
I • 

J 

LBL-36005 
UC-413 

Lawrence Berkeley Laboratory 
UNIVE.RSITY OF CALIFORNIA 

'Presented 'at the Fourth KINR International School on Nuclear 
Physics, Kiev, Ukraine, August 29-September 7, 1994, and to 
be published in the Proceedings 

Thomas-Fermi Treatment of Nuclear Masses, 
Deformations and Density Distributionsr 

W.D. Myers and W.J. Swi~tecki 

August 1994 . 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

I ro-
' I w 
Ol 
ISl• 
ISl 
tn 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



-.. 

Thomas-Fermi Treatment of Nuclear Masses, 
Deformations and Density Distributions 

W.D. Myers and W.J. Swiatecki 
~ 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

August 1994 

LBL-36005 
UC-413 

This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear 
Physics, Division of Nuclear Physics, and by the Office· of Basic Energy Sciences, Division of Nuclear 
Sciences, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 



Abstract 

THOMAS-FERMI TREATMENT OF NUCLEAR MASSES, 

DEFORMATIONS AND DENSITY DISTRIBUTIONS* 

W.D. Myers and W.J. ~wi'!tecki 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

1 Cyclotron Road 
Berkeley, California 94 720 

USA 

LBL-36005 

A recently completed Thomas-Fermi model of nuclei is described. Six adjustable parameters 

of the effective nucleon-nucleon interaction were fitted to the shell-corrected binding energies 

of 1654 nuclei and to the diffuseness of the nuclear surface. The model is then successful in 

reproducing nuclear sizes, and only small deviations are found between calculated and 

measured fission barriers of 36 nuclei. The model is applied to the prediction of fission 

barriers of light elements, to drip-line nuclei like 82Sn and 170Sn, to the properties of nuclear 

and neutron matter and to nuclear bubble configurations with Z2f A ::::: 100. The relation of a 

Thomas-Fermi theory to the Droplet and Liquid Drop models is illustrated. 

1. INTRODUCTION 

It is a great pleasure to take part in this conference honoring Vilen Strutinsky, and to visit 

Kiev, the ancient capital of the Ukraine. 

Strutinsky's shell correction method, developed in the sixties, considers the nuclear 

binding energy to be made up of a microscopic contribution added to a smooth macroscopic 

background. The success of Strutinsky's treatment of the microscopic part revolutionized 

overnight the calculation of nuclear·binding and deformation energies. Less dramatic and 

more gradual advances have also been made in the macroscopic background energy. In the 

early calculations the macroscopic part was usually a simple liquid drop formula. Later, a 

Droplet Model was often used. A more nearly ideal smooth background is provided by a 

Thomas-Fermi model. My talk today will proceed in the reverse order. I will first describe a 

Thomas-Fermi model that Bill Myers and I have completed recently. Then I will illustrate 

how the Droplet Model (and the liquid Drop Model) are algebraic approximations to the 

Thomas-Fermi model. 

*Talk presented by W.J. Swil!tecki at the fourth KINR International School on Nuclear Physics, Kiev, 
August 29-September 7, 1994. 
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2. THE THOMAS-FERMI MODEL 

This model is based on the beautiful statistical method introduced into atomic physics by 

L.H. Thomas [1] and, independently, by E. Fermi [2] in 1926-27. It says that for a degenerate 

gas of fermions the density of particles in phase space is 2 per h3. From this one can deduce 

at once any shell-averaged semi-classical property of electrons in atoms and molecules [3]. 

The scheme gives results that are essentially equivalent to a Hartree or Hartree-Fock 

calculation averaged over shell effects. 

Ou~ own starting point was the straightforward Thomas-Fermi treatment of nuclei 

introduced by Seyler and Blanchard in their papers from 1961 and 1963 [4]. Thus we have no 

density-gradient corrections or higher-order terms in an expansion in 11 [5-13] -just the pure 

Thomas-Fermi model. We have, however, generalized the Seyler-Blanchard effective 

nucleon-nucleon Yukawa interaction v12 by adding one momentum-dependent and one 

density-dependent term [14]: 

Seyler-Blanchard 

Extra attraction increases when PI2 
is small (and particles would like to 
become correlated),. and tends to 
zero for large PI2, when particles 
would zip past each other. 

