
\

•. I

I
I

.J.'

LBL-36002
UC-405

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

The Image Server System: A High-Speed Parallel
Distributed Data Server

B.L. Tierney, W.E. Johnston, H. Herzog, G. Hoo, G. Jin,
J. Lee, L.T. Chen, and D. Rotem

November 1995

Prepared for the U.S. Department of Energy under Contract NumberDE-AC03-76SF00098

::0
ITI

0 ..,
.. c.,
, 0 ::0
oi'Dm
s:: Ill z
~ 0
Ill Z 1T1
r+O
I'D r+ 0

0
"0

OJ -<
c.---co

.
OJ .-

0 I
0 w
-o en
'< ~
.... N

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

Q

The Image Server System:
A High-Speed Parallel Distributed Data Server

LBL-36002
UC-405

Brian L. Tierney, William E. Johnston, Hanan Herzog, Gary Hoo, Guojun Jin, Jason Lee,
Ling Tony Chen,* and Doron Rotem*

Imaging and Distributed Computing Group
and

*Data Management Research Group
Ernest Orlando Lawrence Berkeley National Laboratory

University of California
Berkeley, California 94720

November 1995

This work was supported by ARP A-CSTO and by the Office of Energy Research, Office of Scientific
Computing, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

..

· • .r

The Image Server System: A High-Speed Parallel Distributed Data Server

Brian L. Tierney, William E. Johnston 1, Hanan Herzog, Gary Hoo, Guojun Jin, Jason Lee,
Ling Tony Chen*, Doron Rotem *

Imaging and Distributed Computing Group and *nata Management Research Group
Lawrence Berkeley Laboratory,2 Berkeley, CA 94720

Abstract

We describe the design and implementation of a dis
tributed parallel storage system that uses high-speed ATM
networks as a key element of the architecture. Other ele
ments include a collection of network-based disk block
servers, and an associated name server that provides
some file system functionality. The implementation is
based on user level software that runs on UNIX worksta
tions. Both the architecture and the implementation are
intended to provide for easy and economical scalability.
This approach has yielded a data source that scales eco
nomically to very high speed. Target applications include
on-line storage for both veT)' large images and video
sequences. This paper describes the architecture, and
explores the performance issues of the current implemen
tation.

I. Correspondence should be directed to W. Johnston
(wejohnston@lbl.gov), Lawrence Berkeley Laboratory, MS: SOB- 2239,
Berkeley, CA, 94720. Tel: 510-486-5014, fax: 510-486-6363; or Brian
Tierney (bltierney@lbl.gov), Tel: 510-486-7381. (WWW: http://
george.lbl.gov)
2. This work is jointly supported by ARPA - CSTO, and by the U. S.
Dept. of Energy, Energy Research Division, Office of Scientific Comput
ing, under contract DE-AC03-76SF00098 with the University of Califor
nia. This document is LBL report LBL-36002 Reference herein to any
specific commercial product, process, or service by trade name, trade
mark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement or recommendation by the United States Govern
ment or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be used
for advertising or product endorsement purposes. The following terms
are acknowledged as trademarks: UNIX (Novell, Inc.), Sun and SPARe
Station (Sun Microsystems, Inc.), DEC and Alpha (Digital Equipment
Corp.), SGI and Indigo (Silicon Graphics, Inc.).

1.0 Introduction
This distributed data system was developed in the con

text of the MAGIC3 gigabit testbed and our DOE program
in high-speed distributed imaging systems. While much
work has been done on using networks to provide the
interconnect for workstation-based parallel computing
systems ("clusters") (see, for example [5]), not much
attention has been paid to the potential of the network to
provide high-speed data storage systems. In the MAGIC
testbed a high-speed imaging application motivates the
work of the collaborating organizations.

The general goal in MAGIC is to explore the concept
of using large, on-line image archives like those at the
USGS's EROS Data Center as a source of data for a terrain
visualization application that ultimately might let one
"walk" or "drive" through the landscape anywhere on the
surface of the Earth (or elsewhere). The application com
bines terrain elevation models with high-resolution aerial
or satellite images to produce a virtual reality - type inter
action with the landscape. This type of application
requires data that has been processed in such a way that
the surface imagery and elevation models can be combined
to form a 3-dimensional image of the landscape, algo
rithms that can navigate though this virtual landscape, and
a way of getting the image data to the application based on
the requisites of the navigator. The combination of having
large data archives that might be in many different loca
tions, the need for high-speed data delivery (300-400
Mbits/s), and a desire to allow the application to be sited

3. MAGIC (Multidimensional Applications and Gigabit Internetwork
Consortium) is a gigabit network testbed that was established in June
1992 by the U. S. Government's Advanced Research Projects Agency
(ARPA)[13]. The testbed is a collaboration between Mitre, LBL, Minne
sota Supercomputer Center, SRI, Univ. of Kansas, Lawrence, KS, USGS
-EROS Data Center, Sprint, Northern Telecom, U.S. West, Southwest
Bell, and Splitrock Telecom. More information about MAGIC may be
found on the WWW home page at: http://www.magic.net/

LBL-36002

anywhere on the network, leads to the general requirement
for a distributed source of image data. This requirement
has led us to investigate the general problem of high
speed, network-distributed storage systems.

Background
Current disk technology delivers about 4 Mbytes/s

(32 Mbits/s), a rate that has improved at about 7% each
year since 1980 [12], and there is reason to believe that it
will be some time before a single disk is capable of deliv
ering streams at the rates needed for the applications men
tioned. While RAID [12) and other parallel disk array
technologies can deliver higher throughput, they are still
relatively expensive, and do not scale well economically,
especially in an environment of multiple network distrib
uted users, where we assume that the sources of data, as
well as the multiple users, will be widely distributed.
Asynchronous Transfer Mode (ATM) networking technol
ogy, due to the architecture of the SONET infrastructure
that will underlie large-scale ATM networks of the future,
will provide the bandwidth that will enable the approach
of using ATM network-based distributed, parallel data
servers to provide high-speed, scalable storage systems.

