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Abstract - Thermal energy storage (TES) and distributed generation technologies, such as combined heat and 

power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO2 emissions from 

buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine 

the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer 

linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy 

Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to 

guarantee linearity and short run-times. Loss calculations are based only on the energy contained in the storage. 

This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and 

storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced 

that retains linearity and avoids creating an endogenous optimization problem. The improved model increases 

the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. 

Results indicate that the previous model overestimates the attractiveness of TES investments for cases without 

possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. 

Despite a variation in optimal technology selection between the two models, the objective function value stays 

quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids. 
 
Index Terms—distributed energy resources, investment planning, renewables, energy optimization, 

thermal energy storage 

List of Nomenclatures and Symbols 

Abbreviations 

mailto:david.steen@chalmers.se
mailto:MStadler@lbl.gov


 

ASHP air-source heat pump 

CHP combined heat and power 

COP coefficient of performance 

DG distributed generation 

EV electric vehicle 

FC fuel cell 

GSHP ground-source heat pump 

GT gas turbine 

HP heat pump 

HPR heat to power ratio 

HT high temperature 

HX heat exchange 

ICE internal combustion engine 

LT low temperature  

MILP mixed integer linear programing 

MT micro turbine 

NG natural gas 

PCM phase changing material 

TES thermal energy storage 

Parameters 
  
       discharge efficiency LT/HT section [-] 

  
    charge efficiency LT/HT section [-] 

  
       

 storage loss coefficient LT/HT section [-] 

  
       static storage loss coefficient for LT/HT section, due to minimum usable temperature [-] 

    
          maximum charge rate for the LT/HT section [-] 

    
             maximum discharge rate for the LT/HT section [-] 

U U-value of the thermal energy storage [W/m
2
K] 

A surface area of the thermal energy storage [m
2
] 

cp specific heat capacity water [J/kg K] 

P external perimeter of the storage tank [m] 

H height of the storage tank [m] 

  radius of the storage tank [m] 

X position of the thermocline level [m] 

   density of water [kg/m
3
 

  
    ambient temperature [°C] 

  
    maximal operation temperature LT/HT section[°C] 

  
    minimal operation temperature LT/HT section [°C] 

    
      unusable energy in the LT/HT section due to temperature restrictions [kWh] 

 

Indices 
t hour 

k section of the storage [LT or HT] 

Decision variables  
      total annual energy costs [$] 

       electricity costs [$] 

      distributed energy resources costs (amortized capital costs of investments) [$] 

       fuel costs [$] 

     demand response costs for other non-storage technologies [$] 

      EV battery degradation costs [$] 

        total annual CO2 emissions from energy consumption at the building (site and source 

emissions) [kgCO2] 

   volume of the LT/HT section [m
3
] 

          CO2 emissions from electricity consumption [kgCO2] 

         CO2 emissions from DG fuel burning [kgCO2] 

       CO2 emissions from EV electricity exchange [kgCO2] 

    energy sales [$] 
    

     
 heat provided for LT/HT applications [kW] 

  
              

 HT heat provided for LT applications [kW] 



 

  
    heat from CHP [kW] 

  
      heat from solar thermal [kW] 

  
   heat from natural gas [kW] 

  
              heat recovered from natural gas chiller [kW]  

  
     heat from air source heat pump [kW] 

  
     heat from ground source heat pump [kW] 

    
        

 usable heat from LT/HT [kW] 

    
     LT/HT heat consumed [kW] 

  
       

 heat used for absorption building cooling [kW] 

  
      

 heat used for absorption refrigeration [kW] 

  
     

 heat used for space heating [kW] 

  
      heat used for domestic water heating [kW] 

    
       

 heat used to charge LT/HT section of TES [kW] 

    
       heat stored in the LT/HT section of TES [kWh] 

        storage heat losses in LT/HT section of TES [kW] 

           total capacity of heat storage [kWh] 

     capacity LT/HT section of TES [kWh] 

1. Introduction 

Distributed Energy Resources (DER) are commonly defined as a set of technologies and strategies with 

potential to make energy use more efficient, accessible, and environmentally sustainable. These solutions include 

power generation and combined heat and power (CHP) production using conventional fuel-fired technologies, 

but also renewable technologies and energy management strategies such as demand response, load shifting and 

peak-shaving, and storage [1]. 

Key benefits of DER usage include increased power reliability, higher renewable grid penetration, reduced 

carbon emissions and improved use of local energy resources [2, 3]; however, DER systems can also lead to 

higher complexity of system design, as well as additional issues, such as the need for power quality management 

and access control infrastructure when interconnected to the grid [4]. 

Storage systems, both electric and thermal, can play a key role in DER deployment, not only by creating a 

buffer to arbitrage market prices, but also by allowing variable small-scale technology integration and promoting 

more efficient use of resources [5]. In this context, thermal energy storage (TES) is commonly seen as an 

effective way to reduce operational costs and increase overall efficiency and capacity factors of micro-CHP 

units, solar thermal units and heat pumps (HPs) [6-8]. 

In fact, the combined use of TES and micro-CHP units may significantly reduce utility demand, particularly 

during peak hours. This has been addressed in previous studies, such as [9], where it is shown that the peak 

utility demand is reduced by 23% using CHP coupled with TES for chilled water, compared to only 13% utility 

demand reductions achieved with CHP without TES. Similarly, the work described in [10] suggests that TES 

combined with micro-CHP units in commercial buildings in Chicago can be beneficial from an energy/cost 

perspective for buildings with a heat demand higher than their electricity demand; however, the TES model used 

in this particular study is simplified and does not consider any storage losses. 

