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Abstract. In recent years, household LED light bulbs (LED A lamps) have undergone a dramatic price 
decline. Since late 2011, we have been collecting data, on a weekly basis, for retail offerings of LED A 
lamps on the Internet.  The resulting data set allows us to track the recent price decline in detail. LED A 
lamp prices declined roughly exponentially with time in 2011-2014, with decline rates of 28% to 44% per 
year depending on lumen output, and with higher-lumen lamps exhibiting more rapid price declines. By 
combining the Internet price data with publicly available lamp shipments indices for the US market, it is 
also possible to correlate LED A lamp prices against cumulative production, yielding an experience curve 
for LED A lamps. In 2012-2013, LED A lamp prices declined by 20-25% for each doubling in cumulative 
shipments. Similar analysis of historical data for other lighting technologies reveals that LED prices have 
fallen significantly more rapidly with cumulative production than did their technological predecessors, 
which exhibited a historical decline of 14-15% per doubling of production.  

1 Introduction 
Solid state lighting (SSL) utilizing light-emitting diodes (LEDs) is in the process of transforming the 
market for lighting products. Since the start of 2011, US sales of A-shape household light bulbs (hereafter 
A lamps) using LEDs have increased approximately tenfold.1 Meanwhile, the market price of LED A 
lamps has fallen dramatically,2 by a factor of two or more, and a report issued by the U.S. Department of 
Energy (DOE) forecasts a further threefold decline in LED lamp prices by 2030.3 

There are two primary reasons that such a rapid price decline might be expected. The first is Haitz’s 
Law,4,5 which is the observation that the per-lumen price of LEDs has fallen by a factor of 10 in each 
decade since their invention in the 1960s (corresponding to a decline of roughly 25% per year).  The price 
of an LED-based A lamp involves many more components than the individual LEDs themselves, 
however, so Haitz’s law is unlikely to be the full story. A second, broader reason to expect a price decline 
for LED A lamps is the general observation that new technologies tend to fall in price as their production 
increases. This phenomenon is often discussed in the context of experience curves (sometimes referred to 
as learning curves), which mathematically characterize the cost of manufacturing for a given technology 
(and hence the end-user price) as a declining power law in manufacturing experience, which is typically 
quantified by cumulative production6. A broad range of products have been observed to approximately 
follow such a curve, which implies that price falls by a fixed fraction for each doubling in cumulative 
production. Since cumulative production doubles and redoubles very rapidly in the period following 
market introduction for new products, and more slowly for mature products, relatively rapid price 
declines are generally predicted for new technologies like LED A lamps. 

In order to track the price decline in detail, since late 2011 we have been collecting weekly data on the 
price and features of LED A lamps sold on the Internet, using automated web-crawling software. In this 
study, we use these data to produce time series of typical LED A lamp prices, for different lumen ranges, 
with a weekly frequency; and we characterize these time series mathematically. Interestingly, we find that 
the price of LED A lamps has fallen at a faster rate than the Haitz’s-law prediction for individual LEDs. 
We then combine the LED price time series with lamp shipment indices7 published by the National 
Electrical Manufacturers Association (NEMA) to derive an experience-curve relation between price and 
cumulative production for LED A lamps. For comparison, we also derive historical experience curves for 
traditional lighting technologies using data published by the U.S. Census Bureau, and we find that the 
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LED experience curve has recently been much steeper than historically observed for other lighting 
technologies. 

In the next section, we summarize our methods for collecting data from the Internet, as well as the 
additional data sources used in this study. Section 3 details our analytical methods for computing 
aggregate time-series statistics from the Internet data, for computing cumulative production from the 
shipments data, and for fitting price trends and experience curves to our various data sets. We present 
results of these analyses in section 4, and in section 5 we discuss implications and conclude. 

2 Data 

2.1 Crawling the web for LED data 
To allow the price and features of general service LED lamps to be tracked over time, we used automated 
web-crawling software to collect data on a regular basis from five separate online retail outlets from late 
2011 to mid-2014. The retailers included four online-only lighting retailers and the website of one 
national chain of large home-improvement centers. The retailers were selected in part because they had 
unique product offerings for LED A lamps, in an effort  to give a reasonably broad cross-section of the 
limited set of general-service LED lamps available on the US market at the time data collection began in 
late 2011. The home-improvement retailer was included to allow exploration of any systematic offsets 
between the online-only retail prices and prices at physical stores, since the latter are expected to capture 
a majority fraction of household lamp sales8.  

Data collection typically occurred on a weekly basis, but data-collection errors and differences in the 
commencement of data collection for each site led to varyingnumbers of total collections for the sites. 
Rapid expansion of the LED market during the data-collection period led to a large time variation in the 
number of general-service LED lamps collected from the sites, as some retailers dramatically expanded 
their selection, while others focused on a narrower range of products. The collection statistics for the five 
retail sites are summarized in Table 1. Our approach to accounting and correcting for differences in 
collection frequency and yield is summarized in Section 3.1.2.  

Table 1. Summary of data sources for LED retail data.  

Retailer Type Number of 
data collections 

Average 
LED 
Yield 

Minimum 
LED Yield 

Maximum 
LED 
Yield 

1 Internet only 123 46.7 3 72 
2 Internet only 163 7.9 2 17 
3 Internet only 161 6.6 5 11 
4 Internet only 161 56.7 13 177 
5 Home-improvement center 103 55.7 1 110 
 

The data collection software proceeds by loading a page from each website listing the available general-
service LED options. It then follows links to each product offer in turn and extracts the desired data from 
the HTML code underlying the page. Data fields collected for general-service LED lamp offers included 
the price, brand, quantity of lamps being sold (e.g., in a multi-pack), voltage, wattage, lumen output, 

2 
 



correlated color temperature (CCT), color rendering index (CRI), bulb shape, and any information about 
dimmability. For lamps sold in multi-packs, the collected price data were corrected to represent the price 
per individual lamp.  

