
An Adaptive Unified Differential Evolution Algorithm

for Global Optimization

Ji Qiang* and Chad Mitchell

Lawrence Berkeley National Laboratory

1 Cycltron Road, Berkeley, CA 94720, USA

Abstract

In this paper, we propose a new adaptive unified differential evolution algorithm

for single-objective global optimization. Instead of the multiple mutation strate-

gies proposed in conventional differential evolution algorithms, this algorithm

employs a single equation unifying multiple strategies into one expression. It has

the virtue of mathematical simplicity and also provides users the flexibility for

broader exploration of the space of mutation operators. By making all control

parameters in the proposed algorithm self-adaptively evolve during the process

of optimization, it frees the application users from the burden of choosing appro-

priate control parameters and also improves the performance of the algorithm.

In numerical tests using thirteen basic unimodal and multimodal functions, the

proposed adaptive unified algorithm shows promising performance in compari-

son to several conventional differential evolution algorithms.

Keywords: differential evolution, evolutionary optimization

1. Introduction

Differential evolution is a simple yet efficient population-based, stochastic,

evolutionary algorithm. It was first introduced by Storn and Price in 1995 as a

global optimization algorithm to optimize real parameter, real-valued functions

∗Corresponding author
Email address: jqiang@lbl.gov,chadmitchell@lbl.gov (Ji Qiang* and Chad Mitchell)

Preprint submitted to Journal of LATEX Templates November 3, 2014

and has generated much interest since then [1, 2, 3, 4, 6, 7, 8]. In a number of5

studies, the differential evolution algorithm performed effectively in comparison

to several stochastic optimization methods such as simulated annealing, con-

trolled random search, evolutionary programming, the particle swarm method,

and genetic algorithms [2, 9, 10, 11]. It has been successfully used in a variety

of applications and demonstrated its effectiveness.10

The differential evolution algorithm uses the scaled differences of parent so-

lutions to form a mutation operator to generate next-generation candidates for

global optimization. In the paper of Storn and Price, five different mutation

strategies were proposed [12]. Several additional variants of these mutation

strategies were later proposed to improve the properties of the mutation oper-15

ation, e.g. to make it rotationally invariant [13]. The use of multiple mutation

strategies makes the differential evolution algorithm complicated to implement

and use appropriately. In this paper, we propose an adaptive unified differential

evolution (AuDE) algorithm for global optimization. This algorithm uses only

a single mutation expression, but encompasses almost all commonly-used mu-20

tation strategies as special cases. It is mathematically simpler than the conven-

tional algorithm with its multiple mutation strategies, and also provides users

the flexibility to explore new combinations of conventional mutation strategies

during optimization. By making the control parameters in the mutation and

crossover stages self-adaptive, it also sets the user free from choosing an appro-25

priate set of control parameters for each optimization problem.

The rest of the paper is organized as follows: in Section 2, the standard dif-

ferential evolution algorithm and its multiple mutation strategies are reviewed.

In Section 3, the adaptive unified differential evolution algorithm is discussed.

In Section 4, numerical benchmarks with conventional mutation strategies are30

presented. Conclusions are given in Section 5.

2

2. Standard differential evolution algorithm

The differential evolution algorithm starts with a population initialization.

A group of NP solutions in the control parameter space is randomly generated

to form the initial population. This initial population can be generated by35

sampling from a uniform distribution within the parameter space if no prior

information about the optimal solution is available, or by sampling from a known

distribution (e.g., Gaussian) if some prior information is available.

After initialization, the differential evolution algorithm updates the popu-

lation from one generation to the next generation until reaching a convergence40

condition or until the maximum number of function evaluations is reached.

At each generation, the update step consists of three operations: mutation,

crossover, and selection. The mutation and the crossover operations produce

new candidates for the next generation population and the selection operation

is used to select from among these candidates the appropriate solutions to be45

included in the next generation.

2.1. Mutation Strategies

During the mutation operation stage, for each population member (target

vector) ~xi, i = 1, 2, 3, · · · , NP at generation G, a new mutant vector ~vi is

generated by following a mutation strategy. Some commonly used conventional

3

mutation strategies are [1, 2, 7]:

DE/rand/1 : ~vi = ~xr1 + Fxc(~xr2 − ~xr3) (1)

DE/rand/2 : ~vi = ~xr1 + Fxc(~xr2 − ~xr3) + Fxc(~xr4 − ~xr5) (2)

DE/best/1 : ~vi = ~xb + Fxc(~xr1 − ~xr2) (3)

DE/best/2 : ~vi = ~xb + Fxc(~xr1 − ~xr2) + Fxc(~xr3 − ~xr4) (4)

DE/current-to-best/1 : ~vi = ~xi + Fcr(~xb − ~xi) + Fxc(~xr1 − ~xr2) (5)

DE/current-to-best/2 : ~vi = ~xi + Fcr(~xb − ~xi) + Fxc(~xr1 − ~xr2)

+ Fxc (~xr3 − ~xr4) (6)

DE/current-to-rand/1 : ~vi = ~xi + Fcr(~xr1 − ~xi) + Fxc (~xr2 − ~xr3) (7)

DE/current-to-rand/2 : ~vi = ~xi + Fcr(~xr1 − ~xi) + Fxc (~xr2 − ~xr3)

+ Fxc (~xr4 − ~xr5) (8)

DE/rand-to-best/1 : ~vi = ~xr1 + Fcr(~xb − ~xi) + Fxc (~xr2 − ~xr3) (9)

DE/rand-to-best/2 : ~vi = ~xr1 + Fcr(~xb − ~xi) + Fxc(~xr2 − ~xr3)