Traditionally, sensible water storage solutions have been used for most heat storage applications [7, 8], 

although there has been an increased interest in latent heat storage using phase change materials (PCM) over the 

last decade [11]. Latent heat storage using PCM offers some advantages over sensible hot water tanks, such as 

higher energy density [12] and less corrosion [11]. Despite the ongoing research, the costs associated with low 

temperature latent PCM (i.e. 50-100ºC) are still higher than for sensible water storage [13, 14], although they can 

be economically competitive under appropriate conditions as demonstrated in [12]. 

TES has traditionally been modeled using only the first law of thermodynamics [15], meaning that changes in 

entropy are neglected [7], although analyses based on the second law of thermodynamics, which consider 

entropy, have become more common in recent decades. This improvement can have a significant impact on 

achieving optimal design and operation of TES [16], and also increase accuracy of economic results [7], because 

the model considers not only energy lost to the surrounding but also mixing of hot and cold water in storage. 

This will affect the performance of other DER connected to the TES, e.g. the efficiency of CHP unit, HP and 



 

heat exchanger.  

Given the wide range of available DER options, the problem of meeting customer energy loads can be 

addressed by a multitude of solutions. This large search space creates a highly complex problem and identifying 

optimal DER equipment portfolio and operation options becomes a major challenge. DER can be very valuable, 

both when considering their economic and environmental benefits; however, choosing the actual energy supply 

solution is often based on empirical guidelines and rules-of-thumb, which typically lead to sub-optimal system 

configurations. 

To address such DER problems, the Distributed Energy Resources Customer Adoption model (DER-CAM) 

has been developed at the Lawrence Berkeley National Laboratory [17]. The main output of DER-CAM is the 

economically and/or environmentally optimal combination of distributed energy conversion, storage and 

management options. Until now, TES has been modeled in DER-CAM as sensible heat storage, using water as 

the storage medium, and considering only energy flows through the tank. Storage losses have been estimated 

solely based on the energy stored, with size and ambient temperature not considered. Although this approach is 

commonly used in such tools, e.g. [18-20], and provides useful insights, its main drawback is that temperature 

changes in the tank are not tracked, which limits accurate economic assessment of TES [7]. Temperature 

changes also affect storage losses and how different heat-consuming and -providing technologies utilize the TES. 

For example, absorption cooling systems need relatively high input temperatures of at least 80-100°C [21], and 

the existing model is unable to comply directly with these constrains, possibly leading to overestimation of TES 

economic performance.   

This paper contributes to the state of the art by introducing an improved TES model into DER-CAM. Due to 

the current high cost associated with PCM based TES [13, 14], the model still considers only a sensible heat 

system using water as the storage medium. Although a model based on the second law of thermodynamics would 

increase the accuracy, it would result in an endogenous optimization problem formulation when used in 

investment and planning tools, due to the need of temperature tracking. Such problems can’t be solved in MILP 

models, such as DER-CAM. Furthermore, to capture all benefits of such model it would require increased details 

on the technologies connected to the TES, such as CHPs, HPs and absorption chillers, resulting in increased need 

for computational capacity. Hence, the second law of thermodynamics is not considered. Nevertheless, the TES 

model now introduced estimates storage losses with higher accuracy by considering the ambient temperature and 

static storage losses (due to a lower temperature threshold in the tank), which were previously not recognized. 

Furthermore, the new formulation of TES enables storage to be charged by low temperature heat sources, as the 

storage tank is now modeled with two separate temperature sections for high and low temperature storage. 

The changes introduced to the TES model in DER-CAM are analyzed by a case study where results are 

obtained with both versions of the model. The results are compared for three different building types in two 

different locations. 

The structure of this paper is as follows: 

 section 2 introduces DER-CAM  

 section 3 describes the new model of the TES and the storage loss estimation  

 section 4 presents the data for the case study  

 section 5 presents the result from the DER-CAM simulations, and  

 section 6 discuss the results and concludes the paper. 

2. DER-CAM 

DER-CAM is a mixed-integer linear program (MILP) written in the General Algebraic Modeling System 

(GAMS) [22]. Its objective is to minimize the annual costs or CO2 emissions for providing energy services to the 

modeled site, including utility electricity and natural gas purchases, plus amortized capital and maintenance costs 

for any DER investments. The key inputs are customer loads, electricity and natural gas tariffs, and data of DER 

technologies, including capital and O&M costs, conversion efficiency, heat-to-power ratio, maximum operating 

hours, among others. Key outputs include annual energy costs, the optimal onsite capacities, and dispatch of 

selected technologies and demand response measures, as well as passive measure investments (e.g. window 

replacements). 

DER-CAM’s earliest development goes back to 2000 [23], and simple stable versions can be accessed freely 

by the general public using a web interface [17]. Along with HOMER [24], formerly developed by the National 

Renewable Energy Laboratory, it is one of the few tools of its kind available for public use. DER-CAM has been 

continuously improved to incorporate new technologies and features, as reported in several peer-reviewed 

publications [25, 26]. Recently, it has also been updated to incorporate cold storage [27], stochastic EV modeling 



 

[28], as well as stochastic reliability issues [29]. It can also be applied to EV fleet scheduling [30]. 

Importantly, DER-CAM considers the interdependence of results. For instance, building cooling technologies 

will reflect the benefit of electricity demand displacement from possible heat-activated cooling, which can lower 

building peak loads and, therefore, the on-site generation or utility purchase requirement. Reduced on-peak 

usage also has a disproportionate benefit on bills because of demand charges and time-of-use (TOU) energy 

rates. For a more detailed description of the DER-CAM model see [22, 25, 31, 32]. 

