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Insights into the phylogeny and coding
potential of microbial dark matter
Christian Rinke1, Patrick Schwientek1, Alexander Sczyrba1,2, Natalia N. Ivanova1, Iain J. Anderson1{, Jan-Fang Cheng1,
Aaron Darling3,4, Stephanie Malfatti1, Brandon K. Swan5, Esther A. Gies6, Jeremy A. Dodsworth7, Brian P. Hedlund7,
George Tsiamis8, Stefan M. Sievert9, Wen-Tso Liu10, Jonathan A. Eisen3, Steven J. Hallam6, Nikos C. Kyrpides1,
Ramunas Stepanauskas5, Edward M. Rubin1, Philip Hugenholtz11 & Tanja Woyke1

Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary
and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of
limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We
apply single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells from nine diverse habitats
belonging to 29 major mostly uncharted branches of the tree of life, so-called ‘microbial dark matter’. With this
additional genomic information, we are able to resolve many intra- and inter-phylum-level relationships and to
propose two new superphyla. We uncover unexpected metabolic features that extend our understanding of biology
and challenge established boundaries between the three domains of life. These include a novel amino acid use for the opal
stop codon, an archaeal-type purine synthesis in Bacteria and complete sigma factors in Archaea similar to those in
Bacteria. The single-cell genomes also served to phylogenetically anchor up to 20% of metagenomic reads in some
habitats, facilitating organism-level interpretation of ecosystem function. This study greatly expands the genomic
representation of the tree of life and provides a systematic step towards a better understanding of biological evolution
on our planet.

Microorganisms are the most diverse and abundant cellular life forms on
Earth, occupying every possible metabolic niche. The large majority of
these organisms have not been obtained in pure culture and we have only
recently become aware of their presence mainly through cultivation-
independent molecular surveys based on conserved marker genes (chiefly
small subunit ribosomal RNA; SSU rRNA) or through shotgun sequen-
cing (metagenomics)1,2. As an increasing number of environments are
deeply sequenced using next-generation technologies, diversity estimates
for Bacteria and Archaea continue to rise, with the number of micro-
bial ‘species’ predicted to reach well into the millions3. According to SSU
rRNA-based phylogeny, these fall into at least 60 major lines of descent
(phyla or divisions) within the bacterial and archaeal domains4, of which
half have no cultivated representatives (so-called ‘candidate’ phyla). This
biased representation is even more fundamentally skewed when consid-
ering that more than 88% of all microbial isolates belong to only four
bacterial phyla, the Proteobacteria, Firmicutes, Actinobacteria and Bacte-
roidetes (Supplementary Fig. 1a). Genome sequencing of microbial
isolates naturally reflects this cultivation bias (Supplementary Fig. 1b).
Recently, a systematic effort, the Genomic Encyclopaedia of Bacteria and
Archaea (GEBA) Project5, has been initiated to maximize coverage of the
diversity captured in microbial isolates by phylogenetically targeted gen-
ome sequencing. However, GEBA does not address candidate phyla that
represent a major unexplored portion of microbial diversity, and have
been referred to as microbial dark matter (MDM)6.

Metagenomics can obtain genome sequences from uncultivated micro-
organisms through direct sequencing of DNA from the environment7.

In some instances, draft or even complete genomes of candidate phyla
have been recovered solely from metagenomic data (Supplementary
Table 1). A complementary cultivation-independent approach for
obtaining genomes from candidate phyla is single-cell genomics; the
amplification and sequencing of DNA from single cells obtained
directly from environmental samples8. This approach can be used for
targeted recovery of genomes and has been applied to members of
several candidate phyla (Supplementary Table 1). In particular, natural
populations that have a high degree of genomic heterogeneity will be
more accessible through single-cell genomics than through metage-
nomics as co-assembly of multiple strains is avoided. Despite these
advances in obtaining genomic representation of MDM, no systematic
effort has been made to obtain genomes from uncultivated candidate
phyla using single-cell whole genome amplification approaches.

