
Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics Division

Mathematics Department

To be submitted for publication

Spectral Methods for Nonlinear Parabolic Systems

J. Strain

August 1994

XI
rr1

0 "TT
...o.Cm
60::c (l)m
s:cnz
..... 0
AJZm
c+O
(l)c+O

0
OJ

"tJ ,, -<
~

c.---

J
IQ .
U'l
lSI

r-r- OJ r-
0" 0 I , 0 w

"" "C en , '<: i '<:a

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

Spectral Methods for
Nonlinear Parabolic Systems

John Strain 1

Department of Mathematics
and

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94 720

August 12, 1994

LBL-36007

1Research supported by a NSF Young Investigator Award, Air Force Office
of Scientific Research Grant FDF49620-93-1-0053, and the Applied Mathematical
Sciences Subprogram of the Office of Energy Research, U.S. Department of Energy
under Contract DE-AC03-76SF00098.

Abstract

Many physical problems are naturally formulated as nonlinear parabolic sys­
tems of partial differential equations in periodic geometry. In this paper, a
simple, efficient, spectrally-accurate numerical method for these problems is
described and implemented. The method combines stiff extrapolation with
fast solvers for elliptic systems. Theory and numerical results show that the
method solves even difficult problems including phase field models and mean
curvature flows.

Contents

1 Introduction 1

2 The numerical method 3
2.1 Time discretization 3
2.2 Space discretization . 6

3 Implementation 10
3.1 Algorithm structure 10
3.2 Starting values and iterations 11
3.3 Efficiency .. 12
3.4 User interface 13
3.5 Test cases .. 13

4 Numerical results 16
4.1 Time discretization errors 16
4.2 Space discretization errors 18
4.3 Phase field models 18

1 Introduction

Many physical problems are naturally formulated as systems of nonlinear par­
abolic partial differential equations in periodic geometry. Phase field models
for crystal growth [1, 10] and alloy solidification [14], Ginzburg-Landau mod­
els for superconductivity [2, 3], reaction-diffusion systems for chemical pro­
cesses and the Navier-Stokes equations of fluid mechanics are good examples.
The fundamental interior physics is often best revealed by periodic bound­
ary conditions, because they eliminate both boundaries and unboundedness.
More general boundary conditions are required only for specific engineering
applications.

Solving these problems numerically requires massive amounts of com­
puter time and. memory, making faster or more accurate methods extremely
interesting. However, there are well-known dilemmas in constructing such
methods. Explicit methods cost little per time step but require tiny time
steps for stability. Implicit methods are less subject to stability restraints,
but each step requires solution of a large system of equations .. Low-order
accurate methods are easy to program but require many degrees of freedom
and many time steps. Highly accurate methods such as spectral methods
can use fewer degrees of freedom and fewer time steps but are difficult to use
efficiently.

1

This paper presents a numerical method for the general second-order
nonlinear parabolic system of partial differential equations

2 .
atu = :F(t, X, U, au, a u) (1.1)

in the box B = [0, 1]d in Rd, with periodic boundary conditions on the
boundary aB. Here the solution u: R X B-----+Rq is a vector function of time
t and space x, and

(1.2)

is a smooth vector function of time, space, u and the collection of first and
second partial derivatives (au, a2u). We assume :F is periodic with period
1 in x and satisfies a linearized ellipticity condition. Since this does not
guarantee well-posedness, we assume (1.1) has a unique smooth solution on
the time interval of interest.

Our method combines an extrapolated linearly implicit Eul~r time dis­
cretization with a fast spectrally-accurate method for solving linear variable­
coefficient elliptic systems. This gives arbitrary order accuracy in time and
spectral accuracy in space at optimal cost. The theory of the method is de­
scribed in §2 and we discuss our implementation in §3. In §4 we validate the
method with numerical results, including mean curvature systems and phase
field models of solidification.

2

2 The numerical method

Evolution problems are commonly discretized first in the spatial variables,
giving a large stiff set of ODEs to be solved by a standard package. We pro­
ceed in the opposite order. First, we discretize in time, treating the PDEs
as infinite-dimensional arbitrarily stiff ODEs. A linearly implicit stiff ODE
solver then reduces the problem to a sequence of linear variable-coefficient
elliptic systems. We solve them by a generalization of the analytically precon­
ditioned spectral method of [12], which is simple, fast and spectrally accurate.
In particular, the error due to spatial discretization with an Nd-point grid
is O(N-P) as N--too for any p if the solution u is smooth. The work per
time step is O(Nd log N), essentially proportional to the number of degrees
of freedom.

2.1 Time discretization

The standard methods for stiff ODEs are multistep, Runge-Kutta and extrap­
olation [8]. The usual multistep method for stiff problems is a Newton-BDF
predictor-corrector pair, but the order of BDF is limited to 6. Runge-Kutta
methods can achieve arbitrary order but require solution of large linear sys­
tems unless a diagonally implicit method is used. The simplest arbitrary­
order diagonally implicit method is extrapolated implicit Euler. Considered
as a Runge-Kutta method, this has more stages than necessary, but is ex­
tremely convenient in a variable-order code .