2.2 Incandescent and CFL price and shipments data from the US Census Bureau 
We obtained shipments and cost data for incandescent lamps and compact fluorescent lamps (CFLs) from 
the U.S. Census Bureau’s Current Industrial Reports (CIR), Electric Lamps – MQ36B9. For incandescent 
lamps the data spans the years 1958-1994, and for CFLs 1992-1994. These reports survey all known 
manufacturers of electric lamps in the U.S. and report the number of units shipped from a factory or 
factory warehouse, and the value of products shipped. The value of products shipped represents the net 
free-on-board factory selling value of the lamp shipments, after discounts and allowances and exclusive 
of freight charges and excise taxes. This value, therefore, represents the cost to manufacture the product, 
plus a single markup to the original purchaser, likely a distributor. The category in the CIR that best 
represents incandescent A lamps is General lighting, 150 watt and below, 100-130 Volts, a subcategory of 
Large incandescents, except photographic and Christmas tree. For CFLs the category used is Compact 
fluorescent lamps under the Electric discharge, except Christmas tree, category. 

Using the values in the CIR it is straightforward to calculate the cost of each unit by dividing the total 
value of shipments by the number of products shipped. The resulting unit cost, in nominal dollars, is then 
converted to real 2005 dollars using the GDP chained price index provided by the U.S.  Department of 
Commerce’s Bureau of Economic Analysis.10 These real dollar unit costs are used to calculate the 
experience curves as detailed in section 3.3.1 below. 

2.3 Lamp shipment indices from NEMA 
To obtain data on the relative shipment volume of A lamps over time, we digitally extracted data from the 
figures in NEMA’s regular updates to its lamp shipment indices1,11–19 for incandescent, CFL, Halogen, 
and LED A lamps from the beginning of 2001 to the end of 2013. Prior to the third quarter of 2013, these 
indices were referenced to the average quarterly sales in 2006; afterward they were referenced to the 
average 2011 quarter. To correct for errors in the data-extraction process within each data set, all 
extracted data were first normalized with respect to the appropriate reference year for each report using 
the equation  

𝑁𝑁𝑉𝑉(𝑄𝑄,𝑌𝑌) =
𝑉𝑉𝑄𝑄
〈𝑉𝑉〉𝑌𝑌

× 100, 

(1) 

Where Y is the reference year, VQ is the extracted value for quarter Q , 〈𝑉𝑉〉𝑌𝑌  is the average extracted value 
for the four quarters in year Y, and NV(Q,Y) is the normalized value for the quarter Q relative to year Y.   

After normalizing all the extracted values, the 2006-referenced values were converted to a 2011 reference 
year. For reports released from the beginning of 2012 to the second quarter of 2013, which included data 
from all quarters in 2006 and 2011, the following equation was used to convert to data from values 
relative to 2006 average to values relative to 2011 average: 
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𝑁𝑁𝑉𝑉(𝑄𝑄,2011) = 𝑁𝑁𝑉𝑉(𝑄𝑄,2006) ×  
∑ 𝑁𝑁𝑉𝑉(𝑖𝑖,2006)
2006𝑄𝑄4
𝑖𝑖=2006𝑄𝑄1

∑ 𝑁𝑁𝑉𝑉(𝑖𝑖,2011)
2011𝑄𝑄4
𝑖𝑖=2011𝑄𝑄1

. 

(2) 

(Because of our initial normalization, the numerator of the fraction on the right-hand side of this equation 
is equal to 400 for each report.) 

 

 

Figure 1. Quarterly NEMA lamp shipments index from beginning of 2001 to end of 2013 (average 
2011 value = 100) 

The reports that we were able to normalize in this manner yielded shipments index data back to 2004. 
Earlier reports provided 2006-referenced shipments-index data from 2001 through 2003. Because these 
reports did not contain data in 2011, we were unable to use equation (2) to convert them to 2011-
referenced data. The 2006-to-2011 correction factor we computed in that equation varies slightly from 
report to report owing to data-extraction errors, so to correct the pre-2004 data to a 2011 reference year, 
we computed an average correction factor for each report:   

𝐶𝐶𝐶𝐶 =
∑ 𝐶𝐶𝐶𝐶𝑄𝑄
𝑄𝑄𝑄𝑄
𝑄𝑄=2004𝑄𝑄1

𝑛𝑛
, 

(3) 

where QL is last quarter covered by the report, and n is the number of quarters from the beginning of 
2004 to QL. The quarterly correction factor that is being averaged is given by the equation  

𝐶𝐶𝐶𝐶𝑄𝑄 =
〈𝑁𝑁𝑉𝑉(𝑄𝑄,2011)〉 

𝑁𝑁𝑉𝑉(𝑄𝑄,2006)
,  
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(4) 

where CFQ is the correction factor in quarter Q for report R; 〈𝑁𝑁𝑉𝑉(𝑄𝑄,2011)〉 is the average 2011-referenced 
value for quarter Q, where the average is taken across the reports released since the beginning of 2012; 
and NV(Q,2006) is the normalized value of quarter Q in report R, computed from Equation (1). The 
normalized and corrected data are presented in Figure 1. Only the data for LED lamps are used in this 
study, but we present all lamp types for completeness.  