Repulsion increases with increasing } 
average density p. 

HereTo, Po, Po are the Fermi energy, the Fermi momentum and the particle density of 

standard nuclear matter- these quantities serve as convenient units. Y(r12) is a Yukawa 

interaction of range a: 

1 e-q2/a 
Y(rl2)=-----

47ta3 fi2 I a 

(1) 

(2) 

The distance between the particles is r12 and PI2 is the magnitude of their relative momentum. 

The average density p is defined by 

p2/3 = (P?'3 + pr3)' 2 , (3) 

where p 1 and P2 are the densities of the interacting particles at points 1 and 2. The 

dimensionless interaction strength parameters a,~' y, cr may be different for interactions 

between like particles (neutron-neutron, proton-proton) an~ unlike particles (neutron-proton). 

The difference is described in our model with the aid of two parameters ~ and l; as follows: 
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1 1 
at = - (1- ~)a , au =-(l+~)a , 

2 2 
(4) 

~~} I r ~.} r 'Y l = 2 (1- ~) 'Y ' 'Y u = ~ (1 + ~) 'Y 
(Jl (J cru cr 

Altogether there are seven adjustable parameters in our model: a, ~. y, cr, ~. ~and the range 

a. It turns out that nuclear energies and density distributions depend on only six parameters, 

because for them~ and cr always occur together in the combination B = ~ + (5/6) cr [14]. 

(This degeneracy is broken if the Thomas-Fermi model is used to calculate the depth of the 

optical model potential, but I will leave this aspect out in the present talk.) 

3. FITTING THE PARAMETERS 

The description of the techniques used to solve the self-consistent nuclear Thomas-Fermi 

equations may be found in [14] and [15]. Suffice it to say that we have now available fast and 

robust iterative schemes that give accurate solutions of the Thomas-Fermi equations for 

shapes with or without spherical symmetry. 

We used these methods to calculate, for a given set of the 6 adjustable parameters, the 

binding energies of 1654 nuclei according to the expression 

E = T .F. + Shells + Odd-even + W (5) 

Here T.F. is the result of the Thomas-Fermi calculation, "Shells" is the Strutinsky shell 

correction taken from [ 16] (column headed Ernie). the odd-even correction is ± 11 MeV /....{A for 

odd or even nuclei and zero for odd-mass nuclei, and W is the Wigner term from [17]: 

W = -7 MeV exp(-61II), where I= ~-Z)/A. We also solved the Thomas-Fermi equations for 

semi-infinite standard nuclear matter and determined the Stissmann width bo (diffuseness) 

[ 18] of the nuclear surface for the given set of parameters. (The value bo. = 1.0· fm gives 

reasonable agreement with measurements of nuclear charge distributions.) We then 

minimized the RMS deviation of the calculated from the measured binding energies of the 

1654 nuclei by a search in the five-dimensional parameter sub-space for which bo remains 

equal to 1 fm. This led to a minimum RMS equal to 0.711 MeV and to the following set of 

parameters: a= 1.98483, B = 1.03290, y= 1.10121, ~ = 0.25771, ~-= 0.53002 and a= 

0.59346 fm. (An analysis of optical model potentials provides further the value cr = 1.05, and 

hence gives~= 0.15790, [19].) 

4. SOME CONSEQUENCES 

a) Nuclear Matter 

The following properties of nuclear matter follow from the above set of parameters: 
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• Four Liquid Drop Properties 

Radius constant of standard nuclear matter' 

Volume binding coefficient 

ro = 1.14 fm 

a1 = 16.04 MeV 

J=32MeV Symmetry energy coefficient 

Surface energy coefficient 

• Five Droplet Model Properties [20] 

Compressibility coefficient 

Curvature energy coefficient 

Effective surface stiffness coefficient 

Density-symmetry coefficient 

Symmetry-anharrnonicity coefficient 

b) Neutron Matter 

a2 = 18.5 MeV 

K= 234MeV 

a3 = 12MeV 

Q=34MeV 

L=50MeV 

M=7MeV . 

