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Abstract

A novel method is presented for introducing fluctuations in one-body dynam-
ics. It consists of employing a Brownian force in the kinetic equations. For
nuclear matter within the spinodal zone, the magnitude of the Brownian force
can be determined by demanding correspondance with the growth of the most
unstable mode, as given by Boltzmann-Langevin simulations. The method is il-
lustrated and tested for idealized two-dimensional matter and promises to provide
a practical means for addressing catastrophic nuclear processes.

*This work was supported by the Director, Office of Energy Research, Office of High En-
ergy and Nuclear Physics, Nuclear Physics Division of the U.S. Department of Energy,
under Contract No. DE-AC03-76SF00098, and by the Commission of the European
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Transport phenomena occur in many physical systems. The approach pio-
neered by Boltzmann has proven particularly useful and has provided a good
understanding of gas kinetics in various fields. For interacting gases, for exam-
ple of Van-der-Waals type, the interparticle forces can be taken into account
by a mean field. In particular, the nuclear Boltzmann equation (BUU) forms a
very successful framework for understanding a variety of features associated with
nuclear collisions at intermediate energies, including collective flow and particle
production(1, 2].

In the standard Boltzmann treatment, only the average effect of the colli-
sions between the particles of the considered system is included. This leads to
a deterministic description and a single dynamical trajectory results. While this
simplification may be well suited in many physical situations in which the dy-
namics appears to be rather stable, it cannot provide a description of processes
involving instabilities, bifurcations, or chaos. For example, in nuclear physics the
BUU approximation is appropriate during the early stages of a nuclear collision,
when the system is hot and compressed but it becomes inadequate if instabilities
occur, such as when expansion and cooling has brought the bulk of the system
within the spinodal zone of the phase diagram. In such scenarios, it is essential
to include the fluctuations as well.

In many branches of physics such difusive behavior is described by transport
theories originally developed for Brownian motion. These approaches simulate
the effects of the unretained degrees of freedom by a random term in the dynamics
of the retained variables. This idea has inspired an extention of the Boltzmann
approach which considers the collisions as random processes so that the fluctu-
ating collision term acts as a Langevin stochastic term on the one-body density
citeAG. Accordingly, this approach has been denoted the Boltzmann-Langevin
(BL) model. _

A numerical simulation method was subsequently developed on a phase-space
lattice [4, 5]. This method has been shown to exhibit the correct relaxation prop-
erties [5, 6, 7] and to also describe the spontaneous agitation and propagation
of collective modes in unstable nuclear matter [8, 9]. Thus, the lattice simu-
lation method provides a well-founded means for solving the BL equation in a
numerically reliable manner.

However, the application of this method to realistic scenarios is a formidable
task, due to the effort associated with the detailed simulation of all the possible
elementary two-body scattering processes on the lattice. A significant advance
was made recently by the derivation of simple approximate expressions for the
BL transport coefficients at equilibrium, reducing the required numerical effort
by several orders of magnitude [10]. Even so, the lattice simulation of the BL
transport problem is still too tedious to provide a very useful practical tool for
the understanding of physical processes. Therefore, it is worthwhile exploring
ways of further simplifying the treatment so that realistic calculations can be
made with relative ease, thereby facilitating the confrontation between theory
and experiment.

In this paper we present a novel method that appears to bring this goal
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within reach. It consists of replacing the actual complicated (hence computer
demanding) fluctuating part of the collision term, 61, by the effect of an exter-
nally imposed Brownian force 6 F', that is suitably tuned so that the dynamics
of certain important collective modes is in good accordance with the results of
the complete BL model. Specifically, since we are particularly interested in how
the spinodal decomposition of an expanded system may lead to its multifrag-
mentation, we demand that the most rapidly growing unstable modes be well
reproduced, for each density and temperature within the spinodal zone where
exponential amplification of fluctuations occurs.

This approach is akin to the simplest description of the Brownian motion
in which the dynamics of pollen particles immersed in a molecular heat bath is
described by a simple random force, whereas the BL approach would correspond
to actually simulating the individual collisions with the gas. The method has the
distinct advantage that it can be readily implemented into existing simulation
codes, in particular those employing the test-particle method, without greatly
increasing the associated computational effort. We note that a more formal study
- of stochastic mean-field dynamic has been made previously for a very specific case
[11]. .
The object of study is the reduced one-body phase-space density f(s,t) where
we use s = (7, p) to denote a point in phase space. The presently most advanced
dynamical model considers three distinct sources for the evolution of f(s),

o — (hlf. 1y + 11 + e111). (1)

