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Evaluation: A Report to Snohomish Public Utilities District 
Phillip N Price, Lawrence Berkeley National Laboratory 
November 1, 2014 

I. Introduction 
Snohomish County Public Utilities District (“the District” or “Snohomish PUD”) provides 
electricity to about 325,000 customers in Snohomish County, Washington. The District has an 
incentive programs to encourage commercial customers to improve energy efficiency: the 
District partially reimburses the cost of approved retrofits if they provide a level of energy 
performance improvement that is specified by contract. In 2013 the District contracted with 
Lawrence Berkeley National Laboratory to provide a third-party review of the Monitoring and 
Verification (M&V) practices the District uses to evaluate whether companies are meeting their 
contractual obligations.  This work helps LBNL understand the challenges faced by real-world 
practitioners of M&V of energy savings, and builds on a body of related work such as Price et al. 
(2013). 
 
The District selected a typical project for which they had already performed an evaluation. The 
present report includes the District’s original evaluation as well as LBNL’s review of their 
approach. The review is based on the document itself; on investigation of the load data and 
outdoor air temperature data from the building evaluated in the document; and on phone 
discussions with Bill Harris of the Snohomish County Public Utilities District. We will call the 
building studied in the document the “subject building,” the original Snohomish PUD report will 
be referred to as the “Evaluation,” and this discussion by LBNL is called the “Review.” 
 
 

II. Snohomish County PUD Evaluation of an Energy Retrofit Project 
This section contains the  “Evaluation” that was prepared by Snohomish PUD, beginning on the 
following page. It has been reformatted to fit in this document, and some clarifying notes have 
been added [in brackets] but it is otherwise unchanged. In the Evaluation, “I” refers to Bill 
Harris of Snohomish PUD, and “we” refers to Snohomish PUD overall. The Evaluation is typeset 
in a sans serif font so that it is more easily distinguished from the rest of this report.  
 
 
 
 
 
 
 
 
 
 



 
Canyon Park Heights Commercial Building Evaluation 

Bill Harris 
2012-04-06 

1.   Evaluation Request 
  
The responsible energy efficiency engineer requested that I [Bill Harris of Snohomish PUD] 
evaluate the savings from a project at Diamond Canyon Park to determine if the incentive 
payment should be made: 
  
From a statistical analysis, we would like to confirm that using an extrapolation of the data 
available from PUD load data that a minimum of 546,156 kwh/yr will likely be realized. Your 
[Phil Price of LBNL] independent assessment will be welcome and appreciated. 

  
The referenced savings correlates roughly to an annualized 20% education in energy use 
from the baseline, or an annualized average building load reduction of just under 63 KW 
(24/7). 
 
With the statistical analysis of the 15 min. interval data, we would like to confirm that 
contract satisfaction has been met sufficient to make full payment on this not-to-exceed 
contract:  
 

 



2.   Summary 
Based on my analysis of the MV-90 data on this facility and subject to the limitations listed 
below, the data supports a best-estimate savings of ~22% or ~570,207 kWh, which meets 
and slightly exceeds the anticipated reduction. There is less than a 2% probability, 
conditional on the data and the statistical model, that we did not attain the contracted 
savings. 

3.   Analysis 

3.1 Data 
This analysis is based on 15-minute MV-90 interval data measured in kW. After discussion 
with the engineer, we decided to use post data from October 1, 2011, after the September 
date when the majority of the retrofit had been engaged, through March 16, 2012, the last 
day of the data at the time the data analyst pulled it. 
  
We decided to pull an equivalent period from twelve months earlier for the pre period, as 
that was before the contract was signed between the PUD and the customer, and it covered 
the same seasonal period. 
  
To make it concrete, here are selected columns of the last six rows of the data: 

 
The graph shows the kW data selected for the pre and post periods. 
 
qplot(datetime,KW,colour=state,data=cp)+ 

scale_x_datetime("Date",major="years",format="%Y") 
 
 



 

3.2 Analysis Process 
This analysis is based on three key concepts: treating the data as a mixture 

distribution, treating the data as if it came from a lognormal distribution, and computing 
summary statistics through simulation. 

Power data such as this can be seen as a mixture distribution, created 
by two or more processes that have different characteristics. In this case, the data likely has 
at least one distribution when the building is "on" and another when it is "off." 

To simplify the analysis, I used version 0.4.4 of the mixtools package (Tatiana 
Benaglia, Didier Chauveau, David R. Hunter, Derek Young (2009). mixtools: An R Package 
for Analyzing Finite Mixture Models. Journal of Statistical Software, 32(6), 1-29.) on R 
version 2.14.1 for x86_64-pc-mingw32/x64 (64-bit). The normalmixEM() function from 
mixtools can be used to extract the components of a mixture distribution, if one specifies the 
number of expected components. 