. There are three flavors of implicit Euler for a stiff ODE

y' = f(t, y).

Implicit Euler with stepsize k at times tn = nk reads

yn+l _ Yn = kj(tn+l, yn+l).

Linearly implicit Euler reads

(2.3)

(2.4)

(2.5)

where I is the identity matrix and D f is the Jacobian off with respect to
y. Modified linearly implicit Euler reads

(2.6)

Linearly implicit methods involve only linear systems, and are therefore usu­
ally superior to implicit ones, because it is difficult to solve nonlinear systems
of equations like (2.4) accurately. At first glance, the, time and space argu­
ments of f(tn+l' yn) in the modified method appear mismatched. However,

3

this leads to superior stiff accuracy properties [8]: Consider the standard
Prothero-Robinson test problem

y' =).(y- cp(t)) + cp'(t) y(O) = cp(O) (2.7)

in the limit k~O, k).~oo .. The linearly implicit method gives

leading to a global error bound

0:::;; ik:::;; T < oo (2.9)

as k~O and k).~oo. Both implicit and modified linearly implicit Euler give

(2.10)

leading to a global error bound

O::S:i<oo (2.11)

as k~O and k).~oo. Our numerical experiments also indicate that the modi­
fied linearly implicit method gives results considerably superior to the linearly
implicit method, so we adopt it as a base for extrapolation.

Thus we begin by discretizing (1.1) in time, using (2.6) with time step k.
This gives a sequence of linear elliptic systems

(2.12)

for periodic vector functions un : B~ R9 approximating u(tn, x). (We omit
the dependence ofF on ou and o2u to simplify the notation.) DF(t, u) is
the Frechet derivative ofF: thus DF(t, u) takes a vector function v: B~Rq
to another vector function w: B~R9 given by

q

wi(x) := (DF(t, u)v(x))i = 2: 2: aija(t, x, u)oavi(x).
j=l!al~2

(2.13)

Here a . (a 1 , a 2 , ... , ad) is a multiindex of nonnegative integers ai with
order lai = a1 + a2 + · · · + ad· Partial derivatives are denoted by aa =
of1

••• ()~d where Oi = O~i. The coefficients aija are the partial derivatives of
the components ofF with respect to the derivatives of the components of u:

(2.14)

4

/

..

(We omit the dependence of aijo.(t, x, u) on ou and 82u to simplify the nota­
tion.) The next section discusses solution of these linear elliptic systems.

The modified linearly implicit Euler method is only first-order accurate in
time, insufficient for accurate computations at reasonable cost. However, it
has an asymptotic error expansion which permits Richardson extrapolation
to higher order, as long as the solution remains smooth. Indeed, the discrete
numerical solution un(x) extends to a smooth function uk(t, x) which satisfies

uk(t, x) = u(t, x) + ke1(t, x) + k2e2(t, x) + · · · + kN eN(t, x) + o(kN) (2.15)

as k----+0. Here u(t, x) is the exact solution to the PDE and ej are smooth
functions obtained by solving variational equations. This expansion allows
us to compute the solution to higher-order accuracy. For example, to second
order we have

u(t + k, x) = 2uk/2(t + k, x)- uk(t + k, x) + O(k2). (2.16)

We go from t to t+k in one step, then in two substeps of half the length, then
combine the results to eliminate the first-order error term. More generally,
we can go from t to t+k in n1 substeps, n2 substeps, ... , nL substeps, giving
first-order results

Un(t+k,x) = Ukjn1(t+k,x) 1:Sl:SL

= u(t + k, x) + (k/n1)e1(t, x) + · · · + (k/n1)N eN(t, x) + o(kN).

Then we can generate mth order results for m = 2, 3, ... , L by the extrap­
olation formula

Ulm
U. U1,m-1 - U1-1,in-1 m::;l::;L l,m-1 + (/) 1 nl nl-m+1 -
u(t + k, x) + O(km).

The extrapolation table is lower triangular:

Un
'\.

U21 ----+ U22
'\. '\. (2.17)

U31 ----+ U32 ----+ u33

'\. '\. '\.
UL1 ----+ UL2 ----+ ----+ ULL

Extrapolated linearly implicit Euler is a simple diagonally implicit Runge­
Kutta method with excellent stiff stability properties; it is A(a)-stable [8]
with a ~ 89.77° if n1 = l, and a ~ 89.82° if n1 = l + 1. It is suboptimally
efficient but easy to change order in a variable-step variable-order implemen­
tation.

