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Abstract 

Many physical problems are naturally formulated as nonlinear parabolic sys­
tems of partial differential equations in periodic geometry. In this paper, a 
simple, efficient, spectrally-accurate numerical method for these problems is 
described and implemented. The method combines stiff extrapolation with 
fast solvers for elliptic systems. Theory and numerical results show that the 
method solves even difficult problems including phase field models and mean 
curvature flows. 
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1 Introduction 

Many physical problems are naturally formulated as systems of nonlinear par­
abolic partial differential equations in periodic geometry. Phase field models 
for crystal growth [1, 10] and alloy solidification [14], Ginzburg-Landau mod­
els for superconductivity [2, 3], reaction-diffusion systems for chemical pro­
cesses and the Navier-Stokes equations of fluid mechanics are good examples. 
The fundamental interior physics is often best revealed by periodic bound­
ary conditions, because they eliminate both boundaries and unboundedness. 
More general boundary conditions are required only for specific engineering 
applications. 

Solving these problems numerically requires massive amounts of com­
puter time and. memory, making faster or more accurate methods extremely 
interesting. However, there are well-known dilemmas in constructing such 
methods. Explicit methods cost little per time step but require tiny time 
steps for stability. Implicit methods are less subject to stability restraints, 
but each step requires solution of a large system of equations .. Low-order 
accurate methods are easy to program but require many degrees of freedom 
and many time steps. Highly accurate methods such as spectral methods 
can use fewer degrees of freedom and fewer time steps but are difficult to use 
efficiently. 
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This paper presents a numerical method for the general second-order 
nonlinear parabolic system of partial differential equations 

2 . 
atu = :F(t, X, U, au, a u) (1.1) 

in the box B = [0, 1]d in Rd, with periodic boundary conditions on the 
boundary aB. Here the solution u: R X B-----+Rq is a vector function of time 
t and space x, and 

(1.2) 

is a smooth vector function of time, space, u and the collection of first and 
second partial derivatives (au, a2u). We assume :F is periodic with period 
1 in x and satisfies a linearized ellipticity condition. Since this does not 
guarantee well-posedness, we assume (1.1) has a unique smooth solution on 
the time interval of interest. 

Our method combines an extrapolated linearly implicit Eul~r time dis­
cretization with a fast spectrally-accurate method for solving linear variable­
coefficient elliptic systems. This gives arbitrary order accuracy in time and 
spectral accuracy in space at optimal cost. The theory of the method is de­
scribed in §2 and we discuss our implementation in §3. In §4 we validate the 
method with numerical results, including mean curvature systems and phase 
field models of solidification. 

2 



2 The numerical method 

Evolution problems are commonly discretized first in the spatial variables, 
giving a large stiff set of ODEs to be solved by a standard package. We pro­
ceed in the opposite order. First, we discretize in time, treating the PDEs 
as infinite-dimensional arbitrarily stiff ODEs. A linearly implicit stiff ODE 
solver then reduces the problem to a sequence of linear variable-coefficient 
elliptic systems. We solve them by a generalization of the analytically precon­
ditioned spectral method of [12], which is simple, fast and spectrally accurate. 
In particular, the error due to spatial discretization with an Nd-point grid 
is O(N-P) as N--too for any p if the solution u is smooth. The work per 
time step is O(Nd log N), essentially proportional to the number of degrees 
of freedom. 

2.1 Time discretization 

The standard methods for stiff ODEs are multistep, Runge-Kutta and extrap­
olation [8]. The usual multistep method for stiff problems is a Newton-BDF 
predictor-corrector pair, but the order of BDF is limited to 6. Runge-Kutta 
methods can achieve arbitrary order but require solution of large linear sys­
tems unless a diagonally implicit method is used. The simplest arbitrary­
order diagonally implicit method is extrapolated implicit Euler. Considered 
as a Runge-Kutta method, this has more stages than necessary, but is ex­
tremely convenient in a variable-order code . 

. There are three flavors of implicit Euler for a stiff ODE 

y' = f(t, y). 

Implicit Euler with stepsize k at times tn = nk reads 

yn+l _ Yn = kj(tn+l, yn+l). 