Based on looking at the data, each component of the mixture seems to be distributed 
lognormally. That's not surprising, given that the data is all positive, and so I modelled each 
mixture component as lognormal. 

For both the pre and post periods, I fitted a mixture model, printed the summary data, 
produced the density graphs, and calculated the expected savings as the weighted (by 
lambda) average of the consumption (mu) in the various power states. 

I used simulation to generate the distributions of the estimated savings and the 
estimated percentage savings. From those distributions, I calculated confidence intervals 
and the realization rate. 



[This paragraph is rendered irrelevant by reformatting done by LBNL]. This report 
was generated with Emacs org-mode 7.8.03, manually converted from Open Document 
Format to Office Open XML, and reflowed with manually-inserted page breaks and graphics 
shifts. The source code and data have been attached to the PDF version of the report. 
Selected source code and results have been shown for reference in shaded blocks in the 
report. 
 

4. Results  
modpre01 is a fitted model for the pre period, and modpost01 is a fitted model 
for the post period. The code shows the model definitions, the number of iterations required 
by each to converge, and the summary of each model. 

 lambda is the fraction of time the data spends in each state (each component 
of the mixture). mu is the estimated mean of the distribution of the natural logarithm of kW, 
and sigma is the estimated standard deviation of that distribution. 

The next code block shows the definition of the models for the pre and 
post periods, the calculation of the summary statistics for the lognormal 
models, and the calculation of the mean values of the mixture components 
in the pre and the post in kW. 
 

 
modpre01 <- normalmixEM(log(cp[cp$state=="Pre"&cp$KW!=0,"KW"]), 

lambda=0.5, 
mu=c(log(100),log(400)), 
sigma=c(log(50),log(60))) 

modpost01 <- normalmixEM(log(cp[cp$state=="Post"&cp$KW!=0,"KW"]), 
 lambda=0.5, 
 mu=c(4.7,5.1,5.8), 
 sigma=c(0.3,0.3,0.5)) 

summary(modpre01) 
summary(modpost01) 
exp(modpre01$mu) 
exp(modpost01$mu) 

 
number of iterations= 210 
number of iterations= 148 
summary of normalmixEM object: 
  comp 1  comp 2 
lambda 0.539959  0.460041 
mu  4.822532  6.200602 
sigma  0.184532  0.136039 
loglik at estimate:  -4444.196 
summary of normalmixEM object: 
  comp 1  comp 2  comp 3 
lambda  0.313401  0.301415  0.385184 
mu  4.806790  5.164625  5.889280 
sigma  0.122051  0.119376  0.133375 
loglik at estimate:  -5241.955 
[1] 124.2794 493.0458 
[1] 122.3382 174.9719 361.1451 



 
The last two lines above show that the pre model has two components, 

one with 124 kW and the other with 493 kW. The building spent 54% of its time in the low-
power mode. 

The post period is better modelled as having three components with means of 122 
kW, 175 kW, and 361 kW. The building spends 31% of its time in the low-power mode, 30% 
in the medium-power mode, and 39% in the high-power mode. 

The graph shows the pre data distribution and the fitted model. 
 
plot(modpre01, 

density=TRUE, 
whichplots=2, 
xlab2="ln(kW)", 
xlim=c(3.5,7), 
main2="Pre Period") 

 

 
The graph matches the summary table, with component means at 

exp(4.82) = 124 kW and exp(6.20) = 493 kW. 
Compare that to the post period graph: 

 
plot(modpost01, 

density=TRUE, 
whichplots=2, 



xlab2="ln(kW)", 
xlim=c(3.5,7), 
main2="Post Period") 

 

 
Clearly the high-power component now uses less power than in the pre. 

The low-power component has split in two, with one component somewhat higher than the 
previous low-power component. 

The weighted (by lambda) average of the mean power levels gives the overall 
average power. 

To calculate the distribution of the savings and savings percentage, I simulate 1,000 
years of 35,040 quarter-hour data points using the lognormal mixture distribution previously 
estimated. From that distribution of 1,000 samples, I can calculate summary statistics by 
counting. 

The next code block shows the simulation and the summary statistics for the 
percentage savings, the total kWh saved in a year, and the realization rate expressed as a 
percentage. 
 