The approach described here differs in many ways
from RAID, and should not be confused with it. RAID is a
particular data strategy used to secure reliable data storage
and parallel disk operation. Our approach, while using
parallel disks and servers, deliberately imposes no particu
lar layout strategy, and is implemented entirely in software
(though the data redundancy idea of RAID might be use-

ISS disk server

ATM
network

ISS disk server

fully applied across servers to provide reliability in the
face of network problems).

Overview

The Image Server System (ISS) is an implementation
of a distributed parallel data storage architecture. It is
essentially a "block" server that is distributed across a
wide area network to supply data to applications located
anywhere in the network. See Figure 1: Parallel Data and
Server Architecture Approach to the Image Server System.
There is no inherent organization to the blocks, and in par
ticular, they would never be organized sequentially on a
server. The data organization is determined by the applica
tion as a function of data type and access patterns, and is
implemented during the data load process. The usual goal
of the data organization is that data is declustered (dis
persed in such a way that as many system elements as pos
sible can operate simultaneously to satisfy a given request)
across both disks and servers. This strategy allows a large
collection of disks to seek in parallel, and all servers to
send the resulting data to the application in parallel,
enabling the ISS to perform as a high-speed image server.

The functional design strategy is to provide a high
speed "block" server, where a block is a unit of data
request and storage. The ISS essentially provides only one
function - it responds to requests for blocks. However, for
greater efficiency and increased usability, we have
attempted to identify a limited set of functions that extend
the core ISS functionality while allowing support for a
range of applications. First, the blocks are "named." In

ISS disk server

ATM
network

single high-bandwidth
sink (or source)

ATM network (interleaved
cell streams representing
multiple virtual circuits)

Figure 1: Parallel Data and Server Architecture Approach to the Image Server System

2 LBL-36002

•.)

other words, the view from an application is that of a logi
cal block server. Second, block requests are in the form of
lists that are taken by the ISS to be in priority order. There
fore the ISS attempts (but does not guarantee) to return the
higher priority blocks first. Third, the application interface
provides the ability to ascertain certain configuration
parameters (e.g., disk server names, performance, disk
configuration, etc.) in order to permit parameterization of
block placement-strategy algorithms (for example, see
[2]). Fourth, the ISS is instrumented to permit monitoring
of almost every aspect of its functioning during operation.
This monitoring functionality is designed to facilitate per
formance tuning and network performance research; how
ever, a data layout algorithm might use this facility to
determine performance parameters.

At the present state of development and experience, the
ISS that we describe here is used primarily as a large, fast
"cache". Reliability with respect to data corruption is pro
vided only by the usual OS and disk mechanisms, and data
delivery reliability of the overall system is a function of
user-level strategies of data replication. The data· of inter
est (tens to hundreds of GBytes) is typically loaded onto
the ISS from archival tertiary storage, or written into the
system from live video sources. In the latter case, the data
is also archived to bulk storage in real-time.

Client Use
The client-side (application) use of the ISS is provided

through a library that handles initialization (for example,
an "open" of a data set requires discovering all of the disk
servers with which the application will have to communi
cate), and the basic block request I receive interface. It is
the responsibility of the client (or its agent) to maintain
information about any higher-level organization of the data
blocks, to maintain sufficient local buffering so that
"smooth playout" requirements may be met locally, and to
run predictor algorithms that will pre-request blocks so
that application response time requirements can be met.
None of this has to be explicitly visible to the user-level
application, but some agent in the client environment must
deal with these issues, because the ISS always operates on
a best-effort basis: if it did not deliver a requested block in
the expected time_ or order, it was because it was not possi
ble to do so.

Implementation

In our prototype implementations, the typical ISS con
sists of several (four- five) UNIX workstations (e.g. Sun
SPARCStation, DEC Alpha, SGI Indigo, etc.), each with
several (four - six) fast-SCSI disks on multiple (two -
three) SCSI host adaptors. Each workstation is also
equipped with an ATM network interface. An ISS configu
ration such as this can deliver an aggregated data stream to

3

an application at about 400 Mbitsls (50 Mbytesls) using
these relatively low-cost, ''off the shelf' components by
exploiting the parallelism provided by approximately five
servers, twenty disks, ten SCSI host adaptors, and five net
work interfaces.

Prototypes of the ISS have been built and operated in
the MAGIC network testbed. Other papers on the ISS are
[16], which focus on the major implementation issues,
[17], which focuses on the architecture and approach, as
well as optimization strategies, and [18], which focuses on
ISS applications and ISS performance issues.

2.0 Related Work
There are other research groups working on solving

problems related to distributed storage and fast multimedia
data retrieval. For example, Ghandeharizadeh, Ramos, et
al., at USC are working on declustering methods for multi
media data [3], and Rowe, et al., at UCB are working on a
continuous media player based on the MPEG standard
[14]. Similar problems are also being solved by the Mas
sively-parallel And Real-time Storage (MARS) project
[1], which is similar to the ISS, but uses special purpose
hardware such as RAID disks and a custom ATM Port
Interconnect Controller (APIC).

In some respects, the ISS resembles the Zebra network
file system, developed by John H. Hartman and John K.
Ousterhout at the University of California, Berkeley [4].
However, the ISS and the Zebra network file system differ
in the fundamental nature of the tasks they perform. Zebra
is intended to provide traditional file system functionality,
ensuring the consistency and correctness of a file system
whose contents are changing from moment to moment.
The ISS, on the other hand, tries to provide very high
speed, high-throughput access to a relatively static set of
data.

3.0 Applications
There are several target applications for the initial

implementation of the ISS. These applications fall into two
categories: image servers and multimedia I video file serv
ers.

