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Abstract 

This paper describes software tools developed at the Lawrence Berkeley National Laboratory (LBNL) that 
can be coupled through the Functional Mock-up Interface standard in support of the design and operation of 

building energy and control systems. These tools have been developed to address the gaps and limitations 

encountered in legacy simulation tools. These tools were originally designed for the analysis of individual 
domains of buildings, and have been difficult to integrate with other tools for runtime data exchange. The 

coupling has been realized by use of the Functional Mock-up Interface for co-simulation, which standardizes 

an application programming interface for simulator interoperability that has been adopted in a variety of 

industrial domains. 

As a variety of coupling scenarios are possible, this paper provides users with guidance on what coupling 

may be best suited for their application. Furthermore, the paper illustrates how tools can be integrated into a 

building management system to support the operation of buildings. These tools may be a design model that is 
used for real-time performance monitoring, a fault detection and diagnostics algorithm, or a control 

sequence, each of which may be exported as a Functional Mock-up Unit and made available in a building 

management system as an input/output block. We anticipate that this capability can contribute to bridging the 
observed performance gap between design and operational energy use of buildings. 
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1 Introduction 

Building thermal systems, ventilation systems, electrical systems and control systems are becoming more 

and more integrated to increase the energy efficiency and to improve the interoperability with the electrical 
grid. This leads to a higher level of complexity for the design, installation, commissioning and operation of 

these systems. Modeling and simulation of such systems is challenging in today’s simulation tools because it 

requires the tool to support multiple physical domains, multi-time scales, and also different formalisms for 
how systems evolve in time, in particular if they involve supervisory control with state transitions.   

At present, the simulation of controls, rapid prototyping of new building energy and control systems and the 

use of simulation for building operations and building retrofits are constrained by current simulation tools. 

Most legacy whole building energy simulation tools such as EnergyPlus [1] or TRNSYS [2] perform well for 
annual energy analysis, but their model representation and numerical methods do not allow simulating 

systems with fast dynamics nor do they allow the proper representation of controls. For example, in 

EnergyPlus, the smallest time step is one minute, TRNSYS has a fixed time step, and neither can handle state 
events. To nevertheless use these tools with other programs that better address controls or systems with fast 

transients, but may lack comprehensive libraries of building components, they can be coupled with each 

other through co-simulation. By co-simulation, we mean a technique that allows individual component 

models described by differential algebraic or discrete equations to be simulated by different simulation tools 
running simultaneously and exchanging data during runtime.  

Co-simulation somewhat remedies the limitations of individual tools. While this allows addressing many 

practical questions, see [3-5], one has to keep in mind that hybrid systems formed through this tool coupling 



still have some deficiencies. We refer to [6] for properties that would need to be satisfied by the individual 

tools to allow a proper treatment of hybrid systems.  

This paper is structured as follows: Section 2 introduces the Functional Mock-up Interface (FMI) standard 

which is the open standardized interface used in this paper for co-simulation. Section 3 describes a) FMIs 
added to the Building Controls Virtual Test Bed (BCVTB), and EnergyPlus to support their co-simulation 

with various tools, and b) an FMI added to a building management system to support error-free development 

and deployment of control algorithms. Section 4 presents our conclusions. 

2 Functional Mock-up Interface for Co-Simulation 

The FMI standard has originally been developed in the Information Technology for European Advancement 

(ITEA2) project MODELISAR. 

The FMI standard supports both model exchange and co-simulation of dynamic models using a combination 

of XML
1
-file, C-code and/or shared libraries.  

The FMI standard version 1.0, which has been used in this contribution, consists of three parts: 

 FMI for model exchange, which standardizes an interface for coupling simulation tools that are 

integrated in time by an external solver [7]. 

 FMI for co-simulation, which standardizes an interface for coupling simulation tools that contain 

their own solver for time integration [8]. 

 FMI for Product Lifecycle Management, which provides a standardized way to handle FMI 

related data [9]. 

A system model or simulation tool which implements the FMI standard is called a Functional Mock-up Unit 

(FMU). An FMU comes in the form of a zip-file, which contains the FMI model description file, which is an 
XML-file with information needed by an import tool, C-code and/or shared libraries required to interface 

with the model or simulation tool, and resource files such as tables, or documentation.  