5

2.2 Space discretization

At each time substep, we solve a linear variable-coefficient elliptic system

q

(.Cv)i :=I: I: bija(x)8o:vj(x) = ri(x)
j=llo:l9

(2.18)

with operator .C =I -kDF(tn+l, un), coefficients bijo:(x) = t5ijt5a0 -kaijo:(t, x, u)
right-hand side r = kF(tn+l, x, un) and solution v = un+l - un. We assume
that F is smooth and the coefficients aija(x) of DF satisfy the uniform
parabolicity condition:

q

L L aija(x)~o:ViVj ~ -t5lvl 2 1~1 2 + Clvl2

i,j=llo:l=2
(2.19)

for some constants t5 > 0 and C 2:: 0, any x E B and any vectors v, ~ E Rq.
This condition alone. does not imply that the parabolic system (1.1) is well­
posed unless it is linear [6, 4], but does guarantee that the elliptic system
(2.18) is well-posed for small enough k [9]. More precisely, it implies that
.C is a bounded invertible operator from the Holder space C2·o:(B; Rq) to
ca(B; Rq) for k sufficiently small. ,

We solve these problems numerically by analytic preconditioning, as in
[12]. We use the averaged operator to convert .Cv = r into an integral
equation. Let l. be the elliptic operator with constant coefficients

(2.20)

Since l satisfies (2.19), it is a bounded invertible operator from: C2·o:(B; Rq)
to ca(B; Rq). Hence we can define a new unknown density u = lv: B~Rq,
·so v is the volume potential due to u:

v(x) = l- 1u(x) = k G(x- y)u(y)dy (2.21)

where G(x- y) is the Green matrix for l with periodic boundary conditions.
Since l has constant coefficients, Fourier analysis gives G explicitly:

G(x) = L p(~)-le21rt~·x . (2.22)
~Ezd

where p(~) is the matrix symbol of l:

Pii(~) = :L bija(2n"Oo:. (2.23)
0:~2

6

Since DF is elliptic, p(O is invertible uniformly for small enough k, though
this series converges only in the sense of distributions in general.

Remark: If we take Vi= 8im for any fixed min (2.19), it follows that

L amma(x)~0 :::; -81~1 2 .
a=2

Thus an alternative definition of£ can be used to equal effect:

(lv)i = L biiaaavi
a

(2.24)

(2.25)

is the- diagonal part of the averaged operator. Inverting p is unnecessary.
Now () satisfies

A()= r,

where A= .c£-1 is a bounded invertible operator on ca(B; Rq):

A(j(x) = L p(x, ~)'P(0-18-(~)e27r~~-x
~EZd

h [L p(x, ~)p(~)-1e27r~~·(x-y)l ()(y)dy.
B ~EZd

Here
8-(~) = { e-21r~·Y()(y)dy

ls .
and p(x, ~) is the matrix symbol of .C:

Pij(X, ~) = L bija(x)(27rl-~)0 •
lal9

(2.26)

(2.27)

(2.28)

(2.29)

The sum in (2.27) converges only in the sense of distributions in general,
since A = I is not an integral operator when .C has constant coefficients.

Since A is bounded and invertible, we expect that we can discretize A(j =
r with bounded condition numbers as the mesh size goes to zero. In other
words, we have analytically preconditioned .Cv = r with £-1 to produce an
equation with a uniformly well-conditioned discretization.

· The actual discretization is straightforward. We lay down a uniform grid
with spacing h and Nd points on B and appro~imate derivatives of £-1 (j
with the FFT: let

8-h(~) = hd L e-21r~~-y"'()(Ya) (2.30)
'1:5ap:::;N

where Ya = (a1h, ... , adh). Then we define the approximation Ah of A by

Ah()(x) = L p(x, 0'P(~)-1 8-h(~)e27r~~-x
I~PI:5N/2

7

(2.31)

Our approximate solution O"h(x) is then the solution of the linear system

(2.32)

where rh is the vector of function values r(yo.)-
In practice, (2.31) cannot be evaluated efficiently with the FFT for given

O", because p(x, ~) depends on x. Thus we take advantage of the special form
of p(x, ~) to write

q

(AhO"(x))i = 2: 2: aijo.(x) 2: (27rt~t {,o(~)- 1 8-h(O). e21rL~·x (2.33)
j=llo.l:::;2 I~PI::::;N/2 J

where each inner sum can now be done efficiently with the FFT before mul­
tiplying by the variable coefficients and summing over j and a.

Since the integral equation is uniformly well-conditioned and the dis­
cretization is accurate, the discretization is also well-conditioned, so any
standard iterative method for large nonsymmetric linear systems should solve
AhO"h = rh in a number of iterations bounded as h-+0. Note that Ah is a large
Nd x Nd full matrix, so forming and factoring Ah directly is prohibitively
expensive.