3.1 Image Server
The initial use of the ISS is to provide data to a terrain

visualization application in the MAGIC testbed. This
application, known as TerraVision [9], allows a user to
navigate through and over a high resolution landscape rep
resented by digital aerial images and elevation models.
Terra Vision is of interest to the U.S. Army because of its
ability to let a commander "see" a battlefield environment.
Terra Vision is very different from a typical "flight simula
tor" -like program in that it uses high-resolution aerial
imagery for the visualization instead of simulated terrain.

LBL-36002

Tiled ortho
images of
landscape.

- Tiles intersected by the path of travel:
74,64,63,53,52,42,32,33

~
Data placement algorithm results in mapping tiles along

path to several disks and seryers.

tile ~ server and disk
74- SIDI
64- SID2
63- S2DI
53- SIDI
52- S2D2
42- SID2
32- S2DI

ISS server 2

Figure 2: ISS Parallel Data Access Strategy as Illustrated by the Terra Vision Application

Terra Vision requires large amounts of data, transferred at
both bursty and steady rates. The ISS is used to supply
image data at hundreds ofMbits/s rates toTerraVision. No
data compression is used with this application because the
bandwidth requirements are such that real-time decom
pression is not possible without using special purpose
hardware.

In the case of a large-image browsing application like
TerraVision, the strategy for using the ISS is straightfor
ward: the image is tiled (broken into smaller, equal-sized
pieces), and the tiles are scattered across the disks and
servers of the ISS. The order of tiles delivered· to the appli
cation is determined by the application predicting a "path"
through the image (landscape), and requesting the tiles
needed to supply a view along the path. The actual deliv
ery order is a function of how quickly a given server can
read the tiles from disk and send them over the network.
Tiles will be delivered in roughly the requested order, but
small variations from the requested order will occur.
These variations must be accommodated by buffering, or
other strategies, in the client application.

Figure 2: ISS Parallel Data Access Strategy as Illus
trated by the TerraVision Application shows how image
tiles needed by the Terra Vision application are declustered
across several disks and servers. More detail on this
declustering is provided below.

Each ISS server is independently connected to the net
work, and each supplies an independent data stream into
and through the network. These streams are formed into a
single network flow by using ATM switches to combine
the streams from multiple medium-speed links onto a sin
gle high-speed link. This high-speed link is ultimately

4

connected to a high-speed interface on the visualization
platform (client). On the client, data is gathered from buff
ers and processed into the form needed to produce the user
view of the landscape.

This approach could supply data to any sort of large
image browsing application, including applications for
displaying large aerial-photo landscapes, satellite images,
X-ray images, scanning microscope images, and so forth.

Figure 3: Use of the ISS for Single High-Bandwidth
App. shows how the network is used to aggregate several
medium-speed streams into one high-speed stream for the
image browsing application. For the MAGIC Terra Vision

Large Image Browsing Scenario (MAGIC Terra Vision application)

MAGIC
application

Figure 3: Use of the ISS for Single High-Bandwidth App.

application, the application host (an SGI Onyx) is using
multiple OC-3 (155 Mbit/s) interfaces to achieve the
bandwidth requirements necessary. These multiple inter
faces will be replaced by a single OC-12 (622 Mbit/s)
interface when it becomes available.

In the MAGIC testbed (see Figure 4: MAGIC Testbed
Application and Storage System Architecture), the ISS has
been run in several ATM WAN configurations to drive

LBL-36002

,.

Leavenworth

application platform (e.g.
Terra Vision)

(application)

()

Figure 4: MAGIC Testbed Application and Storage System Architecture

several different applications, including Terra Vision. The
configurations include placing ISS servers in Sioux Falls,
South Dakota (EROS Data Center), Kansas City, Kansas
(Sprint), and Lawrence, Kansas (University of Kansas),
and running the Terra Vision client at Fort Leavenworth,
Kansas (U. S. Army's Battle Command Battle Lab). The
ISS disk server and the Terra Vision application ai-e sepa
rated by several hundred kilometers, the longest link being
about 700 kilometers.

3.2 Video Server
Examples of video server applications include video

players, video editors, and multimedia document brows
ers. A video server might contain several types of stream
like data, including conventional video, compressed video,
variable time base video, multimedia hypertext, interactive
video, and others. Several users would typically be access
ing the same video data at the same time, but would be
viewing different streams, and different frames in the same
stream. In this case the ISS and the network are effectively
being used to "reorder" segments (see Figure 3: Use of the
ISS for Single High-Bandwidth App.). This reordering
affects many factors in an image server system, including
the layout of the data on disks. Commercial concerns such
as Time Warner and U.S. West are building large-scale
commercial video servers such as the Time Warner I Sili
con Graphics video server [8]. Because of the relatively

5

Video File Server Scenario

Receiver

Receiver

Receiver

Figure 5: Use of the ISS to Supply many Low-Bandwidth
Streams

low cost and ease of scalability of our approach, it may
address a wider scale, as well as a greater diversity, of data
organization strategies so as to serve the diverse needs of
schools, research institutions, and hospitals for video
image servers in support of various educational and
research-oriented digital libraries.

4.0 Sample Medical Application4

An example of a medical application where we will be
using this technology is the collection and playback of
angiography images. Procedures used to restore· coronary

4. This work is being done in conjunction with Dr. Joseph Terdiman,
Kaiser Pennanente Division of Research, and Dr. Robert Lundstrom, San
Francisco Kaiser Hospital Cardiac ·Catheterization Laboratory. The
implementation is being done with the support of a Pacific Bell CalREN
grant (A TM network access), and in collaboration with Sun Microsys
tems and Phillips Palo Alto Research Laboratory.

LBL-36002

blood flow, though clinically effective, are expensive and
have contributed significantly to the rising cost of medical
care. To minimize the cost of such procedures, medical
care providers are beginning to concentrate these services
in a few high-volume tertiary care centers. Patients are
usually referred to these centers by cardiologists at their
home facilities; the centers then must communicate the
results back to the local cardiologists as soon as possible
after the procedure.

