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Abstract

We present a probabilistic approach to designing an indoor sampler network for detecting an

accidental or intentional chemical or biological release, and demonstrate it for a real building. In an

earlier paper, Sohn and Lorenzetti(1) developed a proof of concept algorithm that assumed samplers

could return measurements only slowly (on the order of hours). This led to optimal “detect to treat”

architectures, which maximize the probability of detecting a release. This paper develops a more

general approach, and applies it to samplers that can return measurements relatively quickly (in

minutes). This leads to optimal “detect to warn” architectures, which minimize the expected time to

detection. Using a model of a real, large, commercial building, we demonstrate the approach by

optimizing networks against uncertain release locations, source terms, and sampler characteristics.

Finally, we speculate on rules of thumb for general sampler placement.

Keywords: sampler networks, indoor airflow, optimization, CONTAM
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1 INTRODUCTION

Many private and public agencies are developing hardware to detect the presence of airborne chemical

or biological agents in or near buildings. Detecting a contaminant would allow acting to minimize adverse

health effects, for example by evacuating the building, manipulating air supplies, and mobilizing medical

response. However, this range of possible responses—plus practical constraints imposed by the hardware,

and uncertainty about the operating conditions under which it must function—complicate the design and

operation of a monitoring network that balances risk appropriately.

The designer must decide, for example, on the number of samplers to deploy, their operating

characteristics (e.g., sampling frequency and detection limit), where to place them, and what release

scenarios to try to detect. To address these questions, Sohn and Lorenzetti(1) proposed a probabilistic

approach to network design, and demonstrated its application in a synthetic building. Many other

approaches have been taken(2,3,4) that advance the state of this research, but none account for the relative

likelihoods of uncertain conditions. This paper extends the work in (1) by: 1) developing a more complete

analysis framework, 2) adding a new metric for evaluating network performance, and 3) applying the

resulting algorithms to a real building.

The approach taken here, while developed to protect against airborne plumes of chemical or biological

material (see also (5,6)), is relevant to wider problems of monitoring indoor air quality(7), building

energy(8), occupancy(9), thermal comfort(10), lighting(11), and more(12,13). Whenever samplers are too

expensive to deploy widely throughout a building, a probabilistic optimization approach may help balance

the competing design constraints and goals of the sampler network. Furthermore, whenever the network

must operate under uncertain or variable conditions, a probabilistic approach, such as the one described

here, may be needed.

2 PROBABILISTIC ALGORITHM FOR SAMPLER DEPLOYMENT

Consider designing an air-monitoring network in order to maximize some measure, φ, of the network

quality. Whatever the metric, uncertainty and variability in the operating conditions mean that the network

quality cannot be defined deterministically.

Stochastic effects arise in the source (for example, the release location, rate, and time, and the material

degradation and deposition rates); in sampler characteristics (probability of detecting a given concentration,

or the time needed to process samples); in environmental conditions (outside temperature and wind
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direction); and in the building operation (status of the ventilation system, condition of filters, position of

doors and windows, leakiness of the ductwork). Uncertainty also arises from the models used to assess the

contaminant dispersion (for example, due to simplifications in the model physics, and the extent to which

model parameters have been tuned to match the actual building operation).

2.1 Expected Performance

In the face of such probabilistic effects, the quality metric should reflect the statistically expected

performance of the network. The Probabilistic Approach to Sampler Siting (PASS)(1) finds the expected

network performance by aggregating the outcomes of many deterministic model runs, each drawing its

input parameters from distributions of likely values.

In this approach, the key sources of uncertainty and variability that might affect the performance of

the sampler network—the source and sampler characteristics, environmental conditions, building

operation, model structure, and so on—are first identified and characterized. Assigning probability

distributions to these uncertain conditions can be done using past measurements or engineering judgement.

While specifying these distributions is not trivial, a key feature of probabilistic algorithms is that they allow

testing for the effect the distributions have on sampler placement and network performance. Sampling from

these distributions yields a suite of scenarios, or test cases, against which to evaluate candidate networks.

