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agency of the U.S. Government. While this document is believed to 
contain correct information, Neither the U.S. Government nor any agency 
thereof, nor the Regents of the University of California, nor any of their 
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1. INTRODUCTION 

In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) 
related to modeling and field test planning activities in support of disposal of heat-generating 
waste in salt.  

The modeling efforts in support of the field test planning conducted at LBNL leverage on recent 
developments of tools for modeling coupled thermal-hydrological-mechanical-chemical 
(THMC) processes in salt and their effect on brine migration at high temperatures as reported in 
the recent FY2014 milestone report entitled “Modeling Coupled THMC Processes and Brine 
Migration in Salt at High Temperatures,” FCRD-UFD-2014-000341 (Rutqvist et al., 2014). This 
work includes development related to, and implementation of, essential capabilities, as well as 
testing the model against relevant information and published experimental data related to the fate 
and transport of water. These are modeling capabilities that will be suitable for assisting in the 
design of field experiment, especially related to multiphase flow processes coupled with 
mechanical deformations, at high temperature. In this report, we first examine previous generic 
repository modeling results, focusing on the first 20 years to investigate the expected evolution 
of the different processes that could be monitored in a full-scale heater experiment, and then 
present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement 
(TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, 
Germany, and provide an update on the ongoing model developments for modeling brine 
migration. These activities are described in Sections 2, 3, and 4.  

LBNL also supported field test planning activities via contributions to and technical review of 
framework documents and test plans, as well as participation in workshops associated with field 
test planning (Section 5).  
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2. RESULTS FROM GENERIC REPOSITORY MODELING 

Based on the FY2014 model improvements, LBNL has completed a study of long-term THM 
behavior of a generic repository. Overall, the generic repository simulation results suggest that 
the excavation disturbed zone (EDZ) around an emplacement tunnel is healed within the first few 
years and that the backfill reconsolidates within the first two decades. Depending on the 
magnitude of the pore pressure relative to the minimum principal stress, damage-induced 
secondary permeability and fluid infiltration may occur at a larger temporal and spatial scale. 
Once damage processes are over, our predictions show that the initial tightness of the host rock is 
restored.  

Though the generic repository modeling was conducted over a 100,000 year time frame, the 
results are also useful for studying the responses during the first few years, perhaps up to 10 or 
20 years, to investigate THM responses that could be observed in a heater experiment. Figure 2-1 
presents the model geometry and Figure 2-2 the evolution of some of the key parameters over the 
first 20 years. The initial heat load which decays marginally during the first few years was 1000 
W per meter of drift. The host rock in this case is representative of the Asse Mine in Germany, 
which generally has a much lower porosity and water content than the host rock at WIPP. 
Nevertheless, from Figure 2-2 and other results discussed in Rutqvist et al. (2014), some 
observations can be made related to a potential heater experiment of an in-drift emplacement 
concept:  

 A first thermal peak of about 200C was reached on top of the waste package after about 
1 year, after which the temperature within the backfill declines along with the 
reconsolidation of the backfill (Figure 2-2a).  

 An excavation disturbed zone develops during the excavation and early time heating to a 
thickness about 1.4 m at the drift floor and 1 m at the sidewalls and roof with a peak 
dilatancy achieved after about 4 years (Rutqvist et al., 2014).  

 Along with the temperature mediated salt creep of the host rock, the reconsolidation of 
the crushed salt takes place, though not uniform in space, due mainly to the shape of the 
drift and the position of the heat source (Figure 2-2b).  

 Greater compaction occurs in the roof and floor areas, and lesser compaction in the 
sidewalls, and the backfill reconsolidation process takes between 6 and 20 years to 
complete (Figure 2-2b).  

 The occurrence of healing is closely related to the backfill compaction, and after 7 years, 
dilatancy has decreased to its initial value, meaning that the host-rock tightness is 
restored (Rutqvist et al., 2014). . 

 Within the first year, a slight desaturation of the host rock occurs adjacent to the drift 
wall, whereas moisture content increases up to 3.5% within the crushed salt backfill near 
the top of the drift (Figure 2-2c).  