Here, we present GEBA-MDM, the natural extension of the Genomic
Encyclopaedia into uncultivated diversity by applying single-cell geno-
mics to recover draft genomes from over 200 cells representing more
than 20 major uncultivated archaeal and bacterial lineages. Genome-
based phylogenetic analysis confirms the validity of rRNA-defined can-
didate phyla as monophyletic groups and resolves a number of associa-
tions among phyla not apparent by single gene analysis. We discovered
several unexpected features, including archaeal sigma factors and stop
codon reassignments that challenge established views of the microbial
world. Furthermore, we show that single-cell genome references sub-
stantially improve the phylogenetic anchoring of about 340 million
previously incorrectly or under-classified metagenomic reads.
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Single-cell genomics at scale
We began by screening numerous physicochemically and geographi-
cally diverse environmental samples using SSU rRNA community
profiling to identify habitats enriched in candidate phyla, and we
targeted nine for in-depth single-cell analysis (Fig. 1, top panel, and
Supplementary Fig. 2). Cells representing novel lineages were iden-
tified using high-throughput single-cell flow sorting, whole-genome
amplification and SSU rRNA screening of single amplified genomes
(SAGs; Fig. 1, middle panel; see Methods). A total of 201 SAGs repre-
senting 21 and 8 highly under-represented major bacterial and archaeal
lineages were selected for whole genome sequencing (Fig. 1, bottom
panel).

To improve assemblies, SAG sequence data was digitally normalized
to reduce over-represented regions caused by amplification bias9. The
fidelity of the resulting assemblies was validated using tetra-nucleotide
frequency, BLAST (Basic Local Alignment Search Tool) and single
copy marker gene analyses (Supplementary Methods and Supplemen-
tary Fig. 4). Draft SAGs ranged in size from 148 kilobase pairs (kb) to
2.4 Mb comprising an average of 59 major contigs per assembly (Sup-
plementary Fig. 5a and Supplementary Table 2). Genome complete-
ness was estimated to range from less than 10% to more than 90%
(mean 40%) based on the presence or absence of 139 bacterial and
162 archaeal conserved marker genes (Supplementary Fig. 5a). Com-
bining reads of single cells belonging to the same population, that is,
with an average nucleotide identity of $97% (ref. 10) (see Methods),
improved assemblies and produced seven population genomes with an
estimated completeness of over 90% (Supplementary Fig. 6 and
Supplementary Fig. 5a, b).

Genome-based phylogenetic inference
SSU rRNA trees are known to be sound predictors of phylogenetic
novelty5,11 despite the blurring of vertical descent by lateral gene
transfer12. However, concatenated alignments of multiple universally
distributed single copy marker genes are generally considered to pro-
vide greater phylogenetic resolution than any individual gene for
estimating a species tree13. We constructed bootstrapped maximum
likelihood trees based on a concatenation of up to 38 commonly used
conserved marker genes5,14 (Supplementary Methods and Supplemen-
tary Table 3) with 15 taxa configurations15 (Supplementary Table 4). Sub-
stitution models were selected to address known issues, including long
branch attraction16 (discussed further in Supplementary Information).
Congruency of the individual marker gene topologies to each other
was independently assessed confirming the selection of these gene
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Figure 1 | Sampling sites and single-cell sequencing workflow. Upper panel,
nine global sampling sites grouped into ocean samples (blue), fresh and
brackish water samples (green), hydrothermal sites (red), sediment samples
(magenta), and bioreactor samples (orange symbol). EPR, East Pacific Rise;
ETL, Etoliko Lagoon; GBS, Great Boiling Spring; GOM, Gulf of Maine; HOT,
Hawaii Ocean Time-series Project; HSM, Homestake Mine; SAK, Sakinaw
Lake; TA, terephthalate degrading reactor; TG, tropical gyre in the South
Atlantic. Middle panel, environmental samples were processed using a
fluorescence-activated cell sorter allowing the isolation of 9,600 single cells.
Each cell was lysed and the genome amplified yielding 3,300 successful
amplifications. Resulting SAGs were screened by SSU rRNA gene PCR and
sequencing to resolve taxonomic identities. SAGs belonging to major novel
lineages were selected for genome sequencing and assembly resulting in 201
draft genomes. QC, quality control. Lower panel, cladogram showing the
taxonomy of the SSU rRNA gene sequences, grouped into phyla. Candidate
phyla are highlighted in black, and known phyla (according to the list of
‘Prokaryote Names with Standing in Nomenclature’ at http://www.bacterio.net/)
are shown in light grey. For each phylum for which we retrieved one or more
single-cell genomes the sampling sites are indicated according to the symbols in
the upper panel. Note that marker gene phylogeny suggests that SAG
JGI0000068-E11clusters within the PER group, a sister lineage to
Gracilibacteria (Supplementary Fig. 3). This finding is not supported by the SSU
rRNA gene phylogeny and will need further evaluation as more genome and
SSU rRNA gene sequences become available.
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families for genome tree reconstruction (Supplementary Fig. 7). All
candidate phyla with three or more SAG representatives were resolved
as monophyletic groups consistent with their rRNA delineations
(Fig. 2 and Supplementary Fig. 8). These are the first substantive
genomic data for candidate bacterial phyla SAR406 (Marine Group
A)17, OP3, OP8 (ref. 18), WS1, WS3 (ref. 19), BRC1, CD12, EM19,
EM3, NKB19, and Oct-Spa1-106 (ref. 20), as well as for several highly
divergent archaeal groups related to the Nanoarchaeota (Fig. 2). We
propose names for candidate phyla with two or more representatives
based on their inferred physiology and distinguishing properties
(Supplementary Table 5, see below).