 
Figure 1: High level schematic of DER-CAM [33] 

 

Figure 1 shows a high-level schematic of building energy flows as modeled in DER-CAM. This Sankey 

diagram shows graphically how loads can be met by different resources at given efficiencies. Thus, a Sankey 

diagram provides a full view of possible resources considered within the optimization. Available energy inputs 

to the site are solar radiation, utility electricity, utility natural gas, biofuels, and geothermal heat. DER-CAM 

finds the optimal combination and operation of technologies to supply the services specified on the right-hand 

side of Figure 1 at each time step. Each arrow in Figure 1 represents an energy flow of some form (e.g. natural 

gas, electricity, waste heat) and DER-CAM optimizes these energy flows to minimize costs or CO2 emissions.  

The most commonly used objective function within DER-CAM is to minimize the total energy cost 

according to (1), 

                                  ∑      (1) 

where       is the electricity cost,      is the amortized capital cost of DER equipment,       is the fuel cost, 

    is the cost related to demand response,     
1 is the EV battery degradation cost, and    is the energy sales. 

As mentioned previously DER-CAM can also be used for CO2 minimization according to (2), 

                                    (2) 

where          is the CO2 emission from utility electricity consumption,          is the CO2 emission from 

fuel usage and       
1 

is the CO2 emission from charging of EVs. Because TES is both linked with loads and 

other DER technologies that consume electricity and natural gas, its performance will be interrelated to 

consumption of electricity, natural gas, as well as the total optimal capital costs for DER. 

                                                           
1
 Electric vehicles are not considered in this work. 



 

3. New Thermal Energy Storage Model in DER-CAM 

The nature of different heat loads typically translates into different heat temperature requirements. For 

instance, to provide heat to absorption chillers the heat source temperature must be above an approximate 90° C 

minimum [34], while other heat loads such as space heating and domestic hot water may be served by heat 

sources at temperature levels around and below 65 ºC [35]. 

Similarly, different technologies will be able to provide heat at different temperatures, depending on their 

technical specifications. Micro-CHP units, for example, will be able to provide high temperature heat, while 

most heat pumps are only used to provide low temperature heat to achieve high coefficients of performance 

(COP) [36]. 

The temperature changes in storage tanks depend on the energy injected into/extracted from them, but also on 

their size, i.e. a large storage will experience a small increase in temperature compared to a small storage for the 

same injected energy. For investment and planning tools, both the size and usage of the TES are normally 

decision variables, hence temperature can’t be directly tracked without creating an endogenous problem which 

can’t be solved using a MILP solver. Thus, TES have historically been considered in DER-CAM as high 

temperature (HT) storage that can only be charged by equally high temperature technologies, and low 

temperature (LT) sources, such as heat pumps, could only be used to directly supply low temperature loads and 

without the ability to charge storage tanks. Further details on the previous TES model within DER-CAM can be 

found in [22]. 

To enable the use of LT technologies as heat sources to TES without explicitly tracing temperature, TES is 

now modeled by two individual temperature sections, namely LT and HT sections. The key is that the size of 

each section is a decision variable determined by DER-CAM. Each section is modeled as a stratified tank with 

two temperature strata. This approach adds further details to the TES modeling but does not require temperature 

tracking and therefore avoids the endogeneity problem previously mentioned. 

In the improved model, TES can be charged by LT heat sources such as heat pumps, while maintaining the 

possibility of using the same tank for HT applications, via the HT section of the tank. Figure 2 presents a 

schematic of the TES model implemented in this work. Here, HT heat can be used both for HT and LT 

applications, including charging of the HT and/or LT section of the storage, while LT heat can only be used for 

LT applications, including charging of the LT section of the storage. 

 
Figure 2: Schematic figure of the thermal energy storage with a high temperature (HT) and a low temperature (LT) section 

The heat provided by all HT and LT sources is calculated according to (3) and (4), 

    
     

    
      

        
     

                 
        

            (3) 

     
    

   
       

         
        

   
               

            (4) 

where     
        

 is the useful heat supplied, i.e. heat taken from TES, minus losses due to the discharge 

efficiency, as shown in Figure 2. The overall heat consumption is calculated according to (5) and (6), 



 

    
        

       
   

      
     

       
   

              
            (5) 

    
        

     
   

        
       

            (6) 

where     
       

 is the heat used to charge the HT/LT section of TES. Similar to the discharge process, there are 

losses associated with the charge process, as shown in Figure 2.   

To maintain the heat balance, equation (7) ensures that the heat provided is equal to the heat consumed, 

which is valid for both HT and LT, and considers both sections of the TES. 

    
    

      
              (7) 

The energy that is stored in each calculation step in both the LT and HT section is calculated according to (8), 

stating that the energy stored in any given time step is equal to the energy that was stored in the previous time 

step, plus energy inputs, and minus output that can result either from discharging or losses, 

  
              

                 
       

 
  

        

        
        

             (8) 

where        
    represent heat losses that occur depending on the amount of energy stored in the TES, the 

capacity of the TES and ambient temperature. These losses are calculated according to (9),  

       
          

         
       

   
           

                (9) 

where   
       

 is the loss coefficients for the HT/LT section related to the losses based on the energy stored in the 

storage and   
       is the static loss coefficients related to the losses occurring when the temperature inside the 

storage is at the minimum usable temperature, represented as   
      which is calculated according to (19) in 

section 3.1. 

The key investment decision made by DER-CAM regarding TES is the installed capacity, equal to the sum of 

HT and LT section capacities , which are also decision variables (10).  