The advantages of providing specialized services at
distant tertiary centers are significantly reduced if the med
ical information obtained during the procedure is not
delivered rapidly and accurately to the treating physician
in the patient's home facility. The delivery systems cur
rently used to transfer patient information between facili
ties include interoffice mail, U.S. Mail, fax machine,
telephone, and courier. Often these systems are inadequate
and potentially could introduce delays in patient care.

With an ATM network and a high-speed image file
server, still image and video sequences can be collected
from the imaging systems. These images are sent through
an ATM network to storage and analysis systems, as well
as directly to the clinic sites. Thus, data can be collected
and stored for later use, data can be delivered live from the
imaging device to remote clinics in real-time, or these data
flows can all be done simultaneously. Whether the ISS
servers are local or distributed around the network is
entirely a function of the optimal logistics. There are argu
ments in regional healthcare information systems for cen
tralized storage facilities, even though the architecture is
that of a distributed system. See, for example, [7].

5.0 Design

5.1 Goals

The following are some of our goals in designing the
ISS:

• The ISS should be capable of being geographically
distributed. In a future environment of large scale,
high-speed, mesh-connected national networks,
network distributed storage should be capable of
providing an uninterruptable stream of data, in
much the same way that a power grid is resilient in
the face of source failures, and tolerant of peak
demands, because of the possibility of multiple
sources multiply interconnected.

• The ISS approach should be scalable in all dimen
sions, including data set size, number of users,
number of server sites, and aggregate data delivery
speed.

• The ISS should deliver coherent image streams to an
application, given that the individual images that
make up the stream are scattered (by design) all
over the network. In this case, "coherent" means

6

"in the order needed by the application". No one·
disk server will ever be capable of delivering the
entire stream. The network is the server.

• The ISS should be affordable. While something
like a HIPPI-based RAID device might be able to
provide functionality similar to the ISS, this sort
of device is very expensive, is not scalable, and is
a single point of failure.

5.2 Approach

A Distributed, Parallel Server

The ISS design is based on the use of multiple low
cost, medium-speed disk servers which use the network
to aggregate server output. To achieve high performance
we exploit all possible levels of parallelism, including
that available at the level of the disks, controllers, proces
sors I memory banks, servers, and the network. Proper
data placement strategy is also key to exploiting system
parallelism.

At the server level, the approach is that of a collection
of disk managers that move requested data from disk to
memory cache. Depending on the nature of the data and
its organization, the disk managers may have a strategy
for moving other nearby and related data from disk to
memory. However, in general, we have tried to keep the
implementation of data prediction (determining what
data will be needed in the near future) separate from the
basic data-moving function of the server. Prediction
might be done by the application (as it is in Terra Vision),
or it might be done be a third party that understands the
data usage patterns. In any event, the server sees only lists
of requested blocks.

As explained below, the dominant bottlenecks for this
type of application in a typical UNIX workstation are
first memory copy speed, and second, network access
speed. For these reasons, an important design criterion is
to use as few memory copies as possible, and to keep the
network interface operating at full bandwidth all the time.

Another important aspect of the design is that all
components are instrumented for timing and data flow
monitoring in order to characterize ISS and network per
formance. To do this, all communications between ISS
components are timestamped. In the MAGIC testbed, we
are using GPS (Global Positioning System) receivers and
NTP (Network Time Protocol) [II] to synchronize the
clocks of all ISS servers and of the client application in
order to accurately measure network throughput and
latency.

Data Placement Issues

A limiting factor in handling large data sets is the
long delay in managing and accessing subsets of these
data sets. Slow 110 rates, rather than processor speed, are
chiefly the cause of this delay. One way to address this

LBL-36002

.•

problem is to use data reorganization techniques based on
the application's view of the structure of the data, analysis
of data access patterns, and storage device characteristics.
By matching the data set organization with the intended
use of the data, substantial improvements can be achieved
for common patterns of data access[2]. This technique has
been applied to large climate-modeling data sets, and we
are applying it to TerraVision data stored in the ISS. For
image tile data, the placement algorithm declusters tiles so
that all disks are evenly accessed by tile requests, but then
clusters tiles that are on the same disk based on the tiles'
relative nearness to one another in the image. This strategy
is a function of both the data structure (tiled images) and
the geometry of the access (e.g., paths through the land
scape).

The declustering method used for tiles of large images
is a lattice-based (i.e., vector-based) declustering scheme,
the goal of which is to ensure tiles assigned to the same
server are as far apart as possible on the image plane. This
minimizes the chance that the same server will be accessed
many times by a single tile request list.

Tiles are distributed among K disks by first determin
ing a pair of integer component vectors which span a par
allelogram of area K. Tiles assigned to the same disk are
separated by integer multiples of these vectors. Mathemat
ical analysis shows that for common visualization queries
this declustering method performs within seven percent of
optimal for a wide range of practical multiple disk config
urations.

Within a disk, however, it is necessary to cluster the
tiles such that tiles near each other in 2-D space are close
to each other on disk, thus minimizing disk seek time. The
clustering method used here is based on the Hilbert Curve
because it has been shown to be the best curve that pre
serves the 2-D locality of points in a 1-D traversal.

Path Prediction

Path prediction is important to ensure that the ISS is
utilized as efficiently as possible. By using a strategy that
always requests more tiles than the ISS can actually
deliver before the next tile request, we can ensure that no
component of the ISS is ever idle. For example, if most of
a request list's tiles were on one server, the other servers
could still be reading and sending or caching tiles that may
be needed in the future, instead of idly waiting. The goal
of path prediction is to provide a rational basis for pre
requesting tiles. See [2] for more details on data placement
methods.