Linearly implicit Euler reads 

(2.3) 

(2.4) 

(2.5) 

where I is the identity matrix and D f is the Jacobian off with respect to 
y. Modified linearly implicit Euler reads 

(2.6) 

Linearly implicit methods involve only linear systems, and are therefore usu­
ally superior to implicit ones, because it is difficult to solve nonlinear systems 
of equations like (2.4) accurately. At first glance, the, time and space argu­
ments of f(tn+l' yn) in the modified method appear mismatched. However, 
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this leads to superior stiff accuracy properties [8]: Consider the standard 
Prothero-Robinson test problem 

y' = ).(y- cp(t)) + cp'(t) y(O) = cp(O) (2.7) 

in the limit k~O, k).~oo .. The linearly implicit method gives 

leading to a global error bound 

0:::;; ik:::;; T < oo (2.9) 

as k~O and k).~oo. Both implicit and modified linearly implicit Euler give 

(2.10) 

leading to a global error bound 

O::S:i<oo (2.11) 

as k~O and k).~oo. Our numerical experiments also indicate that the modi­
fied linearly implicit method gives results considerably superior to the linearly 
implicit method, so we adopt it as a base for extrapolation. 

Thus we begin by discretizing (1.1) in time, using (2.6) with time step k. 
This gives a sequence of linear elliptic systems 

(2.12) 

for periodic vector functions un : B~ R9 approximating u( tn, x). (We omit 
the dependence ofF on ou and o2u to simplify the notation.) DF(t, u) is 
the Frechet derivative ofF: thus DF(t, u) takes a vector function v: B~Rq 
to another vector function w: B~R9 given by 

q 

wi(x) := (DF(t, u)v(x))i = 2: 2: aija(t, x, u)oavi(x). 
j=l!al~2 

(2.13) 

Here a . ( a 1 , a 2 , ... , ad) is a multiindex of nonnegative integers ai with 
order lai = a1 + a2 + · · · + ad· Partial derivatives are denoted by aa = 
of1 

••• ()~d where Oi = O~i. The coefficients aija are the partial derivatives of 
the components ofF with respect to the derivatives of the components of u: 

(2.14) 

4 

/ 



.. 

(We omit the dependence of aijo.(t, x, u) on ou and 82u to simplify the nota­
tion.) The next section discusses solution of these linear elliptic systems. 

The modified linearly implicit Euler method is only first-order accurate in 
time, insufficient for accurate computations at reasonable cost. However, it 
has an asymptotic error expansion which permits Richardson extrapolation 
to higher order, as long as the solution remains smooth. Indeed, the discrete 
numerical solution un(x) extends to a smooth function uk(t, x) which satisfies 

uk(t, x) = u(t, x) + ke1(t, x) + k2e2(t, x) + · · · + kN eN(t, x) + o(kN) (2.15) 

as k----+0. Here u(t, x) is the exact solution to the PDE and ej are smooth 
functions obtained by solving variational equations. This expansion allows 
us to compute the solution to higher-order accuracy. For example, to second 
order we have 

u(t + k, x) = 2uk/2(t + k, x)- uk(t + k, x) + O(k2). (2.16) 

We go from t to t+k in one step, then in two substeps of half the length, then 
combine the results to eliminate the first-order error term. More generally, 
we can go from t to t+k in n1 substeps, n2 substeps, ... , nL substeps, giving 
first-order results 

Un(t+k,x) = Ukjn1(t+k,x) 1:Sl:SL 

= u(t + k, x) + (k/n1)e1(t, x) + · · · + (k/n1)N eN(t, x) + o(kN). 

Then we can generate mth order results for m = 2, 3, ... , L by the extrap­
olation formula 

Ulm 
U. U1,m-1 - U1-1,in-1 m::;l::;L l,m-1 + ( / ) 1 nl nl-m+1 -
u(t + k, x) + O(km). 

The extrapolation table is lower triangular: 

Un 
'\. 

U21 ----+ U22 
'\. '\. (2.17) 

U31 ----+ U32 ----+ u33 

'\. '\. '\. 
UL1 ----+ UL2 ----+ ----+ ULL 

Extrapolated linearly implicit Euler is a simple diagonally implicit Runge­
Kutta method with excellent stiff stability properties; it is A(a)-stable [8] 
with a ~ 89.77° if n1 = l, and a ~ 89.82° if n1 = l + 1. It is suboptimally 
efficient but easy to change order in a variable-step variable-order implemen­
tation. 
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2.2 Space discretization 