There are several standard iterative methods for such systems; General­
ized Minimum Residual (GMRES) [11], Quasi-Minimum Residual (QMR) [5)
and Stabilized Biconjugate Gradients (BI-CGSTAB) [13) are the best-known.
They have roughly similar convergence properties. For G MRES applied to
aN x N system Ax= j, for example, the residual rm -: f- Axm after m
steps satisfies [n]

llrmll:::; K(X)Emllroll
where A= XAX-1 is diagonalizable, K(X) = IIXII2IIX-1 II2, and

Em :::; (~)v (~) m-v

Here we assume that A has v eigenvalues A1, ... , Av in the left half plane and
N - v in a circle jC -).j :::; R with C > R > 0, and we define

D = max jA · - A ·I
I:::;i:::;v;v+I:::;j:::;N z J

and d = min1<i<v j).il· An example is shown in Figure 1.
Thus the restarted method GMRES(m) is guaranteed to converge if

logK(X) (logDjd)
m > logC/R + v 1 + logC/R '

and the convergence rate depends on the problem size only through eigenvalue
bounds and K(X). For solving AO" = f, therefore, we expect the convergence
rate of GMRES to be asymptotically independent of mesh size.

8

• •
• • • 0 •

d/ i • •
/ R • •

j
c ·I
D

Figure 1: G MRES convergence theory.

9

3 Implementation

We implemented our method in a FORTRAN code for general q x q par­
abolic systems in d = 2 space dimensions. We discuss the following aspects
of our implementation: algorithm structure, starting values and iterations,
efficiency, the user interface and the construction of test cases.

3.1 Algorithm structure

The code structure is natural: Parameters are read, the equations are solved
one time step at a time, and results are written to output. One time step of
an extrapolation method consists of several substeps followed by extrapola­
tion. Each substep consists of iterative solution of a linear variable-coefficient
elliptic system .Lv = Acr = r. Our code solves this elliptic system with GM­
RES [11], with all matrix-vector products Ahcrh computed by an external
subroutine. After solving Ahcrh = rh, we obtain vh = £~1 crh with another
FFT. Finally, we extrapolate to obtain a higher-order accurate solution. An
outline of the code follows.

Algorithm

Input:

Read input file for parameters:

Time step, initial and final times: k, ti, t1
Grid size: N
Extrapolation parameters: L, step sequence n1

Iteration parameters: Dimension, restarts, stopping tolerance E.

Starting method, iteration
System parameters: q, equation, mi

Exact solution parameters: ~i

Initialize:

Set t = ti, level-l solution u1 equal to exact solution at time ti, and a1 = 0 for
l = 1, 2, ... , L. Assign templates and workspace for coefficients and derivatives.

Time loop: while t < t1 do
t=t+k

Time stepping:

Extrapolation loop: do l = L, L - 1, ... , 1
k1 = k / n1 ; to = t
Time substepping: do j = 1, 2, ... , n1

10

tj = t + jkl
Evaluate F(ti, u1

) and coefficients bija of I- k1DF(ti, u1).

Compute coefficients bija of£ by averaging bija·
--1

Set Ah = ££ .
Compute starting value for CJ1:

either CJ1 = random
or CJ1 = 0
or (right-hand side) CJ1 = k1F(tj, u1)

or (previous substep) CJ1 = CJ1 (ti-d
or (forward Euler) CJ1 = CJ1(tj-d + k1F(tj, u1

)

or (interpolation if l < L)
CJ1 = (1- 73)CJ(tj_1) + 7JCJL(tj) where 73 = nz-

1j+l"
end either-or
Apply GMRES with tolerance E and starting value CJ1 to compute
the solution CJ1 of AhCJ1 = kF(ti, u1).

Compute increment v1 = £-
1 CJ1 using the FFT and p(0-1 .

Increment u1 = u1 + v1•

End of time substepping: end do
End of extrapolation loop: end do
Extrapolate solutions L- 1 times:
dol= 1, ... , L- 1

do j = L, L - 1, ... , l + 1
ui = ui + 1 (ui - uj-1)

(n; /n;-z-1)

end do
end do
Copy finest-level solution to all levels in preparation for next time step:
do l = 1, 2, ... , L- 1

ul =uL

end do
End of time loop: end do

3.2 Starting values and iterations

Of the several standard iterative methods for nonsymmetric linear systems,
GMRES [11], QMR [5] and BI-CGSTAB [13] are the best-known. GMRES
has been used for some time, while the others have been developed more
recently. No theory suggests that one is superior, so we used GMRES. How­
ever, we may in future test others, and therefore have designed our code
so that the iterative method sees only a subroutine for the matrix-vector
product Aho-h, not the matrix elements.

