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Abstract

The square of the horizontal projected (rms) beam emittance is expressed as the sum of four
nonnegative contributions, each described using the slice moments of the beam and possessing a
natural interpretation in terms of the geometrical properties of the beam in the six-dimensional
phase space. The mathematical formalism describing the relationships between projected beam
quantities and slice beam quantities is reviewed. The results may be used to reconstruct the
moments and emittances of the beam from the moments of its subpopulations, as well as to
isolate and better understand a variety of slice and interslice dynamical contributions to the
projected beam emittance growth.

1 Introduction

The concepts of slice and projected beam emittance play a central role in the design and optimiza-
tion of next-generation FEL light sources [1], in the theory of emittance compensation [2]-[3], and
in the general theory of beam dynamics in linear and circular accelerators [4]. The slice formalism
is particularly useful in the case of long beams with small uncorrelated energy spread, for which
the longitudinal slice-to-slice variation in the fields experienced by particles in the beam (e.g., due
to wakefields and time-dependent RF fields) can be significant, while there is little particle slippage
between slices. In this case, the dynamics of particles within each slice may profitably be separated
from the dynamics of the slice centroids.

This separation leads naturally to the question of the relationship between the projected (rms)
emittance and the properties of the various beam slices. We demonstrate that the square of the
projected emittance can be decomposed as the sum of four contributions, each with a distinct
geometrical interpretation in terms of the slice beam moments. Fragments of a treatment along
these lines can be found in various forms in the literature [5]-[9]. The purpose of this paper is to
consolidate these results in the form of a general and carefully presented mathematical treatment,
with proofs of some nontrivial features included. Several tools are presented that point the way
toward a similar treatment of other diagnostic beam quantities such as the projected beam energy
spread, the 4D and 6D emittances, and the eigenemittances for coupled beams [10].
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2 Basic formalism

Let f denote a beam distribution function on the 6D phase space, which we parameterize by
canonical coordinates X = (x, px, y, py, z, pz). For convenience, we will assume that all momenta
are normalized by the quantity mc. By assumption, f has the properties that f ≥ 0 and∫

f(X)dX = 1. (1)

Thus, f is a joint probability density in the six random variables x, px, y, py, z, and pz that
characterizes the distribution of the beam particles. If φ is any function defined on the phase space,
we define its beam average in the natural way:

〈φ〉 =

∫
φ(X)f(X)dX. (2)

Assume that z is the direction of beam motion, and consider the planes of constant z, which
we describe as longitudinal slices. Let ζ = (x, px, y, py, pz) denote the remaining phase space
coordinates, so we will write X = (z, ζ) when we wish to emphasize the separation of the slice
coordinate z from the coordinates within a slice ζ. There are two natural functions associated with
this decomposition into slices. First, the longitudinal density profile of the beam is given by the
following marginal probability density:

λ(z) =

∫
f(z, ζ)dζ. (3)

Second, the slice distribution function for the slice z is given by the conditional probability density:

f(ζ|z) =
f(z, ζ)∫
f(z, ζ)dζ

=
f(z, ζ)

λ(z)
, provided λ(z) > 0, (4)

with f(ζ|z) = 0 when λ(z) = 0. It follows that both of these quantities are nonnegative and
normalized so that: ∫

λ(z)dz = 1,

∫
f(ζ|z)dζ = 1. (5)

Given any function φ defined on the phase space, we may define its average within slice z by using
the slice distribution function:

〈φ〉z =

∫
φ(z, ζ)f(ζ|z)dζ. (6)

We use the notation f |z to refer to the the slice distribution function when we wish to avoid listing
its arguments, in order to distinguish this quantity from the full beam distribution function f .

3 Slice and projected moments

We use the notation ~µ and Σ to denote the centroid vector and covariance matrix of the beam,
respectively, whose elements are given by:

µa = 〈Xa〉, Σab = 〈(Xa − µa)(Xb − µb)〉 for a, b = 1, . . . , 6. (7)
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Likewise, define the slice centroid vector ~µ(z) and slice covariance matrix Σ(z) for slice z by:

µa(z) = 〈Xa〉z, Σab(z) = 〈(Xa − µa(z))(Xb − µb(z))〉z for a = 1, . . . , 6. (8)

Note that we have used two distinct forms of averaging 〈〉 and 〈〉z, associated with the probability
densities f and f |z. Given a quantity φ that depends on z, we may also define an average across
slices by using the longitudinal density profile λ:

E[φ] =

∫
φ(z)λ(z)dz. (9)

Likewise, given two z−dependent quantities φ1 and φ2, we define their covariance in analogy with
(7) and (8):

Cov[φ1, φ2] = E[(φ1 − E[φ1])(φ2 − E[φ2])], (10)

and the variance is defined in the usual way as:

Var[φ] = Cov[φ, φ] = E[(φ− E[φ])2]. (11)

The projected (7) and slice (8) moments of the beam can now be related using two fundamental
results from the theory of conditional probability. The law of total expectation gives:

µa = E[µa(z)] for a = 1, . . . , 6, (12)

and the law of total covariance gives:

Σab = E[Σab(z)] + Cov[µa(z), µb(z)] for a, b = 1, . . . , 6. (13)

Note that the notation in (12-13) makes sense, because the slice moments appearing within the
brackets [·] on each right-hand side are z−dependent quantities. A proof of each of these claims is
provided in Appendix A.

