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Abstract

Some FEL beamlines, especially those based on echo-enabled harmonic generation
(EEHG), are sensitive to small, random jumps in energy generated by incoherent pro-
cesses such as intra-beam scattering (IBS) and incoherent synchrotron radiation (ISR).
Here, we examine the energy jumps caused by IBS when the local energy spread is a
negligible factor compared to the transverse momentum spread, as is typical in ac-
celerators. A simulation tool for modeling chicanes incorporating the effect of IBS is
described.

1 Introduction

Intrabeam scattering (IBS) is an important effect which can increase the energy spread of
a beam without requiring any external interactions. Because of the nature of the echo-
enabled harmonic generation (EEHG) scheme [1, 2], it is particularly important to take into
account all forms of energy scatter during the beam manipulations, in particular within and
in between the two chicanes. The second modulating undulator is therefore as sensitive to
scattering as the chicanes themselves [3]. Sources of energy scattering include IBS, incoherent
synchrotron radiation (ISR), and neutral gas scattering. In order to reduce ISR, magnetic
fields must be kept low in both the chicanes and the second modulating undulator. This
tends to increase the length of the chicanes and either the length of the second undulator
or the required input laser power. Because IBS occurs everywhere, increasing the length of
any element necessarily increases the total impact of IBS.

Here we describe some basic estimations of IBS and present a simple simulation tool,
chicane ibs, which models basic transport, ISR, and IBS across a typical 4-dipole chicane.
By setting the magnetic field to zero, drifts can be simulated as well. This is to be used
in EEHG simulation studies because the built-in GENESIS [4] model for chicanes uses a
deterministic map for the electrons and scattering is neglected. While GENESIS does model
ISR in undulators, the effect of IBS is not included. For thorough EEHG simulations, the
impact of IBS within an undulator section can be approximated by estimating the total rms
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energy offset caused by IBS and applying it at the end of the undulator. This should be
a reasonable approximation unless the undulator is much longer than a gain length. More
features may be added to future versions of this code.

2 Poisson statistics of Coulomb collisions

The statistics of collisions follows a Poisson distribution, where the standard deviation in the
number of collisions is equal to the square root of the average number of collisions. Thus,
we have

〈N〉 =
∫
ν dt = 〈(∆N)2〉 . (1)

This can be viewed as coming from the fact that in each time interval ∆t, the fluctuation in
collisions is

√
ν∆t, and these fluctuations scale in quadrature. For a given effect Y caused

by collisions, we have

〈Y 〉 =
∫
Y ν dt , σ2

Y =
∫
Y 2ν dt . (2)

Note that this is different from moments of a distribution function in that there is no nor-
malization to enforce 〈1〉 = 1 because this would give the average change per collision, rather
than the expectation value of the cumulative effect of many collisions.

For IBS in the case of small energy spreads, we are interested primarily in Y = vz, where
vz is the longitudinal velocity in the rest frame of the electron beam generated by collisions.
Clearly 〈vz〉 ≡ 0, but growth of 〈v2z〉 is of critical importance when there is fine-scale structure
in the longitudinal phase space of the electron beam.

Although there exists one important constraint on two-body collisions, that each collision
event affects two electrons in equal and opposite ways, this should have little effect on rms
properties of the electron bunch. In particular, even though net momentum must obviously
be conserved exactly, it is a good approximation to ignore correlations.

3 Kinematics of Coulomb Collisions

We start by examining collisions in the rest frame of the electron bunch. The basic definition
of scattering rate is ν = nevrelσ, where vrel is the relative velocity between the two populations
that are scattering against each other. All of these quantities are for a given region in space,
which is assumed small enough such that the local distribution can be viewed as uniform in
space and having some distribution in velocity space. In the rest frame, all velocities should
be non-relativistic. The number of collisions for a given set of impact parameters is given by

dN = dt P (~vrel) d~vrel nevrelb db dφ , (3)

where P (~vrel) is the probability of a random pair of electrons at a particular location having
a given relative velocity. Now we will get the greatest simplification by assuming that in
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the rest frame, the spread in longitudinal velocities is completely negligible compared to
the effect of transverse velocities. With all velocities in the x-y plane, the velocity kick
out of this plane is the only aspect of collisions we care about for predicting the spread in
longitudinal velocities. Furthermore, as long as everything is nonrelativistic, this component
is independent of the orientation of the x and y axes, and is also unchanged by any shift in
reference frame involving only vx or vy. In particular, the longitudinal kick in the center of
momentum (COM) frame of any pair of electrons is identical to the kick in the beam frame
(where only 〈vz〉 is set to 0). We can choose the orientation of the coordinate system so that
the scattering angle is defined by χ and φ, and the longitudinal velocity kick