A pollutant fate and transport model is then used to simulate each scenario. Finally, PASS finds the

expected performance of each candidate sampler network, taking into account the relative likelihood of

each scenario.

Let φi give the value of some quality metric, as applied to scenario i. Because each scenario is defined

deterministically, φi also is a deterministic measure of how well a particular sampler network performs

given a specific scenario. Combining across all I scenarios in the suite yields the expected performance, as

E[φ] =
∑
i∈I

φi · P [i] (1)

where P [i] gives the relative likelihood of scenario i.

2.2 Performance Metrics

The algorithm reported in (1) maximized the expected probability of detecting a release. This goal

implicitly acknowledged the fact that first-generation samplers required many hours to collect and analyze
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samples before returning results. The resulting networks were optimal detect-to-treat architectures, which

sought mainly to identify the fact that a release took place.

A new generation of samplers, able to provide data on the order of minutes, offers the promise of

detect-to-warn architectures. Such systems, by focusing mainly on fast detection, will enable actions

intended to minimize exposures, for example by evacuating the building, or manipulating fresh air supplies.

However, this greater capability further complicates the network design: while higher sampling rates may

let the network detect a release earlier, they also can lead to noisier data, to lower detection probabilities

(since shorter sampling windows present the sampler with less airborne mass to detect), or to more false

positives.

Suppose a sampler returns a new result at intervals of length τ . Each such interval constitutes a

sampling window. Let P [Si,z,w] give the probability, for release scenario i, that sampler z will alarm during

a particular window, w. Then a network comprising a set Z of samplers will alarm during window w if one

or more of those samplers alarms:

P [Ni,w] = 1−
∏
z∈Z

(1− P [Si,z,w]) (2)

Note that Equation 2 uses P [at least one occurs] = 1− P [none occurs]. If the network concept of

operation demands multiple samplers to alarm, for example in order to guard against false positives, a more

complicated expression results.

Looking across all sampling windows, the cumulative probability that a network will alarm for

scenario i after sampling across W windows is

P [Ni] = 1−
W∏
w=1

(1− P [Ni,w]) (3)

Combining Equations 2 and 3,

P [Ni] = 1−
W∏
w=1

∏
z∈Z

(1− P [Si,z,w]) (4)

Since the order of multiplication is immaterial, one may precompute the products 1− P [Si,z,w] across the

windows W of interest, then combine them according to the sampler selections in Z.

For detect-to-treat architectures, we define the performance metric in scenario i as the probability that
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the network in question will detect the release:

φi = P [Ni] (5)

with W chosen sufficiently large. Note that the optimal network will maximize the expected value of this

performance metric over all scenarios.

We now turn to the goal of fast detection. As described above, many of the distributions that define the

scenarios affect the probability of detecting a release. Therefore detection is, itself, a stochastic

phenomenon. Accordingly, we let the network designer specify a desired level of confidence, β, that the

network will alarm. Then

Ti = τ ·min{W : P [Ni] > β} (6)

gives the time at which a particular network can detect scenario i with at least β probability.

If a network does not detect the release in scenario i, Equation 6 leaves Ti undefined. In this case, the

designer must specify some appropriate value, for example, by estimating the time it would take to detect

the release by some other means (e.g., when a large number of occupants experience health effects).

For detect-to-warn architectures, we define the performance metric in scenario i as the time required

to detect the release:

φi = Ti (7)

and note that the optimal network will minimize the expected value of this performance metric over all

scenarios.

In this paper, we consider only two performance metrics, probability of detection and time to

detection. However the algorithm presented here can use any performance metric, including occupant

exposure(5,6), health consequences, or total cost of operation.

