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SUMMARY 
This milestone report summarizes the data obtained in FY14 on the 

protonation and complexation of HEDTA with lanthanides in a 
temperature range from 25 to 70oC. The results show the effect of 
temperature on the chemical speciation of lanthanides in the modified 
TALSPEAK Process, and help to evaluate the effectiveness of the 
process when the operation envelope (e.g., temperature) varies. 
Eventually, the results from this study will help to achieve a better 
control of the separation process based on the HEDTA/HEH[EHP] 
combination. 
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1. INTRODUCTION 
Though the TALSPEAK process was proven to work for the separation of trivalent lanthanides and 
actinides, detailed fundamental chemistry studies under the NE FCRI Separations and Waste Form 
Campaign have indicated undesirable complex interactions between various components in aqueous and 
organic phases of TALSPEAK. A number of modifications of TALSPEAK have been proposed and 
studied, with the objectives of simplifying the process. One modification involves using 2-ethyl (hexyl) 
phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) as the extractant in the organic phase to replace 
bis-2-ethyl(hexyl) phosphoric acid (HDEHP), while using a weaker aqueous complexant (N-(2-
hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid, HEDTA) to replace DTPA in the conventional 
TALSPEAK. Preliminary studies have demonstrated that the combination of HEDTA with HEH[EHP] 
results in an almost flat pH dependence between 2.5 and 4.5, in contrast with conventional TALSPEAK. 
In addition, the HEDTA/HEH[EHP] combination has shown more rapid kinetics in phase transfer for the 
heavier lanthanides without using high concentrations of a lactate buffer as in the conventional 
TALSPEAK [1-3]. 

This milestone report summarizes the data obtained in FY14 on the protonation and complexation of 
HEDTA with lanthanides in a temperature range from 25 to 70oC. The results show the effect of 
temperature on the chemical speciation of lanthanides in the modified TALSPEAK Process, and help to 
evaluate the effectiveness of the process when the operation envelope (e.g., temperature) varies. 
Eventually, the results from this study will help to achieve a better control of the separation process based 
on the HEDTA/HEH[EHP] combination. 

2. RESULTS 
2.1 Protonation of HEDTA at 25 – 70oC 
2.1.1 Protonation constants 
Representative potentiometric titrations at 25°C and 70°C and the fitting curve obtained by using the 
Hyperquad program [4] are shown in Figure 1. The speciation of the ligands in the course of the titrations 
is also shown in the figures. From multiple titrations at each temperature, the protonation constants of 
HEDTA at different temperatures were calculated. The calculated protonation constants from this work, 
together with the protonation constants in the literature [5-7], are shown in Figure 2 and Table 1. 

 
Figure 1. Potentiometric titrations of the protonation of HEDTA at 25°C (left) and 70°C (right). I=1.0 
mol/L NaClO4. Cup solution: Vo(25oC) = 24.97 mL, CL(25oC) =17.32 mmol/L, Vo(70oC) = 20.15 mL, 
CL(70oC) =24.31 mmol/L. Titrant: 99.83 mmol/L NaOH. Symbols: ○ – experimental data (−log[H+]), 
dashed line – fit (−log[H+]), solid lines – percentage of HEDTA species relative to the total HEDTA 
concentration (L3− , HL2-, H2L-, and H3L, where H3L stands for the neutral HEDTA). 
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Table 1 Thermodynamic parameters for the protonation of HEDTA. I = 1.0 M NaClO4 and logβH,M 
represents the protonation constants in molarity. 

Reaction t,oC logβH,M ∆H, 
kJ∙mol-1 

H++L3-=HL2- 0 10.33 [5] -26.04a; 
-27.8(2)b 

 
10 10.09 [5] 
25 9.14 ± 0.01, 9.89 [5], 9.20 [6], 8.65 [7] 
35 9.70 [5] 
40 8.94 ± 0.01 
45 9.63 [5] 
55 8.69 ± 0.01 
60 9.34 [5] 
70 8.56 ± 0.01 

2H++L3-=H2L- 0 15.97 [5] -38.27a; 
-49.3(2)b 10 15.67 [5] 

25 14.66 ± 0.01, 15.29 [5], 14.72 [6], 13.76 [7] 
35 15.04[5] 
40 14.34±0.01 
45 14.91[5] 
60 14.52[5] 
55 13.97±0.02 
70 13.81±0.02 

3H++L3-=H3L 0 18.61[5] -30.33a; 
-46.5(3)b 10 18.26 [5] 

25 17.20 ± 0.01, 17.85 [5], 18.52 [6], 16.06 [7] 
35 17.54 [5] 
40 16.95 ± 0.02 
45 17.39 [5] 
55 16.62 ± 0.02 
60 16.93[ 5] 
70 16.54 ± 0.03 

aAverage enthalpies calculated from Van’t Hoff plots; bdirectly measured enthalpies by calorimetry at 
25oC. 