∆vz =
1

2
vrel sinχ sinφ . (4)

Thus, χ = 0 gives no interaction, χ = π gives full backscatter of the electrons, φ = 0 or
φ = π gives collisions that stay within the x-y plane, and φ = ±π/2 gives collisions that
scatter most directly towards the ±z directions. Because the orientation of ~vrel does not
affect the longitudinal kicks, we can write the scattering in terms of the probability P (vrel),
lumping together all relative velocities having the same magnitude:

dN = dt P (vrel) dvrel nevrelb db dφ . (5)

The relationship between χ and impact parameter b now needs to be calculated in order
to replace this with an integral over scattering angle, which will allow us to calculate the
induced spread in vz. We know by symmetry that the expectation value of vz must be zero,
and in fact the average must always be identically zero by conservation of momentum.

Scattering kinematics can be mostly easily calculated in the COM frame because for each
pair of particles, ignoring interference from third particles, the center of mass does not move.
The dynamics of the problem can then be isolated by using reduced coordinates ~r = ~r1−~r2.
In terms of ~r the potential, U(r), is fixed with its center at the origin. The velocity ~v = d~r/dt
is the instantaneous relative velocity. In this coordinate system the dynamics is equivalent
to a single particle with reduced mass µ = m1m2/(m1 + m2) in a fixed potential U , as
if generated by a stationary object at the origin. For electrostatic interactions between
electrons, µ = me/2 and U(r) = e2/4πε0r. The force in this frame becomes

~F =
e2

4πε0r2
~r

r
, (6)

where ~r is the distance between the two electrons. The total energy

ET =
1

2
µv2 + U(r) =

1

2
µ
(
ṙ2 + r2θ̇2

)
+ U(r) =

1

2
m1v

2
1 +

1

2
m2v

2
2 + U(r) , (7)

and is equal to µv2rel/2 The total angular momentum is ~LT = µ~r × ~v = µr2θ̇ = m1~r1 × ~v1 +
m2~r2 × ~v2 is constant and has magnitude µbvrel, where b is the impact parameter and vrel is
the velocity as t→ −∞.
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Figure 1: Alignment of scattering process for simple calculation of relationship between χ
and impact parameter.

While the initial t → −∞ relative velocity is assumed to lie in the x-y plane, the paths
lies in a plane defined by the incoming velocities, which are parallel to each other in the COM
frame, and the scattering angle or equivalently the orientation of the impact parameter. One
trick for quickly calculating the resulting scattering angle is to reorient the coordinates so
that the trajectories of the electrons lie within a new x-y plane and are symmetric about
x = 0, as in Fig. 1, and to note that for the incoming and outgoing ends of the trajectory
the horizontal components of velocity must be identical, while the vertical components of
velocity must be equal and opposite. Thus, the integral of the vertical force over time must
be just enough to flip the vertical velocity. For scattering angle χ, the “vertical” relative
velocity must be ±vrel cos[(π − χ)/2]. From the vertical force equation,

Fy =
dPy
dt

=
e2

4πε0r2
cos θ , (8)

and integrating over all time yields

∆Py = 2µvrel cos
(
π − χ

2

)
= 2µvrel sin(χ/2) (9)

=
∫

dt
e2

4πε0r2
cos θ =

∫
dθ

µe2

4πε0LT
cos θ =

µe2

4πε0LT
sin θ

∣∣∣(π−χ)/2
−(π−χ)/2

=
µe2

2πε0LT
cos(χ/2) .

Using LT = µbvrel and µ = me/2, we obtain

tan
χ

2
=
b90
b
, (10)
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where

b90 ≡
e2

2πε0mev2rel
(11)

is the impact parameter which yields a 90 degree scattering angle. In terms of more general
particle combinations, the result is the same but b90 = q1q2/(4πε0µv

2
rel).