 Thermal pressurization and backfill compaction lead to increased fluid pressure from 
about 5 years and can peak as high as 25 MPa after about 10 to 20 years when backfill 
reconsolidation has been completed (Figure 2-2d).  
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3. RESULTS FROM MODELING TSDE EXPERIMENT AT ASSE MINE, 
GERMANY 

The TSDE (Thermal Simulation for Drift Emplacement) test was conducted in the Asse salt mine 
in Germany in the 1990s to simulate reference repository conditions for spent nuclear fuel in 
rock salt (Bechthold et al., 1999). This large-scale test is of significant relevance for nuclear 
waste disposal in salt because extensive research and measurement programs were set up for the 
experiment. The TSDE test focused on the in-drift emplacement concept. Accordingly, six 
electrical heaters were placed in two parallel drifts excavated for the purposes of the test in the 
800 m level of the mine, in a relatively undisturbed zone. Three heaters were placed in each drift. 
After installation of the heaters, the test drifts were backfilled with crushed salt (grain size 
smaller than 45 mm). The test included several observation and access drifts, and more than 
200 boreholes for monitoring. The measuring instruments were installed in twenty monitoring 
cross-sections, both in the heated and non-heated areas. The extensive measurement program 
included temperature, drift convergence, rock deformation and stress evolution, among others. 
Heating started in September 1990 and a constant heat load was maintained until the heaters 
were switched off in February 1999. In addition to providing a vast data base on important 
phenomena and processes, the TSDE experiment led to (1) an evaluation of the feasibility of the 
in-drift emplacement concept with multiple barriers, (2) an improved understanding of the 
backfill and salt rock mass behavior under repository conditions for high-level nuclear waste, 
and (3) further development of computer codes and constitutive laws required to predict relevant 
phenomena and processes.  

 

During FY2014, LBNL has commenced coupled THM modeling of the TSDE test using the 
updated TOUGH-FLAC simulator for large strains and creep processes described in a previous 
FY2014 milestone report, “Modeling Coupled THMC Processes and Brine Migration in Salt at High 
Temperatures,” FCRD-UFD-2014-000341 (Rutqvist et al., 2014). The open drift phase that 
preceded the test itself and which lasted 1.4 years has also been modeled in order to determine a 
suitable initial state for the test phase (8 years). The simulations have been conducted in three 
dimensions because previous thermal and thermo-mechanical modeling of the TSDE experiment 
confirmed the need for a 3D model, at least for the determination of the temperature field 
(Bechthold et al., 1999). Figure 3-1 shows several views and the most important dimensions of 
our model (half of one drift, with two symmetry planes: one at X=0, across the pillar between the 
two test drifts, and one at Y=0, across the central cross-section of one test drift).  
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Table 3-1. Mechanical and flow properties for the natural salt and the crushed salt. 
Property [unit] Natural 

salt 
Crushed  
salt 

Grain density [kg·m-3] 2,200 2,200 
Bulk modulus [MPa] 16,650 150 
Shear modulus [MPa] 7,690 70 
Lin. therm. expansion coeff. [K-1] 4·10-5 4·10-5 
Initial Biot coefficient [-] 0.003 1 
Initial permeability [m2] 0 3·10-13 
Initial liquid saturation [-] 50% 2% 
Initial porosity [-] 0.2% 35% 
Initial specific heat [J·kg-1·K-1] 860 860 
Initial therm. cond. [W·m-1·K-1] 5 0.9 

 
 

The modeling sequence is as follows. First, we model the excavation (instantaneous), and then 
we perform a coupled THM simulation of the open drift phase (1.4 years). During this phase, the 
pressure in the drift is set to atmospheric (0.1 MPa). After that, the heater casks and the backfill 
are emplaced and activated, and we subsequently run a second coupled THM simulation 
corresponding to the 8-year-long test. In accordance with available data (Bechthold et al., 1999), 
the initial porosity of the backfill is set to 35 %, and a constant heat load of 6.4 kW is assigned to 
each heater. This leads to a power output per drift of 19.2 kW. At the beginning of the test phase, 
we assume atmospheric pore pressure in the backfill and heater cask. Finally, we note that during 
the modeling of the test phase, one end of the drift is open, to account for ventilation effects. 

For brevity, only some relevant results will be presented in this report. We note that the 
following results correspond to an initial stage of the modeling effort for the TSDE test, in which 
we have aimed at evaluating the capabilities of TOUGH-FLAC to tackle a large-scale test 
(global trends well reproduced, computational requirements needed, etc.). For a better agreement 
between numerical predictions and experimental data, and to understand relevant processes, 
further simulations will be performed, including a parameter-fitting effort. 