As a simple example of path prediction, consider an
interactive video database with a finite number of distinct
paths (video clips), and therefore a finite number of possi
ble branch points. (A "branch point" occurs where a user

7

might select one of several possible play clips, see Figure
6: Image Stream Management I Prediction Strategy). As a

database structure

Multimedia program that consists of multiple threads
(M+A+B+C), whose play order is not known in advance.

user interaction

current location

current play position

client (multimedia player)

requested tiles

{ 9, 10, lOa}
re-request list

ISS request list (based
on all play thread
possibilities in the
immediate future)

{ 7, 8, 9, Sa, 9a, 10, lOa. II }

l11lxlxl9alsalxls 7
recv buffer (X=missing)

Figure 6: Image Stream Management I Prediction Strategy

branch point is approached by the player, the predictor
(without knowledge of which branch will be taken) will
start requesting images (frames) along both branches.
These images are cached first at the disk servers, then at
the receiving application. As soon as a branch is chosen,
the predictor ceases to send requests for images from the
other branches. Any "images" (i.e., frames or compressed
segments) cached on the ISS, but unsent, are flushed as
better predictions fill the cache. This is an example where
a relatively independent third party might do the predic
tion.

The client will keep asking for an image until it shows
up, or until it is no longer needed (e.g., in Terra Vision, the
application may have "passed" the region of landscape that
involves the image that was requested, but never received.)
Applications will have different strategies to deal with
images that do not arrive in time. For example, Terra Vi
sion keeps a local, low-resolution data set to fill in for
missing tiles.

Prediction is transparent to the ISS, and is manifested
only in the order and priority of images in the request list.
The prediction algorit~m is a function of the client appli
cation, and typically runs on the client.

LBL-36002

The Significance of ATM Networks

The design of the ISS depends in part on the ability of
ATM switches and networks to aggregate multiple data
streams from the disk servers into a single high-bandwidth
stream to the application. This is feasible because most
wide area ATM network aggregate bandwidth upward -
that is, the link speeds tend to increase from LANs to
WANs, and even within WANs the "backbone" is the high
est bandwidth. (This is actually a characteristic of the
architecture of the SONET networks that underlie ATM
networks.) Aggregation of stream bandwidth occurs at
switch output ports. For example, three incoming streams
of 50 Mbits/s that are all destined for the same client will
aggregate to a !50 Mbit/s stream at the switch output port.
The client has data stream connections open to each of the
ISS disk servers, and the incoming data from all of these
streams typically put data into the same buffer.

6.0 ISS Architecture and Implementation

The following is a brief overview of a typical ISS oper
ation. A data set must first be loaded across a given set of
ISS hosts and disks, and a table containing disk/offset
locations for each block of data is stored on each host. The
application sends requests for data (images, video, sound,
etc.) to the Name Server process on each Disk Server host,
which does a lookup to determine the location (server -
disk - offset) of the requested data. If the data is not stored
on that host, the request is discarded with the assumption
that another host will handle it; otherwise the list of loca
tions is passed to the ISS Disk Server. Each Disk Server
then checks to see if the data is already in its cache, and if
not, fetches the data from disk and transfers it to the cache.
Once the data is in the cache, it is sent to the requesting
application.

In the following sections, we describe the basic soft
ware modules, their functions, how they relate to each
other, and some of the terms and models that were used in
the design of the ISS.

Figure 7: ISS Architecture shows how the components
of the relate to each other.

ISS Master

The ISS Master process is responsible for application
to-ISS startup communication, Disk Server process initial
ization, performance monitoring, and coordination
between multiple ISS Disk Servers. This includes the abil
ity to collect performance and usage statistics of all ISS
components. In the future, we plan to extend the function
ality of the Master to dynamically reconfigure ISS Disk
Server usage to avoid network or ISS Disk Server bottle
necks.

8

tile (image)
network

ISS disk server

cache manager

Figure 7: ISS Architecture

Name Server

The Name Server listens for tile request lists from the
application. After receiving a list, the Name Server does a
table lookup to determine where the data is located (i.e.
which server, which disk, and the disk offset). The Name
Server then passes this list to the ISS Disk Server.

ISS Disk Server
There is one ISS Disk Server process for each ISS

host. It is responsible for all ISS memory buffer and
request list management on that host. The Disk Server
receives image requests from the Master process, and
determines if the image is already in its buffer cache. If it
is already in the buffer cache (which is kept entirely in
available memory), the request is added to the "to send"
list. Otherwise, it is added to a "to read" list. Tile requests
that have not been satisfied by the time the next list from
the Master process arrives are "flushed" (discarded) from
the lists. All requests that haven't been either read off of
disk or written to the network interface are removed from
all request lists, and any memory buffers waiting to be
written are returned to the hash table. Note that if a tile
read has completed, but the tile has not yet been sent to the
network, the data stays in the cache, so that if that tile is in
the next request list it will be sent first. Those buffers that
were waiting to be filled with data from the disk are put at
the head of an LRU (Least Recently Used) list so they may
be used for requests in the newly arrived list. The Disk
Server process also periodically sends status information
to the Master.

ISS buffer management is very similar to that of the
UNIX operating system, and many of the ideas for lists,
hashing, and the format of the headers have been adopted
from UNIX for use within the ISS [10]. A buffer can be
freed from the hash table in one of two ways. If a buffer
was allocated to a list (read/send) and that list was flushed,

LBL-36002

..

the buffer is returned to the head of the LRU list so that it
is the next buffer to be reused. A buffer may also naturally
progress through the LRU list until it has reached the end
of the list, at which time it is recycled.

The Disk Server handles three request priority levels:
• high: send first, with an implicit priority given by

order within the list.
medium: send if there is time.

• low: fetch into the cache if there is time, but don't
send.

The priority of a particular request is set by the
requesting application. The application's prediction algo
rithm should use these priority levels to keep the ISS fully
utilized at all times without r~questing more data than the
application can process. For example, the application
should send low priority requests to pull data into the ISS
cache that the application will need in the near future; this
data is not sent to the application until the application is
ready. Another example is an application that plays back a
movie with a sound track, where audio might be high pri
ority requests, and video medium priority requests.