We can also solve the particle trajectory directly from Eq. (7) and using θ̇ = LT/(µr
2) =

bvrel/r
2, yielding

dr

dθ
= sgn (ṙ)

r

bvrel

√
r2

4ET
me

− r e2

πε0me

− b2v2rel . (12)

Noting that ET = mev
2
rel/4, the general solution is

tan(θ − θ0) = sgn (ṙ)
bvrel

(e2/2πε0me)r + b2v2rel

√
r2v2rel −

e2

πε0me

r − b2v2rel . (13)

As r →∞, this yields

θ = θ0 ± arctan

(
4πε0mebv

2
rel

e2

)
= θ0 ± arctan

(
b

b90

)
, (14)

consistent with the earlier calculation because the total change in θ is π − χ.

4 Eliminating the Impact Parameter

Now that we have the change in angle from any scattering event in terms of Eq. (10), we
can substitute this into the scattering probability. From

db

dχ
= −1

2
b90 csc2

(
χ

2

)
, (15)

we find

dN = dt P (vrel) dvrel nevrel
1

4
b290(vrel)

sinχ

sin4(χ/2)
dχ dφ . (16)

To obtain the induced spread in longitudinal velocities, we multiply by v2z and integrate over
time and vrel, over χ between 0 and π, and over φ between 0 and 2π,

〈
∆v2z

〉
= ∆t

∫
dvrel P (vrel)ne

1

16
v3relb

2
90(vrel)

∫ 2π

0
dφ sin2 φ

∫ π

0
dχ

sin3 χ

sin4(χ/2)
. (17)

Again, note that there is no need for further normalization, either to the number of collisions
or particles, because this is the statistical result for all of the collisions a single electron will
undergo in a given time interval. The φ integral is trivial and just yields a factor of π. The
χ integral is divergent, with general solution 16 ln[sin(χ/2)]− 8 sin2(χ/2). Instead of taking
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the integral from χ = 0 to χ = π, we will impose a cutoff for small angles by limiting the
corresponding impact parameter b to values less than a Debye length λD, where

λD =

(
ε0kT

nee2

)1/2

. (18)

Here we will be approximate and just take the typical perpendicular temperature, since the
main result will depend on a logarithm. The corresponding minimum χ is about 2b90/λD, and

we will ignore variation with vrel and just approximate the relative velocity as 2
√
kT/me =

2σv, fitting the velocity distribution to a Gaussian. Then b90 ≈ 1/(8πneλ
2
D) and the minimum

χ is roughly 1/(4πneλ
3
D). Taking advantage of the fact that χmin is very small, the integral

over χ then can be approximated as 16[ln(2/χmin) − 1/2]. The 1/2 term is usually ignored
because the calculation does not have that level of accuracy anyway (and it is only good
for large values of the logarithm), and we write this as 16 ln(8πneλ

3
D). More often, still

keeping to an order unity accuracy, the argument of the logarithm is taken to be the plasma
parameter Λ = (4π/3)neλ

3
D, which is the number of electrons in a sphere with radius λD.

This gives us 〈
∆v2z

〉
' ∆t 4π ln Λner

2
ec

4
∫

dvrel
P (vrel)

vrel
, (19)

where re = e2/(4πε0mec
2). The distribution of kicks in vz is not Gaussian for large kicks, and

we will revisit the logarithm term in a later section to only capture the small-angle collisions
which are relevant to smearing out the longitudinal phase space. Electrons which receive
more than a certain kick will be treated like losses instead.

5 Relative velocity distribution

By ignoring initial longitudinal velocities in the rest frame, we simplify the calculation so that
the effect of scattering is a simple integral over the local distribution of relative velocities.
This distribution is quite trivial in the case where the horizontal and vertical velocities have
equal spreads, with

P (vrel) =
vrel
2σ2

v

e−v
2
rel
/4σ2

v . (20)

Note that the velocity distribution is correlated with transverse position through the Courant-
Snyder parameters αx and αy. However, we shall see below that the Debye length can be
comparable to the transverse size of the electron bunch. Because the scattering rate increases
as the velocity spread decreases, we take a conservative approach of using the smaller, local
velocity spread σv/c = εN/βγ. The integral of P/vrel then becomes

√
π/2σv.

For an asymmetric beam, the probability becomes

P (vrel) =
vrel

2σvxσvy
e−v

2
rel
/8σ2

vx e−v
2
rel
/8σ2

vyI0

[
v2rel
8

(
σ2
vx − σ2

vy

σ2
vxσ

2
vy

)]
, (21)
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where I0 is the modified Bessel function of the first kind. The integral of P/vrel can be
expressed in terms of the complete elliptic integral K as

∫
dvrel

P (vrel)

vrel
=

1

σvx
√
π
K


√√√√1−

σ2
vy

σ2
vx

 =
1√
π

2

σvx + σvy
K

(
σvx − σvy
σvx + σvy

)
. (22)

Note that the integral is simpler to calculate without using P (vrel) as an intermediate step,
because the distribution function has elliptical contours. The complete elliptic integral is
related to the arithmetic-geometric mean, which is here denoted as M(x, y) and is defined
by M(x, y) = M [(x + y)/2,

√
xy], which quickly converges by iteration to equal arguments.