## Get lists of lognormal parameters: 
lnpremu <- modpre01$mu 
lnpostmu <- modpost01$mu 
lnpresigma <- modpre01$sigma 
lnpostsigma <- modpost01$sigma 
prelambda <- modpre01$lambda 
postlambda <- modpost01$lambda 



nosims <- 1000 
 
set.seed(1000) 
prepwr <- rep(0,nosims) 
postpwr <- rep(0,nosims) 
for (i in 1:nosims) { 

prepwr[i] <- 
sum(exp(rnormmix(4*8760,lambda=prelambda,mu=lnpremu,sigm

a=lnpresigma)))/4 postpwr[i] <- 
sum(exp(rnormmix(4*8760,lambda=postlambda,mu=lnpostmu,si

gma=lnpostsigma)))/4} 
 
savings <- prepwr-postpwr 
savingspc <- 1-postpwr/prepwr 
 
100*summary(savingspc,digits=3) 
summary(-savings,digits=6) 
100*summary(-savings/546156,digits=3) 
 
  Min.  1st Qu.  Median  Mean   3rd Qu.  Max. 
  20.6  21.7   21.9   21.9   22.1   23.0 
  Min.      1st Qu.     Median      Mean        3rd Qu.     Max. 
-603155  -577309  -570425  -570207  -562715  -528264 
  Min.  1st Qu.  Median  Mean   3rd Qu.  Max. 
-110.0     -106.0     -104.0   -104.0     -103.0  -96.7 

 
We likely saved 570,200 kWh with a 50% confidence interval extending from 

562,700 kWh to 577,300 kWh. The realization rate is 104% and the percentage 
saved is 21.9%. 

 
quantile(savings,c(0.025,0.975)) 
100*sum(savings>=546156)/1000 
 

2.5% 97.5% 
549744.5 589599.5 
[1] 98.7 
 

The 95% confidence interval of savings, conditional on the model and the data, 
ranges from 549,745 kWh to 589,600 kWh. There is a 98.7% probability that the estimated 
savings from the measured data exceeds the contracted savings of 546,156 kWh. 

The same result can be seen graphically in an empirical cumulative distribution 
function (ECDF). 
 
Ecdf(savings, 

what="1-F", 
datadensity="rug", 
q=c(0.025,0.25,0.5,0.75,0.975), 
subtitles=FALSE) 



 
That graph shows the probability (on the ordinate) that at least a particular kWh savings (on 
the abscissa) has been achieved. Lines on the graph show the 95% and 50% confidence 
intervals as well as the median savings. 
  
The rug plot along the abscissa shows the distribution of the 1,000 sampled data points 
used as the basis of this inference. 

5. Analysis Limitations 
Any modeling has limitations.  Here are key limitations I see:  
 
• The data may be serially correlated, but the analysis assumes independent data. 

 
o It might be argued that this is conditionally independent, identically-distributed 

data, which would eliminate this concern. 
o If the data is serially correlated, that should only affect the error analysis, 

making the computed values of sigma too small but not affecting the best 
estimate of savings. 
 

• The data does not include April through September data. 
 

o We do not yet have post data that extends for more than six months. 
o Data was picked from the same time of year in the pre and the post to reduce 

any seasonal effects. 



o The match between the estimated savings and the measured savings in the 
table in the evaluation request suggests this is not likely to be a significant 
problem. The simulated consumption of2.6 million kWh in the pre period from 
October 1, 2010 through March 16, 2011 aligns well with the 2.6 million kWh 
in the twelve months ending April 2011, and the simulated consumption of 2.0 
million kWh in the post period from October 1, 2011 through March 16, 2012 
aligns reasonably with the 2.2 million kWh in the twelve months ending March 
2011, especially considering that the contractors were still installing and 
commissioning the system during half of that measured period. 

 
Min.  1st Qu.  Median  Mean  3rd Qu.  Max. 

 2 566 000  2 597 000  2 604 000  2 603 000  2 609 000  2 632 000 
Min.  1st Qu.  Median  Mean  3rd Qu.  Max. 
2 016 000  2 029 000  2 033 000  2 033 000  2 037 000  2 049 000 

  
  
• Seven data points are missing, because MV-90xi software handles the conversion to 

and from DST incorrectly. 
o That's less than 0.04% of the data in each of the pre and the post. 

 
 

III. LBNL Review of the Evaluation 
 
The Evaluation was based on a comparison of load data from a five-and-a-half-month period 
starting October 1, 2011 to data from the same months a year earlier. Conceptually, the 
Evaluation takes a standard approach to performing Measurement and Verification (M&V) of 
retrofit savings: energy consumption over a period prior to the Energy Conservation Measures 
(ECMs), called the “pre-ECM“ period or just “pre” period), is compared to the energy 
consumption following the  ECMs (the “post” period).  The energy savings is defined as a 
“baseline” energy use minus the energy used during the post period, plus or minus 
“adjustments” due to changes in energy consumption that are not associated with the ECMs.  
Typically, the baseline energy use is either assumed to be equal to the energy used during the 
pre period, or is determined from a simple statistical model that includes the effect of 
explanatory variables such as outdoor air temperature. The standard approach is formalized by 
ASHRAE Guideline 14 (ASHRAE, 2002). 
 
The Evaluation applies the basic concept of Guideline 14, with a slight modification: in the 
conventional approach the baseline energy use is uncertain but the energy used during the post 
period is known, but the Evaluation treats the energy used in the post period as a single 
realization of a statistical model.  In essence, the Evaluation acknowledges that the energy 
saved in this particular year (or this particular post period) is just one possible value that might 
over- or under-estimate the savings for other years. This is a correct or at least justifiable way 
of looking at the issue that is nonetheless non-standard. 
 