ISS Reader

The ISS Reader process reads data off of disk and puts
it into the buffer cache that is managed by the Disk Server
process. There is one Reader per physical disk. This pro
cess continually checks for requests in the "to read" list,
starts a read operation on that disk if a request is pending,
then waits for the data to be read. Once the data is read off
of disk the request is moved into the list of data that is to
be written· out. There are two distinct lists of data that are
to be written out, one for each of the high and medium pri
ority levels described above.

ISS Sender
The ISS Sender process sends all data in the "to send"

list out to the application that requested it. There is one
sender per network interface. This process continually
checks the list of data that is ready to be written out, look
ing for data that is of high or medium priority (as
described above). Note that data of medium priority will
only be sent if there is no data of high priority in the cache.
However, it is possible for medium priority data to be writ
ten out before higher priority data, as in the case where the
medium priority data is in the memory cache, and higher
priority data is resident on disk.

7.0 Workstation Technology Issues
To analyze the performance of the ISS software, we

first need to examine the characteristics of the hardware
components. Figure 8: Workstation Speeds shows the data
bandwidth of various components of a fairly typical high-

9

end UNIX workstation (a Sun SPARCStation Model 10/
41).

Disks: 3.5 ... 7200 rpm:
2.5 GBytcs:

8 ms seck (avg):
7 Mbytcslscc read

SCSI-2 Bus:
10 Mbytcs/scc

7 Mbytcslscc
(actual for 3-4

disks)

Data Movement Characteristics for a Typical Workstation
(pcrfonnancc figures arc manufacture's spec. unless indicated)

Figure 8: Workstation Speeds

The numbers listed below are specs from the manufac
turer, followed by our measurements using 49152-byte
data blocks (the size currently used by TerraVision) on a
Sun SPARCStation 10-41.

• Seagate Barracuda Disks:
- 7 Mbytes/s (56 Mbits/s) sustained, 8 msec aver

age seek time (spec)
- 2.6 Mbytes/s (21 Mbits/s) (measured)

• Fast-SCSI Host adaptor:
- 10 Mbytes/s (80 Mbits/s) (spec)

- 5 Mbytes/s (40 Mbits/s) using two disks
(measured)

• Other limits:
- Sbus: 40 Mbytes/s (320 Mbits/s) (spec)

- CPU to RAM Interconnect (MBus): 105 Mbytes/
s (840 Mbits/s) (spec)

- UNIX "memcpy" speed: 22 Mbytes/s (176
Mbits/s) (measured)

- network ATM interface: 9.4 Mbytes/s (75
Mbits/s) (measured, UDP)

From these numbers we conclude that three to four
disks are needed to saturate a SCSI host adaptor, that three
to four SCSI adaptors are needed to saturate the 1/0 bus,
and that the main bottleneck is the speed of a memory to
memory copy.

7.1 Performance Limits
The bandwidth limits of all hardware components are

shown in the previous section. Using a Sun· SPARCStation
10-41 with two Fast-SCSI host adaptors and four disks,
and reading into memory random 48-Kbyte blocks from
all disks simultaneously, we have measured a single server
disk-to-memory throughput of 9 Mbytes/s. When we add a

LBL-36002

process which sends UDP packets to the ATM interface,
this reduces the disk-to-memory throughput to 8 Mbytes/s
(64 Mbits/s). The network throughput under these condi
tions is 7.5 Mbytes/s (60 Mbits/s). This number is an upper
performance limit that does not include the ISS overhead
of buffer management, semaphore locks, and context
switching. The SCSI host adaptor and Sbus are not yet sat
urated, but adding more disks will not help the overall
throughput without a faster access to the network (e.g.
multiple interfaces).

7.2 Memory Copy Speed
Since the main bottleneck appears to be memory copy

speed, we performed some tests on several high-end work
stations, including some newer workstations that use inter
leaved memory. Figure 9: Memory Speed shows our
results.The following systems were tested: Sun SPARCS-

Memory copy bandwidth as a function of number of processors
and processes

100

80

60

40
DEC Alpha 3000 I 400:

I CPU

20
Sun 510/41:.

I CPU I CPU

0
1 2 4 6 8 10
Number of processes (1.2 MBy copy buffer)

Figure 9: Memory Speed

tation 10/41 (one processor), Sun SPARCserver-1000 (six
processors), a DEC Alpha 3000/400 (one processor), an
SGI Challenge L (two processors), and an SGI Onyx (four
processors).

Our first results indicated poor memory copy band
width relative to the hardware potential of the memory
subsystem for all of the workstations that we considered.
Subsequent testing on multiprocessor systems (illustrated
in Figure 9) showed that the problem apparently lies in the
OS or memory controller, because each CPU can get
almost the same memory bandwidth simultaneously, up to
the memory subsystem performance level. In the multipro
cessor machines where a single CPU could not saturate the
memory subsystem (true for both multiprocessor machines
that we tested), the addition of more disks and multiple
network adaptors operated by different CPUs should result
in linear speedup, up to the memory subsystem bandwidth.

10

For a detailed description of factors that affect high
speed network 1/0, including memory copy speed, see
Steenkiste[15].

7.3 TCPIIP Performance
TCP speeds are bounded by the window size divided

by the round trip time. The TCP window is the amount of
buffer space available on the receiver end of a TCP con
nection. The larger the buffer space, the more packets the
receiver can accept before the host has to process them or
tell the sending application to slow down. The buffer size
also affects the number of packets that can be outstanding,
or "in the pipe" [6]. We have found that with long distance
ATM networks, a large TCP window is extremely impor
tant, as is expected for a high-bandwidth, large-delay net
work.

Table I shows TCP speeds vs. TCP window size as

measured using ttcp5 in an ATM LAN and ATM WAN
environment. This table clearly shows the importance of

TABLE 1.