Owing to the greater phylogenetic resolution afforded by the con-
catenated gene data sets, compared to rRNA phylogeny, we were able
to identify a number of robust associations among phyla. These include
the well-recognized Planctomycetes–Verrucomicrobia–Chlamydiae
(PVC) superphylum that, based on rRNA analysis, was proposed
to also include candidate phylum Omnitrophica (OP3) and the phy-
lum Lentisphaerae21. Genome-based analysis confirms this grouping
(Fig. 2) and we found a suggested PVC signature gene22 in an Omnitro-
phica genome (Supplementary Information). The Fibrobacteres–
Chlorobi–Bacteroidetes (FCB) superphylum23 was robustly resolved

together with Marinimicrobia (SAR406), Latescibacteria (WS3), Cloa-
cimonetes (WWE1), Gemmatimonadetes24 and Caldithrix25. Comparative
genomics revealed that a conserved carboxy-terminal domain of extracel-
lular proteinases (TIGR04183) is found exclusively (but not comprehen-
sively) in members of the FCB superphylum. This includes the original
phyla Fibrobacteres, Chlorobi, Bacteroidetes, as well as the candidate phyla
Cloacimonetes, Marinimicrobia, Latescibacteria and the Caldithrix gen-
ome (Supplementary Information).

The Terrabacteria, proposed to comprise the ‘terrestrial’ bacterial
phyla Actinobacteria, Cyanobacteria, Thermi (Deinococcus-Thermus),
Chloroflexi and Firmicutes26, was resolved in our analysis with the addi-
tional membership of Armatimonadetes (former candidate phylum
OP10)27 (Fig. 2). Perhaps more compelling than the assertion of ancient
adaptations to life on land unifying the Terrabacteria26 are commonalities
in cell envelope architecture. This superphylum comprises monoderm
(single membrane) and atypical monoderm lineages28. We assessed the
additional proposed Terrabacteria phyla for genes most characteristic of
monoderms and diderms29 and confirmed that all had monoderm-like or
atypical gene complements (Supplementary Fig. 9).

The phylogenetic placement of the Cloacimonetes (WWE1 clade)
has been inconclusive based on rRNA comparative analysis. It was
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Figure 2 | Maximum-likelihood phylogenetic inference of Archaea and
Bacteria. The phylogenetic trees are based on up to 38 marker genes and
sequences are collapsed at the phylum level occluding subgroups such as the
Geoarchaeota which clusters within the Crenarchaeota. Phyla containing SAGs
from this study are highlighted in red. Superphyla (TACK, DPANN,
Terrabacteria, FCB, PVC and Patescibacteria) are highlighted with colour
ranges. The phylogenetic robustness (monophyly score) of phyla and
superphyla is indicated by a small circle on the node: black circle (node was

