( q) in 

Eq. (1 ), the above formula leads to d(j j dt = 4 rrcv;; ( q 2 + p 2 ) 2 • 
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One can similarly write down the amplitude for double scatterings, 

M~7) = 21ri8(Ei - E1 )( -g
2

) J (;:r3 Tta 1 (p 1) .j{(p 1 - C)erfu ,j(( C- Pi)ua; (pi) 
e-i(C-p; )·XJ-i(p 1 -C)·x2 

' 
(A4) 

where the energy conservation at each potentia.! vertex sets the energy of the internal line to 

fl!l = E = E1. Amplitudes involving backscattering are suppressed at high energies because 

of the limited momentum transfer that. each potential can impart. Vi!hen the mean free 

path (or distance between two sequential scatterings) is much larger than the interaction 

range('"'-' 1/JL) of the potential in Eq. (1), the singularity in A(q) can be neglected and the 

integration over ez (with respect to the i direction of x21 = X2 -X} = Li + r .d gives us 

(2) • . . j cf2CJ. _ 2 Me1 = 2n8(E;- EJ) (
2

rr)2'1to)PJ)(-g )r(2)1La;(p;), 

r(2) = ,j{(pj _ p)-t- ,j((p _ p.;)t:-i(p-p;)•XJ-i(pj-p)·X2 1 
2'1p= 

(A5) 

where p = (E, J E 2 - Ci, C.1.) is the fom-moment;1m of the internal line. One can derive 

the classical Glauber multiple collision cross section from this amplitude by averaging and 

summing over initial and final state ensemble of the ta.rget [10]. In the limit of high energy 

and small angle scattering, one can neglect. the phase factor in the above equation and obtain 

the amplitude [as defined in Eq. (Al )], 

(A6) 

where 1/2! comes from t.he difl'erent ordering of the target potentials and qJ. = PJ.l.- PiJ. 

is the total transverse momentum transfer clue to the multiple scatterings. The eikonal 

function Xa 1 , 112 (b, E) is defined as the Fourier transform of the single scattering amplitude 

(besides a factor i/2r.), 

(A7) 

In the definition of the product of cikona.l functions, summation over the polarizations of 

the intermediate lines is implied. 

(AS) 

One can generalize the double scat.t.ering amplitude to multiple scatterings and sum them 

together to get the tot.al amplitude, 
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.f(E,t) = f: fn(E,t) = ~-i jd2 b~[-x(b,E)]neiq.~.·b 
n==l ~rr n. 

_ i j lzb[l -x(b,E)] iq.1.·b -- c -e e . 
2rr 

(A9) 

This is recognized as the elastic amplitude in the eikonal formalism. One can generalize this 

to the case of Pomei'on exchange so that one can obtain both the total and inelastic cross 

sections for hadron-hadron collisions [29,:30]. 

For radiation induced by double scatterings, there are contributions from three different 

diagrams as illustrated in Fig. 2. The total amplitude can be written as, 

(AlO) 

r a = I;(:: ,lf(p J -C) [~ Lo=E 1f(e + k- pi) (l~·~kl2 I 
e-i(C+k-p; )·x1-i(p ;-f.)·X2' (All) 

rb . I* ,lf(p, + k- {') LcJ.)i'+ic l;!ic]CO==E+w 1f(C- p;) 
e-i(C-p; )·XJ-i(p J+k-i!)·X2 

' 
(A12) 

rc = I'~; 1<;'++~.~2 ,lf(p, + k- C) (!~L~==E+w -~(e- pi) 
C-i(f-p;)·X1-i(p J+k-C)·X2 

' 
(A13) 

where we have denoted E = E1 = E;- v.). Similarly as in double elastic scattering, one can 

integrate over ez and obtain, 

(A14) 

(A15) 

where we have used Dirac equations for the spinors and taken the soft radiation limit (ne

glecting terms like j f.:). Notice that the four momenta for the intermediate line between 

two scatterings before and after the ra.dia.t.ion are different, 

p = (E,)E 2 - Ci,C.L), 

p' = (E + w, V(E + w) 2 - Ci, e.L)· (A16) 