The projected (rms) normalized emittance of the beam in the (x, px) plane is typically defined by:

ε2x = 〈(x− 〈x〉)2〉〈(px − 〈px〉)2〉 − 〈(x− 〈x〉)(px − 〈px〉)〉2, (14)

with expressions of the same form for ε2y and ε2z. It is convenient to express these definitions using
the 2×2 blocks of the 6D covariance matrix associated with each degree of freedom:

ΣX =

(
Σ11 Σ12

Σ21 Σ22

)
ΣY =

(
Σ33 Σ34

Σ43 Σ44

)
ΣZ =

(
Σ55 Σ56

Σ65 Σ66

)
, (15)

so that:
ε2x = det ΣX , ε2y = det ΣY , ε2z = det ΣZ . (16)

In the same way, we may express the emittances within slice z as:

ε2x(z) = det ΣX(z), ε2y = det ΣY (z), ε2z = det ΣZ(z), (17)

where ΣX(z), ΣY (z), and ΣZ(z) are obtained from the slice covariance matrix Σ(z) defined in (8).
It follows from our definitions that εz(z) = 0 for all z, so this quantity will play no role in the
discussions to follow.
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4 Decomposition of the projected emittance

In this section we will show that the horizontal projected emittance (14) can be written as the
sum in quadrature of four contributions, each with a natural interpretation in terms of the slice
properties of the beam. Corresponding results apply also for the projected emittances in the other
two planes.

Define a 6×6 matrix Λ according to:

Λab = Cov[µa(z), µb(z)], for a, b = 1, . . . , 6 (18)

and likewise define the 2×2 blocks of Λ associated with each degree of freedom:

ΛX =

(
Λ11 Λ12

Λ21 Λ22

)
ΛY =

(
Λ33 Λ34

Λ43 Λ44

)
ΛZ =

(
Λ55 Λ56

Λ65 Λ66

)
. (19)

Then it follows from (13) that we have the 2×2 matrix identities:

ΣX = E[ΣX(z)] + ΛX , ΣY = E[ΣY (z)] + ΛY , ΣZ = E[ΣZ(z)] + ΛZ . (20)

Therefore according to (16) the horizontal projected emittance is given by:

ε2x = det
(
E[ΣX(z)] + ΛX

)
. (21)

We exploit the following useful identity that applies for any sum of 2×2 matrices, which the reader
may directly verify:

det(A+B) = det(A) + det(B) + tr(A) tr(B)− tr(AB). (22)

This gives:

ε2x = det(E[ΣX(z)]) + det(ΛX) + tr(E[ΣX(z)]) tr(ΛX)− tr(E[ΣX(z)]ΛX)

= det(E[ΣX(z)]) + ε2int + ε2||, (23)

where we have defined:

ε2|| = det ΛX , (24)

ε2int = tr(E[ΣX(z)]) tr(ΛX)− tr(E[ΣX(z)]ΛX). (25)

The significance of these quantities will soon become apparent. We further decompose the first
term appearing on the right-hand side of (23) as follows:

det(E[ΣX(z)]) = E[Σ11(z)] E[Σ22(z)]− E[Σ12(z)]
2

= E[Σ11(z)Σ22(z)]− Cov[Σ11(z),Σ22(z)] + Var[Σ12(z)]− E[Σ12(z)
2]

= E[ε2x(z)]− Cov[Σ11(z),Σ22(z)] + Var[Σ12(z)]

= E[εx(z)]2 + Var[εx(z)]− Cov[Σ11(z),Σ22(z)] + Var[Σ12(z)]

= ε2⊥ + ε2R, (26)

4



where:

ε2⊥ = E[εx(z)]2, (27)

ε2R = Var[εx(z)]− Cov[Σ11(z),Σ22(z)] + Var[Σ12(z)]. (28)

Thus, we have shown that:
ε2x = ε2⊥ + ε2R + ε2int + ε2||. (29)

In Appendix B, we prove that each of these four contributions is nonnegative, so that ε⊥, εR, εint
and ε|| are always real quantities.

Changing to a more intuitive notation, let us write the first moments of slice z in the form:

µx(z) = µ1(z) µpx(z) = µ2(z), (30)

which denote the horizontal position and momentum of the slice centroid. Similarly, let us write
the second moments of the slice z in the form:

σ2x(z) = Σ11(z), σ2px(z) = Σ22(z), 〈∆x∆px〉z = Σ12(z). (31)

Expressing the four emittance contributions in terms of these quantities gives, after writing out
(24-25) explicitly:

ε2⊥ = E[εx(z)]2, (32a)

ε2R = Var[εx(z)]− Cov[σ2x(z), σ2px(z)] + Var[〈∆x∆px〉z], (32b)

ε2int = E[σ2x(z)] Var[µpx(z)] + E[σ2px(z)] Var[µx(z)]− 2 E[〈xpx〉z] Cov[µx(z), µpx(z)], (32c)

ε2|| = Var[µx(z)] Var[µpx(z)]− Cov[µx(z), µpx(z)]2. (32d)

Let us consider each of these contributions in turn.