+ Fxc(~xr4 − ~xr5) (10)

where the integers r1, r2, r3, r4 and r5 are chosen randomly from the interval

[1, NP] and are different from the current index i, Fxc is a real scaling factor

that controls the amplification of the differential variation, ~xb is the best solution50

among the NP population members at the generation G, and Fcr is a weight for

the combination between the original target vector and the best parent vector

or the random parent vector. The strategy DE/rand/1 proposed in the original

paper of Storn and Price is the most widely used mutation strategy. It has

stronger exploration capability but may converge more slowly than the strategies55

that use the best solution from the parent generation. The strategy DE/rand/2

uses two difference vectors and may result in a better mutation solution than

the strategies that use one difference vector [14]. The strategies DE/best/1 and

DE/best/2 take advantage of the best solution found in the parent population

and have a faster convergence towards the optimal solution [15]. However,60

they may become stuck at a local minimum point during multimodal function

4

optimization. The DE/current-to-best/1 and DE/current-to-best/2 strategies

provide a compromise between exploitation of the best solution and exploration

of the parameter space. The DE/current-to-rand/1 and DE/current-to-rand/2

mutation strategies are rotation-invariant strategies [13]. The DE/rand-to-best/65

strategies are similar to the DE/current-to-best/ strategies, but larger diversity

of the mutant vector is attained by using a randomly selected parent vector

instead of the current target parent vector.

2.2. Crossover

A crossover operation between the new generated mutant vector ~vi and the70

target vector ~xi is used to further increase the diversity of the new candidate

solution. This operation combines the two vectors into a new trial vector ~Ui, i =

1, 2, 3, · · · , NP , where the components of the trial vector are obtained from the

components of ~vi or ~xi according to a crossover probability Cr. In the binomial

crossover scheme, for a D dimensional control parameter space, the new trial75

vector ~Ui, i = 1, 2, · · · , NP is generated using the following rule:

~Ui = (ui1, ui2, · · · , uiD) (11)

uij =

vij , if randj ≤ Cr or j = mbri

xij , otherwise
(12)

where randj is a randomly chosen real number in the interval [0, 1], and the index

mbri is a randomly chosen integer in the range [1, D]. This ensures that the

new trial vector contains at least one component from the new mutant vector.

2.3. Selection80

The new generated trial solution ~Ui is checked against the boundary in the

control parameter space. If the solution is out of the boundary, a new trial

solution is generated from a random sampling within the boundary.

The selection operation in DE is based on a one-to-one comparison. The

new trial solution ~Ui is checked against the original target parent solution ~xi. If85

the new trial solution produces a better objective function value, it will be put

5

into the next generation (G + 1) population. Otherwise, the original parent is

kept in the next generation population.

The above procedure is repeated for all NP parents to generate the next

generation population. Many generations are used to attain the final global90

optimal solution.

3. The adaptive unified differential evolution algorithm

Ten different mutation strategies have been proposed for the standard differ-

ential evolution algorithm (Eqs. 1-10). While DE/rand/1/bin has been widely

used, DE/best/1/bin was shown to have better performance in a number of

optimization test examples [15]. Meanwhile, DE/best/2/bin was suggested as a

highly beneficial method in the ICEC’96 contest [16]. The presence of multiple

mutation strategies can complicate the use of the differential evolution algo-

rithm. A combination of different mutation strategies was also proposed in a

number of studies [14, 17, 18, 19]. In this paper, we propose a single mutation

expression that can unify most conventional mutation strategies used by the

differential evolution algorithm. This single unified mutation expression can be

written as:

~vi = ~xi + F1(~xb − ~xi) + F2(~xr1 − ~xi) + F3(~xr2 − ~xr3) + F4(~xr4 − ~xr5) (13)

Here, the second term on the right-hand side of equation (13) denotes the con-

tribution from the best solution found in the current generation, the third term

denotes the rotationally invariant contribution from the random solution [13],95

and the fourth and fifth terms are the same terms as those used in the original

differential evolution algorithm to account for the contributions from the dif-

ference of parent solutions. Those last three terms divert the mutated solution

away from the best solution and help to improve the algorithm’s exploration of

the decision parameter space. The four parameters F1, F2, F3 and F4 are the100

weights from each contribution. This unified mutation expression represents

a combination of exploitation (from the best found solution) and exploration

(from the random solutions) to generate a new mutant solution.

6

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

e
r
r
o
r
s

generation

/rand/1/bin (0.9,0.9)
/rand/1/bin (0.5,0.9)
/best/1/bin (0.6,0.3)

uDE

Figure 1: Evolution of the average error in the noisy quartic function with 50 dimensions.

From the above equation, one can see that for F1 = 0, F2 = 1, and F4 = 0,

this equation reduces to DE/rand/1; for F1 = 0, F2 = 1, and F3 = F4, it re-105

duces to DE/rand/2; for F1 = 1, F2 = 0, and F4 = 0, it reduces to DE/best/1;

for F1 = 1, F2 = 0, and F3 = F4, it reduces to DE/best/2; for F2 = 0

and F4 = 0, it reduces to DE/current-to-best/1; for F2 = 0 and F3 = F4,

it reduces to DE/current-to-best/2; for F1 = 0, and F4 = 0, it reduces to

DE/current-to-rand/1; for F1 = 0, and F3 = F4, it reduces to DE/current-110

to-rand/2; for F2 = 1, and F4 = 0, it reduces to DE/rand-to-best/1; for

F2 = 1, and F3 = F4, it reduces to DE/rand-to-best/2. Using the single

equation (13), the ten mutation strategies of the standard differential evolution