At each time substep, we solve a linear variable-coefficient elliptic system 

q 

(.Cv)i :=I: I: bija(x)8o:vj(x) = ri(x) 
j=llo:l9 

(2.18) 

with operator .C =I -kDF(tn+l, un), coefficients bijo:(x) = t5ijt5a0 -kaijo:(t, x, u) 
right-hand side r = kF(tn+l, x, un) and solution v = un+l - un. We assume 
that F is smooth and the coefficients aija(x) of DF satisfy the uniform 
parabolicity condition: 

q 

L L aija(x)~o:ViVj ~ -t5lvl 2 1~1 2 + Clvl2 

i,j=llo:l=2 
(2.19) 

for some constants t5 > 0 and C 2:: 0, any x E B and any vectors v, ~ E Rq. 
This condition alone. does not imply that the parabolic system (1.1) is well­
posed unless it is linear [6, 4], but does guarantee that the elliptic system 
(2.18) is well-posed for small enough k [9]. More precisely, it implies that 
.C is a bounded invertible operator from the Holder space C2·o:(B; Rq) to 
ca(B; Rq) for k sufficiently small. , 

We solve these problems numerically by analytic preconditioning, as in 
[12]. We use the averaged operator to convert .Cv = r into an integral 
equation. Let l. be the elliptic operator with constant coefficients 

(2.20) 

Since l satisfies (2.19), it is a bounded invertible operator from: C2·o:(B; Rq) 
to ca(B; Rq). Hence we can define a new unknown density u = lv: B~Rq, 
·so v is the volume potential due to u: 

v(x) = l- 1u(x) = k G(x- y)u(y)dy (2.21) 

where G(x- y) is the Green matrix for l with periodic boundary conditions. 
Since l has constant coefficients, Fourier analysis gives G explicitly: 

G(x) = L p(~)-le21rt~·x . (2.22) 
~Ezd 

where p(~) is the matrix symbol of l: 

Pii(~) = :L bija(2n"Oo:. (2.23) 
0:~2 
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Since DF is elliptic, p(O is invertible uniformly for small enough k, though 
this series converges only in the sense of distributions in general. 

Remark: If we take Vi= 8im for any fixed min (2.19), it follows that 

L amma(x)~0 :::; -81~1 2 . 
a=2 

Thus an alternative definition of£ can be used to equal effect: 

(lv)i = L biiaaavi 
a 

(2.24) 

(2.25) 

is the- diagonal part of the averaged operator. Inverting p is unnecessary. 
Now () satisfies 

A()= r, 

where A= .c£-1 is a bounded invertible operator on ca(B; Rq): 

A(j(x) = L p(x, ~)'P(0-18-(~)e27r~~-x 
~EZd 

h [ L p(x, ~)p(~)-1e27r~~·(x-y)l ()(y)dy. 
B ~EZd 

Here 
8-(~) = { e-21r~·Y()(y)dy 

ls . 
and p(x, ~) is the matrix symbol of .C: 

Pij(X, ~) = L bija(x)(27rl-~)0 • 
lal9 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

The sum in (2.27) converges only in the sense of distributions in general, 
since A = I is not an integral operator when .C has constant coefficients. 

Since A is bounded and invertible, we expect that we can discretize A(j = 
r with bounded condition numbers as the mesh size goes to zero. In other 
words, we have analytically preconditioned .Cv = r with £-1 to produce an 
equation with a uniformly well-conditioned discretization. 

· The actual discretization is straightforward. We lay down a uniform grid 
with spacing h and Nd points on B and appro~imate derivatives of £-1 (j 
with the FFT: let 

8-h(~) = hd L e-21r~~-y"'()(Ya) (2.30) 
'1:5ap:::;N 

where Ya = (a1h, ... , adh). Then we define the approximation Ah of A by 

Ah()(x) = L p(x, 0'P(~)-1 8-h(~)e27r~~-x 
I~PI:5N/2 

7 
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Our approximate solution O"h(x) is then the solution of the linear system 

(2.32) 

where rh is the vector of function values r(yo.)-
In practice, (2.31) cannot be evaluated efficiently with the FFT for given 

O", because p(x, ~) depends on x. Thus we take advantage of the special form 
of p(x, ~) to write 

q 

(AhO"(x))i = 2: 2: aijo.(x) 2: (27rt~t {,o(~)- 1 8-h(O). e21rL~·x (2.33) 
j=llo.l:::;2 I~PI::::;N/2 J 

where each inner sum can now be done efficiently with the FFT before mul­
tiplying by the variable coefficients and summing over j and a. 

Since the integral equation is uniformly well-conditioned and the dis­
cretization is accurate, the discretization is also well-conditioned, so any 
standard iterative method for large nonsymmetric linear systems should solve 
AhO"h = rh in a number of iterations bounded as h-+0. Note that Ah is a large 
Nd x Nd full matrix, so forming and factoring Ah directly is prohibitively 
expensive. 