This contribution uses the FMI for co-simulation application programming interface (API). This API 

provides the means for two implementations namely CoSimulation_Tool, and CoSimulation_StandAlone. In 
the CoSimulation_Tool implementation, the FMU contains a wrapper for shared libraries that interact with 

the slave tool so that a master tool which imports the FMU can interface with the slave tool in a standardized 

way. In the CoSimulation_StandAlone implementation, the FMU contains the model and its solver.  

3 Co-simulation using the FMI Standard  

3.1 FMU for Co-Simulation Import Interface in the BCVTB 

The BCVTB [10] is a free, open-source middleware based on Ptolemy II [11]. It allows users to couple 

different simulation tools such as EnergyPlus, TRNSYS, MATLAB/Simulink [12], Modelica [13], or ESP-r 

[14]  at runtime for co-simulation. The BCVTB also allows calling system commands, for example to run a 
shell script, which may start a Radiance-based [15] daylighting simulation. Figure 1 gives an overview of 

tools coupled to the BCVTB. The BCVTB also allows simulation tools to be coupled with hardware through 

its BACnet interface or its analog/digital interface [16].  

The BCVTB is essentially a special configuration of Ptolemy II, with the addition of actors
2
 and examples 

that are of interest to the buildings community.  

                                                   
1XML stands for Extensible Markup Language. 
2Actors are software components that execute concurrently and share data with each other by sending messages via 

ports. 



The BCVTB has been used in several applications such as agent-based simulation [5], real-time simulation 

[3], controls of networked sensors and actuators [17], and performance prediction of HVAC systems [18].  

As the BCVTB has been developed at the same time as the first version of the FMI standard, it contains its 

own API for co-simulation. This API is however much more limited than FMI and is not supported by all 
tools that export FMUs. Therefore, an FMU for co-simulation import interface has been added to the 

BCVTB. This interface allows the BCVTB to import simulation tools which have been exported as FMUs 

(Figure 2). This interface complies with the FMI for co-simulation API.  

This new capability has several benefits: 

 It allows users to couple the simulation tools shown in Figure 1, which are not all available as an 

FMU, to any other simulator that can be exported as an FMU for co-simulation. 

 The BCVTB can be used as a master algorithm for co-simulation of FMUs using the 

Synchronous Data Flow domain of Ptolemy II. 

 FMUs can be linked to hardware through the BCVTB. 

 The BCVTB provides a graphical user interface for linking and simulating FMUs for co-

simulation. 

 The BCVTB allows synchronizing the simulation of FMUs to real-time. 

 

 

 

Figure 1: Simulation tools and hardware that can be coupled to the BCVTB. 

The use of the BCVTB has the drawback that it introduces an additional transaction layer between the 
different simulators. As computing time is for most applications dominated by the simulation code inside the 

FMUs, the BCVTB middleware generally has no noticeable effect on the computing time. However, users 

need to have some familiarity with the use of the BCVTB. This increases the learning curve and could be a 
barrier for users who are familiar with one simulation tool and do not have resources to learn how to use this 

middleware. In addition, in some use cases, it may be more expedient to work directly in a domain-specific 

modeling environment. For example, when analyzing different façade systems, one may want to use a 
graphical user interface of a building simulation program that imports the model of the façade controller as 



an input/output block. Conversely, when developing a controller, one may want to take advantage of the 

visual editor and plotting capabilities of a Modelica modeling and simulation environment, while using an 

input/output block for a building model that takes as input the control action and outputs a sensor signal. For 

the first use case, we developed an FMU for co-simulation import interface in EnergyPlus, for the second use 
case, we developed a facility to export EnergyPlus as an FMU for co-simulation. The next two sections 

describe these technologies.  

 

Figure 2: FMU for co-simulation import interface in the BCVTB.

3.2 FMU for Co-Simulation Import Interface in EnergyPlus 

EnergyPlus is a whole building energy simulation tool. It is used by engineers, architects, and researchers for 
the modeling and simulation of energy use in buildings. EnergyPlus was not intended to be used for detailed 

modeling of airflow, dynamic response of heating, ventilation and air-conditioning equipment, and modeling 

of control systems other than scheduling of setpoints by simple supervisory control algorithms. To overcome 

these limitations, EnergyPlus has been coupled to various simulation tools such as COMIS [19], 
Computational Fluid Dynamics [20],  MATLAB [21], or Modelica [22]. 

LBNL added to EnergyPlus 7.2 and higher an FMU for co-simulation import interface to allow the import of 

any simulation tool that is available as an FMU for co-simulation (Figure 3). This interface complies with the 
FMI for co-simulation API.  