resolved in 100% of all tree calculations); grey circle (resolved in $90% of all
calculations); light-grey circle (resolved in $50% of all calculations). Average
bootstrap support values are provided for each phylum and superphylum when
resolved. The underlying phylogenetic inference configurations as well as
detailed branch support values and monophyly scores are provided in
Supplementary Table 3. The two domain trees were independently calculated
and are unrooted and the scale bar represents 10% estimated sequence
divergence for both trees.
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originally proposed as a candidate phylum30 and more recently as a
class within the Spirochaetes phylum28. Our analysis, which substan-
tially expands the genomic representation of this group, finds no sup-
port for a specific affiliation with the Spirochaetes (Fig. 2). It was
suggested, based on a smaller data set, that the Acidobacteria repro-
ducibly cluster with the Deltaproteobacteria14 but this is not supported
by our analyses. Instead, Acidobacteria reproducibly affiliate with the
Aminacenantes (OP8) (Fig. 2). Candidate phylum OP11, as origin-
ally proposed26, has not been resolved consistently as a monophyletic
group leading to the proposal for subdivision into multiple phyla,
including OP11 (former subdivisions 1 to 3 only), OD1 (former OP11
subdivision 5) and SR1 (ref. 31). Here we found that Microgenomates
(OP11) and Parcubacteria (OD1) genomes were resolved reproducibly
as a monophyletic group based on concatenated marker gene analysis
together with Gracilibacteria (GN02)32. To recognize this affiliation, we
propose the superphylum name ‘Patescibacteria’ (patesco (Latin),
meaning bare) (Fig. 2), reflecting the reduced metabolic capacities of
these lineages33. We found support for a specific association between the
Patescibacteria and Terrabacteria using a larger bacteria-specific mar-
ker gene set (Supplementary Fig. 10). This association is consistent with
a monoderm-like gene complement in the Patescibacteria (Supplemen-
tary Fig. 9) but will need to be verified when additional genomes belong-
ing to these lineages are available.

Based on phylogenetic analysis of our archaeal single-cell genomes
and several recently described genome-sequenced lineages of very small
cells, such as Candidatus Parvarchaeum, Candidatus Micrarchaeum34,
Candidatus Nanosalina, Candidatus Nanosalinarum35, we propose the
following phyla; Diapherotrites (pMC2A384)36, Parvarchaeota, Aenig-
marchaeota (DSEG)37 and Nanohaloarchaeota (Fig. 2 and Supplemen-
tary Table 5). The Nanohaloarchaeota include the recently proposed
class Nanohaloarchaea that was incorrectly placed within the Euryar-
chaeota owing to inadequate outgroup representation35. We predict
that small cell and genome size are unifying features of these phyla and
in Archaea-only trees these lineages, together with the Nanoarchaeota,
form a monophyletic superphylum for which we propose the identifier,
DPANN (Fig. 2 and Supplementary Text). Our expanded genomic
representation and analysis of the archaeal domain also supports the
proposal for the TACK superphylum38, but is not consistent with the
eocyte hypothesis39, which places the Eukaryota within the archaeal
domain, recently reinvestigated using a 36-genome data set40 (Sup-
plementary Fig. 11). As more genomes and improved phylogenetic
inference methods come to hand, our proposed lineage delineations
can be further evaluated.

Functional diversity and novel findings
The numerous strategies that cultivated microorganisms use to obtain
energy and nutrients suggest that many metabolic surprises remain to
be discovered in the uncultivated microbial majority. Here we provide
a first glimpse into the potential functional diversity of many of the
investigated candidate phyla and novel lineages. The majority of bac-
terial and several archaeal single-cell genomes in our study possess a
large array of genes for the degradation of amino acids and sugars
(providing the basis for some candidate names for phyla; Supplemen-
tary Table 5), pointing to a heterotrophic lifestyle (Supplementary Fig. 12).
We found evidence for an electron transport chain, and thus the abi-
lity to perform a more complete set of cellular respiration processes,
in most bacterial SAGs with the notable exception of members of
the Parcubacteria (OD1), Microgenomates (OP11), Gracilibacteria
(GN02) and Latescibacteria (WS3). Genes necessary for carbon fixa-
tion were found in a wide range of archaeal SAGs (Wood–Ljungdahl
pathway, adenosine nucleotide degradation pathway) with a more
limited distribution in the bacterial SAGs (Supplementary Fig. 12).
Hydrogen metabolism is widespread amongst the novel lineages, and
two SAGs (belonging to Caldiserica and Aigarchaeota) have genes for
sulphur utilization (Supplementary Fig. 12 and Supplementary Table 6).