3 APPLICATION TO A CONVENTION CENTER

To demonstrate the sampler network design approach, we apply the algorithm to a realistic model of a

large building. Figure 1 shows a modified schematic of a real convention center in which Lawrence

Berkeley National Laboratory (LBNL) performed tracer gas experiments(14). In addition to the main

convention space floor, the building has two floors of offices. The building is served by sixty-seven HVAC

(heating, ventilation and air conditioning) units.
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(a) Ground Level: 69,000 m2

(b) 2nd Floor: 11,000 m2 (c) 3rd Floor: 7,800 m2

Figure 1: Plan of occupied floors of the convention center, with approximate floor areas.

3.1 Model

In each of six experiments, one or more inert tracer gases were released, and concentrations measured

every one to 30 minutes, in approximately 40 locations. The data were used to calibrate a multizone airflow

and pollutant transport model of the building using CONTAM(15). The model consists of 337 well-mixed

zones. Figure 2 shows typical post-calibration model-to-data comparisons. For this particular building,

high ventilation rates mean the well-mixed assumption is valid, but our algorithm allows any type of

pollutant transport model (e.g., CFD) to be used.

Because the model does not perfectly represent the building, the model introduces uncertainty into the

network design process. A key feature of the approach descibed here is that the network designer can

hedge against this uncertainty by using multiple pollutant transport models of the building. For example,

one model could be tuned to match the integrated concentration in each zone (which might be most

appropriate when maximizing the probability of detection), while another model could be tuned to match

the estimated timing of the peaks (which might be most appropriate when minimizing the time to

detection). Using multiple models would mean adding scenarios to the analysis, with the relative
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confidence in each model reflected in the scenario likelihoods, P [i]. In the present study, we used only the

convention center CONTAM model described in (14), since it is available for others to use in comparative

sampler network design studies.
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(a) Release in a reception area on the 2nd floor. From left to right, concentration profiles are shown for: 1) an adjacent
atrium on the 2nd floor, 2) an atrium on the 3rd floor, 3) a reception area on the 3rd floor, and 4) a zone in Hall A. For
visual clarity, the three leftmost plots are on a different vertical scale than the rightmost plot.
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(b) Release in zone in Hall C. From left to right, concentration profiles are show for: 1) an adjacent zone in Hall C, 2)
another adjacent zone in Hall C, 3) a nearby zone in Hall C, and 4) a farther zone in Hall C. For visual clarity, the two
leftmost plots are on a different vertical scale than the two rightmost plots.

Figure 2: Concentration profiles as predicted by the model (lines), and as measured in experiments (points).
Results are for two of three experiments shown in (14).

3.2 Release Scenarios

The most important sources of uncertainty in designing a sampler network are the variables that affect

the transport and dispersion of the chemical or biological agent: the source characteristics, environmental
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conditions, and building operation. As demonstrated here, the designer can enumerate the scenarios of

interest, and assign each a relative likelihood of occurrence. Alternately, the designer can define continuous

distributions of parameters such as the release mass and wind speed, then sample from those distributions

in order to generate probability-weighted scenarios. For clarity, in this study we consider only 60 scenarios,

each consisting of one of 20 possible release locations (Table I) and one of three possible release rates

(Table II). In this study, we vary only release locations and release rates, but our algorithm allows

specification of scenarios that vary any uncertain parameters, such as those mentioned in Section 2.

Table I: Release location probabilities. Release locations were selected to encompass a variety of zone types
and ventilation rates. Note that releases on the main floor are assumed more likely than ones on the upper
floors.

Location Count Probability (each)
Ground Floor 16 0.0575

2nd Floor 2 0.02
3rd Floor 2 0.02

Table II: Release rate probabilities. All releases are assumed to last for 10 minutes.
Rate (g/min) Probability

0.1 0.1
1 0.6
10 0.3

3.3 Sampler Performance

The real performance of a sampler may have a probabilistic component. Given a large amount of

contaminant in the air, there is a higher chance that the sampler will detect the agent. However, due to

miscalibration, fouling, noise, imperfect mixing, and so on, the presence of an agent in the room air does

not guarantee detection—even above the sampler’s nominal detection threshold.