algorithm can be written as a single mutation expression. This new expres-

sion provides an opportunity to explore more broadly the space of mutation115

operators. By using a different set of parameters F1, F2, F3, F4, a new muta-

tion strategy can be achieved. For example, Fig. 1 shows a plot of errors in

the objective function value from a numerical test by using a new mutation

strategy with F1 = F2 = F4 = 0.2, F3 = 0.5 and Cr = 0.8 from the unified

differential evolution algorithm (pink). Also shown is the standard differential120

evolution algorithm DE/rand/1 with F = 0.9, Cr = 0.9 (red), DE/rand/1 with

F = 0.5, Cr = 0.9 (green), and DE/best/1 with F = 0.6, Cr = 0.3 (blue). Here

the test function is a 50 dimensional quartic function with noise as described in

the following section (Eq.3). It is seen that by expanding the space of mutation

7

strategies (using the unified mutation strategy), it is possible to find a better125

optimized solution than the conventional standard differential evolution algo-

rithm in some applications. Moreover, by adaptively adjusting these parameters

during the optimization evolution, multiple mutation strategies and their com-

binations can be used during different stages of optimization. Thus, the unified

mutation expression has the virtue of mathematical simplicity and also provides130

the user with flexibility for broader exploration of different mutation strategies.

The unified mutation strategy provides a method to combine and use dif-

ferent mutation strategies. However, choosing appropriate control parameters

F1, F2, F3, F4 can be challenging and time consuming for application users. Also,

using a set of fixed control parameters does not necessarily lead to the best per-135

formance of the algorithm since different mutation strategies might have superior

performance at different points during the process of evolutionary optimization.

A self-adaptive method to select these control parameters will free the user from

such a burden and also improve the performance of the algorithm. In previous

studies, a number of parameter control methods were used for the conventional140

differential evolution algorithm [9, 10, 11, 14, 20, 21]. In this study, we fol-

low a self-adaptive method used in the reference [10] to evolve the five control

parameters (F1, F2, F3, F4 and Cr) dynamically in the proposed unified differ-

ential evolution algorithm. This self-adaptive scheme is simple to implement

and achieved a good performance in a number of benchmark tests.145

During the mutation stage, the self-adaptive method used in this study as-

sumes that at generation G, each individual solution ~xG
i , i = 1, 2, 3, · · · , NP

has a set of control parameters FG
1,i, F

G
2,i, F

G
3,i, F

G
4,i and CrGi associated with it.

Before generating a new mutant solution using the unified differential evolution

expression (13), a new set of control parameters FG+1
1,i , FG+1

2,i , FG+1
3,i , FG+1

4,i and150

CrG+1
i are calculated as:

FG+1
j,i =

Fjmin + rj1(Fjmax − Fjmin), if rj2 < τj

FG
1,i, otherwise

(14)

8

CrG+1
i =

Crmin + r3(Crmax − Crmin), if r4 < τ5

CrGi , otherwise
(15)

where rj1, rj2, j = 1, 2, 3, 4, r3, r4 are uniform random values in the interval

[0, 1], Fjmin and Fjmax for j = 1, 2, 3, 4 are the minimum and the maximum

allowed values of those control parameters, Crmin and Crmax are the minimum155

and the maximum cross-over probability, and τj , j = 1, 2, 3, 4, 5 represents the

probability to use a new value or to keep the old value for the jth control

parameter. The values of τj are normally kept small so that better control

parameters associated with surviving solutions will be reused to generate the

new trial solution. In this paper, we set τj = 0.1 following the reference [10].160

We also did numerical tests with τj = 0.05, 0.15, and 0.2 using the benchmark

functions in the following section and did not see significant difference in most

functions. The values of Fjmin and Fjmax are set to 0 and 1 respectively in

this paper. We also set Crmin = 0 and Crmax = 1. The selection of these

values is based on the consideration that the various conventional differential165

evolution mutation strategies of Eq. (1-10) can be covered by the settings of

those parameters, and in the literature, F3 and F4 are rarely greater than one.

The new set of control parameters (Eqs. 14-15) are used to generate the mutant

solution in Eq. 13. The initial values of these control parameters are uniform

random values between the minimum and the maximum values. A pseudo-code170

of the adaptive unified differential evolution algorithm is given as follows:

4. numerical benchmark

4.1. Test functions

Thirteen well-known test functions that have been widely used in studies

of global optimization in evolutionary computation are used in this paper for

numerical benchmarking [10, 11, 15, 22]. These functions include unimodal

and multimodal functions, separable and non-separable functions, and smooth

and non-smooth functions. They can also be scaled for arbitrary dimensions so

9

Pseudo-code for the AuDE Algorithm

Step 1: Generate a set of initial control parameters (F1, F2, F3, F4, Cr)

from random uniform sampling in the interval [0,1]. Generate a set

of initial population members by randomly sampling NP points

within the feasible control parameter space ~x and evaluate their objective

function values f(~x). Set the generation number G = 0.

Step 2: While the stopping criterion is not satisfied, Do:

For i = 1 to NP (for each target parent solution ~xi):

Step 2.1: Mutation

Find a set of control parameters (for j=1,2,3,4):

FG+1
j,i =

Fjmin + rj1(Fjmax − Fjmin), if rj2 < τj

FG
1,i, otherwise

CrG+1
i =

Crmin + r3(Crmax − Crmin), if r4 < τ5

CrGi , otherwise

Find a mutant solution vector using the uDE mutation strategy:

~vi = ~xi + FG+1
1 (~xb − ~xi) + FG+1

2 (~xr1 − ~xi) + FG+1
3 (~xr2 − ~xr3) + FG+1

4 (~xr4 − ~xr5)

Step 2.2: Crossover

Generate a new trial solution ~Ui(ui1, ui2, · · · , uiD) through

a binominal crossover scheme:

uij = vij if randij [0, 1] ≤ CrG+1
i or j = jrand,

otherwise uij = xij .