TCP speed over ATM

Window size 16K 24K 32K 64K 96K 128K 192K 256K

LAN Sun to 30 34 54 * * * * * Sun (Mb/s)

LAN Alpha
62 56 60 110 117 126 118 114 to Alpha

WAN Sun 11 12 27 37 46 47 47 48 to Sun
WAN Alpha 6.5 7.2 12.5 25 35.9 48.7 72.5 91.8

to Alpha

Note: all speeds for are 64K Byte transfers of data; * =data not available
Alpha to Alpha speeds are courtesy of Joseph Evans, University of Kan
as, Lawrence, KS.
~ !M interface for Sun (SS I 0/41) is SBA-200 from FORE Systems,
~ TM for Alpha (DEC-3000/400) is the "Otto" card from DEC. ATM
~witch is from FORE Systems.
~unto Sun: LAN RTT = 2 ms (through I ATM switch), WAN RTT = 8
~ (through 2 A TM switches).
~lpha to Alpha: LAN RTT = I ms (no switch), WAN RTT = 16 ms
through 2 ATM Switches).

the TCP window size with ATM networks, especially in
the WAN environment when some other factor is not the
limit. Using the default TCP window sizes of 24 KBytes
(Sun) or 32 KBytes (DEC and SGI), an ATM-based appli
cation would only see Ethemet-like speeds!

8.0 Current Status
All ISS software is currently tested and running on Sun

workstations (SPARCstations and SPARCserver lOOO's)

5. ttcp is a utility that times the transmission and reception of data
between two systems using the UDP or TCP protocols.

LBL-36002

..

',)·

running SunOS 4.1.3 and Solaris 2.3, DEC Alpha's run
ning OSF/1, and SGI's running IRIX 5.x. Demonstrations
of the ISS with the MAGIC Terrain Visualization applica
tion TerraVision have been done using several WAN con
figurations in the MAGIC testbed. Using enough disks (4-
8, depending on the disk and system type), the ISS soft
ware has no difficulty saturating current ATM interface
cards. We have worked with 100 Mbit and 140Mbit TAXI
S-Bus and VME cards from Fore systems •. and OC-3 (155
Mbit/s) cards from DEC.

Table 2, below, shows various system ttcp speeds and
ISS speeds. The first column is the maximum ttcp speeds
using TCP over an ATM LAN with a large TCP window
size. In this case, ttcp just copies data from memory to the
network. For the values in the second column, we ran a
program that continuously reads from all ISS disks simul
taneously with ttcp operation. This gives us a much more

TABLE2.

MaxATM ttcp wl disk
System LANttcp read Max ISS speed

Sun SSI0/41 70 Mbits/sec 60 Mbits/sec 55 Mbits/sec

Sun SSIOOO
(2 processors)

75 Mbits/sec 65 Mbits/sec 60 Mbits/sec

SGI Challenge L 82 Mbits/sec 72 Mbits/sec 65 Mbits/sec
(2 processors)

DEC Alpha 3000/400 127 Mbits/s 95 Mbits/sec 88 Mbits/sec

realistic value for what network speeds the system is capa
ble of while the ISS is running. The last column is the
actual throughput values measured from the ISS. These
speeds indicate that the ISS software adds a relatively
small overhead in terms of maximum throughput.

8.1 Actual Performance
The current throughput of a single ISS server on a Sun

SPARC 10/41 platform is 7.1 Mbytes/s (55 Mbits/s), or
91% of the possible maximum of 7.5 Mbytes/s (60
Mbits/s) derived above. This seems a reasonable result
considering the overhead required. We have achieved this
speed using a TerraVision-like application simulator
which we developed that sends a list of requests for data at
a rate of five request lists per second. Five request lists per
second does not force the application to predict and buffer
too far into the future, but is not so fast that disk read
latency is an issue. This application simulator sends
request lists that are long enough to ensure that no disk
ever is idle. When the ISS receives a request list, all previ
ous requests are discarded. Under these conditions, about
one~half of the requests in each request list will never be
satisfied (either they will be read into the cache but not
written to the network, or they will not be read at all before
the next request list arrives).

II

As an example, a typical Terrav'ision request list con
tains fifty tiles. Of these fifty tiles, forty are read into ISS
cache, twenty-five are written to the network, and ten are
not processed a~ all. This behavior is reasonable because,
as discussed in the section on data path prediction above,
the application will keep asking for data until it shows up
or is no longer needed. The requesting application will
anticipate this behavior, and predict the tiles it needs far
enough ahead that "important" tiles are always received by
the time they are needed. Tiles are kept in the cache on an
LRU basis, and previously requested but unsent tiles will
be found in the cache by a subsequent request. The over
head of re-requesting tiles is minimal compared with mov
ing them from disk and sending them over the network.

During ISS operation, the average CPU usage on the
disk server platform is 10% user, 60% system, and 30%
idle, so the CPU is not a bottleneck. With the Terra Vision
application and 40 Mbytes of disk cache memory on the
ISS server, on average 2% of requested tiles are already in
cache. Increasing the cache size will not increase the
throughput, but may improve latency with effective path
prediction by the application.

8.2 Bottlenecks
The main bottleneck for the server is the speed of mov

ing data into and out of memory. A SPARCStation 10, for
example, uses 70ns SIMMs (RAM chips), which means
that memory copies are limited to about 22 Mbytes/s (176
Mbits/s). When writing to the network, the situation is
even worse because data are moved to the interface via
UNIX "mbufs" [10], adding additional overhead. We have
measured the speed of an mbuf copy as 19 Mbytes/s (152
Mbits/s), and there are two mbuf copies required to send a
packet to the network. Along with the other overhead
required to assemble packets,· this limits the speed with
which we can write to the network to 9.2 Mbytes/s (74
Mbits/s).

