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Illumination retrieval in scanning diffractive imaging a.k.a. ptychography is challenging when the
specimen is weakly scattering or surrounded by empty space. We describe a rank-1 acceleration
method for weakly scattering or piecewise smooth specimens.

Ptychography is an increasingly popular technique to achieve diffraction limited imaging over a large field of view
without the need for high quality optics2–5,7,10–16,20–27,29,30,33. Since the reconstruction of ptychographic data is a non-
linear problem, there are still many open problems17, nevertheless the phase retrieval problem is made tractable by
recording multiple diffraction patterns from the same region of the object, compensating phase-less information with
a redundant set of measurements. Data redundancy enables to handle experimental uncertainties as well. Methods to
work with unknown illuminations or “lens” were proposed4,22,25,26. They are now used to calibrate high quality x-ray
optics10,12,15, x-ray lasers and space telescopes. More recently, position errors3,8,16, background9,28, noise statistics7,27

and partially coherent illumination1,6,14,31. Situations when sample, illumination function, incoherent multiplexing
effects, as well as positions, vibrations, binning, multiplexing, fluctuating background are unknown parameters in
high dimensions have been added to the nonlinear optimization to fit the data using projections, gradient, conjugate
gradient, Newton32, and spectral methods2,17,19 . Here we focus on the illumination retrieval problem. We utilize the
notation described in17,19, which is summarized below.
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FIG. 1. The measured amplitudes a and the relationship with an an unknown object ψ in standard “Far Field” ptychography.
Geometric representation of the operators involved in simulating a ptychographic imaging experiment17,19.

I. BACKGROUND

The relationship between an unknown discretized object ψ , and the diffraction measurements a(i) collected in a
ptychography experiment (see figure 1) can be represented compactly as:

a = |FQψ∨|, or

{
a = |Fz|,
z = Qψ∨,

(1)



2

where ψ∨ is the object ψ in vector form. Eq. (1) can be expressed as:

a∈RKm2 a(1)
...

a(K)

 =

∣∣∣∣∣∣∣∣∣∣∣∣

F∈CKm2×Km2 F . . . 0
...

. . .
...

0 . . . F


z∈CKm2 z(1)

...
z(K)


∣∣∣∣∣∣∣∣∣∣∣∣
,

z∈CKm2 z(1)
...

z(K)

 =

Q∈CKm2×n2
, diag(w)T(1)

...
diag(w)T(K)


ψ∈Cn2 ψ1

...
ψn2



where z are K frames extracted from the object ψ and multiplied by the illumination function w, F is the associated
2D DFT matrix when we write everything in the stacked form, that is, F is a m2 × m2 matrix satisfying Flk =

eTl Fek = eiq
−1
m (l−1)·r−1

m (k−1). For experimental geometries related to what has been described above, such as Near
Field, “Fresnel”, Fourier ptychography, through-focus5,24,29,30 one can substitute the simple Fourier transform with
the appropriate propagator.

The illumination matrix Q encodes information about illumination w ∈ Cm2

, and the K relative translations

between the probe w and the object ψ. In particular, the (i) block denoted as Q(i) ∈ Cm2×n2

extracts one frame from
the object and multiplies by the illumination w:

Q(i) =

HH

diag(w∨)

HH

T(i) ∈ Cm
2×n2

, Q =


diag(w∨)T(1)

diag(w∨)T(2)

...
diag(w∨)T(K)

 (2)

where the matrix T(i) extract an m×m frame out of an n× n image. The matrix T(i) can be expressed in terms of a

translation matrix Cx which circularly translates by x in Dn×n and the restriction matrix R, which is of size m2×n2
so that R(i, i) = 1 for all i = 1, . . . ,m2 and 0 otherwise:

T(i) =RCx(i)
, T =


T(1)

T(2)

...
T(K)

 (3)

In the following, to simplify the notation, we will not distinguish between w (resp. ψ) and its vector form w∨ (resp.
ψ∨) and use the same notation w (resp. ψ). We simplify Eq (2) as

Q = diag(Sw)T. (4)

Where we define S ∈ RKm2×m2

to be the matrix that replicates the illumination probe w into k stack of frames, that
is, S is a K × 1 block matrix with the m2×m2 identity matrix as the block. There is a relationship between ψ,w and
z:

z = Qψ = diag(Sw)Tψ = diag(Tψ)Sw (5)

due to the fact that diag(Sw)Tψ is the entry-wise product of Sw and Tψ.
In the notation used in this paper, projection operators are expressed as:

PQ = Q(Q∗Q)−1Q∗

Pa = F∗
Fz

|Fz|
a

II. ALTERNATING PROJECTIONS PROBE, FRAMES, IMAGE

The standard update22,25 proceeds in three steps updating the estimate of the illumination w, estimate of the
specimen ψ, and the frames z based on experimental geometry and data. First update the image ψ by (5):