Similarly, the Evaluation takes the view that the energy consumed in the pre period is just one 
possible value that could have been observed in those calendar months. The methodology used 
in the Evaluation recognizes (correctly) that there is stochastic variability in the energy 
consumed during the pre and post periods, and that this variability contributes to the 
uncertainty in the magnitude of savings that can be credited to the ECMs.  
 



In the Evaluation, the “baseline model” is a statistical model in which the load at a given 
moment is a sample from a mixture distribution. The logarithms of the load data are assumed to 
be draws from a statistical distribution that is the superposition of three Normal (Gaussian) 
distributions whose parameters are determined from a fit to the data.   A similar mixture model, 
with different parameter values, is used for the post period.  (See Figure 1, below). 
 

 
Figure 1: Mixture distributions for pre- and post-ECM period. 
 
 
The model parameters are chosen to fit the pre and post data, respectively. The models are 
constructed so that a random sample of simulated data will have approximately the same 
statistical properties as the actual data from the building.  A year of simulated data is drawn at 
random from the model that represents the pre period, another is drawn from the model for the 
post period, and the simulated savings are determined by subtracting the total simulated 
energy consumption in the post period from the total in the pre period.  This procedure is 
followed many times (1000 times, in the Evaluation), yielding 1000 savings estimates. The 
statistical distribution of those estimates is then summarized.   
 
This approach differs from the more conventional approach in that it does not compare the load 
in the post period to the baseline load, but rather it compares each simulated load value in the 
post period to each simulated baseline load.  
 

III A. Comparison of results of the standard approach to the approach used in the Evaluation 
 
The Evaluation reports estimated savings of 570,000 kWh, and a 50% confidence interval from 
562,700 kWh to 577,300 kWh. (There is a somewhat complicated terminology surrounding the 
terms “confidence intervals,” “credible intervals,” “prediction intervals,” and so on. The 
evaluation uses the term “confidence interval” to describe the uncertainty distribution, and we 
think this is in fact the correct term while acknowledging that we are not positive of this).  
 
A more conventional approach to M&V would be based simply on the average load during the 
pre and post period. The average load during the pre period was 279 kW, and the average in the 
post period was 232 kW. Extrapolating to a year (8760 hours), this yields an estimated savings 
of 570,000 kWh (identical to that reported by the Evaluation).  
 



ASHRAE Guideline 14 allows several methods of estimating the uncertainty in the savings, 
depending on the details of the baseline model used. The simplest baseline model would 
assume that the load is constant during the pre period and during the post period, and treat 
deviations from this model as errors (or “residuals”).  If these errors are (incorrectly) treated as 
statistically independent, the uncertainty in the savings would be calculated as follows. The 
standard deviation of the load during the pre period is 191 kW, and there are 16,000 intervals 
in the pre period, so the uncertainty in the mean during the pre period is 191/sqrt(16000) = 1.5 
kW. The same calculation holds for the post period. (There is no way to know the error of the 
baseline in the post period, so for this calculation we assume it is the same as the pre period). 
The total savings uncertainty according to this calculation method, expressed as a standard 
error of the mean, is 

 

ν = 1.52 +1.52 = 2.12  kW. For a year with 8760 hours, this translates to 
a standard error of 18,600 kWh. To compare to the results from the Evaluation, we express this 
as a 50% confidence interval by using the fact that the central 50% of a normal distribution is 
contained within +/- 0.75 standard errors of the mean, which in this case is 14,000 kWh.  Thus, 
this method would yield an estimated savings of 570,000 kWh, and a 50% confidence interval 
from 556,000 kWh to 584,000 kWh.   
 
ASHRAE Guideline 14 notes the importance of adjusting for autocorrelation and proposes a 
method for doing so. The method relies on calculating an ‘effective’ number of independent 
observations, based on the lag-1 autocorrelation of the residuals. The ASHRAE formula is 
correct for a specific type of time-series model on the residuals, specifically an AR(1) model, but 
in fact most real building data are not well described by an AR(1) model and the ASHRAE 
formula may either over- or under-estimate the uncertainty. With the data from the subject 
building, the ASHRAE formula would estimate a 50% confidence interval about eight times 
wider than the interval based on an assumption of independent data points: the 50% 
confidence interval ranges from 458,000 kWh to 682,000 kWh.    
 