We can use the identity

K

(
x− y
x+ y

)
=
π

4
(x+ y)

1

M(x, y)
(23)

and use the definition of M to apply a rough approximation

M(x, y) '
[(
x+ y

2

)√
xy
]1/2

. (24)

Unless the ratio σvx/σvy is either very large or very small, this should be correct to within a
few percent. Our final expression for the net change in the local spread of velocities is〈

∆v2z
〉
' ∆t 2π3/2 ln Λner

2
ec

4
(
σvx + σvy

2

√
σvxσvy

)−1/2
. (25)

In the symmetric case the last term is simply 1/σv.

6 Scattering in the lab frame

Here we will continue to denote rest frame properties as above, and explicitly denote quan-
tities in the lab frame with a superscript. The transformation is taken to be a boost in the

z-direction with velocity ub, and corresponding γb = 1/
√

1− u2b/c2.
In the lab frame, due to Lorentz contraction and time dilation, the density is related

to that of the rest frame by nlab
e = γbne, and the elapsed time is ∆tlab = γb∆t. Also,

for a longitudinal velocity vz which is much smaller than ub, the deviation in longitudinal
momentum in the lab frame is simply meδ(γ

labvlabz ) ' meγbvz. The transverse momentum
is unchanged by the change in reference frame, and it can be approximated by meγbv

lab
⊥ .

Thus, we can approximate vlab⊥ ' v⊥/γb, and σlab
v ' σv/γb. For large γb, the relative energy

shift from a collision is roughly equal to vz/c, so the induced energy spread in the lab frame
becomes 〈(

∆γlab
)2〉
' γ2b
c2

〈
∆v2z

〉
. (26)

Finally, we can replace the time elapsed in the lab frame with ∆s ' c∆tlab. Thus, the
effect of scattering on the energy spread in the beam is〈(

∆γlab
)2〉
' ∆s 2π3/2 ln Λ r2ecn

lab
e

1

σlab
v γb

' ∆s 2π3/2 ln Λ r2en
lab
e

1

σlab
θ γb

. (27)
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The Coulomb logarithm still has to be calculated in terms of rest frame parameters. The
plasma parameter is

Λ =
4π

3
neλ

3
D =

4π

3
(4πre)

−3/2
(
σv
c

)3

n−1/2e =

√
2

6

σx
re

(
σlab
v

c

)3 (
I

IA

)−1/2
γ
7/2
b

=

√
2

6

ε3N
reσ2

x

(
I

IA

)−1/2
γ
1/2
b . (28)

The above expression tends to over-estimate the impact of IBS in an FEL because large-
angle scatters, though rare, do not quite fit the Gaussian dependence and significantly in-
crease the standard deviation. It would be more appropriate to calculate the scattering that
fits within the bandwidth of the FEL, or even within the typical slice energy spread, and
then treat all electrons with larger energy shifts as being effectively lost. This can reduce the
effective logarithm, while the effective losses are miniscule because they correspond to very
small values of the impact parameter. Even so, typically the scattering angle at this cutoff
will be small compared to unity. The fractional losses are given by f = ∆tπ3/2neσvb

2
min,

where bmin ' 2b90σv/cη, and η is taken to be the allowed relative energy shift. The FEL
bandwidth is a reasonable value to take for η. The logarithm will be reduced by subtracting
out ln 2σv/ηc = ln 2εN/ησx. The relative size of the correction tends to be modest. For
other applications, such as estimating the Touschek effect, using such a cutoff is probably
not appropriate.