A novel recoding of the opal stop codon UGA for glycine was
identified in members of the Gracilibacteria (Fig. 3 and Supplementary
Fig. 13a). The same recoding was found and biochemically validated in
candidate phylum SR1 very recently41, suggesting that this codon reas-
signment may be phylogenetically widespread in uncharacterized
lineages. This expands the known alternative coding for UGA, which
has previously been reported for selenocysteine42 and tryptophan43,44.
The very low guanine–cytosine content of the Gracilibacteria single-
cell genomes (,24%) may have driven the recoding of UGA to a lower
guanine–cytosine glycine codon alternative (UGA versus GGN) par-
ticularly as glycine is the third most commonly used amino acid (.7%
average abundance per genome; Supplementary Fig. 13b).

Purine biosynthesis is highly conserved in the Bacteria and Archaea in
terms of the penultimate step in the pathway responsible for ribonucle-
ate formylation45. All bacteria sequenced so far use the PurH1 enzyme
for this step, whereas the majority of Archaea use the PurP enzyme.
However, members of the bacterial superphylum Patescibacteria lack
the purH1 gene and instead have an euryarchaeal purP-like gene (Fig. 3

Archaeal defense (Nanoarchaeota)

Lytic murein transglycosylase

Stringent response 

(Diapherotrites, Nanoarchaeota)

ppGpp

SpotT RelA

(GTP or GDP)

+ PPi

GTP or GDP

+ ATP

DksA

Expression of components

 for stress response

Limiting

phosphate,

fatty acids,

carbon, iron

Limiting

amino acids

Sigma factor (Diapherotrites, 

Nanoarchaeota)

σ4

β + β′

σ2σ3 σ1

–35 –10

αNTD

αCTD

RNA polymerase

Oxidoreductase

+ +e– donor e– acceptor

H

N

Ribo
ADP

+

NH2

O

Reduction

Oxidation
H

N

Ribo
ADP

NH

O

2H

NAD  + H  + 2e                     NADH+         +          – 

LGT from eukaryotes (Nanoarchaeota)

O

HOCH2

OH

NH

COCH
3

O

O

HOCH2

NH

COCH
3

O

Tetra-

peptide

O

HOCH2

OH

NH

COCH
3

O

O

HOCH2

NH

COCH
3

O

Tetra-

peptide

Archaeal type purine synthesis 

(Microgenomates)
PurF

PurD

PurN

PurL/Q

PurM

PurK

PurE

PurC

PurB

PurP

?

Archaea

Adenine Guanine

O

H  N2

+
N

NH2

N

N

H

H

N

N

N

H

H
HN N

H

PRPP FAICAR

IMP

AICAR

A
C

GUA C
G

U

G
U

A

C

G
U

A U

A C U
A C U

Growing 

AA chain

tRNA(Gly) 

recognizes 

UGA

mRNA

UGA recoded for Gly (Gracilibacteria)

Ribosome

Eukaryota

Bacteria Archaea

Murein (peptidoglycan)

Figure 3 | Novel metabolic features found in the SAG data set. Left, features
found in Bacteria: in a subgroup of the Gracilibacteria (GN02), the opal stop
codon UGA codes for glycine and these genomes encode a transfer RNA
(tRNA) for UGA. Two lineages of Microgenomates (OP11) bacteria use the
archaeal pathway (PurH1 enzyme) for purine (adenine, guanine) biosynthesis,
inferred to have been acquired by lateral gene transfer (LGT) from
Euryarchaeota. AICAR, aminoimidazole carboxamide ribonucleotide; ATP,
adenosine tri-phosphate; FAICAR, formyl aminoimidazole carboxamide
ribonucleotide; IMP, inosine monophosphate; mRNA, messenger RNA; PRPP,
phosphoribosyl pyrophosphate; PurH, bifunctional purine biosynthesis
protein PurH. Right, features found in Archaea. A Nanoarchaeota genome
encodes an oxidoreductase most closely related to the soil-living amoebae
(slime mould) representing a lateral gene transfer from a eukaryote to an
archaeon. Two members of the Diapherotrites (pMC2A384) and one
representative of the Nanoarchaeota encode complete bacteria-like sigma
factors (h70). The bacterial stringent response based on deployment of
signalling molecules (ppGpp) was identified in a member of the Diapherotrites
and the Nanoarchaeota. A bacterial-like lytic murein transglycosylase was
found in two members of the Nanoarchaeota. aCTD, a-subunit C-terminal
domain; aNTD, a-subunit N-terminal domain; ADP, adenosine di-phosphate;
GDP, guanosine di-phosphate; GTP, guanosine tri-phosphate.