We see that in this building, using these data, both the conventional ASHRAE approach and the 
approach used in the Evaluation yield very similar results for the central estimate of the annual 
savings: 570,000 kWh. They also yield similar results for the uncertainty in this number, if 
autocorrelation is ignored. This is not a coincidence, and can be expected to be the case in 
similar analyses of other datasets: the fact that the mixture models are a good statistical 
representation of the data from which they were constructed implies that both the mean and 
the standard deviation of the simulated data will be close to the mean and standard deviation of 
the actual data, which, through the Central Limit Theorem, in turn implies that the mean and 
the standard error of the mean will be similar in the final results.  (This is true even though the 
mixture distribution assumed in the Evaluation is rather non-normal, being constructed of a 
superposition of three lognormal distributions.) 
 

III B. Advantage of the Approach used in the Evaluation 
 
The conventional approach of simply comparing load during the pre- and post-ECM period does 
not necessarily provide any insight or information about how the energy savings came about.  
In contrast, the mixture-model approach used in the Evaluation shows that in the post-ECM 
period there was a substantial reduction in the upper end of the statistical distribution of load: 
the daily peaks aren’t nearly as high. If this was an expected or intended outcome of the specific 
ECMs implemented in this building, then this observation suggests that the observed energy 
savings are “real” and not the result of stochastic variability or of some change in the building 
that is unrelated to the ECMs.  As a general principle, trying to identify the “fingerprint” of the 
ECMs is probably good practice: automatic timers that shut off lights and equipment after hours 



should show up in the after-hours load, not in the peak load; improvements to the HVAC system 
should show up when the HVAC system is operating; and so on.  This is a nascent area of M&V 
practice and so far there are no formalized methods for applying these concepts., but the 
principle can still be used to guide M&V analysis and to suggest alternative analyses if a result 
seems unusual. 
 
 
 
In the building in question, the main ECM was the installation of Variable Air Volume (VAV) 
units and the alteration of the building’s HVAC controls to take advantage of these units. These 
improvements would be expected to affect the electric load only when the ventilation system is 
turned on, and to provide more benefit on average when the HVAC load is high.  The high-load 
mixture component represents data from (roughly) business hours on weekdays, when 
occupancy is high and the HVAC load is highest, so the substantial downward shift in this mode 
is what is expected given this ECM.  However, this observation begs the question of how the 
building should be evaluated if it had somehow attained the same estimated energy savings but 
not through a downward shift of that upper component.  
 
Actually in this particular building there are only two ways such a large magnitude could show 
up: that high-consumption component of the mixture represents most of the energy used by the 
building, so any large savings would have to come from either (1) a downward shift, or at least a 
downward skew, to that component, or (2) from a shift of hours of operation out of the high-
consumption component into one of the others. But suppose there were some other building in 
which VAV boxes were installed and the upper component of the mixture remained unchanged 
between the pre and post period, but there was a downward shift to a lower-energy component 
of the mixture.  Would one then conclude that the VAV boxes were effective in reducing the 
energy use in the building, but for reasons not understood? Or would one conclude that the VAV 
boxes were not saving substantial energy but that some other energy-saving actions had taken 
place? (The latter is not very far-fetched: the attention paid to building systems and schedules 
during a retrofit might well lead to discovering and implementing energy saving opportunities 
in addition to the originally planned ECMs).   In this Review we do not propose to answer these 
questions, we merely note that the ability to separate the energy savings into mixture 
components, or to otherwise characterize the ways in which the savings occur, is a potentially 
valuable improvement over other approaches but that we do not currently see how to exploit 
that potential.  
 

III C. Shortcomings of both approaches 
 
Neither the ASHRAE approach nor the approach taken in the Evaluation will yield accurate 
uncertainty estimates. The assumption of independent data points (as in the Evaluation) will 
lead to confidence intervals that are much too narrow.  The assumption that autocorrelation of 
data points is described by an AR(1) time series model may lead to confidence intervals that are 
too narrow or too wide, depending on the details of how the AR(1) assumption is violated in the 
data from that particular building and time period; detailed analysis of this is outside the scope 
of this Review.  
 

III D. Conclusions from Review of an Evaluation of a Prior Commercial Building Retrofit Project 
 



The mixture-model approach used in the Evaluation has some advantages over more 
conventional approaches, and does not have substantial disadvantages for this building. Or, 
rather, it does not have technical disadvantages: it is undeniably somewhat more complicated to 
perform and to understand.  
 
As a general rule – as opposed to the application to the specific building in this evaluation – the 
mixture model approach that was used by Snohomish PUD should give nearly the same central 
estimate and confidence intervals as a conventional approach based on the pre- and post-ECM 
mean load.  In both cases the confidence intervals will be too narrow, since both approaches 
rely on an assumption of statistically independent data points that is strongly violated by actual 
data from most buildings. 
 
The Snohomish approach based on mixture modeling has the advantage that it gives some 
insight into where the savings are coming from.  Such insight is clearly valuable from the 
perspective of an engineer trying to understand what is happening. It’s less clear whether this 
insight can turn into actionable assessment in the context of an either/or decision about 
whether an energy target has been met. In the present building the benefits of the ECM are large 
enough that there is little question that the target savings were attained, but one can imagine 
other buildings in which the situation is much less clear.  
 