This result gives the scattering rate averaged over all electrons at a given location. In
order to get a more detailed picture, we can focus on the rate for one electron with a given
velocity. Assuming axisymmetry around the average trajectory, we can just consider the
magnitude of the difference between the electron velocity and the average velocity, which we
will denote simply as v⊥. This is distributed according to

F (v⊥) =
v⊥
σ2
v

e−v
2
⊥/2σ

2
v . (29)

The distribution of relative velocities between that electron and nearby electrons is given by

P (vrel; v⊥) =
vrel
σ2
v

e−v
2
⊥/2σ

2
ve−v

2
rel
/2σ2

vI0

(
v⊥vrel
σ2
v

)
. (30)

The required integral is still

∫
dvrel

P (vrel; v⊥)

vrel
=

1

σv

(
π

2

)1/2

e−v
2
⊥/4σ

2
vI0

(
v2⊥
4σ2

v

)
. (31)

If we average this over the weighting F (v⊥) we will obtain our original result. The difference
between the velocity-specific result and the average is given by the factor

G(v⊥) =
√

2e−v
2
⊥/4σ

2
vI0

(
v2⊥
4σ2

v

)
≈
(

1√
2

+

√
πx

1 + 1/x

)−1
, (32)
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where the last expression is a reasonable approximation in terms of simple functions and
where x = (v⊥/2σv)

2. The behavior of this function is that it goes to a maximum of
√

2
at small velocities, equals unity at v⊥ ' 1.2σv, and decreases as (2/

√
π)σv/v⊥ for v⊥ � σv.

Thus, for the electrons with the lowest offset in transverse velocity, the energy diffusion rate
is increased by a factor of up to

√
2. The tail of the velocity distribution actually suffers less

scattering, because those electrons will have a large relative velocity relative to the majority
of the neighboring electrons.

7 Lab frame dynamics

Here we will use the above results to explore behavior exclusively in the lab frame, and will
drop all superscripts. Assuming no dispersion, the local density is

ne =
I

IA

1

2πreσxσy
e−x

2/2σ2
xe−y

2/2σ2
y , (33)

where the Alfvén current IA = ec/re ' 17.05 kA. Taking into account the local average
angle, the local spread in angles is σθx = σx/βx, σθy = σy/βy. Taking a symmetric beam,〈

∆γ2
〉
' ∆s 2π3/2 ln Λ re

I

IA

1

2πσ3
x

e−r
2/2σ2

x
βx
γb
' ∆s π1/2 ln Λ re

I

IA
e−r

2/2σ2
x

1

σxεN
. (34)

Assuming a Gaussian current profile with maximum current I0, we can write this in terms
of the total number of electrons, Ne, as〈

∆γ2
〉
' ∆sNe2

−1/2 ln Λ r2ee
−z2/2σ2

ze−r
2/2σ2

x
1

σzσxεN
. (35)

To compare this result with other calculations, first we must average over all electrons
in the bunch. This makes more sense for a typical ring where synchrotron and betatron
motion mixes all electrons in the bunch, but is not so useful for our purposes. The result is
〈∆γ2〉 = ∆sNe ln Λ r2e/(4σzσxεN), which agrees with Ref. [5]. For an actual ring evaluation,
the energy scatter turns into a longitudinal phase space growth, with half of the energy scatter
going into increasing the bunch length in order to preserve the matching to longitudinal
bucket, which yields an additional factor of 1/2. This result agrees with Ref. [6, 7] in the
limit where there is transverse symmetry and the rest frame spread in longitudinal velocities
is small compared to that of transverse velocities.

The dependence on density is unfortunate because particles on axis will undergo larger
energy jumps, but this is the most desirable place to preserve bunching. It is also apparent
that electrons with the smallest transverse amplitudes (and thus small angles) also undergo
IBS at a slightly higher rate than high-amplitude particles with big angles.

8 A numerical example

We consider parameters for LCLS-II[8] for a bunch charge of 300 pC. The electron beam
parameters are 4 GeV energy, 0.43 micron emittance, 1 kA peak current, 500 keV energy
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spread, and 15 m beta function. The typical beam radius is 29 micron, the rms bunch length
is roughly 12 micron, and the typical transverse momentum is 0.015 mec. In the rest frame,
the transverse velocity spread is 0.015 c, the longitudinal velocity spread 1.25× 10−4 c, and
the Debye length is 110 micron. In the lab frame the Debye length is unchanged in the
transverse direction, while in the longitudinal direction it transforms to 14 nm.

The Coulomb logarithm ln Λ = 14.9. However, we are in a parameter regime where the
transverse size is significantly less than a Debye length, so it makes sense to restrict the
maximum impact parameter to be not more than the transverse size, which changes the
argument of the logarithm to

Λ =
4π

3
neλ

2
Dσx . (36)

This changes the logarithm to be 13.5. If we go further and take the total number of electrons
within ±λD of a test particle in the rest frame, that yields Λ = 2λDI/ec and the logarithm
is slightly reduced to 13.3. However, this is not standard practice and may be misleading in
some circumstances.