The first term is the collisionless propagation of f in the self-consistent one-body
field described by the effective Hamiltonian h(s) = p?/2m + U(r); this part is
often referred to as the Vlasov propagation and is the semi-classical analogue of
the Time-Dependent Hartree Fock approximation. The second source of evolu-
tion, I[f], represents the average effect of the residual Pauli-suppressed two-body
collisions; this is the term included in the standard BUU description. The third
term, §I[f], is the Langevin term, ordinarily assumed to be Markovian and to
represent the fluctuating part of the two-body collisions. The terms I and 61
can be calculated consistently by noting that the expected number of elementary
transitions between the two initial and two final phase space elements is given by
4, 5]

dvi230 = fifofafs 6(712)6(734)6(13) w(py, p2; p3, pa) dsidsadsads, (2)

where f; = f(s;) is the occupancy of the initial state i, and f; = 1 — f(s;) is
availability of the final state i. The transition rate w(py, p2; p3, ps) is related to
the differential scattering cross section doyy/dS2.

A convenient framework for discussing the BL problem was developed within
the Fokker-Planck approximation [4, 5. The key quantities characterizing the
dynamical problem are then the transport coefficients,

Vis) =< 1[fls) - = TIAs) = § [dvnoa(Ba =) . (3)
2D(Si;5j) 5(t12) == 5I[f](51,t1) 6I[f](52, t2) >, (4)
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where the average < - > is with respect to an ensemble of systems prepared with
the same initial one-body density f(s). Thus the drift coefficient V(s) describes
the average effect of the collision term. The diffusion coeflicient governs the early
growth rate of the correlated fluctuations in the occupancy and can be éxpressed
explicitly as

D(si;s;) = § / dvi12;34 [6:5(852 + 64) + 61 (82 — 2854) + 6ia(654 — 2832)] , ()

where §;; = é(s; — s;), and so we may write D(s;;s;) = D(p;, p;)d(7i;).

The basic idea of our proposed method is to replace the actual stochastic
collision term 67 by a suitable Brownian force § F (with < 6 F >= 0) in such a
manner that the novel equation of motion is obtained by making the following

replacement in (1),

0

9f . (6)
op
Since we wish the resulting Brownian one-body dynamics to mimic the BL evo-
lution, the stochastic force is assumed to be local in space and time. Moreover,
since we wish to match its effects in nuclear matter, which is isotropic, the force

may also be taken to have rotational invariance. Its correlation function can then
be written

811f] — 81[f] = —6F[f]-

< 6F(r1,t1) 8F(72,t5) ==2Do I 6(r12) 8(t12) , (7

where I is the unit tensor. The resulting dynamics is then qualitatively similar
to that resulting from the BL equation (1) but the associated diffusion coefficient

is modified, 8f(s) 9f(s)
$1 f(s2
op, . Op, 6(r) (®)

In order to establish a formal basis for making such a replacement inside the
spinodal zone, we first recall the properties of unstable nuclear matter. The agi-
tation of collective modes in nuclear matter inside the spinodal zone was recently
addressed within the framework of linear-response theory [9]. Starting from a
spatially uniform phase-space density of Fermi-Dirac form, f°(¢), the dynamics
of small deviations é§f(r,p,t) = f(r,p,t) — f°(¢) was considered. The corre-
sponding linearized BL equation is given by

0 0 ouaf° 9 -

~

2D(Sl; 52). = 2D0

where the left-hand side describes the collisionless (Vlasov) propagation. The
effect of the average collision term I is relatively small [12, 13] and is therefore
ignored in the present exposition. The unstable Vlasov eigenmodes are plane
waves of the form fy(p)exp(tk- 7 + vt/ti) with v = & and v

_0U k-p af°
" Op k-p+ivm/ty Oe

fi(p) (10)



Here the Fourier component dUy/3dp is simply related to the corresponding Lan-
dau parameter Fo(k) [9, 13, 14]. The characteristic time ¢, is determined by the
associated dispersion relation, =P [ dpfg(p) = 1.

The analysis can be further simplified by the introduction of the associated
dual basis functions [15], : (

w Ny

11
k-p+ivm/ty’ (11)

fip) =

which have the convement property =P [ dp fk (p)* fk (p) = 6,ur.
The source terms Dy” governing the agitation rates of the unstable modes
can then be obtained by a simple projection of the BL diffusion coefficient [15],

! d dp » - 2l
Dy = [ BB e Dprpo) () - (12)

This expression can be directly estimated numerically [9, 14] or analytically -

[13, 16], taking advantage of the dispersion relation and of the low-temperature
approximation for the diffusion coefficient [10].