Step 2.3: Selection

Evaluate the objective function of the trial solution f(~Ui).

If f(~Ui) ≤ f(~xi), then ~xi,G+1 = ~Ui,

else ~xi,G+1 = ~xi,G.

End For

G = G+ 1

End While

10

that the scaling of the proposed algorithm can be tested by choosing different

dimension numbers. In this study, we have used 10, 30 and 50 dimensions in

the numerical benchmark tests. These functions are given below:

(1) Sphere function

Fsph(~x) =

N
∑

i=1

x2
i ; −100 ≤ xi ≤ 100;

(2) Schwefel’s problem 1.2

Fsch2(~x) =

N
∑

j=1

(

j
∑

i=1

xi

)2

; −100 ≤ xi ≤ 100;

(3) Quartic function with noise

Fqrt(~x) =

N
∑

i=1

ix4
i + rand[0, 1); −1.28 ≤ xi ≤ 1.28;

(4) Rosenbrock’s function

Fros(~x) =

N−1
∑

i=1

(

100(xi+1 − x2
i)

2 + (1 − xi)
2
)

;

− 100 ≤ xi ≤ 100;

(5) Ackley’s function

Fack(~x) = 20 + exp(1)− 20 exp

−0.2

√

√

√

√

1

N

N
∑

i=1

x2
i

− exp

(

1

N

N
∑

i=1

cos(2πxi)

)

; −32 ≤ xi ≤ 32;

(6) Griewank’s function

Fgrw(~x) =

N
∑

i=1

x2
i

4000
−

N
∏

i=1

cos
xi√
i
+ 1;

− 600 ≤ xi ≤ 600;

11

(7) Rastrigin’s function

Fras(~x) = 10N +
N
∑

i=1

(

x2
i − 10 cos(2πxi)

)

;

− 5 ≤ xi ≤ 5;

(8) Schwefel’s function

Fsch(~x) = 418.9829N −
N
∑

i=1

(xi sin(
√

|xi|));

− 500 ≤ xi ≤ 500;

(9) Salomon’s function

Fsal(~x) = − cos

2π

√

√

√

√

N
∑

i=1

x2
i

+ 0.1

√

√

√

√

N
∑

i=1

x2
i + 1; −100 ≤ xi ≤ 100;

(10) Whitely’s function

Fwht(~x) =

N
∑

j=1

N
∑

i=1

(

y2i,j

4000
− cos(yi,j) + 1

)

;

where yi,j = 100(xj − x2
i)

2 + (1− xi)
2;

− 100 ≤ xi ≤ 100;

(11) Weierstrass’s function

Fwst(~x) =

N
∑

i=1

w(xi, 0.5, 3, 20)−Nw(0, 0.5, 3, 20);

where

w(xi, a, b,m) =
m
∑

k=0

ak cos(2πbk(xi + 0.5));

− 0.5 ≤ xi ≤ 0.5;

12

(12) Generalized penalized function I

Fpn1(~x) =
π

N

{

10 sin2(πy1) +
N−1
∑

i=1

(yi − 1)2[1

+10 sin2(πyi+1)] + (yN − 1)2
}

+
N
∑

i=1

u(xi, 10, 100, 4); −50 ≤ xi ≤ 50;

(13) Generalized penalized function II

Fpn2(~x) =
π

N

{

sin2(3πx1) +

N−1
∑

i=1

(xi − 1)2[1

+ sin2(3πxi+1)] + (xN − 1)2[1 + sin2(2πxN)]
}

+

N
∑

i=1

u(xi, 5, 100, 4); −50 ≤ xi ≤ 50;

where in (12) and (13), yi = 1 +
1

4
(xi + 1) and

u(xi,a, k,m)

=

k(xi − a)m, xi > ai

0, −a ≤ xi ≤ a,

k(−xi − a)m, xi < −a.

The sphere function is a continuous, unimodal and separable function. The

Schewefel’s problem 1.2 is a non-separable unimodal function. The noisy quartic175

function is a unimodal function with random noise in the objective value. The

Rosenbrock’s function with dimension greater than three is a multimodal and

non-separable problem. The global minimum lies inside a parabolic shaped flat

valley. The Ackely’s function is also a multimodal non-separable problem and

has many local minima and a narrow global minimum. The Rastrigin’s func-180

tion is a complex multimodal separable problem with many local minima. The

Griewank’s function is a multimodal non-separable function. The Salomon’s

function and the Whitely’s function are non-separable and highly multimodal

13

with many local minima. The Weierstrass function is a multimodal, nonsep-

arable continuous function that is differentiable only on a set of points. The185

generalized penalized functions are multimodal, nonseparable, irregular, and

discontinuous functions. The number of local minima from test functions (5) to

(13) increases quickly with the problem dimension. The exact global minimum

for all of these problems is achieved for an objective function value of zero.