The left-hand side plot in Figure 3-2 shows the temperature evolution at four different locations 
in the heated area (the locations are indicated in the inner sketch). The temperature at the heater 
surface peaks at 210 ºC five months after the heaters are switched on. Later on, it decreases as 
the thermal conductivity of the crushed salt increases due to compaction (porosity reduction). 
Backfill compaction is mainly triggered by drift closure, which is in turn enhanced by the 
temperature increase. After about 5 years, temperatures in the heater cask area reach a steady 
state, while they continue to increase at further distances from the heater. As can be seen, the 
temperature evolution at the heater cask is slightly overestimated during the first five years of 
heating, although the predicted temperature does decrease as the backfill compaction moves 
forward. The measured and predicted evolution of temperature in the rock salt beneath the drift 
(heated area) is displayed in the right-hand side plot in Figure 3-2. It can be seen that the 
temperature decreases with depth. As the plot shows, the temperatures are overestimated in the 
heater cask and within the first 1.2 m below the drift floor. The temperature stabilizes after about 
5 years of heating.  
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the modeled creep strain rate. Another reason could be that the observed response of the crushed 
salt during the TSDE experiment is stiffer than predicted by the cwipp model. We are currently 
performing additional simulations to determine the most likely reason for this overestimation. 

Overall, while the most important features are captured by the code and constitutive relationships 
used, more insight needs to be gained to understand the differences observed between 
measurements and numerical results. These differences could be caused by some simplification 
in the constitutive relationship used to model crushed salt compaction, or by a modeled creep 
strain rate for natural salt faster than measured. Further three-dimensional simulations will be 
performed. On the other hand, features that are currently accurately captured include the 
evolution of crushed salt thermal conductivity during compaction and the evolution of 
temperature towards a steady state in the heater surface and nearby backfill and rock mass. 
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4. DUAL-CONTINUUM APPROACH FOR BRINE MIGRATION 
MODELING UNDER THERMAL AND HYDRAULIC GRADIENTS 

For the analysis in support of brine migration field experiments under high temperature, LBNL is 
developing a dual-continuum modeling approach that accounts for brine migration through both 
interconnected intergranular (i.e., intercrystalline) pore spaces and isolated fluid inclusions (i.e., 
intracrystalline brine inclusions), considering both pressure and temperature gradients. Given the 
strong thermal gradients that are expected to exist in salt formations hosting high-level 
radioactive waste repositories, the applicability of a single-continuum approach, based on the 
assumption of equilibrium between the pore fluid and surrounding solids, is questionable. A 
dual-continuum approach, in which the pore fluid and solids are treated as two separate but 
interacting continua occupying the same physical space, one can resolve the strong gradients at 
the fluid-solid interface more efficiently.  

Figure 4-1 shows a schematic diagram of the proposed dual-continuum model, including the 
interconnected pore space and the intracystalline inclusions, and the various fluxes and inter-
continuum exchanges (Rutqvist et al. 2014). In this dual-continuum model, one continuum 
represents the connected intercrystalline pore space (where flow and transport is mostly 
controlled by pressure gradients, and molecular and thermal diffusion) and the other represents 
the intracrystalline inclusions (where the primary transport mechanism is temperature-driven 
solubility changes). Because both media are treated as separate systems, flow and transport 
processes are described by two sets of conservation equations (one set each for each of the two 
continua), which are coupled through suitably defined exchange terms. To address inclusion 
migration behavior at the grain boundaries, we intend to adopt a probabilistic approach. In this 
approach, an inclusion after reaching the grain boundaries would drain into the inter-connected 
pore space continuum with a probability p, or bypass it and migrate into the neighboring grains 
with a probability of 1-p. The plan is to implement such an advanced brine-migration dual-
continuum model into the TOUGH2 and TOUGH-FLAC simulators, and then validate the brine-
migration model and its implementation against experimental laboratory data. The dual-
continuum model and TOUGH2 can then be used to investigate and design field heater 
experiments to model potential brine release and migration under the high thermal gradient and 
high temperature evolutions.  
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5. SUPPORT OF FIELD TEST PLANNING AND DOCUMENTATION 

In FY2014, UFD initiated planning activities for field testing of processes relevant to the safety 
of disposing heat-generating waste in deep salt formations. The purpose of these planning 
activities is to ensure that such field testing has clearly defined objectives, that a consensus is 
reached on those objectives, and that the activities are integrated and collaborative. LBNL 
participated in these planning activities as follows: 

1) LBNL co-authored Milestone “Framework for Underground Research in Salt,” M4FT-
14LA0818066 [Draft], due 9/26/2014. The purpose objective of this framework 
document is to facilitate objective, rigorous, and transparent science and engineering 
testing in a salt URL for the purpose of studying the feasibility of disposal of heat-
generating waste in salt formations.  