3 Analytical Methods 
This section details the methods we used to convert our web-crawling data into several  time series of 
characteristic price for LED A lamps, for fitting those time series to simple exponential models of price 
decline with time, and for fitting experience curves to our various sources of data for different lamp 
technologies.  

3.1 Constructing aggregate price and efficacy time series for LED lamps  
Regular data collection using the web-crawling software described in section 2.1 yields price and attribute 
data for a varying number (a few to more than 100) of LED A lamps on each collection date, from five 
different retailers. This section describes the procedure for aggregating those data to produce a single 
characteristic price measurement on each date, yielding a time series of characteristic lamp prices for 
trend analysis. 

3.1.1 Lumen bins 
Traditional incandescent A lamps have long been sold at a discrete set of standard wattages. The most 
common of these for household use are 40, 60, 75, and 100 watts, corresponding to light output levels of 
roughly 500, 800, 1200, and 1600 lumens, respectively. Energy-efficient A lamps are typically marketed 
as replacements for a particular incandescent wattage, based on their similar lumen output; however, 
precise lumen output varies from product to product. The technical barriers to producing a marketable 
LED lamp increase with increasing lumen output; thus, the earliest household LED A lamps for general 
illumination purposes were replacements for 40-watt incandescent lamps. 60-watt equivalent LED A 
lamps followed several years later, and in recent years 75 and 100-watt replacements have entered the 
market. Because of the phased market introduction of these lamps, and the increased technical difficulty 
at the higher lumen ranges, there is presently a very strong gradient in price across the different 
incandescent-equivalent wattages. Further, because of the phased market introduction, one might expect 
that price trends would differ for lamps with different lumen outputs. 

Table 2. The lumen bins within which lamps were analyzed for this study. These bins are identical 
to the bins established by EISA 2007. 

Lumen Range Approximate 
Incandescent Equivalent 
Wattage 

310-759 40 
750-1049 60 
1050-1489 75 
1490-2600 100 
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To account for these issues, in this study we analyzed the prices of LED lamps in four different lumen 
bins, corresponding roughly to the four standard incandescent wattages. The bins, summarized in Table 2, 
are identical to the bins established for the regulation of general service incandescent lamps in the United 
States by the Energy Independence and Security Act of 2007 (EISA 2007)20. 

3.1.2 Computing aggregate statistics across retailers 
The automated web-crawling software typically collected multiple LED A lamps from each website on 
each visit. To compute a time series of the typical price or efficacy of an LED A lamp in each lumen bin, 
it was necessary to compute aggregate statistics over all of the lamps collected in each bin on each data-
collection date. As shown in Table 1, the yield of lamps varied by an order of magnitude among the 
different web sites considered and by an even greater margin at individual retailers across time. In this 
situation, simple approaches to aggregation, such as taking the mean or median of all lamps collected on 
each date, can be heavily skewed by changes in the lamp offerings or pricing strategy at the retailers with 
the largest selection on any given date. Because the relative size of the different retailers’ lamp selection 
also varied significantly across time, the impact of individual retailer would be different at different times: 
a sale on LED A lamps at retailer number 4, for example, might have a wildly different impact on the 
average lamp price in 2012 than in 2013. This will make it difficult to interpret any time trends observed 
for statistics that are computed across all lamps collected on each date. 

To guard against such issues, we chose to compute aggregate statistics by first computing the statistic for 
each retailer separately and then averaging the values obtained for each of the five retailers. For example, 
we might compute the average retailer’s median price by computing the median of the prices collected at 
each retailer on a given date, then averaging these five median prices. In mathematical notation, our 
approach to computing a statistic 𝑠𝑠(𝑑𝑑) on date 𝑑𝑑 can be written as 

𝒔𝒔�(𝒅𝒅) =
𝟏𝟏

𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓
 �𝒔𝒔𝑹𝑹(𝒅𝒅)
𝑹𝑹

, 

(5) 

 Where 𝑠𝑠 is the statistic being computed (mean, median, percentile, etc.), 𝑑𝑑 is the date 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟 is the number 
of retailers being considered, and 𝑅𝑅 is an index across all of the individual retailers. For example, if the 
statistic 𝑠𝑠 is the mean, then �̅�𝑠 is the grand mean across retailers. We compute the aggregate statistics 
separately for each of the lumen bins described in section 3.1.1. 

An arguably preferable approach to the one we have outlined here would be to compute a sales-weighted 
average across all the different retailers. However, we lack detailed quantitative information on the sales 
volumes of the different retailers. Fortunately, our primary interest in this study is the computation of 
price trends, rather than absolute prices. Falling prices in the market as a whole will tend to exert 
downward price pressure on all retailers, so one would expect that the trends computed by simple 
averaging across retailers should be very similar to the trends computed via a sales-weighted mean, even 
if the absolute prices are systematically different from the sales-weighted value. 

After computing aggregate statistics on each date using Equation (5), we are left with a time series of 
aggregate price data. Before using this data to compute price trends, it is important to adjust it for the 
effects of inflation. Since the prices we gather from the web are consumer purchase prices, we correct our 
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time series data to real January 2012i dollars, using the monthly chained consumer price index (CPI) 
published by the Bureau of Labor Statistics21. The monthly CPI values are interpolated to yield correction 
factors at each date in the time series.  