There are several standard iterative methods for such systems; General­
ized Minimum Residual (GMRES) [11], Quasi-Minimum Residual (QMR) [5) 
and Stabilized Biconjugate Gradients (BI-CGSTAB) [13) are the best-known. 
They have roughly similar convergence properties. For G MRES applied to 
aN x N system Ax= j, for example, the residual rm -: f- Axm after m 
steps satisfies [n] 

llrmll:::; K(X)Emllroll 
where A= XAX-1 is diagonalizable, K(X) = IIXII2IIX-1 II2, and 

Em :::; ( ~)v (~) m-v 

Here we assume that A has v eigenvalues A1, ... , Av in the left half plane and 
N - v in a circle jC - ).j :::; R with C > R > 0, and we define 

D = max jA · - A ·I 
I:::;i:::;v;v+I:::;j:::;N z J 

and d = min1<i<v j).il· An example is shown in Figure 1. 
Thus the restarted method GMRES(m) is guaranteed to converge if 

logK(X) ( logDjd) 
m > logC/R + v 1 + logC/R ' 

and the convergence rate depends on the problem size only through eigenvalue 
bounds and K(X). For solving AO" = f, therefore, we expect the convergence 
rate of GMRES to be asymptotically independent of mesh size. 

8 



• • 
• • • 0 • 

d/ i • • 
/ R • • 

j 
c ·I 
D 

Figure 1: G MRES convergence theory. 
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3 Implementation 

We implemented our method in a FORTRAN code for general q x q par­
abolic systems in d = 2 space dimensions. We discuss the following aspects 
of our implementation: algorithm structure, starting values and iterations, 
efficiency, the user interface and the construction of test cases. 

3.1 Algorithm structure 

The code structure is natural: Parameters are read, the equations are solved 
one time step at a time, and results are written to output. One time step of 
an extrapolation method consists of several substeps followed by extrapola­
tion. Each substep consists of iterative solution of a linear variable-coefficient 
elliptic system .Lv = Acr = r. Our code solves this elliptic system with GM­
RES [11], with all matrix-vector products Ahcrh computed by an external 
subroutine. After solving Ahcrh = rh, we obtain vh = £~1 crh with another 
FFT. Finally, we extrapolate to obtain a higher-order accurate solution. An 
outline of the code follows. 

Algorithm 

Input: 

Read input file for parameters: 

Time step, initial and final times: k, ti, t1 
Grid size: N 
Extrapolation parameters: L, step sequence n1 

Iteration parameters: Dimension, restarts, stopping tolerance E. 

Starting method, iteration 
System parameters: q, equation, mi 

Exact solution parameters: ~i 

Initialize: 

Set t = ti, level-l solution u1 equal to exact solution at time ti, and a1 = 0 for 
l = 1, 2, ... , L. Assign templates and workspace for coefficients and derivatives. 

Time loop: while t < t1 do 
t=t+k 

Time stepping: 

Extrapolation loop: do l = L, L - 1, ... , 1 
k1 = k / n1 ; to = t 
Time substepping: do j = 1, 2, ... , n1 

10 



tj = t + jkl 
Evaluate F(ti, u1

) and coefficients bija of I- k1DF(ti, u1). 

Compute coefficients bija of£ by averaging bija· 
--1 

Set Ah = ££ . 
Compute starting value for CJ1: 

either CJ1 = random 
or CJ1 = 0 
or (right-hand side) CJ1 = k1F(tj, u1) 

or (previous substep) CJ1 = CJ1 (ti-d 
or (forward Euler) CJ1 = CJ1(tj-d + k1F(tj, u1

) 

or (interpolation if l < L) 
CJ1 = (1- 73)CJ(tj_1 ) + 7JCJL(tj) where 73 = nz-

1j+l" 
end either-or 
Apply GMRES with tolerance E and starting value CJ1 to compute 
the solution CJ1 of AhCJ1 = kF(ti, u1). 

Compute increment v1 = £-
1 CJ1 using the FFT and p(0-1 . 

Increment u1 = u1 + v1• 

End of time substepping: end do 
End of extrapolation loop: end do 
Extrapolate solutions L- 1 times: 
dol= 1, ... , L- 1 

do j = L, L - 1, ... , l + 1 
ui = ui + 1 (ui - uj-1) 

(n; /n;-z-1) 

end do 
end do 
Copy finest-level solution to all levels in preparation for next time step: 
do l = 1, 2, ... , L- 1 

ul =uL 

end do 
End of time loop: end do 

3.2 Starting values and iterations 

Of the several standard iterative methods for nonsymmetric linear systems, 
GMRES [11], QMR [5] and BI-CGSTAB [13] are the best-known. GMRES 
has been used for some time, while the others have been developed more 
recently. No theory suggests that one is superior, so we used GMRES. How­
ever, we may in future test others, and therefore have designed our code 
so that the iterative method sees only a subroutine for the matrix-vector 
product Aho-h, not the matrix elements. 