For an FEL bandwidth of 10−3, we can take η = 0.001 which multiplies the argument of
the logarithm by a factor (in the rest frame) ηc/2σv ' 0.033. This is equivalent to subtracting
3.4 from the logarithm, yielding a factor close to 10. These details have a moderate impact
but may have practical implications. The nominal intrabeam scattering rate, forcing the
maximum impact to be below σx and the maximum relative energy shift to be below 10−3,
is (5.6 keV)2 per meter (note that this is a diffusion process).

The Debye length in the lab frame is an interesting parameter for undulators. If an
undulator is tuned to be in resonance to a wavelength shorter than λD/γ, here equal to
14 nm, then slices of the electron beam which are kicked in opposite directions will be less
than a Debye length apart and intrabeam scattering will be damped by the large velocity
differential. There are a mix of effects because the overall Lorentz factor for the beam is
reduced to be γz ≡ γ/(1 +K2/2) (for a planar undulator) where K = eB0/mcku is the peak
undulator parameter. Meanwhile, the undulator imparts a transverse momentum as large
as p⊥ = Kmec. For a modest K = 1, this gives a transverse momentum which oscillates
between ±mec which is much larger than the thermal velocity spread of 0.015 mec. The
transverse motion in the rest frame is relativistic and the previous calculations will not be
accurate. Even if we only consider longitudinal separations of the same order as σx/γz, this
gives a minimum wavelength of 5.5 nm below which variations in transverse velocity with
longitudinal position have to be taken into account.

9 Code for modeling chicanes

Here we present a code, chicane ibs, which transports a beam through a symmetric chicane
defined by four dipoles while applying scatter due to IBS and ISR. Equal drifts at the
beginning and end of the chicane are allowed. ISR is included as well. It is written in
Fortran. Wakefields and scattering off of neutrals are not considered at all, but they could
be added. The code reads in the particle dump format from GENESIS and outputs the
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particle distribution at the end of the chicane in the same format. This particle format bins
the macroparticle distribution into distinct slices, but temporal information can be extracted
from a combination of the slice number and the particle phase. A reference particle originally
on axis and with a given energy is used to define a reference phase. The slice-by-slice current
has to be defined through an external file, in a similar way as how GENESIS is run, to vary
the IBS scattering rate from slice to slice. Note that the slice separation may be smaller than
the Debye length. In general, the actual scatter of individual macroparticles are completely
uncorrelated; there are no pairwise scattering events. Even without ISR, energy is conserved
only in terms of expectation values.

The inner and outer dipole pairs may be different in both length and magnetic field,
but in practice they are chosen to be identical. There is no adjustment to compensate for
the energy loss in the bend. For chicanes used in an FEL beamline this should be of no
consequence. The dipoles are assumed to be rectangular rather than sector dipoles. By
setting the magnetic field to zero, the dynamics are those of a drift. The rates of ISR may be
scaled by an input parameter, and the average and fluctuating parts are scaled separately.
Because the value of the Coulomb logarithm is an input parameter, this serves as a scaling
parameter as well. IBS has three models: it can be turned off completely, or the expectation
value of the energy scatter for each particle can be set to the average, so that every particle
has the same scattering probability, or the scattering can be made proportional to the local
density. A future version of the code will include different scattering probabilities based on
the relative velocity of each electron relative to that of the local slice.

Electrons are tracked spatially rather than in time. There are three basic elements: a
drift, an uniform dipole field, and a thin fringe field. The thin fringe field simply applies
transverse focusing. The drift and dipole elements are each divided into a fixed number of
equal parts; at the end of each subdivision, the expected energy deviations from IBS and
ISR (for dipoles) are applied. The number of steps taken in each element is a free parameter
(typically 4 steps are used).

Initial beta and alpha functions are set as input parameters; these are then tracked step
by step to calculate the local IBS scattering rate. The input beam properties are not used to
calculate these parameters self-consistently in the present version of the code. In particular,
any change in local density due to dispersion is ignored. The evaluation of IBS uses the
approximation of Eq. 24 to calculate the elliptic function.