Figure 3 shows the assumed sampler performance for this study, based on simplified performance

curves of actual hardware (mass units are withheld for security reasons). The probability of detection

during any given sampling window depends on both the agent mass that passed through the sampler during

that time, and the sensitivity of the detection equipment. We assumed ambient air is pumped through a

sampler at 100 liters/minute. For this building, with large rooms and high ventilation rates, we assumed

that the presence of a sampler will not affect the airflow between rooms, and will not significantly change
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the well-mixed assumption within rooms.

In the analysis that follows, all samplers in a given network have the same operating curve and

sampling window. However, a network could include samplers with different detection characteristics—

for example, incorporating fast, sensitive samplers to detect a release quickly, along with slower, but less

error-prone, samplers to confirm a release. Similarly, a network consisting of samplers with different

window lengths, or with windows staggered in relation to one another, might yield a more robust network.

The PASS approach can be applied to any of these options, at the cost of having to evaluate more networks

in order to find the optimal one.
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Figure 3: Probability of detecting an agent during a single sampling window, for high (solid), medium
(dashed), and low (dotted) sensitivity of the detection equipment.

3.4 Detection Confidence

The sampler network design includes decision points for signaling an alarm, which is a part of the

network concept of operation (ConOps). As suggested above, this may include the number and type of

samplers that must alarm before taking action. The decision criterion used in this analysis is for a network

to alarm as soon as at least one sampler alarms. Alternately, a network could be chosen to alarm when at
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least two samplers alarm, or when at least two samplers alarm within a given time period. In cases where

false alarms can be exceedingly expensive (e.g., whole-building evacuation, deployment of emergency

personnel, etc.), a very high confidence criteria might be chosen, but this in turn may result in delayed

detection.

It is important to distinguish between the ConOps (which determine the operation of the network after

deployment) and the calculations of expected network performance during the design phase (which will

determine sampler locations, but not network operation). Network designers must define a performance

metric that takes the ConOps into account. For this example, we set β = 0.5 in Equation 6. In other words,

for each scenario, we take Ti as the average time at which each network detects a release with at least 50%

confidence.

3.5 Candidate Locations

We allow PASS to choose from among 35 possible sampler locations in the convention center,

including several types of occupied zones and ventilation return ducts. In principle, any zone of the

multizone model defines a possible sampler location. However, in practice the number of possible sampler

networks increases sharply with the number of sampler locations the algorithm is allowed to consider.

When PASS optimizes n samplers among r possible locations, it must evaluate

(r + n− 1)!

(r − 1)!n!
(8)

networks. For example, placing n = 5 samplers among the 35 locations we allow, defines 575,757

networks. Doubling the number of possible locations would increase the number of networks by a factor of

almost 28. In the examples that follow, computing an optimal two-sampler network with 5-minute

sampling windows takes less than one minute on a 2.4GHz processor with 2GB of RAM, running Mac OS

X 10.5. Finding an optimal 4-sampler network takes approximately 18 minutes.

3.6 Calculations

Simulating the contaminant transport for any given scenario gives the mass that a hypothetical

sampler would accumulate in each candidate location, during each sampling window. The mass is then

used to determine the detection probabilities, P [Si,z,w], using the curves in Figure 3. Aggregating across

samplers and sampling windows, Equation 3 gives the probability a network will detect the scenario, while
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Equation 6 gives the time to detect at the specified confidence level (for convenience in calculating these

performance metrics, the first sampling window, w = 1, is taken as the window in effect at the time the

release begins). Finally, Equation 1 gives the network’s expected performance across all 60 scenarios. All

possible networks are compared, in order to find the one with the best expected performance.

4 RESULTS

Figures 4–7 summarize the performance of the optimal networks that PASS identifies. For example,

Figure 4 shows the maximum expected probability of detection, across all the networks tested, as a

function of the number of samplers in the network. Similarly, Figure 5 shows the probability of detection

for the best network as a function of the sampling window duration, and Figures 6 and 7 show similar plots

for the networks with the fastest time to detection.
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Figure 4: Expected probability of detection of best network, for varying network size, sampler sensitivity
and sampling window.