The starting value is important for any iteration. Our code provides 
several options: CJ can be random (usually a very bad choice), zero, equal to 
the right-hand side k:F(t, x, u), or computed by three special methods. It can 
be equal to the previous time step value, computed by a forward Euler step 
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(usually a good choice, and inexpensive since the F value is already known), 
or computed by interpolation from a finer calculation. In this last option, 
we do the calculation first with nL steps (using forward Euler for starting 
values), obtaining results crL(t + k, x). Then we interpolate linearly between 
cr1(t,x) and crL(t+ k,x). Thus at levels l < L we start substep j with 

(3.34) 

where 7J = 1/(n1 - j + 1). Our experiments indicate that forward Euler is 
slightly better than interpolation, with the other options trailing. 

Since we are solving this system from scratch at each time step, the tech­
niques suggested in [7] might speed up convergence. We plan to investigate 
this question further. 

3.3 Efficiency 

This algorithm could require a great deal of storage and CPU time if d or q 
is large, because there are many possible derivatives of each component of u. 
In d dimensions, there are qd(d + 3)/2 distinct first and second derivatives 
of a vector function u : B-+Rq, so a 3 x 3 system in 2 dimensions could 
require 15N2 storage and 16 N x N FFT's to apply Ah to crh. The variable 
coefficients of the derivative terms in each component of F could require an 
additional q2d(d + 3)Nd /2 storage. 

Many systems contain only a few of the possible derivatives, permitting 
considerable savings. Reaction-diffusion equations 

Ut = l::!..u + g(u), (3.35) 

for example, contain only D..u and u. Thus application of Ah requires only 
q + 1 FFT's instead of qd(d + 3)/2. 

We take advantage of this phenomenon with the aid of templates deter­
mined by the nonzero entries in F and .C = I - kF. Define Cijo: = 1 if 
derivative ao:ui appears in component i of F and 0 otherwise, and define 
Djo: = 1 if derivative ()Cl:uj appears in any component ofF and 0 otherwise. 
We assign storage only for coefficients bijo: of .C with Cijo: > 0 and only for 
derivatives ao:uj with Djo: > 0. When we apply Ah to CTh, we apply FFT's 
to compute derivatives only when necessary. This use of templates can save 
as much as a factor of 10 in storage and CPU time for many problems. 

Remark: It is useful to indicate nonconstant as well as nonzero coeffi­
cients; then constant-coefficient terms can be grouped together and evaluated 
with only one FFT. 
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3.4 User interface 

Our code is designed to be robust, flexible and easy to adapt to any parabolic 
system. The user supplies a single external subroutine which determines the 
parabolic system to be solved. The first call of this subroutine sets the tem­
plates so workspace can be assigned for :F and .C. Subsequent calls accept 
t, x, u, au, fPu as input and return :F(t, x, u, au, a2u) and the coefficients of 
.C as output. A different parabolic system requires only a few dozen lines of 
code. An example of this subroutine for linear variable-coefficient systems is 
shown in Figure 2 and Figure 3. An external function "coeff" provides the 
variable coefficients and arrays "mapcf" and "mapder" represent the tem­
plates C and D. 

c Loop over derivatives 1 to 6 = (uxx,uxy,uyy,ux,uy,u). 
do 10~id=1,6 

c Loop over equations. 
do 20 iq=1,nq 

c Loop over components. 
do 30 jq=1 ,nq 

if(id.le.3)mapcf(iq,jq,id)=-1 
if(id.gt.3)mapcf(iq,jq,id)=1 

30 continue 
c . Set all diagonal entries true. 

mapcf(iq,iq,id)=1 
20 continue 
10 continue 
c Initialize mapder from mapcf. 

do 50 jq=1,nq 
do 60 id=1,nd 

mapder(jq,id)=-1 
do 70 iq=1,nq 

if(mapcf(iq,jq,id).gt.O) mapder(jq,id)=1 
70 continue 
60 continue 
50 continue 

Figure 2: Code segment to evaluate templates mapcf and mapder for a linear 
variable-coefficient parabolic system. 