1. The quantity
ε⊥ = E[εx(z)]

is the mean slice emittance. It is determined by computing the emittance within each longitudinal
beam slice, and then taking the mean among slices, with each slice weighted by its corresponding
longitudinal density. It vanishes if and only if every slice of the beam has zero emittance.

2. The quantity εR is the mismatch emittance, and its value is determined by the size of variation
in the beam second moments (the covariance matrices ΣX(z)) from slice to slice. When εx(z) 6= 0,
it is typical to define the slice Twiss functions α(z), β(z), and γ(z) such that1:

ΣX(z) = εx(z)

(
β(z) −α(z)
−α(z) γ(z)

)
with β(z)γ(z)− α(z)2 = 1. (33)

If the slice Twiss functions α(z), β(z), and γ(z) are identical for every slice z, then εR vanishes.

1Each mention of the Twiss functions in this work refers to the horizontal Twiss functions, so the subscripts in
αx, βx, and γx have been suppressed; there is no possiblity of confusion with the relativistic factors β and γ, since
these appear only once in (66). Since the emittance in (33) is normalized, the Twiss functions here differ from the
geometric Twiss functions by the appropriate relativistic factor.
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3. The quantity εint is the linear misalignment emittance, and its value is determined by the size
of variation in the first moments (slice centroids) from slice to slice. This is a “cross term”, as the
contributions from the centroid variations are themselves weighted by the mean second moments.
If the centroids of all beam slices are aligned, so that µx(z) and µpx(z) are identical for every slice,
then εint vanishes.

4. The quantity ε|| is the nonlinear misalignment emittance, and its value is also determined by
the size of variation in the first moments (slice centroids) from slice to slice. Unlike εint, it depends
exclusively on the slice centroid coordinates. In particular, ε|| is the beam emittance that would
result if all charge within each slice were concentrated at the location of the corresponding slice
centroid. If all slice centroids are aligned, then ε|| vanishes.

Appendix B describes the conditions under which each of these contributions vanishes. The reason
for separating the terms εint and ε|| will become more clear in the following section.

5 Special cases

The decomposition of the previous section is valid for a general beam distribution. However, there
are several idealized special cases that arise frequently in the literature. We will consider four of
these in this section, with the hope that this will clarify the significance of the four contributions
given in (32).

5.1 Uniform slice emittance

First, suppose that the emittance of every longitudinal beam slice is identical. More precisely,
assume that:

εx(z) = E[εx(z)] = ε⊥ (34)

for every z with λ(z) 6= 0. Provided ε⊥ 6= 0, it is natural to define the slice Twiss functions α(z),
β(z), and γ(z) as in (33), so that

σ2x(z) = ε⊥β(z), σ2px(z) = ε⊥γ(z), 〈∆x∆px〉z = −ε⊥α(z). (35)

In this case the contribution ε⊥ is given simply by (34), and the contribution ε|| is unchanged from
its original form (32). We can re-express the remaining two contributions in terms of the Twiss
functions as:

ε2R = ε2⊥ {−Cov[β(z), γ(z)] + Var[α(z)]} , (36a)

ε2int = ε⊥ {E[β(z)] Var[µpx(z)] + E[γ(z)] Var[µx(z)] + 2 E[α(z)] Cov[µx(z), µpx(z)]} . (36b)

Here we have used the facts that for any constant a and any z−dependent functions φ, φ1, and φ2:

E[aφ] = aE[φ], Cov[aφ1, aφ2] = a2 Cov[φ1, φ2], Var[aφ] = a2 Var[φ]. (37)

Also, we used the fact that due to the assumption in (34):

Var[εx(z)] = E[(εx(z)− E[εx(z)])2] = 0. (38)
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The expression (36a) indicates that the mismatch emittance εR is determined by the size of slice-to-
slice variations in the beam Twiss functions. However, it is convenient (and somewhat surprising)
that εR can also be written directly in terms of the mean Twiss functions. This can be seen by
noting from (33) that:

1 = E[β(z)γ(z)− α2(z)] = E[β(z)γ(z)]− E[α2(z)] (39)

= Cov[β(z), γ(z)] + E[β(z)] E[γ(z)]−Var[α(z)]− E[α(z)]2, (40)

so:
ε2R = ε2⊥

{
E[β(z)] E[γ(z)]− E[α(z)]2 − 1

}
. (41)

When β(z), γ(z), and α(z) are each independent of z, we see that this quantity indeed vanishes as
a consequence of (33).