Figure 1 shows the energy per particle of neutron matter at density Pn as a function of the 

density parameter <l> = (Pnfi po)l/3. There is a striking correspondence with the theoretical 

estimate of [21], which is based on entirely different physical input. 

c) Nuclear Charge Distributions 

Figure 2 shows the calculated charge distributions for 56fe, 124Sn and 209Bi compared 

with Woods-Saxon or three-parameter Gaussian fits to measurements [22]. The radius 

constant ro = 1.14 fm, deduced from a fit to masses, is just about perfect in reproducing 

measured nuclear sizes. 

d) Fission Barriers 

Figure 3 shows calculated fission 

barriers down to very light nuclei 

(diamonds) and a comparison with 36 mea­

sured barriers (corrected for ground state 

shell effects) for nuclei with 71 ~ Z ~ 98 

(black squares). The triangles show the 

discrepancies, which become noticeable 

below Z = 84. 

e) Drip-line Nuclei 

Figure 4 shows the chemical potentials 

for isotopes of Sn from neutron number 

N = 120 down to N = 32. These numbers 

define the neutron drip line and the classi­

cal proton drip line (i.e., .the drip line in the 

absence of quanta! barrier penetration) in 

the Thomas-Fermi model without shell and 
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Figure 1. The energy per particle of neutron 
matter according to [21] (squares), compared 
with our Thomas-Fermi result [19]. 
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neutron number [ 19]. 

pairing effects. Figure 5 illustrates the density distributions for 120Sn and for the two exotic 

drip line isotopes 82Sn and 170Sn. 

f) A Nuclear Bubble [23,24] 

Figure 6 shows the last unruptured nucleus (N = 372, Z = 248, z2JA = 99.2) and the first 

bubble nucleus (N = 378, Z = 252, z2JA = 100.8) in a sequence of increasingly heavier nuclei 
! 

(constrained to spherical symmetry) for which (N-Z)/A = 0.2. 

In summary, we now have a workable statistical model of nuclei that can be used in a 

variety of applications. In addition to combining it with Strutinsky shell corrections in order 

to give a good account of nuclear binding energies, it can be subjected to various extreme 

conditions. Some of them I already indicated. In the future we will be investigating the 

effects of large angular momenta on the ground-state and saddle-point properties of these 

shell-averaged idealized nuclei. 

5. THE DROPLET MODEL 

The Droplet Model [20,25] is defined in terms of an expansion in powers of A-113 and J2 
that claims to reproduce quantitatively the principal features of any self-consistent, shell­

averaged nuclear calculation, provided that A-113 and J2 are sufficiently small. The claim is 

that, given the nine parameters listed in Section 4(a)- which are properties of infinite or 

semi-infinite nuclear matter- one can then predict the energies and density distributions of 

finite nuclei in ternis of closed algebraic expressions, accurate to relative order (A-113)2 and 

J4. Here are a couple of examples to show how it works. 
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(a) Binding Energies 

The Droplet Model formula for the energy of a nucleus with N = Z and the Coulomb 

energy switched off is 

E =-atA +a2A213 +( "3- 2~2) All3 , 

or 

(6) 

E = -15.677 A+ 18.56A213 + 7.00A113 MeV , (7) 

if, for illustrative purposes, one takes the parameters from our 1969 Thomas Fermi model 

[25]. The actual Thomas-Fermi calculations deviate from the first two terms by an amount 

that can be represented by 6.98 A -113 MeV (plus higher order terms), thus confirming the 

Droplet Model prediction (see Fig. 25 in [25]). Figure 7 shows E/A plotted vs A -113. 