3.1.3 Selecting appropriate statistics for time-series analysis 
In using Equation (5) to compute a time series of characteristic price from our web-crawled data, it is 
important to choose a statistic s that properly characterizes typical prices on the market on a given date. 
As discussed above, the ideal statistic would be a sales-weighted average, but since the web crawling 
process yields no information on relative sales, this statistic is unavailable. The unweighted average price 
is a poor alternative for two reasons. First, because LED lamps are a rapidly changing technology, there 
are typically a few very new, high-priced products on the market, which can cause the unweighted 
average to be well above the sales-weighted average. Second, the entry of these high-priced products into 
the market, coupled with temporarily low-priced products in sale events, causes the unweighted average 
to be a fairly volatile metric. 

Using a percentile of the price distribution to represent the characteristic price is more robust to such 
outlier effects, but it is not immediately obvious which percentile should be used. To investigate this, we 
commissioned a survey through Google Consumer Surveysii. The survey asked a single question: If 
you’ve purchased a 60-watt equivalent LED light bulb (not including reflector bulbs) in the past six 
months, how much did you pay? Respondents were prompted to select a price range from a list of options 
that were chosen to approximate percentiles of the price distribution in our web data from the large home-
improvement retailer. We used percentiles from the home-improvement retailer since it is expected to 
have the largest sales volume and thus be most directly representative of the market price distribution at 
any given time. Respondents were also allowed to indicate that they had not purchased any such lamps or 
to fill in a free-form response. 

The survey question was posed to 9706 internet users and received 5024 valid responses. Results were 
weighted to match the demographic distribution of the population of US Internet users; they are presented 
in Table 3. More than half of respondents who had recently purchased an 60-watt-equivalent LED A lamp 
paid a price at or below the tenth percentile of the overall price distribution for such lamps. More than 80 
percent of such respondents purchased a lamp at or below the 25th percentile price, and more than 90 
percent purchased at or below the median price. Nearly two thirds of respondents had not purchased such 
a lamp in the preceding six months. 

Based on these results, the 10th-percentile price is an attractive statistic to use as a characteristic price, 
since it is approximately equal to the median purchase price. However, this statistic, like the unweighted 
mean, is somewhat sensitive to the deep, short-term discounting that occurs during sale events, which 
makes it a somewhat volatile metric. Since our goal in this study is to measure price trends over a period 
of several years, a more stable statistic is desirable. The 25th-percentile price is also a reasonable statistic 
to use as a characteristic price, since the bulk of purchases fall at or below that level; whereas the median 

i When correcting the CIR data for inflation in section 2.3, we used a 2005 reference year. Our web-crawled data 
on consumer price are not directly comparable to the CIR data, and we choose a different reference year here in 
part to highlight that fact. The choice of reference year does not impact the experience rates we measure, which 
will be directly comparable.   
ii https://www.google.com/insights/consumersurveys/home 
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price is likely to be on the tail of the purchase distribution. For these reasons, we adopt the 25th percentile 
as our primary statistic for computing the various time series of price that we analyze in this study. For 
most of the price-trend analyses discussed below that make use of this statistic, we also repeated the 
analysis using the 10th percentile and the median; these alternative analyses yielded similar rates of LED 
price decline to those we obtain from the 25th percentile.  

Table 3. Response percentages for 5024 total responses to the Google survey question “If you've 
purchased a 60-watt equivalent LED light bulb (not including reflector bulbs) in the past six 
months, how much did you pay?”. Results were weighted by age, gender, and region to reflect the 
demographic distribution of the total Internet-using population. 

Response Price percentile 
range* (approximate) 

Percentage of all 
respondents 

Percentage of 
LED purchasers 

$8 or less 0-10 21.1 56.9 
Between $8 and $10 10-25 9.26 25.0 
Between $10 and $12 25-50 3.84 10.4 
$12 or more 50-100 2.87 7.74 
I have not made such a purchase - 62.7 - 
Other response** - 0.21 - 
*Approximate percentiles represented by the response’s price range, for lamps sold by a large home improvement 
retailer in early 2014. 
**The survey included a free-form field for alternate responses. 

3.1.4 Data cleaning and correction 
The automated web-crawling software discussed in Section 2.1 gathers data and crawls to additional 
products by looking for data and links in specified locations on the product listing web pages served by 
each retailer. If the retailers modify or redesign their websites, the web-crawling software may fail to 
gather certain data if it is no longer located where expected, or it may fail to gather data at all if the format 
or location of the relevant links has changed. Because of this, in any given week it was possible that one 
or more websites yielded incomplete data or no data at all.  

If multiple websites had missing data in a given week, we excluded that week’s data from consideration. 
If only one website had missing data, we eliminated any partial data collected for that website in that 
week, computed our aggregate statistics from the remaining web sites, and then computed correction 
factors to account for the absent data. To construct the correction factors for a given statistic, we compiled 
a list of “good” dates, �𝐷𝐷𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�𝑤𝑤, for each web site 𝑤𝑤, on which the crawling software collected a 
complete data set for that site. Using Equation (5) we then re-computed the aggregate statistic on those 
dates, excluding site 𝑤𝑤. We denote this re-computed statistic �̅�𝑠~𝑤𝑤(𝑑𝑑). The correction factor is then given 
by taking the ratio between 𝑆𝑆~̅𝑤𝑤 and 𝑆𝑆̅ and averaging over the “good” dates: 

𝐶𝐶𝑤𝑤 =
1

𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑤𝑤
�

�̅�𝑠(𝑑𝑑)
�̅�𝑠~𝑤𝑤(𝑑𝑑)

𝑔𝑔∈�𝐷𝐷𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�𝑤𝑤

, 

(6) 
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where 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑤𝑤 is the number of dates in the set �𝐷𝐷𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�𝑤𝑤. The final corrected statistic can then be 
computed as  �̅�𝑠𝑐𝑐𝑔𝑔𝑟𝑟(𝑑𝑑) = �̅�𝑠(𝑑𝑑) × 𝐶𝐶𝑤𝑤 .    