If the network sends were faster, i.e., 19.4 Mbytes/s
(155 Mbits/s- the OC-3 rate, ignoring ATM overhead), the
next bottleneck would be the disk reading speed, which in
this configuration is 9 Mbytes/s (72 Mbits/s). This bottle
neck is trivially removed by adding more disks. This
brings us back the "memcpy" limit of 22 Mbytes/s as the
next bottleneck. The other bottlenecks are not likely to be
relevant in the near future. Increasing the speed of work
station memory is the key to increased performance for
this application.

8.3 Expected Performance
Using next generation workstations, most of these bot

tlenecks are alleviated considerably. The most important
improvement is that of interleaved memory. For example,
a Sun SPARCServer 1000 provides two-way interleaved

LBL-36002

memory, up to four SBuses at 50 Mbytes/s (400 Mbits/s)
and a 250 Mbytes/s (2 Gbits/s) interconnect. The SGI
Challenge L has eight-way interleaved memory and a 1250
Mbytes/s bus. Using this type of system should improve
ISS performance considerably. These systems also can be
configured with up to twelve processors. An ISS running
on a multiprocessor system with interleaved memory
should have substantially higher throughput.

9.0 Future Work
We plan to expand the capabilities of the ISS consider

ably during the next year or so. These enhancements (and
associated investigation of the issues) will include:

• Multiple data set data layout strategy;
• Capability to write data to the ISS;
• Ability to monitor the state of all ISS servers and

dynamically assign bandwidth of individual servers
to avoid overloading the capacity of a given seg
ment of the network (i.e., switches or application
host);

• Mechanisms for handling video-like data, including
video data placement algorithms and the ability to
handle variable size frames (JPEG/MPEG);

• Name server redesign to accommodate information
about server performance and availability and to
provide a mechanism to request tiles from the
"best" server (fastest or least loaded);
Issues involved in dealing with data other than
image- or video- like data.

Many of these enhancements will involve extensions to
the data placement algorithm and the cache management
methods. Also we plan to explore some optimization tech
niques, including using larger disk reads, and conversion
of all buffer and device management processes to threads
based light weight processes.

10.0 References
[1] Buddhikot, M. M., Parulkar, G., and Cox, J., "Design of

a Large Scale Multimedia Storage Server", Proceed
ings of INET '94 I JENC5, 1994.

[2] Chen L. T. and Rotem D., "Declustering Objects for
Visualization", Proc. of the 19th VLDB (Very Large
Database) Conference, 1993.

[3] Ghandeharizadeh, S. and Ramos, L, "Continuous
Retrieval of Multimedia Data Using Parallelism",
IEEE Transactions on Knowledge and Data Engi
neering, Vol 5, No 4, August 1993.

[4] Hartman, J. H. and Ousterhout, J. K., "Zebra: A Striped
Network File System", Proceedings of the USENIX
Workshop on File Systems, May 1992.

[5] Hayes, A., Brooks III, E.D., Nash, T., and Winkler,
K.H., ''The Role of Computational Clusters", Pro
ceedings of Supercomputing '92, Nov. 1992.

[6] Jacobson, V., Braden, R.T., and Borman D.A. "TCP
Extensions for High Performance;' RFC 1323, LBL,
1992.

12

[7] Johnston, W., and Allen, A., M.D., "Regional Health
Care Information Systems: Motivation, Architecture,
and Implementation", Lawrence Berkeley Labora
tory report no. 34770, Berkeley, CA, 94720.

[8] Langberg, M., "Silicon Graphics Lands Cable Deal with
Time Warner Inc.", San Jose Mercury News, June 8,
1993.

[9] Leclerc, Y.G. and Lau, S.Q., Jr., "Terra Vision: A Terrain
Visualization System", SRI International, Technical
Note #540, Menlo Park, CA, 1994.

(10] Leffler, S.J., McKusick, M.K., and Quarterman, J.S.,
"The Design and Implementation of the 4.3BSD
UNIX Operating System", Addison-Wesley, Read
ing, Mass., 1989.

[11] Mills, D., "Simple Network Time Protocol (SNTP)",
RFC 1361, University of Delaware, August 1992.

[12] Patterson, D., Gibson, R., and Katz, R., "The Case for
RAID: Redundant Arrays of Inexpensive Disks",
Proceedings ACM SIGMOD Conference, Chicago,
IL, May, 1988 (pp. I 06-113)

[13] Richer, I. and Fuller, 8.8., "An Overview ofthe MAGIC
Project," M93B0000173, The MITRE Corp., Bed
ford, MA, I Dec. 1993.

[14] Rowe, L. and Smith, B.C., "A Continuous Media
Player", Proc. 3rd International Workshop on Net
work and Operating System Support for Digital
Audio and Video, San Diego, CA, Nov. 1992.

[15] Steenkiste, P.A., "A Systematic Approach to Host Inter
face Design for High Speed Networks", IEEE Com
puter, Vol 27, No 3, March 1994.

[16] Tierney, B., Johnston, W., Herzog, H., Hoo, G., Jin, G.,
and Lee, J., "System Issues in Implementing High
Speed Distributed Parallel Storage Systems", Pro
ceedings of the USENIX Symposium on High Speed
Networking, Aug. 1994, LBL-35775.

[17] Tierney, B., Johnston, W., Chen, L.T., Herzog, H., Hoo,
G., Jin, G., Lee, J., and Rotem, D., "Distributed Par
allel Data Storage Systems: A Scalable Approach to
High Speed Image Servers", Proceedings of ACM
Multimedia '94, Oct. 1994, LBL-35408.

[18] Tierney, B., Johnston, W., Chen, L.T., Herzog, H., Hoo,
G., Jin, G., Lee, J., "Using High Speed Networks to
Enable Distributed Parallel Image Server Systems",
Proceedings of Supercomputing '94, Nov. 1994,
LBL-35437.

LBL-36002

~~· J

LA~NCEBERKELEYLABORATORY
UNIVERSITY OF CALIFORNIA

TECHNICAL INFORMATION DEPARTMENT
BERKELEY, CALIFORNIA 94720

~--~ .._.. - --