The Droplet Model predicts further that when N =t. Z the additional symmetry energy can 

be written as 

LlE =Jeff AI2 ' (8) 

where Jeff= J/(1 + roA-113) and ro = ~ ~- ~L· Figure 8 compares this prediction with 

Thomas-Fermi calculations from [25]. 

. (b) Densities 

The Droplet Model predicts the form of an equivalent sharp-surfaced "generating density," 

which can be used to generate an approximation to the actual diffuse density by convoluting it 

with a suitable short-range function. Away from the surface the generating density itself 

should agree with a Thomas-Fermi calculation. Figure 9 compares the neutron and proton 

A-113 

0.0 0.2 0.4 0.6 0.8 
0 

/ 
/ / 

/ 
/ / 

/ / Figure 7. A Thomas-Fermi binding energy 
-3 / / 

/ / per particle is plotted vs A -113 (solid curve) 
/ / 

/. and the result is compared with the liquid / £. 
/ 

> -6 / drop approximation (dashed line) and the "' ::;: / 7' . 
. £ / 7' Droplet Model formula, eq. (7) (dot-dashed). "' "Y' u 

" / A detailed comparison shows that the "' -9 / 0. 

G; /Y' 
· Droplet Model gives a perfect representation 0. /7 

>- <r' e> # of the Thomas-Fermi curve for small A-1/3, ., 
c: -12 ¢? w 

but in the region of actual nuclei (between 
the two vertical lines) higher-order terms 

-15 conspire to give to the Thomas-Fermi curve 
a linear appearance, suggesting erroneously 

-18 the absence of a curvature energy. 
125 15.63 4.63 1.95 

A (Parameters from [25].) 
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Figure 9. The Droplet Model 
neutron and proton densities from 
eq. (9) are compared with 
Thomas-Fermi (point) densities. 
(Parameters from [25].) 



densities for three Thomas-Fermi nuclei, taken from [25], with the corresponding Droplet · 

Model generating densities. In the bulk the agreement is virtually perfect down to A= 43. 

[The Droplet Model expressions for the neutron and proton densities are as follows 

Pn ="Pn +Pn , Pv =Pp +pp (9) 

(10) 

(11) 

0= 1+---- 1+--A-113 - ( 3 c1 z2 ) / ( . 9 1 ) 
8 Q A513 4 Q 

(12) 

(13) 

~ = (Ze2 1 4JRo) f [ 1~- tcr 1 R0 )2] (14) 

£ = (61 I K) o (15) 

Ro = roA113 , Po= 1 I (!1tr5) , c1 = 3e2 I 5ro (16) 

Rn I Ro = (Npo I Af5n)113 Rp I Ro = (Zpo I App)l/3 , (17) 

where e is the charge unit, and the values of the Droplet Model parameters ro, a1, a2, J, K, Q, 

L used to construct Fig. 9 were taken from [25].] 

A characteristic feature of the Droplet Mode~. seen in Fig. 9, is that the generating densities 

for neutrons and protons have different equivalent sharp radii, and that the bulk densities 

become slightly non-uniform under the influence of the Coulomb repulsion. If these two 

effects are suppressed, there results the Liquid Drop Model, with a single equivalent sharp 

surface and uniform bulk densities. 

This, roughly speaking, is the relation between the Thomas-Fermi, the Droplet and the 

Liquid Drop Models. Which one to use in practice? Each has its advantages and 

disadvantages. Nothing can beat the simplicity of the Liquid Drop Model. At the other 

extreme, the Thomas-Fermi model is close to an ideal macroscopic description, without the 

limitations of the Droplet Model, which fails when A -113 or J2 are too large. But the Droplet 

Model has the advantage of being an algebraic scheme, and there are situations where it is the 

model of choice, as illustrated by the theory of the electric dipole moments of deformed 

nuclei. 
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(c) Dipole Moments 

The Droplet Model provides a formula [27 ,28] for the macroscopic contribution to the 

electric dipole moment d (in units of the proton charge) of a deformed nucleus, whose surface 

is described in terms of Legendre Polynomials PQ(cos8): 