The key components of the tracking are given below. For the fringe fields, taken to be
arbitrarily short:

do i=1,npart

pz=dsqrt(gamma(i)**2-1.d0-px(i)**2-py(i)**2)

phi=emc*deltaBy*y(i)/pz

pxt=px(i)

pyt=py(i)

px(i)=pxt*dcos(phi)-pyt*dsin(phi)

py(i)=pxt*dsin(phi)+pyt*dcos(phi)

end do
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In general, the peak IBS scattering rate is calculated from combining Eqs. 22 through 24,

ibsgam0=dsqrt(length*scalecurrent/

& (sigma(1)*sigma(2)*

& dsqrt((sigmapperp(1)+sigmapperp(2))/2*

& dsqrt(sigmapperp(1)*sigmapperp(2)))))

and it is then either divided by 2 to get the average, or multiplied by the normalized local
electron density. Within each of segment of the dipole field, the transport is calculated
by assuming motion in an arc of a circle given by the Larmor radius, or equivalently by
conserving canonical momentum. The scattering for each particle from ISR is also calculated
based on the field and the path length.

invrho=emc*By/gamma(i)

ps=dsqrt(pzi**2+px(i)**2)

pxf=px(i)+emc*By*length

pzf=dsqrt(pzi**2+px(i)**2-pxf**2)

cdeltat=gamma(i)/(emc*By)*(dasin(pxf/ps)-dasin(px(i)/ps))

dgam=-(2.d0/3.d0)*relcl*gamma(i)**4*invrho**2*cdeltat

sgam=dsqrt((55.d0/24.d0/dsqrt(3.d0))*(relcl**2/alphac)*

& gamma(i)**7*dabs(invrho)**3*cdeltat)

delta_gam=scale_avg*dgam+scale_sig*gasran(ran_seed)*sgam

x(i)=x(i)+(pzi-pzf)/(emc*By)

y(i)=y(i)+cdeltat*py(i)/gamma(i)

th(i)=th(i)-(2*pi/xlamds)*(cdeltat-cdeltat_ref)

The combined energy scatter from ISR and IBS is applied at the end of each segment,
with an additional constraint that the vertical velocity and the angles in the x− z plane are
conserved. This makes more sense for ISR but is not unreasonable for IBS, especially because
only changes in the energy are being applied and we are ignoring changes in transverse
momentum due to IBS.

c conserve v_y and final px/pz

px(i)=pxf*dsqrt((1.d0+ps**2)*gamf**2/gami**2-1.d0)/ps

py(i)=py(i)*gamf/gami

Reference particle and beam lattice parameters are also updated going through each seg-
ment, both for relative phase information and to compute local density functions. The drift
calculations are a simplification of those for the uniform magnetic field.

An example input file for LCLS-II would be:

und1.out.dpa ! particle input file

chicane1.dpa ! particle file at end of chicane

260.E-09 ! radiation wavelength (m) [defines theta]

540000 ! npart
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1 ! number of slices

7828.81 ! reference gamma

0.25 ! drift length 1

2.00 ! magnet length 1

0.3938 ! magnet field 1

0.25 ! drift length 2

2.00 ! magnet length 2

0.25 ! drift length 3 (rest is mirror symmetric)

1.0 ! scales average energy loss due to ISR

1.0 ! scales energy spread due to ISR

4 ! number of times to calculate ISR and IBS per element

-11 ! random number seed

1 ! ibs model (0=off, 1=uniform, 2=indep of velocity)

0.43e-6 0.43e-6 ! X & Y emittances

15. 15. ! X & Y initial beta

1. -1. ! X & Y initial alpha

10 ! Coulomb logarithm value (treated as free parameter)

current.txt ! name of file for slice current information

10 Simulation example and code comparison

We consider a time-independent simulation of the nominal LCLS-II parameters to use two
modulations with a wavelength of 260 nm in order to reach a wavelength of 1 nm. The first
undulator has a period of 0.1 m and a total length of 3.4 m. An external laser with 47 MW
of power yields an energy modulation of 1.5 MeV. This is followed by a 9-m long chicane
with R56 = 11.03 mm. The next undulator has a period of 0.4 m (to keep the magnetic field
below 0.5 T) and a total length of 3.4 m. The second laser requires a power of 400 MW
to yield an energy modulation of 2 MeV. The second chicane is about 2 m long and has
R56 = 103 µm. This is followed by a series of 39-mm period undulators which radiate at 2
nm.