5.2 Uniform slice Twiss functions

Suppose that the Twiss functions of every longitudinal beam slice are identical. More precisely,
assume that εx(z) 6= 0 and:

α(z) = E[α(z)], β(z) = E[β(z)], γ(z) = E[γ(z)], (42)

for every z with λ(z) 6= 0. We let α0, β0, γ0 denote the uniform values given in (42). The mismatch
emittance in (32) then becomes:

ε2R = Var[εx(z)]− Cov[εx(z)β0, εx(z)γ0] + Var[−εx(z)α0]

= Var[εx(z)]− β0γ0 Cov[εx(z), εx(z)] + α2
0 Var[εx(z)]

= Var[εx(z)]− (β0γ0 − α2
0) Var[εx(z)] = 0, (43)

since β0γ0 − α2
0 = 1. Thus, the misalignment emittance vanishes. The contributions ε⊥ and ε||

are independent of the slice second moments, and their form remains unchanged. The remaining
contribution becomes:

ε2int = E[εx(z)β0] Var[µpx(z)] + E[εx(z)γ0] Var[µx(z)]− 2 E[−εx(z)α0] Cov[µx(z), µpx(z)]

= ε⊥ {β0 Var[µpx(z)] + γ0 Var[µx(z)] + 2α0 Cov[µx(z), µpx(z)]} . (44)

5.3 Aligned slice centroids

Next, suppose that all slice centroids are aligned. More precisely, assume that:

µx(z) = E[µx(z)], µpx(z) = E[µpx(z)], (45)

for every z with λ(z) 6= 0. It immediately follows that:

Var[µx(z)] = Var[µpx(z)] = Cov[µx(z), µpx(z)] = 0, (46)

and so εint = ε|| = 0. Thus, the only projected emittance contributions are due to the mean slice
emittance and the mismatch emittance.
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This case is often treated by introducing a slice mismatch parameter [11]-[13], given by:

ζ(z) =
1

2
{γ(z)β − 2α(z)α+ β(z)γ} , (47)

where α, β, and γ are the projected Twiss functions, defined by:

ΣX = εx

(
β −α
−α γ

)
with βγ − α2 = 1, (48)

and εx is the projected emittance. An alternative expression is given in terms of the projected and
slice Twiss matrices, given respectively by:

R =

(
β −α
−α γ

)
R(z) =

(
β(z) −α(z)
−α(z) γ(z)

)
, (49)

from which (47) takes the form:

ζ(z) =
1

2
tr(R−1R(z)). (50)

The slice mismatch parameter has the properties that ζ(z) ≥ 1, and ζ(z) = 1 if and only if
R(z) = R. (A proof is included in Appendix C.) As a result, ζ(z) is a measure of how far the Twiss
functions of slice z vary from the projected Twiss functions of the beam.

Multiplying (47) by the slice emittance at z reveals that:

εx(z)ζ(z) =
1

2
{Σ22(z)β + 2Σ12(z)α+ Σ11(z)γ} . (51)

Applying (46) to (13), we see that in the present case the projected and slice covariance matrices
are related by:

Σab = E[Σab(z)], a, b = 1, . . . , 6. (52)

Taking the average of (51) across slices using (52) gives immediately the projected emittance:

E[εx(z)ζ(z)] =
1

2
{Σ22β + 2Σ12α+ Σ11γ} = εx

{
βγ − α2

}
= εx. (53)

It therefore follows that:
ε2R = E[εx(z)ζ(z)]2 − E[εx(z)]2. (54)

It is clear from (54) that when ζ(z) = 1 for every slice (the perfectly matched case), then εR = 0.

5.4 Linear slice centroid misalignment

For the final case, assume a purely linear misalignment of the beam centroids. More precisely,
assume that:

µx(z) = µx(zc) + (z − zc)µ′x, µpx(z) = µpx(zc) + (z − zc)µ′px , (55)

for slices with λ(z) 6= 0. Here zc = E[z] denotes the longitudinal location of the beam centroid, and
µ′x, µ′px are constants. This is a case that occurs regularly in linear optics systems with nonzero
transverse-longitudinal coupling.
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The quantities ε⊥ and εR are independent of the slice centroid values, and their form will therefore
remain unchanged. To evaluate the remaining two emittance contributions, note from (55) that:

Var[µx(z)] = Var[z](µ′x)2, Var[µpx(z)] = Var[z](µ′px)2, Cov[µx(z), µpx(z)] = Var[z]µ′xµ
′
px .
(56)

An immediate consequence is that the nonlinear misalignment emittance vanishes:

ε2|| = Var[µx(z)] Var[µpx(z)]− Cov[µx(z), µpx(z)]2 = 0. (57)

Evaluating the linear misalignment emittance gives:

ε2int = σ2z
{

E[σ2x(z)](µ′px)2 + E[σ2px(z)](µ′x)2 − 2 E[〈xpx〉z]µ
′
xµ
′
px

}
. (58)

To interpret (58), it is helpful to re-express the quantities involved using the projected beam mo-
ments. To determine µ′x and µ′px , for example, take the covariance of (55) with the slice coordinate
z to see that:

Cov[z, µx(z)] = Cov[z, µx(zc)] + Cov[z, z − zc]µ′x = Var[z]µ′x, (59)

with a corresponding expression involving µ′px . However, it also follows from (13) that:

Σ55 = E[Σ55(z)] + Cov[µ5(z), µ5(z)] = Var[z], (60)

Σ51 = E[Σ51(z)] + Cov[µ5(z), µ1(z)] = Cov[z, µx(z)], (61)

since for each slice z
Σ55(z) = 0, Σ51(z) = 0, µ5(z) = z. (62)

Thus we have:

µ′x =
Σ51

Σ55
, µ′px =

Σ52

Σ55
. (63)

These quantities jointly characterize the size of transverse-longitudinal correlations in the beam.
Likewise, applying (13) together with (56) gives:

Σ11 = E[Σ11(z)] + Cov[µ1(z), µ1(z)] = E[σ2x(z)] + Var[z](µ′x)2, (64a)

Σ22 = E[Σ22(z)] + Cov[µ2(z), µ2(z)] = E[σ2px(z)] + Var[z](µ′px)2, (64b)

Σ12 = E[Σ12(z)] + Cov[µ1(z), µ2(z)] = E[〈∆x∆px〉z] + Var[z]µ′xµ
′
px . (64c)

Using (64) and (63) to re-express (58) in terms of the projected beam covariance matrix gives:

ε2int =
1

Σ55

(
Σ11Σ

2
52 + Σ22Σ

2
51 − 2Σ12Σ51Σ52

)
. (65)

Note that this quantity is defined only when Σ55 = σ2z 6= 0. This is reasonable, since when σz = 0,
the decomposition of the beam into longitudinal slices is no longer meaningful.
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6 Generalizations and Related Results

The decomposition given in (32) can be generalized in a number of ways. First, note that the
treatment leading up to (32) is independent of the phase space variables used, and the same result
may be applied if the conjugate canonical variables (z, pz) are replaced by the conjugate variables
(t, pt) or (−ct, δ), as are typically used to describe the beam distribution at a fixed longitudinal
location, where for example:

pt = −γmc2, δ = ∆γ/γ0. (66)

In this case, the longitudinal beam slices are defined by the temporal coordinate t (or −ct) rather
than by the spatial coordinate z. Alternatively, one may decompose the beam into slices based
on the horizontal coordinate x or the vertical coordinate y. The following two cases are worth
describing in some detail.

6.1 Emittance decomposition using 3-D spatial coordinates

The discussion of Section 2 can be modified by replacing the decomposition of the beam into
longitudinal slices (using the longitudinal coordinate z) with a decomposition of the beam into
spatial points (using the three spatial coordinates x, y, and z). To see how this is done, we write
X = (r,p) to emphasize the separation of the spatial r = (x, y, z) and momentum p = (px, py, pz)
phase space coordinates.

As in Section 2, the beam distribution function f defines a probability density on the 6-D phase
space, and it is natural to define both a marginal and a conditional probability density associated
with the decomposition into spatial points. In place of the marginal probability density given in
(3), we now have the 3-D spatial density:

ρ(r) =

∫
f(r,p)dp. (67)

Likewise, in place of the conditional probability density given in (4), we now have the distribution
function at a point r:

f(p|r) =
f(r,p)

ρ(r)
, (68)

provided ρ(r) > 0, with f(p|r) = 0 otherwise. The averages 〈·〉z and E[·] are replaced by their
analogues defined using densities (67) and (68), so we have the average of a quantity φ at a point
r given by:

〈φ〉r =

∫
φ(r,p)f(p|r)dp, (69)

and the spatial average of any r−dependent quantity φ given by:

E[φ] =

∫
φ(r)ρ(r)dr. (70)

In the derivation leading up to the emittance decomposition (32), the conditional expectation and
conditional covariance of Appendix A are now evaluated for a fixed triple of spatial coordinates r,
rather than for a fixed slice coordinate z. Using the same theorems, the results of Section 3 carry
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over directly when one takes z → r and replaces the averages 〈·〉z and E[·] with (69) and (70). Note
that in this case we have:

µx(r) = x, (71)

and the covariance matrix at point r takes the form:

ΣX(r) =

(
0 0

0 σ2px(r)

)
. (72)

Of the four contributions to the projected emittance given in (32), it follows from (72) that two of
these always vanish:

ε2⊥ = ε2R = 0, (73)

and the remaining two take the forms:

ε2int = E[σ2px(r)] Var[µx(r)], (74a)

ε2|| = Var[µx(r)] Var[µpx(r)]− Cov[µx(r), µpx(r)]2. (74b)

The contribution (74a) is the intrinsic beam emittance due to intrinsic variations in the particle
momentum at each point, while (74b) is the correlated beam emittance due to spatially correlated
variations in the particle momentum.

It is convenient to define the transverse beam temperature Tx [4] at a point r by using the momen-
tum spread at r:

kBTx(r)

mc2
= σ2px(r), (75)

where kB is Boltzmann’s constant. In this way, we see that (74a) is proportional to the spatial
average of the transverse beam temperature times the square of the transverse rms beam size.
Meanwhile, (74b) is the projected emittance that the beam would have if it were cold—that is, if
all particles at a given point were given a momentum equal to the mean momentum µpx(r) at that
point.