R(O) = Ro( I+ ~ntP t( cosO)) . (18) 

Thus 

d- C ~ 12(£-1)(£+1)(8£+9) a a 
· - r £~ 5(2£ + 1)2(2£ + 3)2 f £+1 

C L
oo (R -1)(£ + 1)(£ + 3) -'------'--'---'-'---'-'-. a n(X 0 

- s £=2 (2£ + 1)(2£ + 3) {. {.+1 (19) 

+ terms of higher order in the <X£ 's , 

where 

Cr=-- -+-I+-A-113 AZe2 [1 6L 15 ] 
8 J JK 8Q ' 

(20) 

Cs =(2NZ/ A)(I-B)Ro , (21) 

with 8, Ro given by eqs. (12,16). It would be a thankless task to try to extract an amount of 

information comparable to that encapsulated in eq. (19) by performing dozens (thousands?) 

of variously constrained Thomas-Fermi calculations. 

6.THECURVATUREENERGYPUZZLE 

As discussed in [29,30] there seems to be a difficulty in reconciling theoretical estimates of 

the curvature energy coefficient, which invariably give a3 somewhere around 10 MeV, with 

empirical fits to binding energies and fission barriers, which are said to require a3 = 0. Our 

Thomas-Fermi model does not seem to suffer from this conundrum: it is characterized by 

a3 = 12 MeV, yet gives an acceptable fit to binding energies and barriers. To throw further 

light on this problem I made the following numerical experiment. With our current 

parameters, eq. (6) gives for the binding energy for uncharged N = Z nuclei the expression 

E(A) = -16.04A+ 18.5A213 +9.1A113 -11.56 MeV , (22) 

where I added the last term to represent missing higher-order terms which, in practice, make E 

tend to zero when A is small. I chose the value 11.56 to make E(A) vanish at A = 1. In a plot 

of the type of Fig. 7, this higher order term reverses the peeling off from the dashed straight 

line caused by the term proportional to A 1/3 in eq. (6). Now I fitted to eq. (22), in the interval 

of nuclei from A = 20 to A = 260, an expression E without the last two terms, i.e., 
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(23) 

The least squares fit gave lit= 16.2119 MeV, a2 = 20.7265 MeV, 3.I!d the RMS deviation 

was - surprise - a mere quarter of an MeV out of binding energies ranging from 300 to 

3000 MeV! In other words, because of the interplay between the A 113 -term and the higher 

order terms, the plot of the binding energy per particle vs A -1/3 in the range of actual nuclei 

(except the lightest) can be very nearly a straight line. This might lead one to the erroneous 

conclusion that there is no curvature correction when, in fact, a3 is of the theoretically 

expected magnitude. My own feeling at the moment is that theoretical estimates of a3 [30], 

including our Thomas-Fermi determination of a3 as equal to 12 MeV, are probably not too far 

off. [If the energy per particle is written as 

y = -a1 + a2x + c3x2- qx3 , where x =A -1/3 , (24) 

a straight-line approximation to y(x) in the interval x1 = 250-113 = 0.159 to 

x2 = 20-113 = 0.368 will be relatively accurate if the inflection point in y(x) falls not too far 

from the center of the interval, at x = 0.264. 

With c3 = 9.1, C4 = 11.56, the inflection point 

is at x = cy3c4 = 0.262.] 

7. CONCLUSIONS 

In describing theoretically the macroscopic 

part of nuclear energies we have available 

several approaches, ranging from the Liquid 

Drop Model, through the Droplet Model, to the 

Thomas-Fermi Model. The first two may, in 

fact, be regarded as leading approximations to 

the Thomas-Fermi theory in an expansion in 

A-113 and !2, as depicted in Fig. 10. 

It would have been a pleasure to have 

discussed these refinements of the 

microscopic-macroscopic method with Vilen 

Strutinsky, who contributed so much to both 

aspects of this approach. 
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