3.2 Time trend fits for absolute LED A lamp price and the incremental price of 
lumen output 

Having computed aggregate statistics as a function of time and corrected them for missing data, we can fit 
these data to mathematical models describing overall trends with time. All fits, in this section and the 
following one, are performed via least-squares minimization.  

Since price must be nonnegative, the simplest models that can be used to describe our time-series price 
data are exponential or power-law trends with time. The data describe approximately straight lines on a 
semilog plot (e.g., as shown in Figure 5), which implies that they will be well described by exponential 
models. Thus, we fit our aggregate price time series data to the following exponential model: 

𝑃𝑃(𝑦𝑦) = 𝑒𝑒−𝛼𝛼(𝑦𝑦−𝑦𝑦0), 

(7) 

where 𝑦𝑦 is the year, 𝛼𝛼 is the fractional annual rate of price decline, and 𝑦𝑦0 is the reference year, defined to 
be the year in which the modeled price is equal to $1. 

LED A lamps in each of the lumen bins were introduced to the market at different times, spanning 
approximately a decade, with the most luminous lamps only being introduced in late 2012 and having 
substantially higher prices than their less luminous counterparts had at that time. It is apparent from 
inspection of the data (e.g., Figure 5) that the more luminous lamps have lately been declining in price far 
more rapidly than the less luminous, more mature product options. The price differential between the 
lumen bins has been shrinking in a manner that also appears roughly exponential with time. It is thus also 
interesting to fit a model to the difference in price between the lowest lumen bin listed in Table 2 and the 
higher lumen bins: 

Δ𝑃𝑃𝑄𝑄(𝑦𝑦) = 𝑒𝑒−𝛼𝛼Δ(𝑦𝑦−𝑦𝑦0,Δ), 

(8) 

where Δ𝑃𝑃𝑄𝑄(𝑦𝑦) is the difference in price in year 𝑦𝑦 between lumen bin 𝐿𝐿 and the lowest lumen bin (310-749 
lm), and 𝑦𝑦0,Δ is the reference year in which the price difference is equal to $1.  

We fitted the two equations in this section to the aggregate price statistics via ordinary least-squares 
regression in semi-log space. That is, we regress log𝑃𝑃 and logΔ𝑃𝑃 on the variable 𝑦𝑦 and a constant with 
equal weighting of all data points in the time series of aggregate price. Results of the fits are given in 
section 4.2.1. 

3.3 Experience curve fits 
Prices for a broad range of products and technologies have generally been observed to decline as a 
function of increasing production. In many cases, these declines approximately obey a power law relation 
between price 𝑃𝑃 and the cumulative number of units produced 𝑄𝑄 since the technology was first brought to 
market6, often referred to as an experience curve: 
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where 𝑏𝑏 and 𝑄𝑄0 are technology-specific constants. The power-law index 𝑏𝑏 represents the fractional 
decline in price that occurs for each fractional increase in cumulative production.  A useful quantity that 
can be computed from the power-law index 𝑏𝑏 is the experience rate 𝑟𝑟 = 1 − 2−𝑏𝑏, which represents the 
fractional price reduction that occurs for each doubling in cumulative shipments. Experience curves have 
been suggested as a useful tool for forecasting the future cost-effectiveness of energy-efficient 
technologies,22 so it will be interesting to fit our data to such models. 

Experience curves are often referred to in the literature as a learning curve, on the principle that 
manufacturers of new products will learn new methods to improve the efficiency of their production, and 
thus reduce their costs, at a roughly fixed rate as their cumulative experience grows. Although this may be 
an accurate description of the process for individual manufacturers, when one considers the market as a 
whole, there are many economic phenomena besides learning that can cause price to decline with 
cumulative production, including economies of scale and competitive market pressure. Nevertheless, an 
approximate power-law relation between price and cumulative production appears with remarkable 
regularity across product types and market sector. To avoid attributing this phenomenon to the particular 
mechanism of learning, we have chosen to use the term experience curve throughout this study. In the 
remainder of this section, we describe our methods for fitting price and production data to experience 
curves for LED, CFL, and incandescent A lamps. 

Equation (9) depends on the cumulative number of units produced since the product was introduced to 
market. For each of the products we consider here, we have annual shipments data starting in some year 
after the year of introduction. To convert these annual shipments into approximate cumulative production, 
it is necessary to estimate the annual shipments data for the years prior to the first year of the data set. To 
make these estimates, we start by assuming a year of market introduction for each product. In particular, 
we assume that incandescent lamps entered the market in 188023, CFLs in 198024, and LED A lamps in 
200823. We discuss our approach to estimating shipments prior to the start of our data sets in sections 
3.3.1 and 3.3.2.  

3.3.1 Estimating cumulative shipments for CFL and incandescent lamps 
The Census data described in section 2.2 yield a time series of annual shipments and per-unit value. To fit 
an experience curve, it is necessary to convert the annual shipments data into a time series of cumulative 
shipments by estimating the annual shipments that occurred in years prior to the start of the data series.  