           ∑     
  
      (10) 

The energy content stored in each of these sections is limited by their individual capacity, according to (11). 

    
                    (11) 

In each section, the energy output is limited by a discharge rate, and is calculated according to (12). 

  
        

        
           

                     (12) 

Likewise, the input energy to storage is limited by a maximum charge rate, which is expressed by (13). 

          
       

          
                  (13) 

3.1 Estimation of storage losses 
In order to better understand how the TES losses are modeled in DER-CAM, both the previous and improved 

DER-CAM TES loss calculation methods are explained and compared to losses in a fully mixed, i.e. with a 

uniform temperature profile inside the tank, and ideal stratified heat storage tank.  

In a real TES the stratification is not perfect due to mixing of water during charge-discharge cycles and due 

to conduction through water and walls in the tank, meaning that the losses from a real TES would be somewhere 

in between the fully mixed and ideally stratified cases based on [15]. 

The storage losses in a fully mixed TES can be calculated according to (14),  

              (14) 

where ∆T is the difference between the uniform water temperature inside the storage and the ambient 

temperature, U is the overall heat transfer coefficient of the storage tank, and A is its surface area. 

Figure 3 presents the losses for different sizes and storage temperature (i.e. charge levels) of a fully mixed 

TES, calculated according to (14) using the commercial software package Matlab [37]. The height of this storage 

tank is considered to be fixed at 2 m and only the radius is changing with storage size. The loss calculations are 

made assuming an ambient temperature of 21° C and a U-value of 0.5 W/m2K (i.e. about 0.1 m of mineral wool 

insulation). 



 

As illustrated, losses increase with the storage tank size, due to the increased surface area. Furthermore, since 

the ambient temperature is lower than the minimum TES usable temperature, assumed to be 65° C for the HT 

section, heat losses always occur regardless of the charge level. 

 
Figure 3: Storage losses for a fully mixed TES calculated for different storage sizes and charge levels, 65° C represents 0% SOC and 90° 

C represents 100% SOC, based on equation (14) using Matlab 

 

Figure 4 Storage losses for an ideal stratified TES calculated for different storage sizes and charge levels, based on (15) using Matlab 



 

For a TES with ideal stratification, i.e. two perfectly defined and independent temperature levels (i.e.      

(90°C) and             )) separated by the thermocline zone within the tank, losses can be derived according to 

equation (15) [7]. 

     (         )          )    (          )         )     )   (15) 

where,   is the TES external perimeter,   is the position of the thermocline level from the bottom of the tank 

(which varies with the state of charge),   and   are the TES height and radius of the TES. Figure 4 presents the 

losses for an ideal stratified TES with the same assumptions used for the fully mixed TES, but calculated 

according to (15). Since the height of the TES is kept fixed, the top and bottom area of the storage tank increase 

with the storage size. However, since the temperature at the top and bottom of the tank is constant for an ideal 

stratified TES, the storage losses will be less dependent on the actual charge level for large TES compared to the 

fully mixed TES. With a better storage design, e.g. increased height for large TES, the influence of the tank 

radius can be reduced. As illustrated by Figure 3 and Figure 4, the ideal stratified tank will have higher losses for 

low charge levels and lower losses for high charge levels compared to the fully mixed storage. 

 
Figure 5: Storage losses, estimated by the previous TES model in DER-CAM, for different storage sizes and charge levels, based on (16) 

using Matlab 

The previous DER-CAM TES model estimated storage losses as a percentage (  
       

) of the energy stored 

in the TES according to (16).  

              
         

       
            (16) 

Figure 5 presents the losses for different storage sizes and charge levels as estimated by that version, with the 

loss coefficient (  
       

) equal to 1%. As seen in Figure 5, whenever there is no usable energy stored, i.e. when 

the temperature inside the tank is at the minimum temperature (65°C), no storage losses occurs. Furthermore, 

storage losses increase rapidly as the tank becomes charged in the old model.  

In the improved model the storage losses are still estimated based on the energy content inside the tank, but a 

static part is added to the model. Also, the improved model takes into account the ambient temperature based on 

the equations presented below. The static part is calculated as a percentage (  
      ) of the unusable energy that is 

stored when the temperature drops below the minimum temperature, which is calculated according to (17), 

    
                 

      
   ) (17) 

where the storage volume is calculated according to (18). 



 

   
    

        
      

   )
 (18) 

By replacing    in (17) with (18) the unused energy can be calculated based on the capacity of the storage, the 

ambient temperature and the minimum and maximum temperatures of the storage according to (19). 

       
           

   
      

   )

   
      

   )
  (19) 

By combining the heat losses based on the energy stored in the storage, i.e. equation (16), with the losses 

associated with the unusable energy calculated from (19), the total storage losses for the LT/HT section can be 

estimated according to (9). Figure 6 presents the storage losses, for the HT section, estimated by the improved 

TES model now implemented in DER-CAM, with the loss coefficient (  
       

) equal to 0.060% and the static 

loss coefficient (  
      ) equal to 0.053%. The coefficients were found by iteratively varying the coefficients so 

that the estimated losses roughly match the losses of a fully mixed TES presented in Figure 3. Nonetheless, the 

loss coefficients (  
       

 and   
      ) can be varied to represent TES with other characteristics, e.g. less 

insulation or better stratification. As can be seen in Figure 3, the losses are slightly overestimated for small TES 

and slightly underestimated for large TES. Hence, the accuracy of the improved TES model depends on the 

actual TES size decided by DER-CAM.  