The starting value is important for any iteration. Our code provides
several options: CJ can be random (usually a very bad choice), zero, equal to
the right-hand side k:F(t, x, u), or computed by three special methods. It can
be equal to the previous time step value, computed by a forward Euler step

11

(usually a good choice, and inexpensive since the F value is already known),
or computed by interpolation from a finer calculation. In this last option,
we do the calculation first with nL steps (using forward Euler for starting
values), obtaining results crL(t + k, x). Then we interpolate linearly between
cr1(t,x) and crL(t+ k,x). Thus at levels l < L we start substep j with

(3.34)

where 7J = 1/(n1 - j + 1). Our experiments indicate that forward Euler is
slightly better than interpolation, with the other options trailing.

Since we are solving this system from scratch at each time step, the tech­
niques suggested in [7] might speed up convergence. We plan to investigate
this question further.

3.3 Efficiency

This algorithm could require a great deal of storage and CPU time if d or q
is large, because there are many possible derivatives of each component of u.
In d dimensions, there are qd(d + 3)/2 distinct first and second derivatives
of a vector function u : B-+Rq, so a 3 x 3 system in 2 dimensions could
require 15N2 storage and 16 N x N FFT's to apply Ah to crh. The variable
coefficients of the derivative terms in each component of F could require an
additional q2d(d + 3)Nd /2 storage.

Many systems contain only a few of the possible derivatives, permitting
considerable savings. Reaction-diffusion equations

Ut = l::!..u + g(u), (3.35)

for example, contain only D..u and u. Thus application of Ah requires only
q + 1 FFT's instead of qd(d + 3)/2.

We take advantage of this phenomenon with the aid of templates deter­
mined by the nonzero entries in F and .C = I - kF. Define Cijo: = 1 if
derivative ao:ui appears in component i of F and 0 otherwise, and define
Djo: = 1 if derivative ()Cl:uj appears in any component ofF and 0 otherwise.
We assign storage only for coefficients bijo: of .C with Cijo: > 0 and only for
derivatives ao:uj with Djo: > 0. When we apply Ah to CTh, we apply FFT's
to compute derivatives only when necessary. This use of templates can save
as much as a factor of 10 in storage and CPU time for many problems.

Remark: It is useful to indicate nonconstant as well as nonzero coeffi­
cients; then constant-coefficient terms can be grouped together and evaluated
with only one FFT.

12

3.4 User interface

Our code is designed to be robust, flexible and easy to adapt to any parabolic
system. The user supplies a single external subroutine which determines the
parabolic system to be solved. The first call of this subroutine sets the tem­
plates so workspace can be assigned for :F and .C. Subsequent calls accept
t, x, u, au, fPu as input and return :F(t, x, u, au, a2u) and the coefficients of
.C as output. A different parabolic system requires only a few dozen lines of
code. An example of this subroutine for linear variable-coefficient systems is
shown in Figure 2 and Figure 3. An external function "coeff" provides the
variable coefficients and arrays "mapcf" and "mapder" represent the tem­
plates C and D.

c Loop over derivatives 1 to 6 = (uxx,uxy,uyy,ux,uy,u).
do 10~id=1,6

c Loop over equations.
do 20 iq=1,nq

c Loop over components.
do 30 jq=1 ,nq

if(id.le.3)mapcf(iq,jq,id)=-1
if(id.gt.3)mapcf(iq,jq,id)=1

30 continue
c . Set all diagonal entries true.

mapcf(iq,iq,id)=1
20 continue
10 continue
c Initialize mapder from mapcf.

do 50 jq=1,nq
do 60 id=1,nd

mapder(jq,id)=-1
do 70 iq=1,nq

if(mapcf(iq,jq,id).gt.O) mapder(jq,id)=1
70 continue
60 continue
50 continue

Figure 2: Code segment to evaluate templates mapcf and mapder for a linear
variable-coefficient parabolic system.

3.5 Test cases

We tested this code on several parabolic systems and exact solutions of
increasing complexity. We used four classes of systems; linear variable-

13

h=1.0/float(n)
c Loop over grid points.

do 80 i1=1,n
do 80 i2=1,n

do 90 iq=1 ,nq
c Working on iq'th equation: zero f to start.

fv(i1,i2,iq)=O.O
c Sum over components jq=1, ... ,nq.

do 100 jq=1,nq
c

c

Sum over derivatives 1 through 6.
do 110 id=1, 6

jd=mapcf(iq,jq,id)
if(jd.gt.O)then

Equation depends on derivative number id.
c=coeff(t,i1*h,i2*h,iq,jq,id)
mder=mapder(jq,id)
fv(i1,i2,iq)=fv(i1,i2,iq)+c*ud(i1,i2,mder)
df(il, i2 ,jd)=b*C
if(iq.eq.jq.and.id.eq.6)df(i1,i2,jd)=df(i1,i2,jd)+a

end if
110 continue
100 continue
90 continue
80 continue

Figure 3: Code segment to evaluate :F and the coefficients of a! + b£ for a
linear variable-coefficient parabolic system.