4.2. Benchmark results190

To test the proposed AuDE algorithm, we carried out numerical optimization

using the 13 benchmark objective functions listed in the above subsection with

dimensions N = 10, 30, and 50 respectively. We compare the proposed AuDE

algorithm with two widely used conventional DE algorithms, DE/rand/1/bin

(F = 0.9, Cr = 0.9) [2, 23], DE/rand/1/bin (F = 0.5, Cr = 0.9) [10, 11, 15],195

and DE/best/1/bin (F = 0.6, Cr = 0.3) [15], and an adaptive conventional

differential evolution algorithm (jDE) [10]. The maximum number of function

evaluations is set as 10, 000N . The population size (NP) for the 10, 30, and

50 dimensional problems is set as 50, 60, and 100, respectively. Each optimiza-

tion is performed for 25 different random seeds. The average objective function200

value and its standard deviation at the end of the maximum number of func-

tion evaluations is reported in Table I for each of the 10 dimensional objective

functions, in Table II for the 30 dimensional functions, and in Table III for

the 50 dimensional functions. The minimum average objective value for each

problem is shown in bold font. It is seen that among the conventional differ-205

ential evolution algorithms, the algorithms DE/best/1/bin and DE/rand/1/bin

F = 0.5, Cr = 0.9 have similar performance. The performance of the conven-

tional differential evolution algorithm DE/rand/1/bin is quite sensitive to the

choice of the scaling parameter F . The use of F = 0.5 for DE/rand/1/bin

shows better performance than the case with F = 0.9. The adaptive unified dif-210

ferential evolution algorithm (AuDE) proposed in this paper shows quite good

performance in these tests. Its performance is comparable or superior to the

other algorithms shown in seven out of thirteen test examples in 10, 30 and 50

14

dimensions. The performance is better than the conventional differential evolu-

tion algorithms DE/best/1 and DE/rand/1. It is also slightly better than the215

conventional adaptive differential evolution algorithm (jDE), which achieves six

of the best solutions out of thirteen test examples in the 50 dimensional test.

Table 1: Performance comparison of different DE strategies for N = 10.

Function
rand/1/bin (0.9,0.9) rand/1/bin (0.5,0.9) best/1/bin (0.6,0.3) jDE AuDE

Mean Std Mean Std Mean Std Mean Std Mean Std

Fsph 2.61E-13 2.31E-13 2.88E-83 5.42E-83 0.00 0.00 2.46E-83 5.17E-83 3.15E-76 8.22E-76

Fsch2 7.60E-06 5.15E-06 1.15E-53 1.42E-53 2.06E-20 5.05E-20 1.43E-20 2.02E-20 7.98E-24 1.63E-23

Fqrt 8.15E-03 2.79E-03 8.15E-04 3.64E-04 6.56E-04 1.74E-04 1.10E-03 3.70E-04 7.88E-04 3.17E-04

Fros 1.08E-03 8.00E-04 3.08E+00 1.24E+00 2.11E+00 1.29E+00 2.00E-09 9.60E-09 1.40E-14 5.98E-14

Fack 2.88E-07 1.34E-07 3.00E-15 6.96E-16 3.11E-15 0.00 2.54E-15 1.30E-15 2.11E-15 1.60E-15

Fgrw 2.10E-01 1.46E-01 1.56E-02 1.25E-02 3.08E-2 1.86E-02 0.00 0.00 1.96E-02 1.71E-02

Fras 8.88E+00 6.11E+00 7.64E-01 8.57E-01 1.11E+00 8.59E-01 2.07E-53 5.63E-53 5.62E-24 1.94E-23

Fsch 2.58E+01 9.18E+01 1.27E-04 3.15E-12 5.21E+01 8.26E+01 1.27E-04 3.15E-12 1.27E-04 3.15E-12

Fsal 1.07E-01 1.05E-02 9.99E-02 1.32E-09 9.99E-02 2.28E-09 9.99E-02 0.00E+00 9.99E-02 0.00E+00

Fwht 3.88E+01 1.70E+01 1.26E+01 1.36E+01 4.16E+00 4.06E+00 1.57E+00 1.33E+00 6.07E+00 2.39E+00

Fwst 2.52E-03 7.86E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Fpn1 2.06E-13 1.90E-13 4.71E-32 0.00E+00 4.71E-32 0.00 4.71E-32 0.00 4.71E-32 0.00

Fpn2 1.33E-13 9.85E-14 1.35E-32 2.60E-40 1.35E-32 2.60E-40 1.35E-32 2.60E-40 1.35E-32 2.60E-40

Table 2: Performance comparison of different DE strategies for N = 30.

Function
rand/1/bin (0.9,0.9) rand/1/bin (0.5,0.9) best/1/bin (0.6,0.3) jDE AuDE

Mean Std Mean Std Mean Std Mean Std Mean Std

Fsph 1.19E+00 8.96E-01 1.35E-71 1.84E-71 0.00 0.00 3.07E-74 7.57E-74 3.51E-84 5.92E-84

Fsch2 4.10E+03 1.93E+03 4.95E-12 6.41E-12 4.94E+01 2.76E+01 9.39E-04 9.74E-04 1.14E-09 1.10E-09

Fqrt 6.73E-02 1.82E-02 2.25E-03 4.84E-04 2.12E-03 6.42E-04 2.98E-03 8.14E-04 1.43E-03 4.49E-04

Fros 2.44E+03 1.92E+03 1.28E+01 9.16E+00 2.06E+01 3.65E+00 1.49E+00 3.27E+00 9.57E-01 1.70E+00

Fack 6.32E-01 3.79E-01 3.11E-15 0.00 7.51E-15 2.08E-15 3.11E-15 0.00E+00 3.11E-15 0.00E+00