In short, the approach used in the Evaluation is a slight improvement over common industry 
practice. It can be further improved as discussed below.   
 

IV. Suggestions for Future Improvements 
 
1. Plot the load data time series in a way that allows important features to be 
seen. 
 
The first step in any analysis of load data should be to plot the load data as a function of time.  
Plotting a full year of interval data – or even a few months – can yield plots that are hard to 
interpret if care isn’t taken in selecting the aspect ratio and other parameters. The raw data 
plots in the Evaluation suffer from some problems in this regard. Price (2010) provides some 
advice for how to create plots. 
 
Useful plots include (1) overlay data from one period over data from a comparison period (as in  
Figure 2); and (2) a single plot that shows a range of data starting a few weeks before the 
installation of an ECM and ending a few weeks after (Figure 3).  
 
 



 
Figure 2: Load during pre period (black) and 52 weeks later during the post period (blue). Dates 
shown are for the Pre period; because the year is not a multiple of 7 days long, dates in the Post 
period are off by one day.   
 
 
 
 

 
Figure 3: Load before, during, and after the installation of Energy Conservation Measures in late 
September. Peak load drops from around 500 kW in late September to around 400 kW in early October 
(except for one 15-minute interval each day).  
 
The point of the plots is to look for irregularities or anomalies that could interfere with the 
ability to estimate the energy savings from the ECM. There are so many examples that it is 
impossible to list them all. Some examples of possible phenomena are: 

1. The building’s base load (minimum nighttime load) increases because the building stops 
shutting down at night or because changes are made to outdoor lighting or because of 
the addition of continuously operated equipment such as computer servers.  

2. The building’s base load decreases because scheduling errors are corrected, some night-
time lighting is eliminated, or for other reasons. 

3. The building begins using more or less energy during the day because of a change in 
occupancy levels or production levels. 

4. The building begins using more or less energy on hot days because of a change in 
temperature setpoints.  

There are many other examples as well.  
 



There is no current computer technology that can reliably analyze an electric load time series 
and identify all of the behaviors that can occur.  If computer tools are provided that make it easy 
to generate the required plots, it does not take a highly skilled statistician or data analyst to 
recognize many features that could lead to incorrect M&V assessments.  For example, Figure 4 
shows electric load data from a building that stops shutting down at night. If this behavior 
occurs in the “pre” period of an M&V assessment, the effectiveness of the ECM may be 
overestimated: if this behavior is remedied in (or before) the “post” period, the building’s 
energy consumption will decrease whether or not the ECM is effective.  Conversely, if behavior 
such as this were to commence during the “post” period, even the energy savings of a highly 
effective ECM would be masked by the energy wasted by operating the building at night. 
 
Determining ways to handle these sorts of phenomena may require skilled engineers or data 
analysts who can figure out how to adjust for them, but much less skill is required in order to 
simply notice that something is anomalous. So, one approach to scaling up M&V practices to 
handle a large number of buildings without a large staff of skilled analysts would be to train 
some less-skilled analysts to visually scan load data plots for problematic behavior. Buildings 
that exhibit such behavior can be passed along to more highly trained or skilled analysts, while 
the rest of the buildings (hopefully the majority) can be processed using standard methods. 
 

 
Figure 4: Three months of electric load data (load is in kW) for a courthouse building. The 
building stops shutting down at night, starting in mid-July. 
 
 
2. Plot the load data vs outdoor air temperature (and other explanatory variables, 
if data are available). 
 
Figure 5 shows the electric load as a function of the outdoor air temperature during the pre 
period (black) and the post period (blue). The data divide into an upper cloud of points that 
shows evident temperature-dependence of load, and a lower cloud that shows little or no 
temperature dependence. This is a common phenomenon among commercial buildings, many 
of which are temperature-controlled during the day and either uncontrolled or less tightly 
controlled at night.  
 
The two or more mixture components that were identified in the Evaluation are clearly seen 
here. As with the mixture modeling, this plot invites the question of whether the observed 
changes in the building are consistent with what is expected from the ECM that was performed.  



 
Figure 5: Load as a function of outdoor air temperature during the pre period (black dots) and 
post period (blue). 
 
3. Choose an appropriate baseline method, given what is learned from plotting 
the time series and the load versus temperature.  
 
When comparing a pre- and post- period that are several months long and exactly one year 
apart, it is often not crucial to account for the dependence on temperature: as long as the 
statistical distribution of temperatures is about the same in both periods the temperature-
dependence will average out. 
 
A. What to do if there are no load anomalies and if the pre and post period have 
comparable outdoor air temperature distributions: 
   
This is the case for the subject building and the pre and post periods used for the Evaluation.  In 
this case adjustment for temperature is not needed and the average load from the pre and post 
period can be directly compared, as was done in the Evaluation. 
 