ψ ←(Q∗Q)−1Q∗z =
T∗diag(Sw̄)z

T∗(S|w|2)
, (6)
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where the second equality holds due to (4); that is, Q∗Q = diag(T∗(S|w|2)). Note that for the sake of simplifying
notation, we represent diag(v)−1B =: Bv when diag(v) is invertible diagonal matrix. Second, by (5), update the probe
w:

w ←S∗diag(Tψ̄)z

S∗T|ψ|2
, (7)

Third update the frames using the new probe embedded in Q, and the Pa operator:

z ← Padiag(Sw)Tψ (8)

Note that Equation (7) is motivated by (5). In fact, we have diag(Tψ̄)z = diag(|Tψ|2)Sw. And note that by a direct
calculation, S∗diag(|Tψ|2)S = diag(

∑
iT(i)|ψ|2), which leads to (7) when all entries of S∗T|ψ|2 are not zero. When

there is zero entry in S∗|Tψ|2, we may consider max{S∗|Tψ|2, ε}, where ε > 0 is a small positive number determined
by the user. Note that S∗ plays the role of averaging.

III. THE RELATIONSHIP BETWEEN PROBES (ILLUMINATION ) AND FRAMES

We now analyze here the symmetry between Q and z, that is, we look at the frame-wise relationship. We note
that T ∗(i)Q(i) = T ∗(i)diag(w)T(i), ∀(i) is a diagonal matrix. Hence we can write the following relationship between two

frames:

T ∗(i)Q(i)T
∗
(j)z(j) = T ∗(i)Q(i)T

∗
(j)Q(j)ψ = T ∗(j)Q(j)T

∗
(i)Q(i)ψ = T ∗(j)Q(j)T

∗
(i)z(i)

i.e. the i-th frame multiplied by the j-th illumination is equal to the j-th frame multiplied by the i-th illumination,
after putting the results back to the right position. In other words, we have a pairwise relationship

∑
i,j

‖T ∗(j)Q(j)T
∗
(i)z(i) − T

∗
(i)Q(i)T

∗
(j)z(j)‖ = 0. (9)

By swapping diagonal matrices T ∗(i)Q(i) and using T(i)T
∗
(i) = I, we can write out the pairwise discrepancy between

all frames:

1

2

∑
i,j

‖T ∗(j)Q(j)T
∗
(i)z(i) − T

∗
(i)Q(i)T

∗
(j)z(j)‖

2 =
∑
i,j

z∗(i)

[
Q2

(i)δi,j −Q(i)Q
∗
(j)

]
z(j) = z∗[Q2 − P]z

where Q2
(i) ≡ T(i)Q

∗QT ∗(i), Q2 ≡ diag(Q2
(i=1...k)), P ≡ QQ∗. Indeed, note that

∑
ij z
∗
(i)T(i)Q

∗
(j)Q(j)T

∗
(i)z(i) =∑

i z
∗
(i)T(i)

[∑
j Q
∗
(j)Q(j)

]
T∗(i)z(i) and Q∗Q =

∑
j Q
∗
(j)Q(j). Note that Q∗Q is a diagonal matrix with non-negative

diagonal entries describing how a pixel of the object of interest is illuminated by different windows. Thus we can define
Q by taking square root of Q2 entry-wisely. We may assume that the diagonal is positive, otherwise some information
of the object is missed in the experiment. Thus we may define Q−1. Also note that by a direct calculation, we obtain

Q2 = diag(TT∗S|w|2). (10)

Intuitively, T∗S|w|2 describes how pixels of the whole ψ is illuminated, and T(i)T
∗S|w|2 is how the pixels of the i-th

patch of ψ is illuminated, which is the same as T(i)Q
∗QT ∗(i).

We can minimize this functional by first renormalizing, making a change of variable ẑ = Qz, then applying the
power iteration:

z∗[Q2 − P]z = ẑ∗[I −Q−1PQ−1]ẑ = ẑ∗[I − PQ]ẑ (11)

z ← Q−1PQẑ = Q−1PQQz = PQz (12)

which holds by the way Q is defined. The reason for the above formulation is to establish a relationship between Q
and z. As we have seen in Sec. II, the relationship between w and ψ in (Eq. (7)) is used to recover both w and ψ.
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Interestingly, the relationship (Eq. 9) is symmetric w.r.t. Q (i.e. w) and z. In other words, we can update the
probe based on the frames z by solving the symmetric counterpart:

1

2

∑
i,j

‖T ∗(j)Q(j)T
∗
(i)z(i) − T

∗
(i)Q(i)T

∗
(j)z(j)‖

2 =z∗[Q2 − P]z = z∗[diag(TT∗S|w|2)− diag(Sw)TT∗diag(Sw̄)]z

=w∗S∗[diag(TT∗|z|2)− diag(z)TT∗diag(z̄)]Sw,

where the second equality holds due to (10) and (4), and the last equality holds due to the equality
z∗diag(TT∗S|w|2)z = w∗S∗diag(TT∗|z|2)Sw by a direct calculation. Note that

1. we may view z∗diag(TT∗S|w|2)z as a weighted inner product in CKm2

;

2. when z ∈ CKm2

is the vectorized version of all illuminated images, geometrically S∗diag(z)S means aver-

aging over all illuminated images; that is S∗diag(z)S = diag(
∑K
i=1 z(i)). By a directly calculation, we have

S∗diag(z)S = diag(S∗z).