14

coefficient systems
q

OtUi = L L aija(t, x)oaui + fi(t, x),
j=ljaj~2

reaction -diffusion systems
q

OtUi = L L aija(t, x)oaui + ui(1 + ui) + fi(t, x),
j=ll~jaJ9

mean curvature systems

OtUi (1 + a2u;)oiui + 28luia2uiala2ui + (1 + aluJ)oiui
q

+ L L aija(t, x)aaui + fi(t, x)
j=ljaj9

and phase field models for solidification [1, 10]

Ut = a1~u + a2(u- u3) + a3v + !1(t, x)
Vt = -b1~u + b2~v- b3(u- u3)- b4v + h(t, x).

(3.36)

(3.37)

(3.38)

(3.39)

Here the variable coefficients aija (t, x) are generated from random Fourier
cosine series

mo m1 m2

Fs(x) = L L L Fs(jo,jl,j2) cos(2n"jot) cos(21rj1x1) cos(21rj2x2)
jo=O i1=0 h=O

with coefficients F5 (j0 , j 1, j 2) distributed uniformly on [-1,1] for each s. To
ensure parabolicity, we set aiia = (I + FT F)a and aija = 0 for i =/= j and
I ad = 2, where I is the d by d identity matrix and F is a matrix of Fourier
series Fs. Thus aii(l,l) = 1 + F{, aii(1,2) = 2F1F2, aii(2,1) = 0, and aii(2,2) =
1 + F:j + Fi- The first-order coefficients aija for lal = 1 were given by
j3F5 , where j3 determines the effect of the first-order terms. Since they are
quadratic functions of the F/s, the second-order coefficients vary on scales
twice as small as the first-order ones.

The inhomogeneous terms f play a special role. Given a system Ut = :F
and a potential exact solution v(t, x), we put

f = OtV- :F(t, x, v, av, 82v). (3.40)

Then v is the exact solution of Ut = :F +f. The following three-parameter
family of exact solutions is useful:

v(t, x1, x2) = exp [(a+ b cos(21r~0t))(a+ b cos(27r6xl))(a+ b cos{27r6x2))].
(3.41)

The constants a = 3 I 4 and b = 1 I 4 ensure that the vanishing of one cosine
does not freeze the other variables. Thus ~0 = 0 gives a time-independent
solution, while 6 = 6 = 0 gives a uniform solution.

15

4 Numerical results

We ran three types of tests; first we measured the time discretization errors
and verified that L levels gave a Lth-order time discretization, then we ver­
ified spectral accuracy in space, and finally we solved a realistic phase field
model for alloy solidification [14].

4.1 Time discretization errors

We solved test problems with L = 1 through 4, using a fixed 32 x 32 grid
and exact solution (3.41) with ~o = 6 = 6 = 1. Variable coefficients were
constructed from two-term Fourier series with m0 = m1 = m2 = 1. We ran
from ti = 0 to t1 = 1, one period in time and space. Tables 1 through 4
give maximum errors and CPU times for a single linear variable-coefficient
equation (3.36), a 2 x 2 mean curvature system (3.38), a 3 x 3 reaction­
diffusion system (3.37) and the 2 x 2 phase field system (3.40).

The results clearly show the expected rate of convergence. Practically,
for accuracy of one to ten parts per thousand, the second-order scheme is the
most efficient in most but not all cases. For high accuracy, third or fourth
order is faster. In all cases, the number of GMRES iterations req11ired per
step decreased slightly as NT increased, because the starting values improved.
We began with stopping tolerances E = 10-3-L and decreased E by 2-L each
time we doubled NT until we reached roundoff level E = 10-12 .

NT E1 T1 E2 T2 E3 T3 E4 T4
4 .13-1 3.2 .10-1 11.6 .69-4 43.1 .81-4 80.3
8 .94-2 6.6 .26-2 16.4 .49-4 98.4· .96-5 177
16 .46-2. 13.8 .69-3 37.4 .14-4 187 .39-5 362
32 .23-2 28.0 .19-3 85.3 .46-5 429 .11-5 818
64 .11-2 58.0 .53-4 208 .32-5 906 .45-6 1700
128 . 56-3 114 .17-4 364 .

Table 1: Errors EL and Cray-2 CPU seconds TL for NT time steps of order
L = 1 through L = 4 methods for the linear variable-coefficient equation
(3.36).

16

Nr E1 T1 E2 T2 E3 T3 E4 T4
4 .16-0 11.4 .31-0 64 .57-1 208 .12-1 377
8 .42-1 22.5 .66-1 90 .37-2 388 .16-2 762
16 .91-2 44.2 .13-1 174 .59-3 910 .16-3 1564
32 .33-2 89.2 .29-2 366 .70-4 1760 .14-4 3100
64 .17-2 176 .68-3 760 .. 83-5 3420 .13-5 6470
128 .95-3 333 .17-3 1570

Table 2: Errors EL and Cray-2 CPU seconds TL for Nr time steps of order
L = 1 through L = 4 methods for the 2 x 2 mean curvature system (3.38).