Fgrw 8.31E-01 1.38E-01 5.92E-04 2.01E-03 2.17E-03 3.96E-03 0.00E+00 0.00E+00 8.87E-04 3.03E-03

Fras 1.27E+02 3.72E+01 1.22E+01 4.11E+00 9.39 3.23 3.98E-02 1.95E-01 2.20E+01 2.08E+00

Fsch 5.79E+03 1.40E+03 7.16E+02 7.96E+02 1.99E+02 1.20E+02 3.82E-04 7.28E-12 1.10E+02 1.35E+02

Fsal 1.57E+00 2.41E-01 1.82E-01 3.66E-02 1.96E-01 1.96E-02 1.96E-01 1.96E-02 1.80E-01 3.99E-02

Fwht 7.04E+06 3.17E+07 2.71E+02 1.42E+02 2.14E+02 1.27E+02 2.17E+02 8.19E+01 2.74E+02 5.54E+01

Fwst 2.12E+00 7.44E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Fpn1 2.29E-01 2.89E-01 4.15E-03 2.03E-02 1.57E-32 4.86E-40 1.57E-32 4.86E-40 1.57E-32 4.86E-40

Fpn2 1.35E+00 1.42E+00 4.40E-04 2.15E-03 1.35E-32 2.60E-40 1.35E-32 2.60E-40 1.35E-3 2.60E-40

In Figs. 1 and 2, we show the evolution of the objective function value of the

13 test functions for the algorithms shown in Table 3 with dimensionN = 50. At

each generation, the objective function value has been averaged over 25 random220

seeds. It is seen that the adaptive unified differential algorithm performs quite

well in these test examples.

In the proposed adaptive uDE, a set of control parameters is associated with

15

 1e-80

 1e-70

 1e-60

 1e-50

 1e-40

 1e-30

 1e-20

 1e-10

 1

 1e+10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

e
r
r
o
r
s

generation

/rand/1/bin (0.9,0.9)
/rand/1/bin (0.5,0.9)
/best/1/bin (0.6,0.3)

jDE
AuDE

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

e
r
r
o
r
s

generation

/rand/1/bin (0.9,0.9)
/rand/1/bin (0.5,0.9)
/best/1/bin (0.6,0.3)

jDE
AuDE

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

e
r
r
o
r
s

generation

/rand/1/bin (0.9,0.9)
/rand/1/bin (0.5,0.9)
/best/1/bin (0.6,0.3)

jDE
AuDE

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

e
r
r
o
r
s

generation

/rand/1/bin (0.9,0.9)
/rand/1/bin (0.5,0.9)
/best/1/bin (0.6,0.3)

jDE
AuDE

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

e
r
r
o
r
s

generation

/rand/1/bin (0.9,0.9)
/rand/1/bin (0.5,0.9)
/best/1/bin (0.6,0.3)

jDE
AuDE

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

e
r
r
o
r
s

generation

/rand/1/bin (0.9,0.9)
/rand/1/bin (0.5,0.9)
/best/1/bin (0.6,0.3)

jDE
AuDE

Figure 2: Evolution of the average error in the first six test functions: top left is the sphere

function, top right is the Schwefel’s problem 1.2, middle left is the noisy quartic function,

middle right is the Rosenbrock’s function, bottom left is the Ackley’s function, and bottom

right is the Griewank’s function.

16

 10

 100

 1000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

e
r
r
o
r
s

generation

/rand/1/bin (0.9,0.9)
/rand/1/bin (0.5,0.9)
/best/1/bin (0.6,0.3)

jDE
AuDE

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

e
r
r
o
r
s

generation

/rand/1/bin (0.9,0.9)
/rand/1/bin (0.5,0.9)
/best/1/bin (0.6,0.3)

jDE
AuDE

 0.1

 1

 10

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

e
r
r
o
r
s

generation

/rand/1/bin (0.9,0.9)
/rand/1/bin (0.5,0.9)
/best/1/bin (0.6,0.3)

jDE
AuDE

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 1e+18

 1e+20

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

e
r
r
o
r
s

generation

/rand/1/bin (0.9,0.9)
/rand/1/bin (0.5,0.9)
/best/1/bin (0.6,0.3)

jDE
AuDE

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

e
r
r
o
r
s

generation

/rand/1/bin (0.9,0.9)
/rand/1/bin (0.5,0.9)
/best/1/bin (0.6,0.3)

jDE
AuDE

 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 1e+10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

e
r
r
o
r
s

generation

/rand/1/bin (0.9,0.9)
/rand/1/bin (0.5,0.9)
/best/1/bin (0.6,0.3)

jDE
AuDE

 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 1e+10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

e
r
r
o
r
s

generation

/rand/1/bin (0.9,0.9)
/rand/1/bin (0.5,0.9)
/best/1/bin (0.6,0.3)

jDE
AuDE

Figure 3: Evolution of the average error in the second seven test functions: top left is the

Rastrigin’s function, top right is the Schwefel’s function, middle left is the Salomon’s function,

middle right is the Whitely’s function, bottom left is the Weierstrass’s function, bottom right

is the generalized penalized function I, and last plot is the generalized penalized function II.

17

Table 3: Performance comparison of different DE strategies for N = 50.