To get a valid uncertainty estimate, autocorrelation of the individual data points must be taken 
into account. If the autocorrelation is low beyond a certain lag, a bootstrap method (Efron, 
1977) can be used to sample chunks of load data – that is, contiguous segments of data – from 
the pre period with replacement in order to generate a simulated year of data, and the same 
from the post period, and the difference in energy consumed during these years provides one 
estimate of the energy savings.  Repeating this process many times will yield a statistical 
distribution of estimated savings.  This is in the same spirit as the uncertainty estimate used in 
the Evaluation, but in the subject building we find that the sampling timescale must be 
approximately 1 week rather than 15 minutes, which makes a rather large difference in the 
uncertainty estimate: this procedure leads a 50% confidence interval of 528-581 MWh saved, a 
span of 53 MWh; this compares to the Evaluation’s estimate of 563-577, which is a span of only 
14 MWh and is clearly too narrow. 
 
B. What to do if there are no load anomalies but the pre and post period are not 
comparable in terms of outdoor air temperature distributions: 



  
The more temperature-sensitive the load in the building, the smaller is the difference in 
weather between pre and post period that can be tolerated without some sort of weather 
adjustment.  It is usually advisable to adjust for temperature dependence: if the pre period is 
substantially harsher or milder than the post period, the estimated energy savings will be 
under- or over-estimated.  
 
The standard recommended approach to adjusting for temperature is to create a “baseline” 
statistical model that adjusts for temperature and is fit to data from the pre period, and to use 
this model to predict the energy consumption during the post period. This approach is 
described in IPMVP Option C, sections 3.4.3.3-3.4.3.7 (IPMVP, 2002).  Until recent years it was 
standard to create such models using monthly electricity data (usually the only available data) 
and integrated weather metrics such as Heating Degree-Days and Cooling Degree-Days; 
nowadays it is possible to create the models using interval load and temperature data, which 
allows much better estimation of the effect of temperature from even relatively small amounts 
of data. (For instance, even one hot week can be enough to quantify the effect of high 
temperatures, which was not true with monthly aggregated data only).  
 
This approach is illustrated in Figure 6 - Figure 8. Figure 6 shows the load and temperature data 
from the Pre period, and predictions from the resulting model fit to these data. The model 
whose results are shown here is described in Mathieu et al. (2011); it is a regression model in 
which the prediction at a given time depends on the time during the week – analogous to time 
of day, but counting sequentially through a 7-day period rather than a single day – and on the 
outdoor air temperature, where the dependence of load on outdoor air temperature is assumed 
to be piecewise-linear.  This particular model is used here only to illustrate the point that a 
statistical model can capture at least some of the time- and temperature-dependence; we don’t 
claim this is the best model that could be created for this building. 
 
The model predictions are, obviously, not perfect, although (since an unbiased model was used) 
the average of the predictions is equal to the average load during this period. Higher load 
during some especially cold periods is evident in both the actual data and in the model 
predictions.  
 
 



 
Figure 6. Top: Actual load and predicted load of the subject building during the Pre period, from a 
statistical model that accounts for the time of week and the outdoor air temperature. Bottom: 
Outdoor air temperature during the Pre period. 
 
 
Figure 7 shows (in orange) the result of using the same statistical model that was fit to the pre-
ECM data, but using the outdoor air temperatures that occurred in the post period. The 
relationship between predictions and actual data is hard to see in this plot – as previously 
noted, plotting choices are important when looking at load data because important features can 
easily be obscured.   
 
Figure 8 shows only the first six weeks of the post period. On this plot it is easy to see that the 
load is substantially below the baseline prediction during the day on weekdays, and about the 
same as the baseline prediction during nights and weekends. 
 
The load in the building varies somewhat with temperature. However, the predicted mean load 
during the post period is essentially identical to the predicted (and actual) mean load during the 
pre period, because the statistical distribution of temperatures was very similar in the pre and 
post periods.  So for these pre and post periods and this particular building, there is no 
difference between estimating the baseline using the regression model as (which adjusts for 
temperature) and using the average load from the pre period (which does not). In this case the 
temperature-dependence can be ignored, as was done in the Evaluation. However, this would 
not be true of other buildings, or of this building if the pre and post periods had substantially 
different weather, such as a harsh winter compared to a mild one.  
 
 
 



 
Figure 7: Actual load and predicted baseline load of the subject load during the Post period. 
Bottom: Temperatures during the Post period. 
 

 
Figure 8: Same as Figure 7, but showing only the first six weeks of the Post period. 
 