6.2 Emittance decomposition using finite subpopulations

In the previous sections, we described the beam by a continuous density f on the phase space:
This is necessary for a rigorous discussion of slice moments and emittances, since these quantities
are in general undefined when one considers a finite (discrete) particle distribution together with
longitudinal slices of zero width. However, the decomposition (32) is based on mathematical tools
that are quite general, which produce corresponding results for the discrete-particle case. These
results characterize the relationship between the rms emittances of the beam and the moments of
its various subpopulations.

For example, suppose that a finite beam of N particles is divided into M disjoint bins n = 1, . . . ,M .
These may be longitudinal bins of fixed or varying width, or bins based on some other criterion
(such as particle energy); we assume only that the bins divide the phase space into non-overlapping
regions. We set n = 0 for all points X in the phase space that lie outside the M bins, so that
each phase space point corresponds to a unique index n. Then the value of this index defines a
discrete random variable on the phase space, which plays exactly the role previously played by the
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continuous random variable z. The conditional expectation and conditional covariance of Appendix
A are now evaluated for fixed bin index n, rather than for fixed slice z. Using the same theorems,
the results of Section 3 carry over directly when one takes z → n and replaces the continuous
averages 〈·〉, 〈·〉z, and E[·] with their discrete analogues.

In particular, let Xj , j = 1, . . . , N denote the particle phase space coordinates, and let Nn denote
the number of particles in bin n, with

M∑
n=1

Nn = N. (76)

The averages in (2) and (6) now become:

〈φ〉 =
1

N

N∑
j=1

φ(Xj), 〈φ〉n =
1

Nn

Nn∑
j=1

φ(Xjn), n = 1, . . . ,M (77)

where the second sum is taken only over those particles that lie within bin n. Thus, 〈φ〉n denotes
the bin average of the quantity φ. We may therefore define the bin centroid vectors ~µn, the bin
covariance matrices Σn, and the bin emittances, in the natural way. Finally, if φn is a quantity
that varies from bin to bin, then we may define its average across bins as:

E[φn] =
Nn

N

M∑
j=1

φn, (78)

from which we may also define the covariance of two n−dependent quantities as in (10). The
horizontal projected emittance of the beam now takes the form:

ε2x = ε2⊥ + ε2R + ε2int + ε2||, (79)

where the four emittance contributions are given by (32) after taking z → n.

7 Conclusions

The decomposition of a beam into longitudinal slices leads naturally to a corresponding decompo-
sition for each of the projected emittances εx, εy, and εz into distinct nonnegative contributions,
separating the effect of particle coordinate/momentum variation within each slice from the effect of
particle coordinate/momentum variation between slices. It is expected that each of these contribu-
tions is affected by distinct dynamical processes in a typical accelerator lattice, including nonlinear
aberrations due to external focusing fields, transverse-longitudinal coupling due to dispersion, slice
mismatch due to time-dependent focusing effects, wakefield-induced emittance growth, and a vari-
ety of other effects. As a result, independent consideration of these four contributions may provide
helpful diagnostic tools for studying the dynamical sources of projected emittance growth in typical
accelerator systems.
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A Appendix: Mathematical Theorems

In this section, we describe several theorems that are useful in studying the relationships between
slice and projected quantities.

A.1 Theorems relating to probability

The following is a fundamental theorem regarding conditional probability [14]-[15]. We give the
general result, and then prove the statement that is used in the text (12-13).

Suppose X, Y and Z are three random variables defined on the same probability space. We use
standard notation for the expectation E[·] and covariance Cov[·, ·] of these random variables. The
expectation of X and the covariance of X and Y can be evaluated under the condition that Z takes
on some fixed value Z = z. The resulting quantities are written as:

E[X|Z = z], Cov[X,Y |Z = z], (80)

denoting the conditional expectation and the conditional covariance, respectively. As the value of
Z varies, the functions E[X|Z] and Cov[X,Y |Z] are themselves random variables that depend on
the value of Z. The relationships between these random variables are given by the law of total
expectation:

E[X] = E[E[X|Z]] (81)

and the law of total covariance:

Cov[X,Y ] = E[Cov[X,Y |Z]] + Cov[E[X|Z],E[Y |Z]], (82)

which hold provided E[X] and Cov[X,Y ] are each finite, respectively. These results apply indepen-
dently of whether the random variables X, Y , and Z are continuous, discrete, or a mixture of the
two.

Consider now the phase space coordinates X, with joint probability density given by the beam
distribution function f(X). Let Z be the random variable corresponding to the coordinate z. Then
(81) states that, for any function φ on the phase space:

〈φ〉 = E[〈φ〉z]. (83)

In the special case that φ(X) = Xa, this corresponds to the result quoted in the main text (12).
We now prove (83).
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Pf / Taking the mean of 〈φ〉z across slices gives:

E[〈φ〉z] =

∫
λ(z)〈φ〉zdz =

∫
λ(z)

[∫
φ(z, ζ)f(ζ|z)dζ

]
dz

=

∫ [∫
φ(z, ζ)f(z, ζ)dζ

]
dz =

∫
φ(X)f(X)dX = 〈φ〉, (84)

where in the third equality we have made use of (4). �

Next, for some indices a and b, let X be the random variable corresponding to the coordinate Xa,
let Y be the random variable corresponding to the coordinate Xb, and let Z be the random variable
corresponding to the coordinate z. Then we have, using the notation of the main text:

Cov[X,Y |Z] = Σab(z), E[X|Z] = µa(z), E[Y |Z] = µb(z), (85)

and (82) corresponds to the result given in the main text as (13), a result that we now prove.