With the above preparation, we wish to solve:

arg min
w
w∗S∗[diag(TT∗|z|2)− diag(z̄∗)TT∗diag(z̄)]Sw, (13)

which can be expressed as (in a similar form as Eq. (11))

arg min
w
w∗[D −A]w, (14)

where

{
D = S∗diag(TT∗|z|2)S = diag(S∗(TT∗|z|2))
A = S∗[diag(z̄∗)TT∗diag(z̄)]S.

Note that A is Hermitian but not a diagonal matrix since diag(z̄∗)TT∗diag(z̄) is not diagonal. Thus, (14) yields - by
power method, starting from an initial estimate w:

w ← D−1Aw =
S∗diag(z̄∗)TT∗diag(z̄)Sw

S∗TT∗|z|2
=

S∗diag(z)TT∗diag(Sw)z̄

S∗TT∗|z|2
=

S∗diag(z)TQ∗z̄

S∗TT∗|z|2
, (15)

where the last equality holds due to (4). Note the projection update (12) can be expressed in a similar way by
swapping the order of S with TT∗:

z ← PQz =
QQ∗z

Q2
=

diag(Sw)TT∗diag(Sw)∗z

TT∗S|w|2

How does this update relate to the standard update in (7) blueIf we insert Q2 inside the averaging matrices S∗()S
and when z = Qψ, we obtain

w =
S∗Q−2diag(z)TT∗diag(z̄)Sw

S∗Q−2TT∗|z|2
=

S∗diag(z)T
[

1
Q∗QT

∗diag(z̄)Sw
]

S∗T
[

1
Q∗QT

∗|z|2
] =

S∗diag(Tψ̄)z

S∗T|ψ′|2
;

where the third equality holds since T∗diag(z̄)Sw = T∗diag(Sw)z̄ = T∗diag(Sw̄)z = Q∗z and ψ = (Q∗Q)−1Q∗z, and
we define |ψ′|2 ≡ 1

Q∗QT
∗|z|2. Note that 1

Q∗QT
∗|z|2 is different from |ψ|2 = | 1

Q∗QQ
∗z|2 in (7). However S∗T in (15)

smears out the normalization factor, and the two results are similar.

IV. RANK-1 SPEEDUP FOR WEAKLY SCATTERING AND PIECEWISE SMOOTH OBJECTS

A simple way to speed up is to simply remove one constant term (DC) on the fly, that is we compute the transparency
factor ν ∈ C1 and subtract the average transmitted light: if we replace z ← z − νSw in Eqs. (14, 15) we get the
following update:
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ν =
(Sw)∗z

‖Sw‖2
, w ←

S∗
(
diag(z − νSw)TQ̄

∗
(z̄ − ν̄Sw̄)

)
S∗(TT∗|z − νSw|2)

=
S∗
(
diag(z − νw)(TQ̄

∗
z̄ − ν̄Q2

)
S∗(TT∗|z|2 − 2<(ν̄TQ∗z) + Q2|ν|2)

, (16)

where the last equality holds by (10).

This is useful when an object has a strong DC term (weak contrast). Moreover, we can remove the frame-wise
DC term for piecewise objects, which is useful since any constant region within the object does not provide any
information about the probe. The second formulation enables us to compute ν frame-wise.

We simply average the frames that overlap together, that is we apply the operator that sums all the frames
that overlap with a given frame. Consider the K ×K matrix X, with entries X(i, j) = 1 if (i) overlaps with (j),
or 0 otherwise. Compute the υ ∈ CK vector:

υi =

∑
jXi,j(w

∗z(j))∑
jXi,j(‖w‖2)

=

∑
jXi,j(w

∗z(j))

‖w‖2
∑
jXi,j

Then do the following update, which we write with some abuse of notation:

w ←
S∗
(
diag(z − υSw)(TQ̄

∗
z̄ − ῡQ2

)
S∗(TT∗|z|2 − 2<(ῡTQ∗z) + Q2|υ|2)

the abuse of notation is that (Sw)υ , Qῡ and others, are intended as (Sw)Bυ where B is the matrix that replicates
υi onto the frame of dimension n2.

Numerical tests are shown in Fig. 2 with n = 223, m = 128, K = 20 × 20, 5 pixels steps. Significant speedup is
observer using the update in Eq. (16), vs Eq. (7), the speedup is accentuated when there is a strong average constant
transmission factor.
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