RESEARCH ARTICLE

4 | N A T U R E | V O L 0 0 0 | 0 0 M O N T H 2 0 1 3

Macmillan Publishers Limited. All rights reserved©2013



and Supplementary Table 7) as a result of an ancient lateral transfer of
most of the purine biosynthesis operon from a Thermococci-like donor
to the ancestor of the Patescibacteria (Supplementary Fig. 14).

The DPANN superphylum contains a number of metabolic novel-
ties pointing to a capacity for co-opting foreign genetic elements. A
Nanoarchaeota genome encodes an oxidoreductase most closely related
to the slime mould Dictyostelium discoideum and sits within the
eukaryal evolutionary radiation for this gene (Supplementary Fig. 15).
To our knowledge, this is the first instance of a lateral gene transfer from
a eukaryote to an archaeon. Sigma factors are RNA transcription ini-
tiation factors found exclusively in Bacteria, although one conserved
sigma factor domain (region four) has been reported in Archaea46. Here
we report the first instance of complete bacteria-like sigma factors (h70)
in Archaea, specifically in two members of the Diapherotrites and one
representative of the Nanoarchaeota (Fig. 3 and Supplementary Table 8).
These appear to be the result of multiple lateral transfers from bacterial
donors (Supplementary Fig. 16). All three sigma factors belong to the
non-essential h70 groups (3 and 4)47 and their hosts retain the standard
archaeal TATA-binding protein gene regulation apparatus, suggesting
that the co-opted full-length bacterial sigma factors are used for special-
ized instances of gene regulation or serve some other function (Sup-
plementary Information).

The well-described bacterial stringent response based on deployment
of multi-domain signalling molecules (guanosine tetraphosphate;
ppGpp) called alarmones were identified in one member each of the
Diapherotrites and Nanoarchaeota (Fig. 3). These seem to be the result
of ancient transfers from bacterial donors of key ppGpp synthetic genes
belonging to the RelA/SpoT homologue (RSH) superfamily48 (Sup-
plementary Fig. 17 and Supplementary Table 9). Although putative
single domain alarmones (synthases and hydrolases) have been found
in a number of Euryarchaeota48, this is the first report of complete
multi-domain archaeal alarmones comprising synthetase, hydrolase
and regulatory domains, suggesting that some DPANN Archaea can
produce ppGpp in response to the sensation of an intracellular signal.
Finally, a bacterial-like lytic murein transglycosylase was found in two
members of the Nanoarchaeota (Fig. 3 and Supplementary Fig. 18).
This enzyme is ubiquitous in Bacteria and responsible for creating
space within the peptidoglycan sacculus for its biosynthesis, recycling
and cell division and is tightly regulated because of its potent activity49.
As Archaea lack peptidoglycan and there is no evidence for peptido-
glycan synthesis in the Nanoarchaeota, we speculate that the murein
transglycosylase is secreted from the cell and used as a defensive mech-
anism against bacteria or possibly as a mechanism for facilitating cell-
to-cell interaction with bacteria.

Phylogenetic anchoring of metagenomes
A major challenge in metagenomics is determining the phylogenetic
origin of anonymous genome fragments, a process called binning or
classification50. Our ability to classify metagenomic fragments is ham-
pered by the enormous under-sampling of MDM reflected in a highly
biased reference genome data set (Supplementary Fig. 1b). To deter-
mine whether our set of phylogenetically novel single-cell genomes
improves metagenomic binning, we classified 893 publicly available
metagenomes against the non-redundant database with and without
the 201 SAGs (the single-cell genomes constitute a minimal increase
in total database size of 0.7%). Over half (475) of these metagenomes
showed new or improved read anchoring (Supplementary Table 10),
which accounted for a total of 340 million reads (0.7%). Although this
average percentage may seem small, up to 20% anchoring was achieved
for some metagenomes, reinforcing the need for phylogenetically
directed genomic characterization of microbial diversity. Metagenomes
with MDM-SAG-enabled read anchoring of .2% are shown in Fig. 4,
and all other metagenomes are shown in Supplementary Table 11.
On average, BLASTX matches of the 340 million reclassified reads
increased by approximately 27% amino acid identity, resulting in higher
resolution assignments for two-thirds of these reads. Of these, 78% and