3.5 Test cases 

We tested this code on several parabolic systems and exact solutions of 
increasing complexity. We used four classes of systems; linear variable-
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h=1.0/float(n) 
c Loop over grid points. 

do 80 i1=1,n 
do 80 i2=1,n 

do 90 iq=1 ,nq 
c Working on iq'th equation: zero f to start. 

fv(i1,i2,iq)=O.O 
c Sum over components jq=1, ... ,nq. 

do 100 jq=1,nq 
c 

c 

Sum over derivatives 1 through 6. 
do 110 id=1, 6 

jd=mapcf(iq,jq,id) 
if(jd.gt.O)then 

Equation depends on derivative number id. 
c=coeff(t,i1*h,i2*h,iq,jq,id) 
mder=mapder(jq,id) 
fv(i1,i2,iq)=fv(i1,i2,iq)+c*ud(i1,i2,mder) 
df(il, i2 ,jd)=b*C 
if(iq.eq.jq.and.id.eq.6)df(i1,i2,jd)=df(i1,i2,jd)+a 

end if 
110 continue 
100 continue 
90 continue 
80 continue 

Figure 3: Code segment to evaluate :F and the coefficients of a! + b£ for a 
linear variable-coefficient parabolic system. 
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coefficient systems 
q 

OtUi = L L aija(t, x)oaui + fi(t, x), 
j=ljaj~2 

reaction -diffusion systems 
q 

OtUi = L L aija(t, x)oaui + ui(1 + ui) + fi(t, x), 
j=ll~jaJ9 

mean curvature systems 

OtUi (1 + a2u;)oiui + 28luia2uiala2ui + (1 + aluJ)oiui 
q 

+ L L aija(t, x)aaui + fi(t, x) 
j=ljaj9 

and phase field models for solidification [1, 10] 

Ut = a1~u + a2(u- u3) + a3v + !1(t, x) 
Vt = -b1~u + b2~v- b3(u- u3)- b4v + h(t, x). 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

Here the variable coefficients aija ( t, x) are generated from random Fourier 
cosine series 

mo m1 m2 

Fs(x) = L L L Fs(jo,jl,j2) cos(2n"jot) cos(21rj1x1) cos(21rj2x2) 
jo=O i1=0 h=O 

with coefficients F5 (j0 , j 1, j 2) distributed uniformly on [-1,1] for each s. To 
ensure parabolicity, we set aiia = (I + FT F)a and aija = 0 for i =/= j and 
I ad = 2, where I is the d by d identity matrix and F is a matrix of Fourier 
series Fs. Thus aii(l,l) = 1 + F{, aii(1,2) = 2F1F2, aii(2,1) = 0, and aii(2,2) = 
1 + F:j + Fi- The first-order coefficients aija for lal = 1 were given by 
j3F5 , where j3 determines the effect of the first-order terms. Since they are 
quadratic functions of the F/s, the second-order coefficients vary on scales 
twice as small as the first-order ones. 

The inhomogeneous terms f play a special role. Given a system Ut = :F 
and a potential exact solution v(t, x), we put 

f = OtV- :F(t, x, v, av, 82v). (3.40) 

Then v is the exact solution of Ut = :F +f. The following three-parameter 
family of exact solutions is useful: 

v(t, x1, x2) = exp [(a+ b cos(21r~0t) )(a+ b cos(27r6xl) )(a+ b cos{27r6x2))]. 
(3.41) 

The constants a = 3 I 4 and b = 1 I 4 ensure that the vanishing of one cosine 
does not freeze the other variables. Thus ~0 = 0 gives a time-independent 
solution, while 6 = 6 = 0 gives a uniform solution. 
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4 Numerical results 

We ran three types of tests; first we measured the time discretization errors 
and verified that L levels gave a Lth-order time discretization, then we ver­
ified spectral accuracy in space, and finally we solved a realistic phase field 
model for alloy solidification [14]. 

4.1 Time discretization errors 

We solved test problems with L = 1 through 4, using a fixed 32 x 32 grid 
and exact solution (3.41) with ~o = 6 = 6 = 1. Variable coefficients were 
constructed from two-term Fourier series with m0 = m1 = m2 = 1. We ran 
from ti = 0 to t1 = 1, one period in time and space. Tables 1 through 4 
give maximum errors and CPU times for a single linear variable-coefficient 
equation (3.36), a 2 x 2 mean curvature system (3.38), a 3 x 3 reaction­
diffusion system (3.37) and the 2 x 2 phase field system (3.40). 