Pf / We have from the definition of the beam covariance matrix Σ and (83) that:

Σab = 〈XaXb〉 − 〈Xa〉〈Xb〉 = E[〈XaXb〉z]− E[〈Xa〉z] E[〈Xb〉z]. (86)

Applying the definition of the slice centroid coordinates µa(z) and µb(z) gives:

= E[〈(Xa − µa(z))(Xb − µb(z))〉z + µa(z)µb(z)]− E[µa(z)] E[µb(z)]. (87)

Applying the linearity of the expectation value and the definition of the slice covariance matrix:

= E[Σab(z)] + E[µa(z)µb(z)]− E[µa(z)] E[µb(z)], (88)

which gives using (10) that:

Σab = E[Σab(z)] + Cov[µa(z), µb(z)]. � (89)

The following theorem makes use of the notion of convexity. A convex subset of n−dimensional
space Rn is a subset C with the property that, for all x and y in C and all 0 ≤ t ≤ 1, the point
tx + (1− t)y ∈ C. (That is, the line segment joining any two points in C is itself contained in C.)

If C is a convex subset of Rn, a convex function on C is a function f : C → R such that, for all x
and y in C and all 0 ≤ t ≤ 1,

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y). (90)

Given a convex function f : C → R, a convex subset K ⊆ C will be called an f -affine subset if and
only if, for all x and y in K and all 0 ≤ t ≤ 1, equality holds in (90).

Jensen’s inequality: Let f be a convex function defined on a convex subset C of Rn, and let X
be a random variable taking values in C. Suppose that the mean E[X] exists, in the sense that
E[|Xj |] <∞ for each element j = 1, . . . , n. It then follows that E[X] ∈ C, the real number E[f(X)]
exists, and

f(E[X]) ≤ E[f(X)]. (91)

Furthermore, equality holds in (91) if and only if there exists an f -affine subset K ⊆ C with the
property that X ∈ K with probability 1 (a.e.). The proof of (91) can be found in [20]-[21]. The
condition for equality follows from results described in [22]-[23].
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A.2 Theorems relating to matrices

A real n × n symmetric matrix A is said to be positive semidefinite if xTAx ≥ 0 for all vectors
x ∈ Rn, which is typically denoted by writing A ≥ 0. The following results are standard, and the
reader may refer to one of the references [16]-[19] for proofs.

Property 1: If A is a positive semidefinite matrix, then the eigenvalues of A are nonnegative and
therefore det(A) ≥ 0. If det(A) 6= 0, then A−1 is also positive semidefinite.

Property 2: If A is the covariance matrix associated with a vector of random variables, then A is a
positive semidefinite matrix.

Property 3: The set of n × n positive semidefinite matrices is a convex subset of the space of real
n× n matrices.

Pf / Let A and B be n× n positive semidefinite matrices, and let x ∈ Rn, so that:

xTAx ≥ 0, xTBx ≥ 0. (92)

For any 0 ≤ t ≤ 1, the quantity tA+ (1− t)B is a real n× n symmetric matrix and:

xT (tA+ (1− t)B)x = t(xTAx) + (1− t)(xTBx) ≥ 0, (93)

so that tA+ (1− t)B is positive semidefinite. �

The following inequalities can be found in [19].

Trace inequality: If A and B are n× n positive semidefinite matrices, then:

n det1/n(AB) ≤ tr(AB) ≤ tr(A) tr(B). (94)

Equality always holds when n = 1. Suppose n > 1 and det(A) 6= 0. Then equality holds on the left
iff B = cA−1 for some c ≥ 0, and equality holds on the right iff B = 0, the zero matrix.

Minkowski determinant inequality: If A and B are n× n positive semidefinite matrices, then

det1/n(A+B) ≥ det1/nA+ det1/nB. (95)

Suppose det(A) 6= 0. Then equality holds iff B = cA for some c ≥ 0.

The following theorem can be viewed as a generalization of (95) to a (possibly infinite) ensemble
of matrices.

Jensen’s determinant inequality: Let R be a random variable that takes its values in the set of n×n
positive semidefinite matrices. Suppose the expectation value E[R] exists, in the sense that:

E[|Rab|] <∞, a, b = 1, . . . , n. (96)

Then the matrix E[R] is also positive semidefinite, and satisfies:

det1/n E[R] ≥ E[det1/nR]. (97)
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Furthermore, if the random matrix R has the property that det(R) 6= 0, then equality holds in (97)
if and only if there exists a real-valued random variable c and a constant n×n matrix R0 such that
R = cR0 with probability 1.