To facilitate the import of FMUs in EnergyPlus, we developed a utility called FMUParser. This utility is 

distributed with EnergyPlus and can be found in its PreProcess folder. When invoked, it unzips the FMU, 
extracts relevant information from the model description file of the FMU, and writes this information to a 

temporary EnergyPlus input file. A user can then complete this temporary input file to create the EnergyPlus 

input file. This parser has been developed so that users do not need to read the model  

description file, which can easily contain more than thousand lines of xml syntax.  

To support the import of FMUs, we extended the data structure of EnergyPlus with four new objects [23]. 

These objects are used to map the inputs and outputs of the FMU to internal EnergyPlus variables once the 

FMU has been imported in EnergyPlus. We also implemented a set of C-functions which are distributed with 
EnergyPlus as a shared library. EnergyPlus uses these functions to call the FMI functions of the imported 

FMU. 



Figure 4 shows how the FMU for co-simulation import interface was used to couple an HVAC system, 

implemented in Modelica and exported as an FMU, to a room modeled in EnergyPlus. This example is 

described in detail in [24]. The HVAC system computed sensible and latent heat exchange with the room, 

using the air inlet and outlet as the thermodynamic boundary. The room model computed the temporal 
evolution of the room air temperature and humidity, using the sensible and latent heat exchange as inputs to 

its energy balance. The FMU uses as inputs the room dry-bulb temperature (TRooMea), the outdoor dry-bulb 

temperature (TDryBul), the room air relative humidity (rooRelHum), and the outdoor air relative humidity 
(outRelHum) to compute the sensible and latent heat exchange (QSensible, QLatent) which are sent to 

EnergyPlus through its outputs. EnergyPlus uses these values to compute the new room air temperature and 

humidity.

 

Figure 3: Importing an FMU for co-simulation in EnergyPlus through its ExternalInterface [25].  

 

 

Figure 4: Linking an HVAC model developed in Modelica to an EnergyPlus room model using the FMU for 

co-simulation import interface.

3.3 FMU for Co-Simulation Export Interface of EnergyPlus 

Although interfaces and middleware exist that facilitate the coupling of EnergyPlus with various software, 
they might not be widely used in the building simulation community since they still require users to be 

familiar with EnergyPlus so they can set it up and link it with other simulation tools. We thus exported 

EnergyPlus as an input/output block using the FMI standard. This allows importing EnergyPlus into any 
simulation tool that allows importing FMUs for co-simulation.  

To export EnergyPlus 8.0 and higher as an FMU for co-simulation, we developed and released a software 

module called EnergyPlusToFMU [26], which exports EnergyPlus as an FMU for co-simulation. EnergyPlus 
implements in this configuration the FMI for co-simulation in the CoSimulation_Tool method. 

ExternalInterface

FMU

ExternalInterface:FunctionalMockupUnitImport:To:Schedule

ExternalInterface:FunctionalMockupUnitImport:To:Actuator

ExternalInterface:FunctionalMockupUnitImport:To:Variable

ExternalInterface:FunctionalMockupUnitImport:From:Variable

EnergyPlus

Input Output



Figure 5 shows how EnergyPlus is imported in Dymola as an input/output block which can be connected to 

other Modelica blocks. 

 

To support the export of EnergyPlus as an FMU for co-simulation, we extended the data structure of 
EnergyPlus with four new objects [23]. These objects map the inputs and outputs of the FMU to variables 

that are internal to EnergyPlus. 

Exporting EnergyPlus as an FMU for co-simulation can support various applications. For example, as 
described above, EnergyPlus may be used as an input/output block when designing a controller in a 

Modelica modeling and simulation environment or in MATLAB/Simulink. EnergyPlus building models may 

be linked to electrical grid and control models to design an electrical demand response controller for a 
campus that controls building electrical loads as a function of tariff, power quality and state of charge of 

batteries.  

Table 1 shows a comparison between the different import and export capabilities. The table also lists their 

strengths and weaknesses. Although not exhaustive, this table should guide users in the selection of an 

import or export facility that is adequate for their specific application.

 

Figure 5: Coupling of an EnergyPlus model exported as an FMU with a PI-controller using Dymola. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Comparisons between different technologies to couple simulators
3
. 

                                                   
3Simulator refers to simulation tool, system model, or tool exported as an FMU for co-simulation. 



  

Graphical user 
interface 

 

Minimum 
knowledge 
required 

 

Pros 

 

Cons 

 
 

BCVTB 

 
 

Yes 

 
BCVTB, and tools 

to be coupled. 