 
Figure 6: Storage losses, estimated by the improved DER-CAM TES model, for different storage sizes and charge levels, based on (9) 

using Matlab 

TABLE 1 LOAD DATA FOR THE BUILDINGS AND SITES IN THE CASE STUDY, [38] 

Location: San Francisco San Diego 

Annual Demand for: LCOLL LHLTH LHOT LCOLL LHLTH LHOT 

Electricity-Only [MWh] 14,788 8,917 4,377 18,028 9,579 4,782 

Cooling [MWhelectricity demand] 2,061 1,759 713 5,175 2,853 1,367 

Space Heating [MWh] 10,573 6,880 693 7,574 2,243 463 

Water Heating [MWh] 3,075 6,086 3,281 5,564 6,227 4,385 

Natural Gas-Only [MWh] 286 459 1,119 3,272 1,188 1,277 

 



 

4. Case Study 

This section presents the most relevant data used in the case study where both the previous and improved 

DER-CAM TES models are compared. The load data is based on the California Commercial End Use Survey 

(CEUS) [38]. Three different building types were analyzed – a large college building (LCOLL), a large health 

care facility (LHLTH), and a large hotel (LHOT), each assumed to be located in both San Francisco and San 

Diego, California. The warmer climate in San Diego compared to San Francisco results in a higher cooling 

demand, whereas the heating demand for buildings in San Francisco is higher compared to San Diego. The 

annual energy demand for each building and load type is presented in Table 1.  

The reason for choosing two different locations is to allow comparing results not only in different climates 

but also with different electricity and natural gas tariffs, which affects the economics of TES [27]. The electricity 

and natural gas tariffs used in the case study are presented in Table 2 and are taken from [39]. 

TABLE 2 ELECTRICITY AND NATURAL GAS TARIFFS FOR ALL LOCATIONS AND BUILDINGS, [39] 
Location: San Francisco San Diego 

Building type: LCOLL & LHLTH LHOT All buildings 

Season: summer winter summer winter summer winter 

Monthly electr. fee ($) 2,029 2,029 769.47 769.47 338.77 338.77 

Monthly 

electricity 

demand 

rates ($/kW) 

On-peak 12.24 - 14.7 - 7 0.58 

Mid-peak 2.65 0 3.43 0.21 0 0 

Off-peak 0 0 0 0 0 0 

No coincident 4.06 4.06 11.85 11.85 5.64 5.64 

Electricity 

rates 

($cent/kWh) 

On-peak 8.9 - 13.5 - 14 13.4 

Mid-peak 7.57 7.7 9.6 9 12.2 12.7 

Off-peak 6.4 6.7 7 7.3 10.3 10.8 

Monthly NG fee ($) 48.35 48.35 48.35 48.35 10 10 

NG rates ($cent/kWh) 2.37 2.61 2.37 2.61 2.11 2.11 

Note: For San Diego: summer season May – September , on-peak hours 10-18 in summer and 16-20 in winter, mid-peak hours 5-10 and 

18-21 in summer and 5-16 and 20-22 in winter, weekends and all other hours off-peak. For San Francisco: summer season May – October 
(April – October for NG), on-peak hours 12-18 in summer, mid-peak hours 8-12 and 18-22 in summer and 8-22 in winter, weekends and all 

other hours off-peak.  

 

TABLE 3 INVESTMENT COSTS FOR STORAGE, RENEWABLE, AND ELECTRIC TECHNOLOGIES, [39]2-[40] 

Parameter variable costs 

($/kW or $/kWh) 

lifetime 

(years) 

fixed maintenance 

($/kW or $/kWh) 

COP 

heating/cooling 

Electric storage $193/kWhe 5 0.00 --- 

Thermal storage $100/kWhthermal 17 0.00 --- 

Absorption chiller $685/kWhe 20 1.88 --- 

Photovoltaic $3,237/kWe 20 0.25 --- 

Solar thermal $500/kWthermal 15 0.50 --- 

Air source HP $1,121/kWe 15 1.32 3.4/3.5 

Ground source HP $3,510/kWe 20 6.3 4.9/8.1 

 

TABLE 4 INVESTMENT COST FOR NATURAL GAS FIRED TECHNOLOGIES, [39]3 

Technology 
Capacity 

[kW] 

Lifetime 

[Years] 

Capital cost 

[$/kW] 

Maintenance 

cost [$/kWh] 

Efficiency 

[%] 
HPR  

ICE-small 60 20 2,098 0.021 29 – 

ICE-med 250 20 1,143 0.015 30 – 

GT 1,000 20 2,039 0.011 22 – 

MT-small 60 10 2,116 0.017 28 – 

MT-med 150 10 1,723 0.017 29 – 

FC-small 100 10 4,969 0.033 46 – 

FC-med 250 10 3,981 0.033 46 – 

ICE-HX-small 60 20 2,760 0.021 29 1.73 

ICE-HX-med 250 20 1,681 0.015 30 1.48 

GT-HX 1,000 20 2,794 0.011 22 1.96 

MT-HX-small 60 10 2,377 0.017 28 1.8 

                                                           
2
 Costs are assumed to be for the year 2020. 

3
 Costs are assumed to be for the year 2020. 



 

MT-HX-med 150 10 1,935 0.017 29 1.4 

FC-HX-small 100 10 5,778 0.033 46 1 

FC-HX-med 250 10 4,629 0.033 46 1 

FC-HX-small-wSGIP 100 10 3,528 0.033 46 1 

FC-HX-med-wSGIP 250 10 2,379 0.033 46 1 

ICE: internal combustion engine, GT: gas turbine, MT: micro-turbine, FC: fuel cell, HX: heat exchanger for waste heat utilization, SGIP: 
California Self Generation Incentive which is basically an investment subsidy and provides $2.25/W for natural gas fired fuel cells, today the 

subsidy has decreased to $2.03/W, in this study the higher subsidies has been used. 