Turning now to the Brownian one-body dynamics, we can obtain the corre-
sponding collective source terms by replacing D by D in eq. (12). Exploiting the
dispersion relation, we then find

Mvy! 1R Nl? aUk 2
Dk =rvv Do;;;2—k2 (Fp— . | (13)

We now demand that the BL results for the fastest-growing mode, for any
given density and temperature, be well reproduced by the Brownian one-body

dynamics, i.e. we impose the matching condition 'D‘H’ Dt (p,T), where k is

the wave number associated with the shortest growth time ¢ in nuclear matter
having been prepared with density and temperature characteristic of the condi-
tions prevailing in the neighborhood of the specified position 7. The determi-
nation of the local density p(r) is relatively straightforward in the test-particle
method, whereas the local equivalent temperature is somewhat more problem-
atic. We prefer to determine T'(r) by exploiting the simple relationship between
the temperature and the collision rate which is automatically available in the
BUU treatment; this method does not require the momentum distribution to be
thermalized. It should be noted that the Brownian force is only employed when
the local conditions are inside the spinodal region of the phase diagram.

In this manner the strength can be determined at each point in space, Do(),
in the course of the dynamical evolution. In practice, once the local strength
 Do(7) has been calculated, the test-particles in the neighborhood will feel the

mean field force augmented by a small amount 6F, picked from a normal dis-
tribution with a variance in each direction is given by o = 2D,/AtAV where
At and AV are the time and the volume over which the same force is applied.
The small diffusive violation of energy and momentum conservation can easily
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be eliminated by a suitable correction of the effect on § F,, on the individual test
particles [16].

In order to illustrate the proposed method, we consider idealized unstable
matter in two spatial dimensions, using the simple Skyrme model employed ear-
lier [8, 17). We prepare the system at half its saturation density and with a
temperature of ' = 3 MeV, which is in the region of largest instability. The
fastest mode has the wave number k = 0.6 fm™" and the points in Fig. 1 show
the evolution of the associated variance oy, based on a sample of 25 individual
dynamcial simulations, each one employing /' = 1500 test particles per nucleon.
The strength of the random force is Dy = 144 MeV? fm/c, the value obtained
by the procedure described above. For reference is shown the expected BL evo-
lution (solid curve), as obtained by the analytical linear-response result taking
into account the actual growth time ¢, obtained in the test-particle simulation.
We note that the Brownian one-body evolution converges well towards the BL
curve. To be more quantitative, we have also compared the numerical results
with the linear-response prediction for the Brownian one-body dynamics, using
the same actual growth time t; [16]. It is clear that this analytical prediction
describes the results from the numerical simulation. Moreover, the evolutions of
neighboring modes are also rather similar [16], and so the proposed method does
indeed imitate the corresponding BL dynamics fairly well.

We have presented a novel simulation model for nuclear dynamics in the
intermediate-energy regime where the semiclassical one-body description is ex-
pected to be applicable. The method consists of augmenting the standard BUU
equation by the effect of a Brownian force that is tuned in space and time so
as to imitate the spontaneous agitation of the most unstable collective mode as-
sociated with matter characterized by the local density and temperature. This
local tuning can be easily accomplished by means of simple analytical expressions
for the strength parameter Do. The method can thus be implemented relatively
easily into existing transport codes, especially those employing the test-particle
method, and the additional computational effort is relatively modest.

We also note that the presented method is much preferable to a recently
suggested method in which the number of test particles A is adjusted so that a
good reproduction is obtained for the expected most dominant instability [17].
Although that method can yield useful insight under idealized circumstances, its
practical applicability suffers from two major drawbacks: the need to carefully
explore the nature of the instabilities encountered ahead of time, and the fact that
only a single quantity can be adjusted, namely N, so at most one single point of
the phase space diagram could be well reproduced. Both of these drawbacks are
eliminated in the present method.

In developing this method we have been motivated by the urgent need for
dynamical calculations of reactions under current investigation with advanced
detector arrays around the world. While the BL model is probably the presently
best-founded model for this task, it is rather computer-demanding in realistic sce-
narios. The present method offers a relatively easy tool for obtaining approximate
results while more elaborate implementations are in progress, and applications



are presently in progress for three-dimensional multifragmentation processes [16].

We finally wish to point out that the presented approach provides a general
framework for studying the kinetics of gases subject to Brownian motion and
may therefore be of wider interest.
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Figure 1: Test of the method.

The proposed simulation method is tested by considering the evolution of the vari-
ance oy of the most unstable mode in two-dimensional nuclear matter, prepared
at half the sautration density and with 7' = 3 MeV. Solid curve: the expected
BL result taking into account the actual growth time obtained in test-particle
propagation. Points: the actual result of the Brownian one-body dynamics, with
the bars representing the statistical error arising from the finite number of events.
The contribution coming from the remaining small noise due to the finite num-
ber of test particle (about 5%) has been subtracted using an ensemble of events
with no Brownian force. Dashed curve: the result of the corresponding linearized
Brownian one-dynamics dynamics.
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