Pf / Let g be the function on the set of positive semidefinite matrices given by:

g(A) = −det1/n(A) (98)

for each A ≥ 0. Given any 0 ≤ t ≤ 1, it follows from (95) that for any matrices A ≥ 0 and B ≥ 0:

g(tA+ (1− t)B) = −det1/n(tA+ (1− t)B) ≤ −det1/n(tA)− det1/n((1− t)B)

= −tdet1/n(A)− (1− t) det1/n(B) = tg(A) + (1− t)g(B). (99)

Thus, the function g is convex on the set of positive semidefinite matrices. It now follows from
Jensen’s inequality (91) that E[R] ≥ 0 and:

g(E[R]) ≤ E[g(R)], (100)

from which (97) immediately follows. To prove the equality condition, it follows from (95) that the
only g−affine subsets in the set of positive semidefinite matrices with det(R) 6= 0 are those of the
form {cR0 : c ∈ [a, b]} for some fixed matrix R0. Thus, equality holds in (97) if and only if R = cR0

with probability 1. �

B Appendix: Nonnegativity

It follows from (8) and (18) that both ΣX(z) and ΛX take the form of covariance matrices. By
Property 2 of Appendix 6.2, each of these matrices is positive semidefinite, and we may apply all
the theorems of that section.

1. Mean slice emittance - Since ΣX(z) is positive semidefinite:

εx(z)2 = det ΣX(z) ≥ 0. (101)

Thus, εx(z) is a real quantity for each z, and so is the mean E[εx(z)]. Then we must have:

ε2⊥ = E[εx(z)]2 ≥ 0. (102)

Furthermore, since εx(z) ≥ 0 for all z, equality holds in (102) if and only if εx(z) = 0 a.e.

2. Mismatch emittance - Recall from (26) that:

det(E[ΣX(z)]) = ε2⊥ + ε2R. (103)

The 2 × 2 covariance matrix ΣX(z) is positive semidefinite for each z. It follows from Jensen’s
determinant inequality (97) that the matrix E[ΣX(z)] is also positive semidefinite and satisfies:

det1/2(E[ΣX(z)]) ≥ E[det1/2(ΣX(z))] = E[εx(x)] = ε⊥. (104)
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Thus,
ε2R = det(E[ΣX(z)])− ε2⊥ ≥ 0. (105)

Suppose that the slice emittance is nonzero, εx(z) > 0. Then equality holds in (105) if and only
if ΣX(z) = c(z)R0 a.e. for some real-valued function c(z) and a fixed matrix R0. We can assume
without loss of generality that det(R0) = 1 (otherwise we may scale c appropriately). Thus,
R0 = R(z) is exactly the slice Twiss matrix and c(z) = εx(z) is the slice emittance. Hence, equality
holds in (105) if and only if the slice Twiss functions α(z), β(z), and γ(z) are constant a.e.

3. Linear misalignment emittance - Let A and B be the 2× 2 matrices defined in (23):

A = E[ΣX(z)], B = ΛX . (106)

Then A and B are each positive semidefinite. By the trace inequality (94), we have:

ε2int = tr(A) tr(B)− tr(AB) ≥ 0. (107)

Suppose that the slice emittance is nonzero, ε⊥ 6= 0. Then det(A) = ε2⊥ + ε2R 6= 0, and equality
in (107) holds if and only if B = ΛX = 0, the zero matrix. This implies that Var[µx(z)] =
Var[µpx(z)] = 0, so that µx(z) = E[µx(z)] and µpx(z) = E[µpx(z)] a.e. That is, the slice centroids
are aligned. In this case, we also have ε2|| = det(ΛX) = 0.

4. The matrix ΛX is positive semidefinite, and therefore:

ε2|| = det(ΛX) ≥ 0. (108)

Suppose that strict inequality holds in (108), so that ε|| 6= 0. By the results of Section 5.4, it
follows that the slice centroids µx(z), µpx(z) are not uniform in z, nor are they described by linear
functions of the form (55). That is, one or both of µx(z), µpx(z) possess a nonlinear dependence
on the slice coordinate z.

C Appendix: Slice mismatch parameter

Let ζ(z) be the slice mismatch parameter defined in (50). Then ζ(z) ≥ 1, and ζ(z) = 1 if and only
if R(z) = R.

Pf / Since ΣX and ΣX(z) are positive semidefinite matrices and we have assumed that εx > 0,
εx(z) > 0, the matrices R = ΣX(z)/εx and R(z) = ΣX(z)/εx(z) are also positive semidefinite. By
Property 1 of Appendix A, this is also true of R−1. Furthermore, we have:

det(R) = det(R(z)) = 1. (109)

It follows from the trace inequality (94) that:

ζ(z) =
1

2
tr(R−1R(z)) ≥ det1/2(R−1R(z)) = 1. (110)

In addition, equality holds if and only if R(z) = cR for some c ≥ 0. However, we also have:

1 = det(R(z)) = det(cR) = c2 det(R) = c2, (111)

so c = ±1. Thus, c = 1 and R(z) = R. �
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