Nr E1 T1 E2 T2 E3 T3 E4 T4
4 .75-1 19.7 .68-1 71 .12-1 264 .12-2 553
8 .35-1 40.4 .74-2 136 .20-2 579 .13-3 1110
16 .16-1 83.5 .91-3 294 .42-3 1290 .18-4 2410
32 .78-2 171 .31-3 670 .77-4 2840 .26-5 5230
64 .38-2 339 .14-3 1350 .14-4 5810 .55-6 10900
128 .19-2 680 .48-4 2510

Table 3: Errors EL and Cray-2 CPU seconds TL for Nr time steps of order
L = 1 through L = 4 methods for the 3 x 3 reaction-diffusion system (3.37).

Nr E1 T1 E2 T2 E3 T3 E4 T4
4 .42-1 2.0 .66-2 7368 .20-2 18.6 .29-3 28.7
8 .19-1 3.9 .24-2 7.6 .34-3 40.7 .31-4 65.4
16 .98-2 7.6 .89-3 24.0 .73-4 68.2 .47-5 145
32 .52-2 14.9 .28-3 49.8 .14-4 165 .70-6 305
64 .26-2 29.9 .82-4 73.0 .25-5 320 .88-7 560
128 .13-2 60.2 .22-4 153

Table 4: Errors EL and Cray-2 CPU seconds TL for Nr time steps of order
L = 1 through L = 4 methods for the 2 x 2 phase field system (3.40).

17

4.2 Space discretization errors

It is expensive to verify spectral accuracy in space, because the time dis­
cretization is not spectrally accurate. Thus we fixed L = 4 with 100 steps
from ti = 0 to tf = 0.1, for the exact solution (3.41) with ~0 = 1 and
6 = ~2 = 9. We solved the phase field model (3.40) with parameters
ai = bi = 0.1, using grid sizes N = 16, 32, 48, ... , 96. The resulting max­
imum errors and CPU times are reported in Table 5. Spectral accuracy is
clearly evident: When N increases by 16, the error decreases by about a fac­
tor larger than 40, suggesting exponential decay E ~ 200e-N/4 . The iteration
count is completely independent of mesh size for this resolved calculation,
leading to CPU times proportional to the number of unknowns. This agrees
with the theoretical predictions of §2.2 and shows the effectiveness of analytic
preconditioning with £.

N E T
16 .53-0 123
32 .28-1 460
48 .73-3 1050
64 .18-4 1780
80 .46-6 2750
96 .78-8 4040

Table 5: Errors E and Cray-2 CPU seconds T for the 2 x 2 phase field system
(3.40) with ~0 = 1 and 6 = 6 = 9 and a N x N grid.

4.3 Phase field models

Finally, we tested our method on a phase field model for isothermal binary
alloy solidification proposed in [14]: it reads

'Pt Ml (E2 !J.cp - !cp(c, cp))
ct \7 · (c(1- c)\7 fc(c, cp))

where subscripts on f denote partial derivatives and

f(c, cp)

fA(cp)

fs(cp)

cfs(cp) + (1- c)JA(cp) + clogc+ (1- c)log(1- c)

WA focp p(p- 1)(p- a:A)dp

Ws focp p(p- 1)(p- a:s)dp.

18

Explicitly, this becomes

'Pt M1(t26.cp- f~(cp)c- f~(cp)(1- c))

Ct 6.c + \7 · (c(1- c)cp(cp -l)(Ws(cp- o:s)- WA(cp- o:A))Vcp)

c(1- c)(f~(cp)- f~(cp))l:.cp (4.42)

+ (1- 2c)(f~(cp)- f~(cp))\lc · \lcp

+ c(1- c)(f~(cp)- f~(cp))j'Vcpj 2

As in the numerical experiment of [14], we took parameters o:A = 0.4,
o:s = 0.6, WA = Ws = 10, M1 = 40, E = 1/40, ti = 0 and tf = 1. We used
two different initial values for cp and c. First, we reproduced the experiment
of [14]. This uses random initial grid values of cp and c, uniformly and
independently distributed over the interval [0.5 - 10-2 , 0.5 + 10-2]. Figure 4
shows the resulting cp field, plotted in grayscale: Each square of the 96 x 96
grid is shaded with a value between 0 and 1, proportional to the average
value of cp. Black areas correspond to minima of cp, representing solid in the
solidification problem, and white areas are liquid. As in [14], we see a rapid
birth of interfaces as cp becomes almost exclusively black or white, followed
by a coarsening by mean curvature on a longer time scale.

Random initial data, however, is impossible to resolve because it depends
on the grid. For example, the last frame of Figure 4 shows the result of the
same computation, performed on a 64 x 64 grid. There is only a qualitative
resemblance between the two results.