22% were newly assigned or re-assigned at the phylum level, respectively
(Supplementary Fig. 19 and Supplementary Table 10). The most pro-
nounced improvements were seen in habitats comprising dominant
populations belonging to phyla that are well represented in the SAG
data set including the Marinimicrobia (SAR406), Aminacenantes
(OP8), Cloacimonetes (WWE-1), Parcubacteria (OD1), Atribacteria
(OP9) and Microgenomates (OP11) (Fig. 4). Despite these improve-
ments, the majority of reads in the 475 metagenomes could not be
classified beyond domain level (up to 80% in some metagenomes)
attesting to the continuing need for MDM exploration.

Outlook
Increasing genomic coverage of the microbial world has emerged as a
major goal over the past decade and notable international efforts are
underway; for example, the Microbial Earth Project, which aims to
generate a comprehensive genome catalogue of all archaeal and bac-
terial type strains (http://www.microbial-earth.org), and the Earth
Microbiome Project, which uses metagenomics, metatranscriptomics
and amplicon sequencing to analyse microbial communities across
the globe (http://www.earthmicrobiome.org). Although these pro-
jects will undoubtedly increase our understanding and appreciation
of the microbial world, the phylogenetically targeted approach applied
in the GEBA project5 and in the present study complements these
efforts and facilitates novel discovery. For example, our single-cell
genome data set provides an 11% greater coverage of known phylo-
genetic diversity than currently available genomes according to SSU
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rRNA comparisons (Supplementary Fig. 20a). This represents a
4.5-fold increase in phylogenetic diversity per genome relative to the
average phylogenetic diversity of genomes in the public database and
a twofold phylogenetic diversity increase per genome afforded by
GEBA5 (Supplementary Fig. 20a). This increase is also reflected in
overall protein novelty with nearly 20,000 new hypothetical protein
families in the GEBA-MDM data set, representing an increase of
8.5% compared to the number of genomes sequenced to date (Sup-
plementary Fig. 21). Although the phylogenetic diversity of microbial
isolates has increased gradually over time as pure cultures accrue, the
phylogenetic diversity of uncultivated microorganisms identified in
SSU rRNA surveys has quadrupled since 2007 and currently represents
.85% of known microbial diversity (Supplementary Fig. 20b). We
estimate that a sequencing effort of at least 16,000 additional genomes
from diverse environments is needed to cover 50% of the known
phylogenetic diversity based on SSU rRNA profiling (Supplementary
Fig. 20a). Single-cell genomics offers a means to inventory this genomic
diversity at the organism level directly, bypassing the assembly and
binning problems associated with plurality sequencing approaches.
Further development of single-cell technologies should overcome
known challenges such as fragmented genome recoveries8 and will make
this technique a more robust tool. As single-cell and other cultivation-
independent genomic approaches are used, we anticipate robust
improvements to the genomic tree of life that will supercede the single-
locus resolution of the SSU rRNA tree. As the genomic tree is filled in, we
will witness for the first time a global view of the evolutionary forces that
have shaped life on Earth.

METHODS SUMMARY
Nine sites were sampled for single-cell sorting, whole-genome amplification and
SSU rRNA screening. A total of 201 phylogenetically targeted SAGs were shotgun
sequenced and assembled. Genome completeness was estimated based on uni-
versal, single-copy genes. Genome trees were calculated from concatenated align-
ments of up to 38 universally conserved protein-coding genes in Bacteria and
Archaea, and phylogenetic inference was carried out via RAxML, RAxML-Light,
and fasttree using 15 taxon configurations. Gene predictions, functional annota-
tion, manual curation and pathway reconstruction were carried out within the
Integrated Microbial Genomes (IMG) system (http://img.jgi.doe.gov). Phylogenetic
anchoring of metagenomic reads was computed using protein blast and the lowest
common ancestor approach. Phylogenetic diversity values were calculated from a
SSU rRNA maximum likelihood tree. All steps are detailed in the Supplementary
Information.
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