 
 
 



Even if the pre and post period experience identical weather, adjusting for outdoor air 
temperature can be important if either the pre or post period (or both) is substantially shorter 
than a year. For example, if an effect of the ECM is to reduce the slope of the dependence of load 
on temperature (as would be the case with some HVAC improvements) then the portion of the 
year that is represented by the pre and post period can matter: if the periods sample mostly 
mild weather, the effect of the ECM will show up less strongly than if the periods sample more 
extreme weather. The subject building may be an example: Figure 5 suggests that the ECM may 
save more energy when the outdoor air temperature is below 40F than when outdoor air 
temperature is near 55F, so if the pre and post periods oversample lower temperatures 
(compared to the temperature distribution during a full year) the savings may be over-
estimated.   
 
On the other hand, the changes in the subject building might also save substantial energy for 
outdoor air temperatures above 60F, a temperature range that is nearly absent in the post 
period but presumably would be experienced at times during the rest of the year, so it’s also 
possible that the savings are underestimated or are correctly estimated. Given the fact that the 
post period does not include the summer, there’s simply no way to know the building’s energy 
performance in the case of higher outdoor temperatures.  
 
One somewhat unconventional approach to handling the problem of pre and/or post periods 
for which the statistical distribution of temperature differs from the year as a whole is to (a) fit 
a statistical model for the pre period and another model for the post period,  (b) use both 
models to predict the energy consumption during a typical year, and (c) estimate the average 
annual energy savings as the difference between these predictions.  If this approach is used, it is 
important to use statistical baseline models are unbiased or nearly unbiased (in the formal 
statistical sense).  We think ASHRAE Guideline 14 sets an overly strict requirement for bias, but 
we agree with the general principle that the bias should be low. This may prevent the use of  
otherwise attractive approaches such as using linear regression on the logarithm of the load 
rather than on the load itself, unless a bias adjustment is made. 
 
To recap:  there is the conventional approach of subtracting the actual load in the Post period 
from the baseline prediction to estimate the savings; or the unconventional approach of fitting 
baseline models to both the pre and post periods, predicting the energy consumption during a 
typical weather year, and then subtracting to estimate the savings.  
 
Either way, one obtains only a point estimate that does not automatically provide a confidence 
interval. To estimate a confidence interval, one approach is to again rely on a bootstrap method, 
but this time to sample from the distribution of model residuals. The following is the recipe for 
doing this.  

1. Fit the statistical model to the Pre period. 
2. Apply the statistical model to generate a baseline prediction for the Post period. 
3. Calculate the residuals from the Pre period as a function of time (that is, actual load 

minus predicted load). 
4. Draw random chunks of residuals to generate a simulated year of residuals. The chunks 

– contiguous intervals of residuals – should be about the length of the autocorrelation 
scale of the residuals, which is roughly 1 week in the subject building. Sampling should 
be done with replacement.  

5.  Add the simulated year of residuals to the baseline prediction for the Post period, to get 
a simulated baseline that includes the effect of stochastic variability.  



6. Subtract the actual load used in the Post period to get the estimated savings at each time 
interval, and add these up for the entire Post period to get the estimated energy savings 
during the Post period.   

7. Repeat steps 4 through 6 many times to get a statistical distribution of savings 
estimates. 

The procedure described above will account for only the uncertainty in the baseline estimate 
for the Post period, and not for stochastic variability of the actual data from the Post period.  As 
such, it will provide a statistical distribution that estimates the uncertainty in the energy that 
was actually saved during the Post period, but not the uncertainty in the energy that might be 
saved in a similar period in a different year.  
 

V. Summary 
1. The Evaluation provided a reasonable estimate of the energy saved during the post-

install period in the subject building. 
2. Adjustment for outdoor air temperature is generally recommended. In the case of the 

subject building and the specific seasons that were analyzed, such an adjustment has 
almost no affect on the estimated energy savings. In other cases it can be important.  

3. Both the Pre- and Post-install periods included only the five coolest months of the year. 
Extrapolating the savings in these months to an entire year without adjusting for 
outdoor air temperature is not recommended in general but is probably acceptable in 
the subject building because the energy savings appears be roughly the same for a wide 
range of temperatures.    

4. The Evaluation provides a confidence interval for the energy saved during the year. The 
method is based on sampling from a distribution of possible energy observations. The 
basic approach is quite reasonable but the specific implementation assumed that each 
data point is statistically independent, an assumption that is strongly violated by the 
data; the result is a confidence interval is much too narrow.  

5. A modified sampling approach will provide a much more reasonable confidence 
interval. The modification is to sample contiguous segments of data that are long 
enough in duration that the data points at the beginning of the segment are 
approximately uncorrelated with those at the end. In the case of the subject building, 
this duration is about 1 week. 

6. An improvement over the methods in the Evaluation would be to use a baseline method 
based on linear regression to adjust for outdoor air temperature when estimating 
savings (as described in IPMVP Chapter 3), and using a method based on sampling of 
the residuals in order to estimate the uncertainty. There may be other good methods as 
well.  
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