 

Figure 2. Protonation constants of HEDTA at different temperatures. I = 1.0 mol/L NaClO4. 
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The results have demonstrated that the first two protonation constants decrease and the third one slightly 
increases with the increase of temperature (Table 1 and Figure 2), implying that HEDTA becomes a 
stronger acid at higher temperatures. This observation could have impact on the speciation of 
An(III)/Ln(III) in the TALSPEAK system, because the hydrogen ions would compete less strongly with 
An(III)/Ln(III) ions for the complexation of the anionic HEDTA species at higher temperatures. The 
Van’t Hoff plot of lnβH vs. 1/T (Figure 2) indicates that all three overall protonation reactions are 
exothermic (with positive slopes). However, stepwise, the first two steps of protonation are exothermic 
and the last step is endothermic (the slope of the top line for H3L is less positive than the other two lines 
for H2L- and HL2-). In order to confirm the thermodynamic parameters for the protonation reactions of 
HEDTA, calorimetric titrations were performed.   

 

2.1.2 Enthalpy of protonation 
Data of the calorimetric titrations for the protonation of HEDTA are shown in Figure 3. The observed 
reaction heat (“partial” or stepwise Q) is a function of a number of parameters, including the 
concentrations of reactants (CH, CL), the protonation constants (logβH) and the enthalpy of protonation of 
the ligand (ΔH). Using the stoichiometric concentrations of the reactants and the protonation constants 
measured by potentiometry measured in this work, the enthalpies for the protonation reaction of HEDTA 
at 25oC are calculated from the calorimetric titration data, and are presented in Table 1.  

 
Figure 3. Calorimetric titrations of the protonation of HEDTA, I = 1 mol/L NaClO4, t = 25oC. (Top) a 
representative thermogram. (Bottom) A plot of Qpartial vs. the volume of titrant, Symbols of the bottom:  
- experimental Q, lines – fit. Initial cup solutions: HEDTA, CH

o/CL
o (mmol/L) = 29.88/9.96; titrant: 

99.83mmol/L NaOH, 5.0 µL/addition. 

The stepwise enthalpy for the first protonation step (HL2-) measured by microcalorimetry is -27.83 
kJ⋅mol-1, in good agreement with those from the linear fits of the Van’t Hoff plots (-26.04 and -27.32 
kJ⋅mol-1). The first two protonation reactions for the HEDTA are exothermic, but the enthalpies become 
increasingly endothermic in successive protonation step(s). Similar to those in the system of EDTA [8], 
the first two protonation steps probably occur on the nitrogen atoms [9].  
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2.1.3 Effect of Temperature on the Speciation of HEDTA  
With the protonation constants measured at different temperatures, it is possible to evaluate the change of 
speciation of HEDTA in the –log[H+] region of 2 to 12, an acidity region covering the operating envelop 
of the TALSPEAK process. Figure 4 compares the speciation of the ligand (in the absence of metal ions) 
at 25oC and 70oC. Small but definite differences for all species between the two temperatures can be 
observed. For example, at higher temperature, there is less H2L- species and more H3L and L3- species.  In 
brief, the protonation of HEDTA generally becomes weaker at higher temperatures. Such changes in the 
speciation would certainly affect the speciation of An(III) and Ln(III) in the modified TALSPEAK 
system. The significance of the effect will be evaluated in conjunction with the stability constants of the 
An(III)/Ln(III) complexes with HEDTA at different temperatures.     

 
Figure 4. Speciation of HEDTA as a function of acidity (-log[H+]) at different temperatures. I = 1 mol/L 
NaClO4, Cup solution: Vo(25oC) = 24.97 mL, CL(25oC) =17.32 mmol/L, Vo(70oC) = 20.15 mL, CL(70oC) 
=24.31 mmol/L, Titrant: 99.83 mmol/L NaOH.lines – percentage of HEDTA species relative to the total 
HEDTA concentration (L3− , HL2-, H2L-, and H3L, where H3L stands for the neutral HEDTA). 

2.2 Complexation of Ln(III) with HEDTA at 25 – 70oC 
2.2.1 Stability constants 
Potentiometric (Figure 5) and spectrophotometric (Figure 6) titrations were performed to determine the 
stability constants of Nd(III)/HEDTA complexes at different temperatures. The HypQuad and HypSpec 
programs were used to calculate the stability constants (Table 2). It was found that it is necessary to 
include a species, noted as NdH-1L-, to fit the data in the higher pH region. This species could be a ternary 
hydrolyzed species, Nd(OH)L-, or a species with the hydroxyl group in HEDTA deprotonated. 
Thermodynamic data alone do not allow the differentiation between these two species. 
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Figure 5 Potentiometric titrations of HEDTA/Nd(III) complexation at 25°C (left) and 70°C (right), I =1.0 
mol/L NaClO4. Titrant: 99.83 mmol/L NaOH. Cup solution: Vo(25oC) = 20.35 mL, CL(25oC) =12.18 
mmol/L, CNd(25oC) =9.60 mmol/L, CH(25oC) =37.48 mmol/L, Vo(70oC) = 20.67 mL, CL(70oC) =12.04 
mmol/L, CNd(70oC) =9.47 mmol/L, CH(70oC) =37.03 mmol/L, Symbols: ○ – experimental data (−log[H+]), 
dashed line – fit (−log[H+]); solid lines – percentage of Nd(III) species relative to total Nd3+ concentration 
(1- Nd3+, 2- NdL, 3- NdH-1L-). 