The key data regarding all possible technology investments used in this case study are presented in Table 3 

and Table 4, which is further described in [39]. The data for heat pumps is based on EIA’s technology forecast in 

[40]. Since one of the main differences introduced in the improved TES model is its possibility to store heat from 

heat pumps in the LT TES section, two different sets of runs are conducted, both with and without heat pumps 

available.  

The data used for the TES is presented in Table 5. The parameters used for the previous heat storage is based 

on [41], while the loss coefficients for the improved storage are found to match a fully mixed storage. The 

assigned temperature levels are based on [21] and [36] to enable the use of HP and absorption chillers.  

TABLE 5 PARAMETERS USED FOR BOTH TES MODELS  

 Improved TES Previous 

TES model  LT section HT section 
   (%) 90 90 90 

      (%) 90 90 90 

             (%) 25 25 25 

                (%) 25 25 25 

         (%) 0.057 0.060 1 

        (%) 0.056 0.053 --- 

     (°C) 36 65 --- 

     (°C) 65 90 --- 

 

For all simulations, the optimality gap was set to 0.05 for the CPLEX solver.  

5. Results 

This section compares the key results obtained with both TES models for the buildings described in Table 1. 

Under the assumptions used, TES adoption is not strongly economically attractive in cost minimization runs. The 

reason is due to the large number of technologies available, other technology combinations crowd out TES 

deployment in the cost minimization runs. Consequently, the results presented here focus on CO2 minimization 

runs, as they produce higher TES adoption rates, and therefore provide a better understanding of the improved 

TES model impact. 

Table 6 presents the relative changes (%) in optimal technology investments obtained using the improved 

TES model against results from the previous model, considering CO2 minimization and without heat pumps. In 

this case, the previous model suggests more TES investments in five of six buildings by 5-100% compared to the 

improved model. For two buildings in San Francisco, no TES is adopted with the improved model and a 

decrease in heat providing technologies, i.e. CHP and solar thermal, is observed. For one building (large college) 

in San Diego, the TES investment increases by 158% for the improved model and investments are shifted from 

DG without HX to CHP.  

TABLE 6 CHANGE IN OPTIMAL TECHNOLOGY INVESTMENT COMPARED TO THE PREVIOUS VERSION OF DER-CAM, 

WITHOUT HP, CO2 MINIMIZATION 

Change in technology 

investment excl. HP [%] 

San Francisco San Diego 

LCOLL LHLTH LHOT LCOLL LHLTH LHOT 

DG without HX - - - -100 inf - 

CHP (DG with HX) -7 0 0 24 -15 0 

Electric Storage -65 -14 -3 -24 -18 -3 

TES (LT section) -100 -100 -14 158 -5 -28 

TES (HT section) -100 -100 -100 -100 -100 -100 

TES (LT + HT section) -100 -100 -14 158 -5 -28 

Abs. Chiller 15 -100 56 21 -20 -5 

PV -7 inf -2 0 0 -2 

Solar Thermal -100 -75 21 - - 14 



 

Annual CO2 Emissions 7 4 -1 -1 3 0 

Annual Energy Costs -6 0 -1 6 -8 3 
Note: ‘-‘ means no investment in any model, ‘inf’ means no investment in old model, ‘-100’ means no investment in new model. 

Although DER-CAM can decide freely on the size of the HT and LT sections, results indicate a clear tendency 

towards the latter, driven by higher losses associated with the HT section. In Table 6 the HT and LT sections are 

compared to the entire TES investment in the previous model and, as can be seen, for all optimization runs, all 

TES investments for the HT section are zero. 

Table 7 presents the results obtained in the CO2 minimization case with heat pump investments enabled. In 

this case the improved model produce between 14-68% more heat storage for buildings in San Diego compared to 

the previous model. For San Francisco, the improved model produces a decrease in heat storage and for two 

buildings no TES were adopted with the improved model. Although it is possible to store heat from HP with the 

improved TES model, it does not seem to motivate investments in either TES or heat pumps to decrease CO2 

emissions for the investigated buildings in San Francisco while the opposite holds for San Diego. 

Analyzing results in greater detail, total investments in heat pumps (ASHPs and GSHPs) increase in the 

improved model for all San Diego buildings, while they decrease for all San Francisco buildings. It is likely that 

the increased investment in heat pump in San Diego is due to the possibility to store heat from heat pumps in the 

LT storage section. Similarly to the HP-disabled optimization runs, all TES investments show no HT section. 

Since only absorption chiller requires HT heat, this result shows that with the improved model the heat used for 

absorption chiller in the investigated sites is provided directly from the HT heat providing technologies, e.g. CHP 

units and solar thermal. For other locations or under other assumptions (e.g. without possibility to invest in 

CHPs) the need to store HT heat might change. 

Despite the widely different capacities of adopted technologies, the variations observed in the total annual 

CO2 emissions are roughly between 4% and -3%, with the exception of the college building in San Francisco 

where a 7-9% difference was observed. This suggests that the improved TES model may have a relevant impact 

on optimal technology selection, but due to the large number of technologies available, the objective function 

values stay very stable, demonstrating the complexity of such a DER optimization problem. These optimization 

problems involve searching over a very large and nearly flat solution space. 