For CFLs, we have quarterly census shipments data between 1992 and 1994. CFLs did not achieve 
substantial market penetration in the US until the late 1990s and early 2000s, so we assume that the 
Census represent the early-adoption phase of the CFL market. The growth of shipments during this phase 
of can be well represented for many products by a Bass adoption curve25: 

𝑆𝑆(𝑡𝑡) = 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
1 − 𝑒𝑒−(𝑝𝑝+𝑞𝑞)(𝑟𝑟−𝑟𝑟0)

1 + 𝑞𝑞
𝑝𝑝 𝑒𝑒

−(𝑝𝑝+𝑞𝑞)(𝑟𝑟−𝑟𝑟0)
, 
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where  𝑆𝑆(𝑡𝑡) is the shipments in time period 𝑡𝑡, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 is the shipments at market saturation, 𝑡𝑡0 is the time of 
introduction, and 𝑝𝑝 and 𝑞𝑞 are parameters representing the fraction of consumers who are early adoptors 
and imitators, respectively. To estimate the shipments of CFLs prior to 1992, we fit the Census data to 
this model, assuming 𝑦𝑦0 = 1980 and treating 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚, 𝑝𝑝, and 𝑞𝑞 as free parameters. The fit yielded 
parameter values of 𝑝𝑝 = 0.01,𝑞𝑞 = 0.12, and 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 3.2 × 106. The resulting curve is shown in Figure 
2. Summing the resulting model from 1980 through 1991 yields an estimate for the cumulative shipments 
prior to the beginning of the Census data of 130 million units.  

 

Figure 2. Quarterly shipments data for CFLs from the US Census Bureau fitted to the Bass 
adoption curve given in Equation (10). 

In the case of incandescent lamps, the Census data are much more extensive and fall well within the 
period of market maturity, running from 1957 through 1994. We note that the data, shown in Figure 3, 
exhibit a roughly linear growth over the entire sampled period. A backward linear extrapolation of this 
trend, also shown in the figure, reaches zero shipments in 1907, at which time the market saturation of 
incandescent lamps was indeed extremely low. A more sophisticated model built to capture the dynamics 
in the early-adoption period would have negligible impact on the cumulative shipments to 1957 that we 
infer from this simple extrapolation, so for the purposes of this study we consider the linear extrapolation 
to be sufficiently accurate. Summing this linear model from 1907 through 1956 yields an estimate of 20 
billion cumulative shipments from market introduction through 1956. 
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Figure 3. Annual shipments data for incandescent lamps from the US Census Bureau fitted to a 
linear growth model. 

Using these initial cumulative shipments estimates for CFLs and incandescent lamps, we can construct 
time series of cumulative shipments by adding the estimates to the cumulative sums of the Census 
shipments data. The Census data also yield estimates of the average value per unit, as discussed in section 
2.2. This is sufficient data to perform a fit to Equation (9), yielding an estimate of the experience curves 
for these two products. Results of these fits are presented in section 4.1. 

3.3.2 Experience curve data for LED lamps 
In the case of LED lamps, we do not have data on absolute shipments; instead we have a shipments index 
normalized to a quarterly average value of 100 in 2011, as described in section 2.3. Fortunately, the form 
of Equation (9) allows us to simply express our cumulative shipments in units where the average of the 
2011 quarterly shipments is equal to 100. The power-law index 𝑏𝑏 that we obtain from our fit will be 
independent of the units we use for 𝑄𝑄.  

As with the incandescent and CFL data, the LED shipments index time series starts after the year of LED 
market introduction; hence we must construct a model to estimate the cumulative shipments prior to the 
beginning of the data series in 2011. We note that LED A lamps are currently in a very early phase of 
their market adoption, a period during which a Bass adoption curve is very well approximated by an 
exponential growth model. Furthermore, we note that the LED shipments curve shown in Figure 1 is very 
well approximated by an exponential curve. Therefore, we simply approximate the shipments of LED 
lamps by fitting an exponential curve to the LED shipments index and extrapolating back to the year of 
introduction in 2004. Summing this curve from 2004 through 2010 yields an estimate for the cumulative 
LED A lamp shipments through 2010 of 2.6 times the average quarterly shipments in 2011. By adding 
this value to the cumulative sum of the LED index we can construct a quarterly cumulative shipments 
index from 2011 through 2013. 
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To fit an experience curve, it is then necessary to construct a quarterly time series of LED price data. To 
do this, we can use the aggregate time-series price statistics that we developed in section 3.1. However, 
the large differences in prices and price trends among the various lumen bins, along with the varying 
times of introduction for lamps in each bin, will complicate any attempts to construct a meaningful price 
statistic across all bins that is comparable over time. Instead, we note that lamps in the lowest lumen bin 
(350-710 lm) have had the longest presence on the market, and, as we will discuss in section 4.2.1, prices 
for all brighter lumen bins are declining relative to the lowest bin.  Therefore, we take lamps in lowest 
lumen bin to be representative of a baseline technology, with lamps in higher lumen bins representing 
incremental technology improvements that require a price increment which is declining over time. In 
estimating an experience curve, for LED A lamps as a whole, we wish to analyze the decline in price of a 
technology at a constant quality level, so in this analysis we consider only the time series price data for 
the lowest lumen bin (350-710 lm) in the experience-curve analysis.  

In addition, our time-series price data from web crawling has a weekly frequency. For comparison against 
the cumulative shipments data, we down-sample to a quarterly frequency by taking the six-week average 
of our price time series about the beginning of each quarter.  This yields a set of quarterly price data that 
can be fitted against our quarterly cumulative shipments index to produce an estimated experience curve 
for LED A lamps. We perform the fit using ordinary least-squares in log-log space. That is, we regress 
log𝑃𝑃 on log𝑄𝑄 and a constant with equal weighting of all data points. Results of this fit are presented in 
section 4.2.2. 