4.1 Optimal Locations

Comparing the optimal networks, we saw no consistently-favored sampler locations. This contradicts

(1), in which maximizing the probability of detection, across networks of different sizes, tended to place

more-sensitive samplers in bathrooms (to take advantage of exhaust airflows), and less-sensitive samplers

in ventilation system return ducts (which effectively sample air from throughout the building).
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Figure 5: Expected probability of detection of best network, for varying network size and sampling window.
Results are for low sensitivity samplers. Each curve is labeled with the number of samplers in the network.

We attribute the lack of favored sampler locations in the convention center to the large airflows

between zones. With no partitions between many zones, and relatively high recirculation rates, the

convention center mixes quickly compared to the office-dominated building from the original study. The

high mixing rate also explains why, in the convention center, many of the best networks have nearly the

same expected performance: if no particular zone has a unique concentration profile, then no particular

zone is critical to the sampler network’s performance.

Because many networks have similar quality, the optimal sampler locations are often non-intuitive.

For example, the best two-sampler network will not necessarily place a sampler in the same zone as the

best one-sampler network. Thus, a “greedy” optimization approach, in which samplers are added one by

one to the previous best network, is not ideal for the sampler placement problem.

In a real design exercise, we would treat the relatively small variation in performance among many

networks as an invitation to expand the scope of the investigation. Improving the scenarios considered—

for example, by including new building operating conditions, better characterizing the distributions of

uncertain parameters, or adding new release locations and amounts—might allow PASS to better

discriminate between the expected performance of the networks. Admitting more possible sampler

locations might improve the final network quality. Tightening the confidence limit for estimating Ti might

reveal some networks to be more robust than others. Finally, if none of these changes affected the results
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Figure 6: Expected time to detection of fastest network, for varying network size, sampler sensitivity and
sampling window.

appreciably, then we would accept that many networks are near-optimal, and pick the final sampler

locations based on other operational criteria (such as ease of service, or aesthetics).

4.2 Network Size

In Figures 4-7, the expected network performance improves with network size. The marginal

improvement in network performance when adding a sampler is largest for small networks, and, in this

application, is virtually negligible for networks with 5 or more samplers. Intuitively, allowing PASS to

place more samplers improves its ability to cover all parts of the building; however, mixing by the

ventilation system means that effective coverage does not demand placing a sampler in every zone.

4.3 Sampler Sensitivity

Figures 4 and 6 show that improving the sampler sensitivity improves the expected network

performance (giving higher detection probability, or faster detection). This effect is more pronounced for

smaller networks. However, among the smaller networks, adding a single sampler generally improves the

network quality more than does increasing the sampler sensitivity by a factor of ten. This suggests using

PASS to explore an interesting practical tradeoff, between cost and sensitivity, in real sampler design.
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Figure 7: Expected time to detection of fastest network, for varying network size and sampling window.
Results are for low sensitivity samplers. Each curve is labeled with the number of samplers in the network.
The dotted line represents the maximum possible performance for a given sampling window duration (i.e.,
the network detects at the end of the first sampling window).

4.4 Sampling Frequency

Figures 5 and 7 show that network performance is highest for very short sampling windows and

improves as the sampling windows get very long. They also show lower overall network performance for

intermediate sampling window sizes. For example, in Figure 5, the detection probability for the optimal

network that samples with 15-minute windows is lower than that of networks having one-minute or

30-minute windows. In Figure 7, note that this effect is relative to maximum performance—overall,

shorter sampling windows yield lower absolute time to detection. This effect is more pronounced for

smaller networks.