Function
rand/1/bin (0.9,0.9) rand/1/bin (0.5,0.9) best/1/bin (0.6,0.3) jDE AuDE

Mean Std Mean Std Mean Std Mean Std Mean Std

Fsph 2.85E+03 9.21E+02 4.84E-35 8.77E-35 4.87E-78 5.76E-78 4.01E-44 3.22E-44 1.92E-62 4.42E-62

Fsch2 7.35E+04 5.83E+03 1.28E+00 4.69E-01 2.03E+04 4.17E+03 6.33E+01 2.08E+01 1.03E-02 6.24E-03

Fqrt 1.43E+00 8.18E-01 6.34E-03 1.18E-03 5.38E-03 1.02E-03 6.80E-03 1.29E-03 2.86E-03 7.20E-04

Fros 1.36E+08 6.28E+07 2.69E+01 1.59E+01 4.79E+01 1.78E+01 2.78E+01 1.21E+01 1.41E+01 1.66E+01

Fack 9.29E+00 8.04E-01 5.67E-15 1.60E-15 1.26E-14 3.29E-15 6.66E-15 0.00E+00 3.11E-15 0.00E+00

Fgrw 2.66E+01 8.29E+00 2.93E-16 6.18E-17 1.18E-03 3.42E-03 0.00E+00 0.00E+00 9.86E-04 2.70E-03

Fras 4.53E+02 4.00E+01 1.91E+02 5.33E+01 7.90E+01 5.55E+01 3.74E+01 4.03E+00 8.33E+01 6.73E+00

Fsch 1.37E+04 5.61E+02 1.22E+04 1.63E+03 3.27E+02 2.54E+02 6.36E-04 4.49E-12 4.49E+03 3.70E+02

Fsal 8.01E+00 7.13E-01 2.00E-01 1.97E-08 2.72E-01 4.44E-02 2.08E-01 2.71E-02 2.08E-01 2.71E-02

Fwht 1.23E+15 1.38E+15 1.39E+03 3.36E+02 8.23E+02 2.67E+02 9.71E+02 3.12E+01 1.11E+03 5.38E+01

Fwst 3.13E+01 3.09E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Fpn1 4.63E+05 5.99E+05 2.49E-03 1.22E-02 4.98E-03 1.69E-02 9.42E-33 0.00E+00 9.42E-33 0.00E+00

Fpn2 3.06E+06 3.67E+06 1.39E-32 1.34E-33 4.39E-04 2.15E-03 1.35E-32 2.60E-40 1.35E-32 2.60E-40

each individual solution. It is interesting to see how the parameters associated

with the best solution in each generation evolve through the process of opti-225

mization. Figure 4 shows the evolution of the five control parameters for the

50-dimensional sphere function test and using 25 random seeds. Figure 5 shows

the evolution of the five control parameters for the 50-dimensional generalized

penalized function II test and 25 random seeds. It is seen that the control pa-

rameter F1 scatters randomly between 0 and 1 through the optimization and230

among the 25 runs. The parameter F2 stays below 0.5, F3 and F4 stay below

0.3 for a large fraction of runs in the sphere function test and within the first

3000 generations of the penalized function II test. The parameter Cr stays

mostly beyond 0.2 in the sphere function test and scatters randomly between 0

and 1 in the penalized function II test. These plots suggest that smaller values235

of F2, F3, F4 might be helpful to improve the best solution in each generation

during the process of optimization.

5. Conclusion

In this paper, we proposed a single unified mutation expression for the differ-

ential evolution algorithm. In comparison to the standard differential evolution240

algorithm that normally contains multiple mutation strategies, this method has

the advantages of both mathematical simplicity and flexibility for exploring the

18

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

f
1

generation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

f
2

generation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

f
3

generation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

f
4

generation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

C
r

generation

Figure 4: Evolution of the control parameters associated with the best solution in each

generation in the 50-dimensional sphere function test and using 25 random seeds.

19

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

f
1

generation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

f
2

generation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

f
3

generation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

f
4

generation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

C
r

generation

Figure 5: Evolution of the control parameters associated with the best solution in each

generation in the 50-dimensional generalized penalized function II test and 25 random seeds.

20

space of mutation operators. The disadvantage of this algorithm is that it in-

volves more control parameters. Instead of three control parameters, Fcr, Fxc

and Cr, as in the conventional DE, the unified DE has five control parame-245

ters, F1, F2, F3, F4 and Cr. The performance of the algorithm will depend on

the choice of these parameters. As a result, we proposed an adaptive scheme

to select a set of control parameters for each individual solution of the pop-

ulation and dynamically evolve those control parameters from one generation

to the next generation. This self-adaptive unified differential evolution scheme250

explores a broader mutation strategy space than the conventional differential

evolution scheme during the process of optimization. It not only frees the ap-

plication user from the burden of choosing appropriate control parameters but

also improves the performance of the algorithm. In numerical benchmark tests

using thirteen unimodal and multimodal functions, the adaptive unified dif-255

ferential evolution algorithm proposed here shows a good convergence rate in

comparison with the standard differential evolution algorithms and a self adap-

tive standard differential evolution algorithm, and scales well with 10, 30, and

50 dimensional test problems. Parameter control in evolutionary algorithms is

still an active research area [24, 25]. In future work, we will continue to explore260

different adaptive methods to further improve the performance of the proposed

unified differential evolution algorithm.

Acknowledgment

The work was supported by the U.S. Department of Energy under Contract

No. DE-AC02-05CH11231. This research used computer resources at the Na-265

tional Energy Research Scientific Computing Center and at the National Center

for Computational Sciences.

References

[1] R. Storn and K. Price, “Differential evolution: A simple and efficient adap-

tive scheme for global optimization over continuous spaces,” ICSI, USA,270

21

Tech. Rep. TR-95-012, 1995.

[2] R. Storn and K. Price, “Differential evolution - A simple and efficient heuris-

tic for global optimization over continuous spaces,” Journal of Global Opti-

mization 1a1:341-359, (1997).