The results clearly show the expected rate of convergence. Practically, 
for accuracy of one to ten parts per thousand, the second-order scheme is the 
most efficient in most but not all cases. For high accuracy, third or fourth 
order is faster. In all cases, the number of GMRES iterations req11ired per 
step decreased slightly as NT increased, because the starting values improved. 
We began with stopping tolerances E = 10-3-L and decreased E by 2-L each 
time we doubled NT until we reached roundoff level E = 10-12 . 

NT E1 T1 E2 T2 E3 T3 E4 T4 
4 .13-1 3.2 .10-1 11.6 .69-4 43.1 .81-4 80.3 
8 .94-2 6.6 .26-2 16.4 .49-4 98.4· .96-5 177 
16 .46-2. 13.8 .69-3 37.4 .14-4 187 .39-5 362 
32 .23-2 28.0 .19-3 85.3 .46-5 429 .11-5 818 
64 .11-2 58.0 .53-4 208 .32-5 906 .45-6 1700 
128 . 56-3 114 .17-4 364 . 

Table 1: Errors EL and Cray-2 CPU seconds TL for NT time steps of order 
L = 1 through L = 4 methods for the linear variable-coefficient equation 
(3.36). 
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Nr E1 T1 E2 T2 E3 T3 E4 T4 
4 .16-0 11.4 .31-0 64 .57-1 208 .12-1 377 
8 .42-1 22.5 .66-1 90 .37-2 388 .16-2 762 
16 .91-2 44.2 .13-1 174 .59-3 910 .16-3 1564 
32 .33-2 89.2 .29-2 366 .70-4 1760 .14-4 3100 
64 .17-2 176 .68-3 760 .. 83-5 3420 .13-5 6470 
128 .95-3 333 .17-3 1570 

Table 2: Errors EL and Cray-2 CPU seconds TL for Nr time steps of order 
L = 1 through L = 4 methods for the 2 x 2 mean curvature system (3.38). 

Nr E1 T1 E2 T2 E3 T3 E4 T4 
4 .75-1 19.7 .68-1 71 .12-1 264 .12-2 553 
8 .35-1 40.4 .74-2 136 .20-2 579 .13-3 1110 
16 .16-1 83.5 .91-3 294 .42-3 1290 .18-4 2410 
32 .78-2 171 .31-3 670 .77-4 2840 .26-5 5230 
64 .38-2 339 .14-3 1350 .14-4 5810 .55-6 10900 
128 .19-2 680 .48-4 2510 

Table 3: Errors EL and Cray-2 CPU seconds TL for Nr time steps of order 
L = 1 through L = 4 methods for the 3 x 3 reaction-diffusion system (3.37). 

Nr E1 T1 E2 T2 E3 T3 E4 T4 
4 .42-1 2.0 .66-2 7368 .20-2 18.6 .29-3 28.7 
8 .19-1 3.9 .24-2 7.6 .34-3 40.7 .31-4 65.4 
16 .98-2 7.6 .89-3 24.0 .73-4 68.2 .47-5 145 
32 .52-2 14.9 .28-3 49.8 .14-4 165 .70-6 305 
64 .26-2 29.9 .82-4 73.0 .25-5 320 .88-7 560 
128 .13-2 60.2 .22-4 153 

Table 4: Errors EL and Cray-2 CPU seconds TL for Nr time steps of order 
L = 1 through L = 4 methods for the 2 x 2 phase field system (3.40). 
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4.2 Space discretization errors 

It is expensive to verify spectral accuracy in space, because the time dis­
cretization is not spectrally accurate. Thus we fixed L = 4 with 100 steps 
from ti = 0 to tf = 0.1, for the exact solution (3.41) with ~0 = 1 and 
6 = ~2 = 9. We solved the phase field model (3.40) with parameters 
ai = bi = 0.1, using grid sizes N = 16, 32, 48, ... , 96. The resulting max­
imum errors and CPU times are reported in Table 5. Spectral accuracy is 
clearly evident: When N increases by 16, the error decreases by about a fac­
tor larger than 40, suggesting exponential decay E ~ 200e-N/4 . The iteration 
count is completely independent of mesh size for this resolved calculation, 
leading to CPU times proportional to the number of unknowns. This agrees 
with the theoretical predictions of §2.2 and shows the effectiveness of analytic 
preconditioning with £. 

N E T 
16 .53-0 123 
32 .28-1 460 
48 .73-3 1050 
64 .18-4 1780 
80 .46-6 2750 
96 .78-8 4040 

Table 5: Errors E and Cray-2 CPU seconds T for the 2 x 2 phase field system 
(3.40) with ~0 = 1 and 6 = 6 = 9 and a N x N grid. 