One explanation for this result may be competing attributes of an optimal network. With very short

sampling windows, many samples, each of which individually may have low probability of detection, can

result in a high cumulative probability of detection (see Equation 3). Conversely, with a long duration

window, such as two hours, a large amount of mass is collected and that single sample results in a high

probability of detection (see Figure 3). With intermediate sampling windows, the network benefits from

neither many samples nor long samples, and the performance of the networks decreases.

Other possible reasons for the dip include the duration of the release, the residence time of the

contaminant in the building, or when samples are taken relative to the beginning of the release. To explore
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these possibilities, we conducted numerical experiments in which we varied these parameters. While none

of these factors individually explained the shape of the curves in Figure 5, each had some contribution.

Network designers would benefit from a rule of thumb on selecting the ideal sampling window, but further

research is needed on this topic.

4.5 Air Exchange Rates

We also explored methods for choosing optimal networks in cases where a contaminant transport

model of the building is not available, and would be prohibitively expensive or time-consuming to produce.

Building operators may wish to estimate network performance using easily-identifiable building

characteristics, either in lieu of building a model, or as a feasibility test to determine whether it is

worthwhile to construct a building model.

Airborne transport is the most important mechanism for mixing chemical and biological agents

through a building, and is essential to the operation of the types of samplers considered here. Furthermore,

all else being equal, increasing the amount of airflow through a zone increases the chances it will receive

air from a zone that contains the agent release. Therefore a natural choice for a performance predictor is the

air exchange rate in each zone, information which may be easily estimated by building operators (for

example, using as-built drawings of the ventilation system).

In Figures 8 and 9, the performance of a one-sampler network improves somewhat with higher air

exchange rates in the zone of interest. However, there is a great deal of variability, particularly for zones

with low air exchange rates. Clearly the air exchange rate for a zone is not a good proxy, at least in this

building, for overall mixing of air from other parts of the building through that particular zone.

While we acknowledge that the relationship between network performance and air exchange rates is

tenuous, and that the accuracy of performance predictions depends on the accuracy of air exchange rate

estimates, we believe there is merit in further investigating methods to predict network performance using

easily evaluated building characteristics, and plan to explore this further in future work.

5 CONCLUSION

We presented a probabilistic approach to designing an indoor sampler network for the purpose of

detecting a chemical or biological agent. The design of such a network is complicated by uncertainty and

variability in all aspects of the problem, including building operation modes, agent release conditions,

meteorology, contaminant transport modeling, and sampler hardware behavior. These probabilistic effects
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(a) Medium sensitivity samplers, 5-minute sampling win-
dow.
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(b) High sensitivity samplers, one-minute sampling window.

Figure 8: Probability of detection for one-sampler networks, plotted against air changes per hour in that
zone, for varying sampler sensitivity and sampling window. Each circle represents one of the candidate
sampler locations, and the line represents a linear fit to the data.

motivated a statistical approach that optimizes the network’s expected performance, according to the

likelihood of a range of possible scenarios.

Past work on this approach maximized the probability of detecting a release. However, advances in

sampler hardware have made results available more rapidly. Therefore in this work we also minimize the

time to detect a release, at a prescribed level of confidence. We demonstrated our approach by designing

sampler networks for a large commercial building, using a pollutant dispersion model that was tuned to

experimental data from a real building.

Our approach allows comparisons between competing network design parameters and network

performance. Therefore network designers can minimize the hardware, deployment, and maintenance cost

of fielding a network with a given level of performance (for example, by trading one high-sensitivity

sampler for several lower-cost samplers of lesser sensitivity). Similarly, the PASS methodology also could

be used by sampler hardware manufacturers, to guide their designs (for example, in deciding whether to

build faster or more sensitive samplers).
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(a) Medium sensitivity samplers, 5-minute sampling win-
dow.
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(b) High sensitivity samplers, one-minute sampling window.

Figure 9: Expected time to detection for one-sampler networks, plotted against air changes per hour in that
zone, for varying sampler sensitivity and sampling window. Each circle represents one of the candidate
sampler locations, and the line represents a linear fit to the data.
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