2) LBNL provided input and also review comments to Milestone “Test Plan for Mechanical 
and Hydrological Characterization of the Near-field Surrounding Excavations in a 
Geologic Salt Deposit,” M4FT-14LA08180610, due 9/26/2014. Excavations created in 
salt present a unique opportunity to measure and characterize in situ development of the 
excavation disturbed zone (EDZ). The purpose of the test plan is to describe how to 
characterize and quantify the time-dependent mechanical behavior and hydrologic 
response of salt host rock affected by excavation. 
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6. CONCLUDING REMARKS 

In FY2014, LBNL’s work related to modeling and field test planning activities included 
technical review of framework documents and test plans, participation in workshops associated 
field test planning, and model development and application for investigating coupled THMC 
processes at the field-experiment spatial and temporal scales and potential monitoring 
techniques.  

In this report, we first examined previous generic repository modeling results, focusing on the 
first 20 years to investigate the expected evolution of the different processes that could be 
monitored in a full-scale heater experiment. The simulation shows that significant multiphase 
fluid flow processes occur both within the backfill before reconsolidation as well as in the host 
rock, in addition to the thermal-mechanical processes affecting the reconsolidation of the backfill 
as well as damage evolution and healing of the host rock. Generally, at least 10 years of heating 
and monitoring would be required to monitor the reconsolidation of this kind of full-scale 
experiment to completion. After 10 years, thermal pressurization in the host rock may cause fluid 
movements by opening of grain boundaries for fluid flow.  

We also present results from ongoing modeling of the TSDE experiment, a heater experiment on 
the in-drift emplacement concept at the Asse Mine, Germany. The results presented are an initial 
stage of the modeling effort for the TSDE test, in which we have aimed at evaluating the 
capabilities of TOUGH-FLAC to tackle a large-scale test (global trends well reproduced, 
computational requirements needed, etc.). Further simulations will be performed (including a 
parameter-fitting effort) to achieve better agreement between numerical predictions and 
experimental data, and to better understand relevant processes. Nevertheless, the results show 
that we are able to model the coupled THM responses capturing trends of the measured 
temperature and mechanical deformations. The overall thermal and mechanical responses at the 
TSDE are similar to the modeling of the generic repository case, with peak temperature reached 
in a few years and consolidation taking more than 10 years.  

We are currently developing a dual-continuum approach that accounts for brine migration 
through both interconnected intergranular (i.e., intercrystalline) pore spaces and isolated fluid 
inclusions (i.e., intracrystalline brine inclusions), considering both pressure and temperature 
gradients. The plan is to implement such an advanced brine-migration dual-continuum model 
into the TOUGH2 and TOUGH-FLAC simulators, and then validate the brine-migration model 
and its implementation against laboratory experimental data.  

In FY2015, LBNL plans to continue modeling and field test planning activities including 
technical review of test plans, participation in workshops associated field test planning, and 
model development and application for investigating coupled THMC processes at the field-
experiment spatial and temporal scales and potential monitoring techniques.  

 Continue our modeling efforts on the Asse Mine TSDE experiment, in collaboration with 
Claustal Technical University, Germany.  

 Extend modeling from THM to THMC processes considering salt precipitation and 
dissolution.  

 Implement proposed dual-continuum model into TOUGH2 and test it for modeling 
thermally driven brine migration and investigate the roles of intercrystalline flow versus 
intracrystalline brine inclusions on the overall brine migration. 



Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt  
14  September 2014 

 
 Conduct coupled geomechanical model simulations to support the design of any proposed 

heater experiment in salt. 

 Continue to provide input into characterizing and monitoring methods and test plans for 
in situ testing (mine-by testing, heater testing) of relevant THM processes in salt.  
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