Hence we also experimented with a different type of random initial value.
We generated am x m random Fourier series F(x , y), scaled it by its maxi­
mum so that jF(x, y)j :::; 1, and set the initial values equal to

cp(x, y, 0) = C + SF(x, y)

with constants C and S chosen to make jcp- 0.5j :::; 0.05. By varying the
grid size, while holding m fixed, we can obtain meaningful physical results
and a converged solution. A sample calculation is shown in Figure 5, with
m = 24 and a 96 x 96 grid. We see qualitatively similar results to the
previous example, but now they are stable under mesh refinement. The last
frame of Figure 5 shows the same solution at t = 0.32, calculated on a 64 x 64
grid; there is no visible difference. These calculations required less than ten
GMRES iterations per substep with t = 10-6 , for a total of ten to twenty
minutes of Cray-2 CPU time each, using the second-order time discretization.

19

T = 0.0000
0.4900 < p < 0.5100

T = 0.0200
0.4867 < p < 0.5113

T = 0.1600
0.0000 < p < 1.0000

T = 0.0050
0.4938 < p < 0.5060

T= 0.0400
0 .4368 < p < 0.5484

T = 0.3200
0.0000 < p < 1.0000

T = 0.0100
0.4927 < p < 0.5065

T= 0.0800
0.0236 < p < 0.9602

T = 0.3200
0.0000 < p < 1.0000

Figure 4: Gray scale plots of cp for the phase field model of binary alloy
solidification (4.42) with random grid values for the initial data.

20

T= 0.0000
0.4500 < p < 0.5500

T= 0.0200
0.4301 < p < 0.5699

T= 0.1600
0.0000 < p < 1.0000

T= 0.0050
0.4695 < p < 0.5305

T= 0.0400
0.2488 < p < 0.7512

T= 0.3200
0.0000 < p < 1.0000

T = 0.0100
0.4626 < p < 0.5374

T= 0.0800
0.0007 < p < 0.9993

T = 0.3200
0.0000 < p < 1.0000

Figure 5: Gray scale plots of <p for t he phase field model of binary alloy
solidification (4.42) with random Fourier series init ial data.

21

References

[1] G. Caginalp. Stefan and Hele-Shaw type models as asymptotic limits of
the phase-field equations. Phys. Rev. A , 39:5887-5896, 1989.

[2] S. J. Chapman, S.D. Howison, and J. R. Ockendon. Macroscopic models
for superconductivity. SIAM Rev., 34:529-560, 1992.

[3] Q. Du, M.D. Gunzburger, and J. S. Peterson. Analysis and approxima­
tion of the Ginzburg-Landau model of superconductivity. SIAM Rev.,
34:54-81 , 1992.

[4] S. D. Eidelman. Parabolic Systems. North-Holland, 1969.

[5] R. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method
for non-Hermitian linear systems. Numerische Mathematik, 60:315-339,
1991.

[6] A. Friedman. Partial Differential Equations of Parabolic Type. Prentice­
Hall, 1964.

[7] C. W . Gear and Y. Saad. Iterative solution of linear equations in ODE
codes. SIAM J. Sci. Stat. Comput. , 4(4):583-601 , 1983.

[8] E . Hairer, S. P. N0rsett, and G. Wanner. Solving Ordinary Differential
equations II : Stiff problems. Springer-Verlag, 1991.

[9] C. B. Morrey. Multiple integrals in the calculus of variations. Springer­
Verlag, 1964.

[10] 0. Penrose and P. C. Fife. Thermodynamically consistent models of
phase-field type for the kinetics of phase transitions. Physica, 43D:44-
62 , 1990.

[11] Y. Saad and M. R. Schultz. GMRES: A generalized minimum residual
method for solving nonsymmetric linear systems. SIAM J. Sci. Stat.
Comput. , 7:856-869, 1986.

[12] J. Strain. Efficient spectrally-accurate solution of variable-coefficient
elliptic problems. Proc. Amer. Math. Soc., to appear, 1995.

[13] H. A. van der Vorst. BI-CGSTAB: a fast and smoothly converging
variant of BI-CG for the solution of nonsymmetric linear systems. SIAM
J. Sci . Stat. Comp. , 13:631- 644, 1992.

22

[14] A. A. Wheeler, W. J. Boettinger, and G. B. McFadden. Phase-field
model for isothermal phase transitions in binary alloys. Phys. Rev. A ,
45(10):7424-7439, 1992.

1991 Subject Classifications: 65M70, 65T20, 65Y20, 80A22.
Key words and phrases: parabolic systems, extrapolation methods, iter­

ations, preconditioning, spectral methods, averaging, phase field models.
E-mail address: st rain@math.berkeley.edu.

23

LA~NCEBERKELEYLABORATORY
UNIVERSITY OF CALIFORNIA .

TECHNICAL INFORMATION DEPARTMENT
BERKELEY, CALIFORNIA 94720

--