 
Figure 6. Representative spectrophotometric titration of Nd(III) HEDTA complexation at 25 oC, I = 1.0 
mol/L NaClO4. Upper figure: Absorption spectra. Lower figure: calculated molar absorptivity of Nd3+ and 
Nd(III)/HEDTA complexes.Initial solution in the cuvette: 2.15 mL, 25.83mmol Nd(ClO4)3 / 43.05mmol 
HClO4. Titrant: 50.23mmol HEDTA / 60.83mmol NaOH.  

Table 2 Thermodynamic parameters for the Nd(III)/HEDTA complexes at different temperatures. I = 1 M 
NaClO4. logβM represents the complex formation constants in molarity. 

Reaction t,oC logβM ∆H, kJ∙mol-1 
Nd3++L3-=NdL 25 13.29 ± 0.02 -13.49a; 

-28 ± 1b 40 13.10 ± 0.03 
55 13.58 ± 0.02 
70 12.96 ± 0.03 

Nd3+ + L3- + H2O 
= NdH-1L- + H+ 

25 3.11 ± 0.03 29.89a; 
14 ± 2b 

 
40 3.25 ± 0.03 
55 3.42 ± 0.03 
70 3.82 ± 0.04 
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aAverage enthalpies calculated from Van’t Hoff plots in this work, bdirectly measured enthalpies at 25oC 
by microcalorimetry in this work.  
 

2.2.2 Enthalpy of complexation 
The enthalpy of complexation between Nd(III) and HEDTA was determined by microcalorimetry (Figure 
7). The HypDH program was used to calculate the enthalpy of complexation (Table 2). 

 
Figure 7. Calorimetric titration of Nd(III)/HEDTA complexation at 25 oC. I = 1.0 M NaClO4. Initial 
solution: 750 μL, 7.332 μmol Nd(ClO4)3/7.506 μmol HEDTA/18.01 μmol HClO4. Titrant: 0.1 mmol 
NaOH. Left figure: Calorimetric diagram. Righ figure: correspongding speciation diagram and 
cumulative heat.  

 

2.2.3 Fluorescence measurements 
The fluorescence of the Eu(III)/HEDTA system was measured to help understand the coordination modes 
of Ln(III) with HEDTA. Figures 8 and 9 show the variation of the emission spectra and the lifetime as the 
basicity of the solutions was increased. From the lifetime, the hydration number of Eu(III) was calculated 
using the correlation in the literature, and shown in Table 3.  

 

Figure 8. Fluorescence emission spectra of Eu(III)/HEDTA systems  at 25 oC. I= 1 mol/L 
NaClO4.Wavelength of excitation. 395nm, Initial solution: 5.04mL, 36.26mmol Eu(ClO4)3 / 37.30mmol  
HEDTA / 80.00 mmol HClO4. Titrant: 0.1mmol NaOH. 
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Figure 9. Luminescence decay of the Eu(III)/HEDTA systems at 25 oC. I= 1 mol/L NaClO4.Wavelength 
of excitation: 395nm. Wavelength of emission: 615nm. Initial solution: 5.04mL, 36.26mmol Eu(ClO4)3 / 
37.30 mmol  HEDTA / 80.00 mmol HClO4. Titrant: 0.1mmol NaOH.  

 

Table 3. Luminescence lifetime and the average hydration number of of Eu(III) / HEDTA systems at 25 
oC.  

-log[H+] τexp, μs nH2O, exp 
% Eu species 

Eu3+ EuL EuH-1L- 

2.06 245.4 3.58 32.88 67.12 / 
2.12 247.1 3.55 28.18 71.82 / 
2.19 249.4 3.51 23.51 76.49 / 
2.26 250.0 3.50 18.89 81.11 / 
2.36 252.2 3.46 14.36 85.64 / 
2.48 254.1 3.43 9.97 90.03 / 
2.66 256.3 3.40 5.78 94.22 / 
2.98 258.0 3.37 1.96 98.04 / 
9.30 264.5 3.27 / 99.40 0.60 
10.71 292.2 2.89 / 86.79 13.21 
11.03 335.1 2.43 / 75.73 24.27 
11.22 370.7 2.13 / 66.55 33.45 
11.37 412.2 1.85 / 58.99 41.01 
11.47 441.1 1.68 / 52.77 47.23 
11.56 445.8 1.66 / 47.63 52.37 

 

3. SUMMARY 
The overall protonation constants of HEDTA decrease by 0.58 – 0.85 orders of magnitude as the 
temperature is increased from 25 to 70oC. On the other hand, the stability of the 1:1 Nd(III)/HEDTA 
complex, NdL, becomes weaker as the temperature is increased. Integration of the data on the protonation 
and complexation will help to predict the change of the speciation of the actinides and lanthanides, as well 
as their extraction behavior in the modified TALSPEAK system at different operating temperatures.  
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