 
Links to various tools  

and hardware. 
 
Reuse functionality of 
Ptolemy II. 

 
Learning curve, 

transaction layer. 

 
BCVTB  
(FMU  
Import) 

 
Yes 

 
BCVTB 
and FMU. 

 
Links to various tools, 
FMU for co-simulation 
and hardware. 

 
Reuse functionality of 
Ptolemy II. 
 

 
Learning curve, 
transaction layer. 

 
EnergyPlus 
(FMU  
import) 

 
No 

 
EnergyPlus 
and FMU. 

 
No need to learn new 
tool. 
 
May be able to use 

graphical user interface 
of EnergyPlus4. 

 
Tool to couple needs to be 
available as an FMU for co-
simulation. 
 

 

 
EnergyPlus 
(FMU  
export) 

 
No 

 
EnergyPlus 
and FMU. 

 
EnergyPlus can be 
imported in other tools. 
 
Can use EnergyPlus as 
an input/output block 
inside a block diagram 
editor. 

 

 
Import tool needs to support FMI 
for co-simulation. 
 
 

 

 

 

                                                   
4Not all graphical user interfaces of EnergyPlus may support all EnergyPlus features and thereby support the FMU 

import interface. 



The previous sections described the coupling of multiple simulators. In the next section, we describe an 

import interface that we implemented in an open framework for building controls that allows linking FMUs 

for co-simulation with different building management systems.  

3.4 FMU for Co-Simulation Import Interface in Niagara
AX

  

Niagara
AX

 is a Java-based framework and development environment for creating internet-enabled products, 

device-to-enterprise applications and distributed internet-enabled automation systems. It is a commercial 

product from Tridium that is often overlaid to other building management systems to facilitate their 
interoperability (Figure 6). Niagara

AX
 uses a unified component model (Common Object Model) to transform 

the data from diverse external systems into uniform software components. These components form the 

foundation for building applications to manage and control the devices. 

LBNL added to Niagara
AX

 an FMU for co-simulation import interface. This interface complies with the FMI 

for co-simulation API.  

We selected the Niagara
AX

 framework because of its open-source architecture, which is based on Baja 

(Building Automation Java Architecture) [27] and its wide use in the buildings industry.  

To implement the FMI interface in the Niagara
AX

 framework, we used JFMI [28], a Java wrapper for FMI, 

and created two new classes BFMUService and BFMUComponent. These classes are used in the 

framework to interface with imported FMUs for co-simulation. 

The BFMUService is used by the Niagara
AX

 framework to process FMUs and to make their relevant 

information available to the framework. The BFMUComponent class represents an FMU instance. When 

instantiated, it appears in the Niagara
AX

 framework as an input/output block, which can be connected to other 

components of the Niagara
AX

 framework. 

Figure 7  shows an FMU for co-simulation which has been imported in Niagara
AX

 as an input/output block. 
This block can then be linked to any other block available in the Niagara

AX
 framework. 

Adding an FMU for co-simulation import interface enables various applications. For example:  

 An HVAC designer may create a simulation model during the design of a building. She/he then 

exports the model as an FMU for co-simulation and imports it to Niagara
AX

. In Niagara
AX

, she/he 

links the model input to measured data. The design model can then be used to compute expected 
energy consumption, which in turn can be used to compare measured with expected performance. 

See [3] for such a use case. 

 A researcher or product developer may develop a fault detection and diagnostic algorithm, test it on 

a simulation model, and then export the algorithm as an FMU for co-simulation. This FMU can then 
be linked through Niagara

AX
 with an actual building energy system. 

 A researcher, product developer or advanced HVAC designer may develop and test an advanced 

control sequence in simulation, export it as an FMU for co-simulation, and import it to Niagara
AX

 to 

link it to an actual building.   

We anticipate that the use of FMI in building management systems supports a robust and low cost 

implementation, and an error-free deployment of controls or FDD algorithms. 

 



 

Figure 6: Niagara
AX

 framework (Courtesy: Tridium). 

 

 

Figure 7: FMU for co-simulation import interface in Niagara
AX

.

 

4 Conclusions 

We anticipate the integration of FMU for co-simulation interfaces in the BCVTB and EnergyPlus to support 

a better simulation-based design and operation of buildings.  

We believe FMI to be well positioned to become a de-facto standard for implementing, and deploying 
control sequences. We thus see the integration of an FMU for co-simulation import interface in building 

management system as a promising approach and a natural extension of its application to date. 
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