[3] K. Price, R. Storn, and J. Lampinen, Differential Evolution - A Practical275

Approach to Global Optimization, Berlin, Germany: Springer, 2005.

[4] U. K. Chakraborty (ed.), Advances in Differential Evolution, Springer,

Berlin, 2008.

[5] A. Qing, Differential Evolution: Fundamentals and Applications in Electrical

Engineering, John Wiley, New York, 2009.280

[6] J. Zhang and A. C. Sanderson, Adaptive Differential Evolution: A Robust

Approach to Multimodal Problem Optimization, Springer, Berlin, Germany,

2009.

[7] F. Neri and V. Tirronen, “Recent advances in differential evolution: a survey

and experimental analysis,” Artif. Intell. Rev. 33, p. 61, 2010.285

[8] S. Das and P. N. Suganthan, “Differential evolution: a survey of the state-

of-the-art,” IEEE Transactions on Evolutionary Computation, vol. 15, no.

1, pp. 4-31, 2011.

[9] M. M. Ali and A. Torn, “Population set based global optimization algo-

rithms: Some modifications and numerical studies,” Comput. Oper. Res.,290

vol. 31, no. 10, pp. 1703-1725, 2004.

[10] J. Brest, S. Greiner, B. Bovskovic, M. Mernik, and V. Zumer, “Self adapt-

ing control parameters in differential evolution: A comparative study on

numerical benchmark problems,” IEEE Transactions on Evolutionary Com-

putation, vol. 10, no. 6, pp. 646-657, 2006.295

22

[11] J. Zhang and A. C. Sanderson, “JADE: adaptive differential evolution with

optional external archive,” IEEE Transactions on Evolutionary Computa-

tion, vol. 13, no. 5, pp. 945-958, 2009.

[12] Storn R (1996b) On the usage of differential evolution for function op-

timization. In: Proceedings of the IEEE biennial conference of the North300

American fuzzy information processing society, pp 519-523.

[13] K. V. Price, ”An introduction to differential evolution,” in New Ideas in

Optimization, D. Corne, M. Dorigo, and V. Glover, Eds. London, U.K.:

McGraw-Hill, 1999, pp. 79-108.

[14] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution al-305

gorithm with strategy adaptation for global numerical optimization,” IEEE

Transactions on Evolutionary Computation, vol. 13, no. 2, pp. 398-417, 2009.

[15] E. Mezura-Montes, J. Velazquez-Reyes, and C. A. Coello Coello, “A com-

parative study of differential evolution variants for global optimization,” in

Proc. Genet. Evol. Comput. Conf., 2006, pp. 485- 492.310

[16] K. Price and R. Storn, “Minimizeing the real functions of the ICEC’96

contest by differential evolution,” IEEE International Conference on Evolu-

tionary Computation, 1996, pp.842-844.

[17] Q. K. Pan, P. N. Suganthan, L. Wang, L. Gao, and R. Mallipeddi, “A

differential evolution algorithm with self-adapting strategy and control pa-315

rameters,” Computers & Operations Research, vol. 38, no. 1, pp. 394-408,

2011.

[18] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, M. F. Tasgetiren, “Differential

evolution algorithm with ensemble of parameters and mutation strategies,”

Applied Soft Computing 11, p. 1679, 2011.320

[19] Y. Wang, Z. Cai, Q. Zhang, “Differential evolution with composite trial

vector generation strategies and control parameters,” IEEE transcations on

Evolutionary Computation, vol. 15, no.1, p. 55, 2011.

23

[20] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution algorithm,”

Soft Computing, A Fusion of Foundations, Methodologies and Applications,325

vol. 9, no. 6, pp. 448-642, 2005.

[21] W. Gong, Z. Cai, C. X. Ling, and H. Li, “Enhanced differential evolution

with adaptive strategies for numerical optimization,” IEEE Transactions on

Systems, Man, and Cybernetics - Part B, vol. 41, no. 2, pp. 397-413, 2011.

[22] N. Noman and H. Iba, “Accelerating differential evolution using an adaptive330

local search,” IEEE Transactions on Evolutionary Computation, vol. 12, no.

1, pp. 107-125, 2008.

[23] J. Ronkkonen, S. Kukkonen, and K. Price, in Proceedings IEEE Congress

on Evolutionary Computation, CEC 2005, vol. 1, p. 506-513, Edinburgh,

UK (2005).335

[24] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in

evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 3, no. 2, pp.

124-141, 1999.

[25] T. Chiang, C. Chen, and Y. Lin, “Parameter Control Mechanisms in Differ-

ential Evolution: A Tutorial Review and Taxonomy,” in IEEE Symposium340

Series on Computational Intelligence, Singapore, April 2013.

24

This document was prepared as an account of work sponsored by the United States Government.

While this document is believed to contain correct information, neither the United States

Government nor any agency thereof, nor The Regents of the University of California, nor any of

their employees, makes any warranty, express or implied, or assumes any legal responsibility for

the accuracy, completeness, or usefulness of any information, apparatus, product, or process

disclosed, or represents that its use would not infringe privately owned rights. Reference herein

to any specific commercial product, process, or service by its trade name, trademark,

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government or any agency thereof, or The

Regents of the University of California. The views and opinions of authors expressed herein do

not necessarily state or reflect those of the United States Government or any agency thereof or

The Regents of the University of California.

	Introduction
	Standard differential evolution algorithm
	Mutation Strategies
	Crossover
	Selection

	The adaptive unified differential evolution algorithm
	numerical benchmark
	Test functions
	Benchmark results

	Conclusion