TABLE 7 CHANGE IN OPTIMAL TECHNOLOGY INVESTMENT COMPARED TO PREVIOUS VERSION OF DER-CAM, WITH 

HP, CO2 MINIMIZATION 

Change in technology 

investment incl. HP [%] 

San Francisco San Diego 

LCOLL LHLTH LHOT LCOLL LHLTH LHOT 

DG without HX - - - -100 -95 - 

CHP (DG with HX) -8 0 -18 16 58 -13 

Electric Storage -58 -5 9 -12 6 59 

TES (LT section) -100 -100 -22 14 62 18 

TES (HT section) -100 -100 -100 -100 -100 -100 

TES (LT + HT section) -100 -100 -22 14 62 18 

Air Source HP - 14 -100 Inf 113 175 

Ground Source HP -30 -21 9 1 7 27 

Abs. Chiller -6 -100 58 -9 73 165 

PV -19 10 -5 0 0 -5 

Solar Thermal - -79 Inf - - 269 

Annual CO2 Emissions 9 0 3 0 -3 -2 

Annual Energy Costs -2 2 0 5 12 1 
Note: ‘-‘ means no investment in any model, ‘inf’ means no investment in old model, ‘-100’ means no investment in new model. 

5.1 Fixed thermal energy storage 
To further compare the usage of TES between the two models, a forced investment run for a TES of 

2,000 kWh was performed. This means that a 2,000 kWh TES is forced into the DER investment solution 

obtained by each model, but DER-CAM is still allowed to decide on TES usage and dispatch as well as the 

division between HT and LT section. These runs allow all DER options available (including HPs) and Figure 7 

presents the energy stored in the TES together with the storage losses in the storage for a typical weekday in 

March for the large San Diego hotel building. 

Both models use storage in a similar fashion, although the improved TES model store the energy for long 

periods of time compared to the previous model. Regarding losses, the improved model presents lower losses 

compared to the previous one, except for the hours when the storage is empty, which is directly tied to the 

limitations in the previous model. This is also the reason why the energy is stored for a longer period of time 

with the improved model. 



 

Although DER-CAM decides to invest in both heat pumps and absorption chillers, only LT TES is chosen, 

although it has the possibility to invest in HT TES. This indicates that, for this building, it is more beneficial to 

use the TES to store heat from heat pumps than to use it with absorption chillers, since the losses associated with 

the LT section of the TES are lower compared to the HT section. 

Over a time horizon of one year, the storage losses, not including losses from charge-discharge efficiencies, 

obtained using the improved model result in roughly 2% of the annual energy taken from the TES, against 

roughly 7% obtained in the previous version of the TES model. The reason for the low losses in the improved 

model is due to that only LT TES are utilized, and that a low U-value has been assumed when estimating the loss 

coefficients.  

 

Figure 7: Energy stored in the TES and the estimated storage losses for both TES models for building LHOT in San Diego for a weekday 

in March 

Figure 8 presents the average energy taken from TES for weekday and weekend day-types each month, for 

both the previous and improved models. As observed in this figure, the amount of energy taken from the 2000 

KWh storage has increased in the improved TES model during summer, while it stayed at the same levels during 

winter.  

 

Figure 8: Energy taken from storage for both TES models for building LCOLL in San Francisco for weekdays and weekends in January 

Although TES losses are reduced in the improved model, these losses are only one part of the total losses 

associated with storage. In fact, most losses are due to the TES charging and discharging efficiencies. In the case 

study runs, these losses have been assumed to be 10% of the energy supplied or taken from TES, and for that 

reason, storage losses are small in comparison to charging-discharging losses. This suggests that follow-up 

research needs to address the charging-discharging efficiencies in an extended model. 



 

6. Conclusions and Further Work 

This paper presents an improved TES model implemented in DER-CAM version 4.0.0. The adopted 

formulation consists of modeling TES with two different temperature sections, one high temperature and one 

low, to enable the possibility of charging the TES with low temperature providing technologies, such as heat 

pumps in addition to high temperature providing technologies like CHP. Additionally, the accuracy of the 

estimated storage losses within TES has been improved to better match a real TES. This model avoids 

endogenous optimization problems and allows investment decisions paired with operational optimization in 

MILP formulations. 

A case study of three different buildings in two California cities with different climates and utility tariffs was 

performed to compare the improved model with its predecessor. Results when heat pumps were not available 

indicate a decrease in TES investments using the improved model for most buildings analyzed. However, with 

the possibility to invest in heat pumps, the TES investments increase for all buildings in San Diego. At the same 

time, investments in heat pumps increase for these buildings. Furthermore, for most buildings, the result shows 

only a minor difference in the objective function and the CO2 emissions only differ minimally, although the 

technology selection differs widely between the models. This highlights the overall complexity of DER sizing 

problems and the added complexity of the improved TES model, as well as the relatively flat solution space 

found in these problems. It is also important to note that the case study only involves three building types at two 

different locations, the result may differ for other locations and available technologies. 

For all locations and buildings analyzed in the case study, results show that the previous model estimates 

higher storage losses. Furthermore, the improved model shows that the heat is stored in TES for longer periods 

of time compared to the previous model. However, due to the charge-discharge losses associated with the TES, 

this does not have a great impact on objective function values and follow-up research needs to address the 

charging and discharging efficiencies. As discussed in the paper, a TES model based on the second law of 

thermodynamic couldn’t be integrated in DER-CAM due to the endogenous problem formulation. However, it 

would be interesting to compare the accuracy of the results from the improved TES model with a more detailed 

TES model considering the second law of thermodynamic. Furthermore, as the cost for latent TES decreases, it 

becomes more competitive, especially for sites with space limitation. Including latent heat storages into the set of 

technologies available in DER-CAM could also be useful, both when finding the optimal DER mix but also to 

assess at which cost these storages are becoming economically feasible. 
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Appendix A.1. Change in technology investment 