Time-dependent simulations for this beam going from 260 nm external lasers to produce
bunching at 2 nm have been performed for various chicane models: using chicane ibs

with both IBS and ISR, only with ISR, or without any scatter at all is compared to using
GENESIS to model the chicanes. Note that although GENESIS includes ISR in the undulators,
it is not modeled within the chicane. The vertical focusing produced in the chicanes is
indistinguishable in all cases, as seen in Fig. 2. Also shown is a horizontal displacement of
the order of 1 micron caused by ISR in the chicanes, because after losing energy in the first
set of dipoles, the beam is bent back too far in the second set of dipoles. The beam loses
25 keV in the first chicane due to ISR. Although IBS does not change the average energy of
the bunch, there does appear to be a second order effect which adds slightly to the bunch
displacement. Most importantly, scatter reduces the bunching parameter at the start of the
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Figure 2: Vertical spot size (left) and horizontal displacement (right) in the section radiating
at 2 nm. The chicane ibs models with both IBS and ISR, ISR only, and no scattering are
compared to modeling the chicanes using GENESIS.
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Figure 3: Bunching (left) and power (right) at 2 nm. The chicane ibs models with both IBS
and ISR, ISR only, and no scattering is compared to modeling the chicanes using GENESIS.

radiation stage, and delays the onset of saturation as seen in Fig. 3.
While the impact of IBS shows up as being stronger than that of ISR, that is an artifact of

optimizing the beamline due to the way the scattering terms scale. The scattering rate due to
IBS is roughly constant while ISR has a strong power-law dependence on the peak magnetic
field; the optimal condition is thus to make the impact of ISR much smaller than that of IBS,
because any further reduction of beamline length by increasing the dipole fields will have an
oversized impact on the rate of ISR. Similarly, it may appear that ignoring scattering, while
overly optimistic, is not disastrous. However, all of the beamline parameters were chosen to
minimize the impact of scattering on the beam. Of particular importance are the 2 m length
of the individual dipoles in the first chicane to keep the magnetic field below 0.5 T, the long
undulator period in the second chicane, and the magnitude of the second energy modulation
which was set to 2 MeV. These conditions are all forced by the need to reduce scattering
and, in the case of the energy modulation, its impact.

The initial bunching in the cases with scattering turned completely off, including ISR
in the second undulator, is 0.059. ISR only in the second undulator, as can be modeled
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using GENESIS only, yields a bunching parameter of 0.057. With ISR modeled fully but
neglecting IBS, this decreases to 0.048, and IBS reduces this further to 0.034. Without
adding additional energy scatter from IBS in the second undulator, the bunching parameter
would be 0.041. This is broadly consistent with analytical calculations, taking into account
the fact that while the average beta function is 15 m within the final set of undulators, it is
somewhat larger in the chicanes.

Appendix: Useful integrals

Some formulas and integrals that are useful for the above detailed calculations are here
included. Many are redundant in the sense that we are solving integrals over both vrel and
χ, or sometimes vrel and v⊥, and choosing to leave the vrel integral for last. While reversing
the order of integration leads to a much simpler calculation, we would miss the physical
insight that the distribution over relative velocities can be separated from the general two-
body collision problem. It is easier to verify Eq. (13) than to derive it.

∫ ∞
0

dx I0
(
x2
)
e−ax

2

=
1√

π(1 + a)
K

√ 2

1 + a

 {a > 1} , (37)

∫ ∞
0

dx I0
(
x2
)
e−ax =

1√
a2 − 1

{a > 1} , (38)

∫ ∞
0

dx I0 (ax) e−x
2/2 =

√
π

2
ea

2/4I0

(
a2

4

)
{a > 1} , (39)

∫ 1

−1
du

1√
1− u2

eau = πI0(a) , (40)∫ 1

−1
du

1√
1− u2

eau
2

= πea/2I0

(
a

2

)
. (41)

∫ 2
√
λ(1− a) dλ

(1 + λ)3/2(a+ λ)2
=

2

1− a

 2a+ 1√
a(1− a)

tan−1

√1− a
a

λ

λ+ 1

− λ

λ+ 1

3λ+ 2a+ 1

λ+ a

 .
(42)

Evaluating the above integral from 0 to ∞ yields

G(a) =
2

1− a

 2a+ 1√
a(1− a)

tan−1

√1− a
a

− 3

 , (43)

which has the limiting forms

A(a) ' π√
a
− 8 +

7π

2

√
a+O(a) {a� 1} ,

' 8

15
(1− a) +

41

35
(1− a)2 +O

(
(1− a)3

)
{(1− a)� 1} . (44)
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