4 Results 

4.1 Incandescent and CFL experience curves 
Figure 4 shows the Census data on cumulative shipments and average value per unit for Incandescent and 
CFL A lamps (Sections 2.2 and 3.3.1). Also shown are fits to these data of the power-law experience 
curve given in Equation (9). The fit parameters and derived experience rates and their uncertainties are 
presented in Table 4. The rates of price decline with production are remarkably similar for the two 
technologies, with prices falling at 14-15% per doubling in cumulative shipments.  

Interestingly, the experience rates we derive here are nearly identical to the rate estimated by DOE for 
linear fluorescent lamps in a recent regulatory analysis26. That analysis found an experience curve power-
law index b = 0.226 and experience rate r = 0.145 for linear fluorescent lamps. The similarity in the 
experience curves for incandescent, CFL and linear fluorescent lamps suggests that a common experience 
rate may have historically applied to many commodity lamps used for general illumination. 
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Figure 4. Experience curves for Incandescent (top) and CFL (bottom) A lamps. Data points are 
from the US Census Bureau9 and curves are fits to Equation (9). 

Table 4. Fit parameters and derived experience rates, with ordinary-least-squares standard error 
estimates, for the experience curve fits shown in Figure 4. 

 Power law index 
𝒃𝒃 

Reference Quantity 𝑸𝑸𝟎𝟎
1 Experience rate 𝒓𝒓 

Incandescent 0.226 ± 0.048 100.480±0.341  0.145 ± 0.029 
CFL 0.219 ± 0.121 105.45±1.26 0.141 ± 0.078 
1Millions of units 
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4.2 Trends in LED A lamp prices 

4.2.1 Time trends of absolute and differential price 
Figure 5 is a semilog plot showing time series of the 25th percentile lamp price, averaged across retailers 
as described in section 3.1.2, for LED A lamps in each of the four lumen bins we consider. Correction 
factors for missing data have been applied as described in section 3.1.4. Data series for the two lower-
lumen bins begin at the commencement of data collection in late 2011. For the two higher-lumen bins, the 
data series begin later, since products in those lumen ranges were only widely introduced to the market in 
2012. For each lumen bin, significant declines in price are evident. 

Gray lines in the figure show fits of equation (7) to the time series trends. Fit parameters and uncertainties 
are presented in Table 5. As shown, prices declined at an annual rate of 28-44% during the time period 
sampled. If these trends were to continue uninterrupted, prices for LED A lamps in all lumen bins would 
fall to one dollar by the early 2020s.  

 
Figure 5. Trends in the mean retailer’s 25th percentile price for LED A lamps, by lumen bin. 
Trends are shown on a semilog plot, so that exponential curves describe straight lines with slope 
equal to the exponential decline rate 𝜶𝜶. 
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Figure 6. Trends in the incremental price of each lumen bin, relative to the lowest bin. Trends are 
shown on a semilog plot, so that exponential curves describe straight lines with slope equal to the 
exponential decline rate 𝜶𝜶. 

Table 5. Absolute price decline for LED A lamps: parameters of the exponential fit with ordinary-
least-squares standard-error estimates. 

Lumen bin Rate of price decline 𝜶𝜶 (yr-1) Reference year 𝒚𝒚𝟎𝟎  
310-749 0.284 ± 0.012 2023.2 ± 0.5 
750-1049 0.353 ± 0.012 2022.1 ± 0.3 
1050-1489 0.406 ± 0.019 2021.7 ± 0.5 
1490-2600 0.442 ± 0.020 2022.4 ± 0.5 
 

Table 6. Incremental price decline for LED A lamps of increasing lumen output: parameters of the 
exponential fit and ordinary-least-squares standard error estimates. 

Lumen bin Rate of price decline 𝜶𝜶𝚫𝚫 (yr-1) Reference year 𝒚𝒚𝟎𝟎,𝚫𝚫  
750-1049 0.558 ± 0.036 2016.3 ± 0.3 
1050-1489 0.596 ± 0.032 2017.7 ± 0.3 
1490-2600 0.585 ± 0.032 2019.6 ± 0.4 
 

Figure 6 shows time series of the typical price increment Δ𝑃𝑃𝑄𝑄 between the three highest lumen bins and 
the lowest lumen bin. These time series are computed by differencing the time series shown in Figure 5. 
These differenced time series are somewhat more volatile than the absolute price trends, but significant 
declines are still readily apparent, with incremental prices dropping by factors of 3-5 over the time period 
shown.  Gray curves show fits of equation (8) to these time series; fit parameters and uncertainties are 
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presented in Table 6. The incremental price of increased lumen output has declined by 55-60% annually 
over the time period analyzed, and if these trends continue uninterrupted, the price increments over the 
lowest lumen-bin price will fall to one dollar by late in the current decade. 

4.2.2 Experience curves 
Figure 7 shows quarterly data on price and cumulative shipments for LED A lamps, as developed using 
the methods described in section 3.3.2. (As explained in that section, the prices used in this part of the 
analysis are the prices of lamps in the 310-710 lumen bin.)  For the reasons laid out in section 3.1.3 we 
consider the 25th-percentile price, averaged across retailers, for our primary analysis (red points). By 
contrast, however, when we estimated experience curves for incandescent and CFL A lamps in section 
4.1, we derived price data from the average value of shipments, which corresponds to a shipments-
weighted average. This may not be directly comparable to trends in the 25th percentile price. We therefore 
also analyze the mean price, averaged across retailers.  

Since this mean is a model-weighted mean, not a shipments-weighted one, it is also not directly 
comparable to the Census data. In particular, because some LED sales will occur at very high price points 
as new, more advanced LED lamps enter the market, the unweighted mean price is likely to be much 
higher than the median price. Because the bulk of purchases occur well below the median price, the 
unweighted mean is therefor also likely much higher than the shipments-weighted mean. Thus, we can 
take the unweighted mean values we compute as an upper limit on the shipments-weighted mean.  