Define cPD = -(p- p;). XI- i( p f- p). Xz = P::L + e.L. r .L + p;. XI- p j" X2 as the phase factor 

for double elastic scattering. the corresponding phase factors in the above two amplitudes 

for induced radiation become, 

<!>a= ¢>D + ik · :r1, <Pc = ¢>D + ik · X2 (A17) 
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where we used p~ ~ P:: + wfv::, V:: = P::! E and we defined the time components of the four

coordinates a.s t 1 = 0, i 2 = Lfv::. These two terms can be identified with the initial radiation 

of the first scattering and the final state radiation of the second scattering, respectively. 

In the amplitude of the radiation from the middle line, rb, \Ve can see that there are 

singularities in both of the two propagators. They should both contribute to the integration 

over fz. To complete the integration, we may use the identity (with P = 0), 

[(e - 1..)2 + .: J-lr/)2 + .. ·J-1 = ru- /.:)2 + ic:J-1 
fl. IE (. lE 2/.:·(f!-k) 

[C2 + ic]-1 

2C·k 
(AlS) 

With £0 = E +w, the singularity in the second term put the internal line before the radiation 

vertex on mass-shell with four-momentum p'. This contribution corresponds to the initial 

state radiation of the second scattering. For the fii:st term in the above equation, we can 

make a variable change, C' = f!- k. \Vith C~ = E, the internal line after the radiation 

vertex is put on shell with four-momentum p. T'his term can be identified as the final sta.te 

radiation of the first. scattering. Using identities, 

j1 1( J1+ J.:) = 2f. P jJ, 

( P- J:) I j/ = 2f · p' j/, 

one has the amplitude of the radiation from the middle line between two scatterings, 

(A19) 

(A20) 

(A21) 

Summing all contributions together, we have the total amplitude for radiation induced by 

double scatterings, 

fa+ fb + fc =- ,~(PJ- p).)~ ,f{(p + k- p;) (c. Pi -c. ]J) eirl>v+ik·xl 
-'P:: 1.: · p; 1.: · P 

A'( +k ') f/ A'( ' ) (c·p' E·]Jf) ir/>v+ik·x2 - 0 P J - p - 'I' p - p · -- - -- e 
2i p~ ! 1.: . p' !.~ . p f 

(A22) 

which has two distinct contributions induced b.Y each scatterings. In the high energy and 

small angle scattering limit., we can neglect the small momentum transfer at each scattering 

as compared to the beam cncrg.Y B. We also assume the soft radiation limit in which k1- ~ 

q1-, with ql. being the transverse momentum transfer at each elastic scattering. Substituting 

the above expression back into Eq. (AlO), Lhe total amplitude factorizes a.s 

(A23) 
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with the double elastic amplitude /vt~fl given by Eq. (A.5) and the radiation amplitude R~ED 

by Eq. (21). 

In the case of gluon radiation in QCD, we will have different color matrices for different 

diagrams in Fig. 2. \Vith the color indices a.s defined in Fig. 2, the corresponding color 

factors for ra, rb, and rc are, respectively, 

(A24) 

When taking the high energy limit, all the contributions have a common momentum depen

dence, € • pifk ·Pi~<::· pjk: · p ~ <:: • PJ/k · PJ ~ 2(J. · kJ./kl. One can immediately arrives at 

Eq. (23). 

/ 
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FIGURES 

FIG. 1. Diagrams for induced gluon ra.diation from a. single qq scattering. 

FIG. 2. Diagrams for gluon radiation from the quark line induced by double scatterings. 

FIG. 3. The radiation formation factor Cm(/,;), m, = 5, as a. function of r(k)j ..\ = 2 cosh(y)/k.L..\ 

for quarks (solid) and gluons (dashed). 

FIG. 4. The energy dependence of energy loss, dEjdz, of a. quark with energy E inside a 

quark-gluon plasma. at temperature T = :300 1VIeV. A weak coupling Cl's = 0.:3 is used. The solid 

line is the full expression and the dashed line is the factorization limit of the radiative energy loss. 

The dot-dashed line is the elastic energy loss. 
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