4.3 Phase field models 

Finally, we tested our method on a phase field model for isothermal binary 
alloy solidification proposed in [14]: it reads 

'Pt Ml ( E2 !J.cp - !cp( c, cp)) 
ct \7 · (c(1- c)\7 fc(c, cp)) 

where subscripts on f denote partial derivatives and 

f(c, cp) 

fA(cp) 

fs(cp) 

cfs(cp) + (1- c)JA(cp) + clogc+ (1- c)log(1- c) 

WA focp p(p- 1)(p- a:A)dp 

Ws focp p(p- 1)(p- a:s)dp. 
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Explicitly, this becomes 

'Pt M1(t26.cp- f~(cp)c- f~(cp)(1- c)) 

Ct 6.c + \7 · (c(1- c)cp(cp -l)(Ws(cp- o:s)- WA(cp- o:A))Vcp) 

c(1- c)(f~(cp)- f~(cp))l:.cp (4.42) 

+ (1- 2c)(f~(cp)- f~(cp))\lc · \lcp 

+ c(1- c)(f~(cp)- f~(cp))j'Vcpj 2 

As in the numerical experiment of [14], we took parameters o:A = 0.4, 
o:s = 0.6, WA = Ws = 10, M1 = 40, E = 1/40, ti = 0 and tf = 1. We used 
two different initial values for cp and c. First, we reproduced the experiment 
of [14]. This uses random initial grid values of cp and c, uniformly and 
independently distributed over the interval [0.5 - 10-2 , 0.5 + 10-2]. Figure 4 
shows the resulting cp field, plotted in grayscale: Each square of the 96 x 96 
grid is shaded with a value between 0 and 1, proportional to the average 
value of cp. Black areas correspond to minima of cp, representing solid in the 
solidification problem, and white areas are liquid. As in [14], we see a rapid 
birth of interfaces as cp becomes almost exclusively black or white, followed 
by a coarsening by mean curvature on a longer time scale. 

Random initial data, however, is impossible to resolve because it depends 
on the grid. For example, the last frame of Figure 4 shows the result of the 
same computation, performed on a 64 x 64 grid. There is only a qualitative 
resemblance between the two results. 

Hence we also experimented with a different type of random initial value. 
We generated am x m random Fourier series F(x , y), scaled it by its maxi­
mum so that jF(x, y)j :::; 1, and set the initial values equal to 

cp(x, y, 0) = C + SF(x, y) 

with constants C and S chosen to make jcp- 0.5j :::; 0.05. By varying the 
grid size, while holding m fixed, we can obtain meaningful physical results 
and a converged solution. A sample calculation is shown in Figure 5, with 
m = 24 and a 96 x 96 grid. We see qualitatively similar results to the 
previous example, but now they are stable under mesh refinement. The last 
frame of Figure 5 shows the same solution at t = 0.32, calculated on a 64 x 64 
grid; there is no visible difference. These calculations required less than ten 
GMRES iterations per substep with t = 10-6 , for a total of ten to twenty 
minutes of Cray-2 CPU time each, using the second-order time discretization. 

19 



T = 0.0000 
0.4900 < p < 0.5100 

T = 0.0200 
0.4867 < p < 0.5113 

T = 0.1600 
0.0000 < p < 1.0000 

T = 0.0050 
0.4938 < p < 0.5060 

T= 0.0400 
0 .4368 < p < 0.5484 

T = 0.3200 
0.0000 < p < 1.0000 

T = 0.0100 
0.4927 < p < 0.5065 

T= 0.0800 
0.0236 < p < 0.9602 

T = 0.3200 
0.0000 < p < 1.0000 

Figure 4: Gray scale plots of cp for the phase field model of binary alloy 
solidification ( 4.42) with random grid values for the initial data. 
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T= 0.0000 
0.4500 < p < 0.5500 

T= 0.0200 
0.4301 < p < 0.5699 

T= 0.1600 
0.0000 < p < 1.0000 

T= 0.0050 
0.4695 < p < 0.5305 

T= 0.0400 
0.2488 < p < 0.7512 

T= 0.3200 
0.0000 < p < 1.0000 

T = 0.0100 
0.4626 < p < 0.5374 

T= 0.0800 
0.0007 < p < 0.9993 

T = 0.3200 
0.0000 < p < 1.0000 

Figure 5: Gray scale plots of <p for t he phase field model of binary alloy 
solidification ( 4.42) with random Fourier series init ial data. 
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