TABLE 8 TECHNOLOGY INVESTMENT IN IMPROVED AND PREVIOUS MODEL, WITHOUT POSSIBILITY TO INVEST IN HP 

Technology investment 

excl. HP [kW] 

San Francisco San Diego 

LCOLL LHLTH LHOT LCOLL LHLTH LHOT 

ICE-small 0 (0) 0 (0) 0 (0) 0 (2,760) 1,560 (0) 0 (0) 

DG without HX 0 (0) 0 (0) 0 (0) 0 (2,760) 1,560 (0) 0 (0) 

ICE-HX-small 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (60) 

ICE-HX-med 500 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

MT-HX-small 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 60 (0) 

FC-HX-small 0 (0) 0 (0) 0 (0) 500 (300) 100 (300) 0 (0) 

FC-HX-med 0 (0) 0 (0) 0 (0) 750 (250) 250 (1,250) 250 (250) 

FC-HX-small-wSGIP 100 (0) 100 (100) 300 (300) 700 (600) 300 (100) 400 (400) 

FC-HX-med-wSGIP 1,500 (2,250) 1,250 (1,250) 250 (250) 2,250 (2,250) 750 (0) 250 (250) 

DG with HX 2,100 (2,250) 1,350 (1,350) 550 (550) 4,200 (3,400) 1,400 (1,650) 960 (960) 

Electric Storage 2,553 (7,192) 3,222 (3,745) 2,518 (2,598) 10,374 (13,673) 2,465 (3,016) 2,227 (2,285) 

TES (LT strata) 0 (-) 0 (-) 1,501 (-) 12,028 (-) 2,115 (-) 1,501 (-) 

TES (HT strata) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 

TES (LT +HT strata) 0 (2,479) 0 (8,997) 1,501 (1,737) 12,028 (4,666) 2,115 (2,236) 1,501 (2,081) 

Abs. Chiller 174 (152) 0 (275) 86 (55) 412 (342) 118 (147) 109 (115) 

PV 686 (741) 319 (0) 492 (502) 856 (856) 498 (498) 474 (484) 

Solar Thermal 0 (229) 604 (2,445) 286 (236) 0 (0) 0 (0) 373 (327) 

Annual CO2 Emissions 7,174 (6,708) 4,845 (4,665) 1,956 (1,975) 9,172 (9,237) 4,850 (4,727) 2,396 (2,406) 

Annual Energy Costs 2,213 (2,348) 1,608 (1,605) 814 (824) 4,270 (4,030) 1,951 (2,110) 1,076 (1,049) 

Note: Numbers in parentheses are the investments in the previous version, Storage values are in kWh, CO2 emission in 1000kg CO2 and 

energy cost in 1000$ 

 

TABLE 9 TECHNOLOGY INVESTMENT IN IMPROVED AND PREVIOUS MODEL, WITH POSSIBILITY TO INVEST IN HP 

Technology investment 

incl. HP [kW] 

San Francisco San Diego 

LCOLL LHLTH LHOT LCOLL LHLTH LHOT 

ICE-small 0 (0) 0 (0) 0 (0) 0 (1680) 0 (1860) 0 (0) 

FC-small 0 (0) 0 (0) 0 (0) 0 (0) 100 (0) 0 (0) 

DG without HX 0 (0) 0 (0) 0 (0) 0 (3,360) 100 (0) 0 (0) 

FC-HX-small 0 (0) 0 (0) 0 (0) 600 (200) 100 (0) 300 (100) 

FC-HX-med 0 (0) 0 (0) 0 (0) 0 (500) 500 (250) 0 (250) 

FC-HX-small-wSGIP 100 (0) 200 (200) 200 (300) 600 (500) 200 (300) 100 (400) 

FC-HX-med-wSGIP 1,500 (2,000) 1,000 (1,000) 250 (250) 2,500 (2,000) 1,250 (750) 250 (0) 

CHP (DG with HX) 1,850 (2,000) 1,200 (1,200) 450 (550) 3,700 (3,200) 2,050 (1,300) 650 (750) 

Electric Storage 2,361 (5,612) 1,839 (1,935) 2,853 (2,607) 9,017 (10,240) 1,906 (1,793) 2,737 (1,722) 

TES (LT strata) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

TES (HT strata) 0 (0) 0 (0) 1,346 (0) 13,306 (0) 3,143 (0) 1,806 (0) 

TES (LT + HT strata) 0 (5,138) 0 (5,365) 1,346 (1,735) 13,306 (11,624) 3,143 (1,943) 1,806 (1,528) 

Air Source HP 0 (0) 190 (166) 0 (55) 128 (0) 119 (56) 256 (93) 

Ground Source HP 191 (274) 267 (339) 135 (124) 848 (836) 420 (391) 214 (169) 

Abs. Chiller 146 (155) 0 (16) 63 (40) 482 (528) 192 (111) 61 (23) 

PV 695 (856) 487 (444) 520 (550) 856 (856) 498 (498) 510 (539) 

Solar Thermal 0 (0) 55 (268) 149 (0) 0 (0) 0 (0) 199 (54) 

Annual CO2 Emissions 6,898 (6,348) 4,231 (4,214) 1,908 (1,847) 8,529 (8,567) 4,322 (4,459) 2,231 (2,284) 

Annual Energy Costs 2,201 (2,242) 1,509 (1,476) 806 (803) 4,094 (3,906) 2,062 (1,843) 1,033 (1,026) 

Note: Numbers in parentheses are the investments in the previous version, Storage values are in kWh, CO2 emission in 1000kg CO2 and 

energy cost in 1000$ 
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