Figure 7 also shows fits to the data of the experience curve formula given in Equation (9). The fit 
parameters and derived experience rates, with their associated uncertainties, are summarized in Table 7. 
In the 2012-2013 period, cumulative shipments of LED A-lamps to the US market doubled more than 
twice, while prices fell dramatically. The mean and 25th percentile price declined by 20% and 26%, 
respectively, for each doubling in the cumulative shipments. These experience rates are substantially 
higher than the 14-15% observed for CFL and incandescent A lamps in section 4.1 and for linear 
fluorescent lamps observed by DOE.26 Given the parameter uncertainties, the learning rate for the mean 
LED A lamp price is marginally consistent (within 95% confidence) with the learning rates for the other 
technologies, but the learning rate for the 25th percentile LED lamp price is very significantly higher than 
the learning rates for the other technologies. It thus appears that LED A lamps have recently been 
following a steeper experience curve than has historically been observed for other lighting technologies. 
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Figure 7. Price decline for LED A-lamps in the 310-749 lm bin of luminous flux, as a function of the 
quarterly time series index of cumulative shipments from 1Q 2012 through 4Q 2013. Data are 
shown on a log-log plot (so that power-law models describe straight lines), and cumulative 
shipments are normalized to 1Q 2012. Price data are shown for the average retailer’s model-
weighted mean and first-quartile prices. Gray lines show fits of the power-law function given by 
Equation (9) to the price-shipments trend for each of these price statistics. Fit parameters are 
summarized in Table 7. 

Table 7. Parameters of the power-law fits shown in Figure 7 of Equation (9) to the relation between 
price and cumulative shipments. 

Price statistic Decline parameter 𝒃𝒃 Reference Quantity 𝑸𝑸𝟎𝟎
1 Experience rate 𝒓𝒓 

Mean 0.317 ± 0.053 107.69±0.54 0.197 ± 0.033 
25th percentile 0.430 ± 0.066 106.23±0.50 0.256 ± 0.039 
1In units of the total shipments in year 2011. 

5 Discussion and Conclusions 
From late 2011 through mid-2014, we have collected weekly data on LED A-lamp prices and features 
from five Internet retail sites. In this study we use the data to construct four time series of characteristic 
prices for LED A lamps in lumen bins corresponding to the standard incandescent wattages used 

LED 
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historically for household applications. To establish a characteristic price statistic, we commisioned a 
brief consumer survey which found that the median recent purchase of an LED A lamp has occurred at 
approximately the 10th percentile in price, and roughly 80% of purchases occur at or below the 25th price 
percentile.  

The LED A lamp price data exhibit a roughly exponential rate of decline in each lumen bin. Fitting the 
time series data to a simple exponential decline model, we find price-decline rates ranging from 28 to 44 
percent per year, with faster rates of price decline for lamps with higher lumen output. Notably, these 
rates of decline are all faster than the 25 percent annual decline rate in per-lumen price that is observed 
for individual LED elements in Haitz’s law. This suggests that Haitz’s law, by itself, is not the primary 
driver of the recent price declines for LED A lamps. Declines in the costs of other components, 
economies of scale in manufacturing, competitive pressure, and policy support for research and 
development may all have contributed to the rapid price declines observed for LED A lamps. 

Combining our Internet price data with data from NEMA’s lamp shipments indices, we estimated an 
experience curve for LED A lamps. Additionally, we used price and shipments data from the U.S. Census 
Bureau to estimate experience curves for incandescent and compact fluorescent A lamps, following 
DOE’s methodology for estimating an experience curve for linear fluorescent lamps. Prices for LED A 
lamps (in the lowest EISA lumen bin, which we take as representative of the baseline technology) have 
recently fallen by 20-26% for each doubling in cumulative shipments. By comparison, prices for 
incandescent, compact fluorescent, and linear fluorescent lamps have all historically fallen by roughly 
15% for each doubling in cumulative shipments.  

There are numerous potential reasons that LED A lamps might have a faster experience curve than other 
lighting technologies. The first is Haitz’s law: a primary manufacturing input that is falling rapidly in 
price will enhance overall reductions in manufacturing costs and, ultimately, consumer prices. As we 
have already noted, however, Haitz’s law is likely not the only explanation for the speed of the price 
decline. Since the other manufacturing costs for LEDs (e.g., electronics, lamp envelopes, lamp assembly) 
are similar to those for CFLs, it also seems unlikely that declines in these costs explain the faster 
experience curve for LEDs.  

Heightened competition is another possible driver of the rapid experience rate for LED lamps. The 
manufacture of traditional lighting technologies for the U.S. market has long been dominated by a small 
number of large companies with a long history in the lighting market, but the advent of LED lighting has 
seen the entry of numerous new players into the market, including large consumer-electronics firms and 
small startup companies. The increased competitive pressure may be driving more rapid declines in 
consumer prices for LED products than occurred for traditional lighting products.  

Finally, the introduction of LED A lamps has occurred in a very supportive policy environment. In 
particular, the Manufacturing R&D Initiative of DOE’s SSL program identifies the facilitation of 
manufacturing-cost reductions as one of its primary goals27. Additional federal, state, and local programs 
have aimed to reduce barriers to market entry and boost consumer adoption of LED products. Although a 
direct causal link cannot be drawn from the data considered here, it is plausible that the rapid experience 
curve we observe for LED A lamps reflects, at least in part, the success of these efforts. 
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